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ABSTRACT | Cities are encountering extensive deficits in 

infrastructure service while they are experiencing rapid 

technological advancements and overhauls in transportation 

systems. Standard bridge evaluation methods rely on visual 

inspections, which are infrequent and subjective, ultimately 

affecting the structural assessments on which maintenance 

plans are based. The operational behavior of a bridge must 

be observed more regularly and over an extended period in 

order to sufficiently track its condition and avoid unexpected 

rehabilitation. Mobile sensor networks are conducive to 

monitoring bridges vibrations routinely, with benefits that have 

been demonstrated in recent structural health monitoring (SHM) 

research. Though smartphone accelerometers are imperfect 

sensors, they can contribute valuable information to SHM, 

especially when aggregated, e.g., via crowdsourcing. In an 

application on the Harvard Bridge (Boston, MA), it is shown that 

acceleration data collected using smartphones in moving vehicles 

contained consistent and significant indicators of the first 

three modal frequencies of the bridge. In particular, the results 

became more precise when informatics from several smartphone 

datasets were combined. This evidence is the first to support the 
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hypothesis that smartphone data, collected within vehicles 

passing over a bridge, can be used to detect several modal 

frequencies of the bridge. The result defines an opportunity 

for local governments to make partnerships that encourage 

the collection of low-cost bridge vibration data, which can 

contribute to more effective management and informed 

decision-making.
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Damage Detection; Structural Health Monitoring; System 
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Intelligent Infrastructure

The state of U.S. infrastructure can be described as expir-
ing: about 40% of bridges are over 50 years old; in each day 
of 2016, Americans took 188 million trips over structurally 
deficient bridges [1], [2]; and the backlog in bridge rehabil-
itation is estimated at $123 billion. For effective commerce 
and transit between U.S. states, federal laws require bien-
nial bridge condition evaluations. Local governments and 
transportation authorities manage bridges and are respon-
sible for a majority of the funding; they employ inspec-
tions, then form and prioritize plans based on engineering 
assessments and allocated budgets. Yet, modern inspec-
tion protocols are sparse in time, and often do not include 
sensors or other technological tools, and as a result, can 
miss damage indicators and/or lead to improper diagnoses.

A visual inspection is the primary condition evalua-
tion method which, while often thorough, is subjective 
by nature and can be impaired by obstructive nonstruc-
tural elements or other physical restrictions [3]–[5]. Even 
if a compromised structural component is in clear sight 
of a professional bridge inspector, early signs of damage,  
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e.g., local yielding or microcracking, can be simply unde-
tectable to the human eye. More frequent monitoring 
guarantees higher confidence in structural assessments. 
Advanced notice of structural deficiencies can save hun-
dreds of millions of dollars in bridge repairs [6] while maxi-
mizing its service and lifecycle. At last, bridge systems must 
be resilient, with a transparent and quantifiable reliability if 
they are expected to support potentially more annual trips 
than ever before through population growths [7], new waves 
of transportation modes [8], and mobility patterns [9], [10].

Ubiquitous smartphones currently include over a dozen 
sensors and can collectively generate massive amounts of 
data that enable insight at the resolution of an individual, 
defining new opportunities to study human activity. Digital 
traces [11], [12] capture human mobility [8], [13], [14], and 
can reveal patterns which help us better understand how 
people use and interact with the urban environment [15], 
[16]. Such realizations have highlighted inherent simi-
larities and differences in human tendencies among cities 
around the world [17]. Finally, through Internet-of-Things 
(IoT) connectivity, smartphones have an ability to facilitate 
mass participation and information gathering, as illustrated 
by mobile applications, whose service is dependent on indi-
vidual user contributions, e.g., Google Maps, Yelp, Waze.

Which services can be delivered to urban environments 
through big data generated by the public’s smartphones? 
Can digital data, produced by ubiquitous smartphone sens-
ing, supply bridge condition information cost-effectively, 
thereby creating a new relationship between a city and its 
infrastructure? These are some of the questions that are 
investigated in this paper.

I .  INFER R ING STRUCT U R A L 
PROPERTIES FROM V IBR ATION DATA

A. Motivation

Unknowns about the true state of any structural system 
begin as early as the design phase, in which assumptions 

and simplifications on structural behavior are common 
practices (albeit necessary and embedded in design codes). 
The construction process further contributes to unexpected 
differences between the design and built system. These two 
items alone provide adequate justification for establish-
ing the original (baseline) conditions of a built structure 
through inspection and explicit measurements. When the 
structure is in service, engineers must accept uncertainties 
within operational (everyday) behavior, which are related to 
variations in usage, material properties, inherent defects, 
and environmental conditions among other factors.

Data collection and analysis are essential to bridge man-
agement systems [18]. Regardless of its age, up-to-date knowl-
edge of a bridge’s structural properties and behavior is highly 
valuable for condition forecasts and to effectively manage it 
as an asset [19]–[22]. Digital sensors and data acquisition sys-
tems can address the frequency and subjectivity challenges 
currently faced in visual inspection methods by facilitating 
continual information procurement and measuring physi-
cal phenomena with dedicated devices. Modern sensor net-
work technology is capable of recording ambient vibrations 
of a civil structure, e.g., accelerations; such data captures the 
inherent, cyclic dynamic characteristics of the system, which 
are tied to its physical stiffness and mass, as well as material 
properties. An ability to monitor a structure’s operational 
activity over an extended period is key to tracking its physi-
cal attributes and a cornerstone in preventative maintenance.

B. Condition Monitoring and Evaluation of Civil 
Structures

Structural health monitoring (SHM) [23] research is 
dedicated to better understanding structural performance 
and determining the true conditions of a structural system 
through the analysis of field measurements (sensor data). 
Modern data acquisition systems consist of a fixed sensor 
network, whose scale and configuration can vary vastly 
depending on the application and technology implemented 
(some notable deployments are listed in Table 1). While the 

Table 1 Selected SHM Sensor Network Deployments on Large Civil Structures
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SHM field is diverse and continually expanding, its major 
objectives contain three recurring themes: damage detec-
tion (and characterization), prognostics, and risk assessment 
[5], which in terms of asset management, correlate with 
long-term performance tracking, inspection optimization, 
and decision-making assistance. Structural deterioration 
is immeasurable in itself, although through comparisons 
over time, distress indicators are inferable [24]. To achieve 
explanatory insights from collected data sets, computational 
procedures have been designed to manifest special features 
and metrics, often utilizing statistical frameworks and 
mathematical models.

System identification (SID) [30], the determination of 
structural dynamic properties from vibration data, is one of 
the most matured and repeatable processes available for civil 
structures. Over the past two decades, a plethora of tech-
niques have emerged, with varied algorithmic complexities. 
Many are founded on time series concepts, e.g., autore-
gressive [31], or state-space [32]–[34] models, and recently 
some have incorporated machine learning [35] or Bayesian 
[36] frameworks. Furthermore, studies on the mathemati-
cal precision [37], [38] of modal identification techniques 
as well as long-term applications have allowed for a better 
understanding of robustness, i.e., how the results may be 
influenced by deterministic and stochastic variables. A great 
deal of the sophistication in SID methods can be attributed 
to the relative ease in observing the resonances of a dynamic 
system from output-only vibration data. As an example, it 
is possible to reveal structural modal (resonant) frequen-
cies from a single data set through simple frequency domain 
approaches, e.g., Fourier transforms. Structural damage, on 
the other hand, is often a highly localized spatiotemporal 
phenomenon that is not omnipresent in such sensor data.

The vibration characteristics of a structural system are 
permanently altered by damage, which can initiate after a 
particular event or develop gradually over time. At any rate, 
a local stiffness reduction, such as a crack, will affect struc-
tural parameters or modal properties to some degree, e.g., 
decrease in frequency, increase in damping, and modified 
mode shapes [39]. Damage identification (DID) strategies 
have a clear belonging within frameworks for risk assess-
ment and bridge management. Accordingly, in SHM, there 
is considerable ongoing attention on the detection, localiza-
tion, and quantification of structural damage (the DID trio) 
using sensor network data [38]–[43]. Because damage is a 
broad and complex entity that for all practical purposes is 
immeasurable, more effort is needed to expose its attributes. 
Many techniques aim to extract damage sensitive traits from 
the data via signal processing, feature extraction [45], [46], 
time-series methods [40], [47], or statistical classification/
clustering [23]. Furthermore, damage tends to be highly 
localized (and potentially sparse) in space, and generally, its 
presence does not necessarily impact structural modal prop-
erties to an extent that is distinguishable from operational 
variation (although a counterexample is presented in [48]).

The first consequence is the realization that sensor net-
works with a larger spatial coverage have a greater ability 
to collect data near a damaged location, which permits 
identification. Second, DID methods require data from an 
undamaged reference structural state in order to properly 
characterize an unknown state (a statistically significant 
difference between damage sensitive features indicates 
damage). Regular and archival monitoring data enable con-
dition evaluations to occur at a rate and detail that surpass 
modern visual inspection protocols, thereby increasing the 
likelihood that structural damage is properly identified 
while it is treatable.

C. Drawbacks of the Fixed Sensor Network Paradigm

Data collection for SHM has relied on fixed sensor net-
works, which must be designed, installed, and maintained 
by experienced personnel. These networks can be as simple 
or elaborate as the budget allows. For instance, long-term 
and cyber–physical monitoring systems [49], [50] empower 
regular monitoring and provide an ability to view structural 
performance metrics in real time; yet, while comprehen-
sive, the high costs associated with equipment and mainte-
nance mean that this highly technological approach is only 
practical for a select number of bridges (usually those newly 
constructed, or in critical condition). City departments of 
transportation do find importance in collecting response 
data from the bridges they manage; however, they operate 
under a limited budget, which cannot afford the procure-
ment and maintenance of a measurement system for each 
bridge. It seems as though the adoption of high tech moni-
toring systems in SHM may unintentionally accelerate the 
disconnect between bridge inspection protocols and the 
data-driven tools available.

Whether the goal is SID or DID, the size and arrange-
ment of the fixed sensor network plays a crucial role in the 
informatics that can be extracted. The need for optimal sen-
sor placement and compressed sensing strategies in SHM 
have suggested that while a larger fixed sensor network is 
known to provide advantageous information in comparison 
to smaller ones, the costs associated with such systems can 
be prohibitive to research budgets. Fig. 1 illustrates how 
fixed sensor network parameters impact SID results. In par-
ticular, the number of sensors deployed restricts the struc-
tural mode shape information that may be determined; if 
only few sensors are available, higher order mode shapes 
cannot be estimated accurately—a problem that is analo-
gous to aliasing in discrete signal processing. High fidelity 
spatial information is more valuable in DID, e.g., techniques 
based on mode shape curvature [51], [52], since damage-
prone areas cannot be known a priori and higher order 
structural modes have shown to have a higher sensitivity to 
damage, even though dynamic properties are in general not 
good damage features.
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D. Mobile Sensor Networks as a Scalable Monitoring 
Solution

Over the past decade, there has been interest in the 
problem of identifying structural properties, i.e., SID, 
from mobile sensor network data. Mobile sensor networks 
are attractive because they address the shortcomings of 
fixed sensor networks by achieving a dense spatial cover-
age using fewer sensors [53], [54]. In fixed sensor networks, 
each sensor is dedicated to a particular point on the struc-
ture. Mobile sensors scan structural vibrations, making 
it possible to measure vibrations from multiple bridges, 
using the same equipment, within a short time frame. 
In essence, a single mobile sensor can provide informa-
tion comparable to that provided by numerous fixed sen-
sors. Studies have proven that mobile sensors can capture 
modal property information [55]–[57]. In particular, it has 
been shown that the fundamental frequency of a bridge 
can be detected from a vibration sensor mounted in a mov-
ing vehicle [58]–[61]. These results suggest that with the 
proper analytical tools, it may be possible to shift data 
dependence from a dense fixed sensor networks to mobile 
sensor networks, which are simpler to implement and have 
lower setup costs.

While innovative, these methods have not yet provided 
an ability to estimate bridge modal properties in the field 
with a performance comparable to the current standard, 
which is SID using fixed sensor data. Simultaneously, in the 
digital age, an identification technique for mobile sensor 
data with consistent and accurate estimates in practice can 
significantly impact the rate and scale at which vibration 
data are collected and analyzed. The current state of the art 
in modal identification methods for mobile sensors aims to 

1) match the capabilities available with methods designed 
for fixed sensor data; and 2) illustrate the advantageous 
spatial information that is exclusive to sensors with mobil-
ity. Recently, the extended structural identification using 
expectation maximization (STRIDEX) method [62], [63] 
achieved these goals while proving that one mobile sensor 
could provide spatial information comparable to 120 fixed 
sensors.

In contrast to a network of fixed sensors, the quantity 
of mobile sensors does not inherently restrict the spatial 
information that is captured. This superior feature is dem-
onstrated experimentally, using the testbed described in 
[62]. Fig. 2(top) shows two mobile sensor network setups, 
containing two and four sensors, respectively. The mobile 
sensor cars containing accelerometers traversed the span 
of the beam (3048 mm), then returned to their starting 
positions, at a speed of 114 mm/s, while sampling at 280 
Hz. The structural modal properties (frequencies, damp-
ing ratios, and mode shapes) of the specimen were deter-
mined through SID using STRIDEX and are displayed at 
the bottom of Fig. 2. The high-resolution mode shapes 
illustrate how relatively few moving sensors can provide 
rich spatial information, which can support DID. With 
mobile sensing, dedicated devices are no longer needed; 
therefore, the deployment and maintenance needs of a 
sensor network are reduced substantially. The benefits 
are twofold: fewer sensors provide more spatial infor-
mation, and can scan several structures more quickly. 
Mobile sensor networks are conducive to regular bridge 
monitoring, which is essential to a bridge management 
system.

II .  SM A RTPHONES A S MU LTIPU R POSE 
INFR A STRUCT U R E SC A NNER S

A. Civic Data Collection Through Human Mobility

Mobile sensor data contain a denser spatial resolution 
when compared to that collected by an equivalent num-
ber of distributed fixed sensors. In the digital age, high 
smartphone ownership levels in urban hubs have reduced 
the need to procure dedicated devices in order to densely 
cover a city. Specifically, smartphones carried by humans 
create a large-scale mobile sensor network. Throughout 
hundreds of millions of daily trajectories, humans scan city 
infrastructure routinely and comprehensively. Numerous 
studies have illustrated the many ways in which the analy-
ses of such big data streams can generate latent informa-
tion that is useful to the public, the urban planning com-
munity, and local government entities [64], [65]. Even 
before mobile phones reached peak levels in technological 
capabilities and ubiquity, researchers have been involved 
in the development of data collection, processing, and 
management systems to compute real-time traffic met-
rics based on aggregated vehicle trips [54], [66], [67]. In 

Fig. 1. Illustration depicting the limitations in spatial information 
provided by fixed sensor networks. In general,  N  sensors 
distributed along a dimension can successfully reconstruct mode 
shapes having no more than  N − 1  points of inflection. For example, 
five sensors provide sufficient resolution for a lower order mode 
shape, but are inadequate for higher order mode shapes, i.e., those 
with five or more points of inflection.
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Fig. 3, the pervasive sensing of smartphones in a city is 
illustrated for Boston using data from the users of a par-
ticular smartphone app. Detailed map inferences can be 
extracted from sparse and noisy GPS traces collected from 
within vehicles—as data accumulates over longer collec-
tion periods, the maps gain precision [68]. 

Currently, similar tools [69] are integrated into smart-
phone navigation applications, which provide advanced fea-
tures to its users, e.g., route recommendations and real-time 
traffic updates. This example follows a basic principle of 
crowdsourcing: each user contributes unique, presumably 
useful data with the corollary that as user levels increase, 
the quality and value of the collective information also 
improve. The result is that crowdsourcing schemes may ini-
tially require a certain amount of regular user contributions 

to guarantee a service. In a commercial sense, this recursive 
relationship can potentially obstruct the growth of newly 
launched crowdsourcing initiatives: if the user is not pro-
vided a service, what is the incentive to participate? For local 
governments, crowdsourcing offers new insights on human 
activity and a channel for civic interaction. In a smart cities 
landscape, automatic diagnoses of complex urban problems 
could contribute to a better quality of life for residents.

B. Applications in the City of Boston

The Mayor’s Office of New Urban Mechanics in the City 
of Boston (henceforth “The Office”) embraced big data as 
an opportunity to better maintain urban infrastructure and 
enhance public safety. In 2012, with industrial and academic 
support, The Office launched their first crowdsourcing pro-
gram called Street Bump in response to road surface problems, 
mainly potholes, which represent a longstanding quality-of-
life issue experienced by city residents as well as a road main-
tenance costs [70]. The smartphone application transmits 
the accelerometer and GPS measurements into an anomaly 
detection and decision support system [71]. The objective 
was to locate actionable bumps in city streets, a classification 
which would help Boston manage repairs. While the identi-
fication of road surface features from sensors in vehicles is 
not a new concept [72]–[74], this was perhaps the first initi-
ated by the local government to address an urban problem. 
Ultimately, the program did not succeed as a robust pothole 
finder in itself, as it was difficult to distinguish a pothole from 
other conditions, e.g., sunk casting, with high certainty. Yet, 

Fig. 2. Experimental mobile sensing platform at Lehigh University. Three structural modes, complete with frequency  (f ) , damping  (ζ ) , and 
mode shapes, are identified from wireless accelerometers in moving pulley-driven cars. High-resolution mode shapes are extracted using 
the STRIDEX SID method. Until recently, this has traditionally required a dense distributed fixed sensor network.

Fig. 3. Representation of human mobility in Boston, produced from 
smartphone app user data. Residents habitually scan the city using 
smartphone sensors, at a high spatial resolution.
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this project demonstrated that big data can indeed provide a 
distinct service to the city. Rather than focusing on potholes, 
these data sets can be used to cost-effectively evaluate ride 
smoothness in a more generic sense, e.g., rideability. In the 
long term, such metrics could be linked with the pavement 
condition indicator that is currently included in MassDOT 
Highway Division asset management reports.

In 2015, The Office partnered with Boston’s Vision Zero 
Task Force and Cambridge Mobile Telematics to introduce 
the Boston’s Safest Driver smartphone application as part of 
an effort to eliminate fatal traffic crashes by 2030. Through 
Vision Zero, Boston has outlined a multifaceted action plan 
that includes education and enforcement programs to reduce 
distracted and impaired driving. The key offering of the app 
is a personalized evaluation of the user’s driving behavior 
based on speed, acceleration, braking, cornering, and phone 
distraction [75]. The user receives an objective score based 
on his/her activity, which provides a unique opportunity for 
self-reflection and elicits social dialogues about safe driving 
habits. Since the program’s commencement, several compe-
tition cycles have completed, throughout which prizes were 
awarded weekly to top drivers, the most improved scores, 
new users, as well as those who chose car-free trips. The app 
has recorded over 200 000 trips with user levels near 1800 
on average and about 5000 during competitions. The data 
indicated reductions in higher risk actions for the top 25% 
of users. In addition, speeding decreased by 35% and phone 
distraction dropped 47%. These preliminary results suggest 
that users adopted safer driving habits when they knew their 
activity was being monitored. Aside from helping the public 
drive more safely, this program instills notable social bene-
fits. Whether an individual uses this tool as a metric for self-
improvement or to compete with friends, the social aspects 
of Boston’s Safest Driver are highly valuable features that lead 
to conversations in communities about safe driving.

It remains challenging to attract a large user base and 
keep them engaged in certain apps. The user levels of other 
smartphone apps managed by Boston indicate that incentive 
and service are primary factors. For example, the ParkBoston 
app facilitates an everyday city activity by allowing its 
users to pay for metered parking directly from their mobile 
devices. Accordingly, the ParkBoston app was downloaded 
over 400 000 times within its first two years. Comparatively, 
the services provided by apps such as Street Bump or Boston’s 
Safest Driver may be perceived as amenities with little imme-
diate value, making it is difficult to quickly attain mass user 
levels. One way to mitigate this effect would be to merge 
existing apps that utilize human mobility and similar sensor 
readings into a centralized hub or multipurpose app.

A municipality that initiates crowdsourcing programs 
may be able to develop a reputation as a proactive problem 
solver. Through the Street Bump and Boston’s Safest Driver 
programs, the City of Boston engaged its residents, dem-
onstrated the capabilities of smartphones for crowdsourc-
ing civic data, and explored how big data can be an asset to 

addressing complex urban issues. Big data can help stream-
line improvements to physical infrastructure; it can also 
ignite individual probes for positive social change through-
out the community. Over a longer term, information from 
crowdsourced data can help shape innovative policies that 
are mindful of sociotechnical trends.

C. Measuring Vibrations in Civil Engineering Using 
Smartphones

Smartphones simplify the collection and distribution of 
sensory data but they measure imperfectly. The sensors that 
come standard in smartphone models were not designed 
for scientific applications; they were selected based on fac-
tors such as functionality, power consumption, size, and 
cost. Accelerometers in smartphones are subject to some 
basic signal processing problems, e.g., temporal jitter, high 
noise, clipping, missing data, etc. [76]–[78], which can limit 
overall reliability. Nonetheless, the resulting data have been 
shown to supply information that is useful to civil engineers, 
especially when part of a crowdsourcing campaign.

As previously mentioned, mobile sensor networks for 
SHM have shown promise, yet lack successful demonstra-
tions on large-scale bridges in the urban environment. 
Recent studies have corroborated the performance of smart-
phone accelerometers (while stationary) in civil engineer-
ing applications on structures in a controlled setting and 
through comparisons with calibrated reference sensors. It 
has been shown that an individual smartphone can measure 
accelerations with an accuracy that captures fundamental 
signal properties, such as amplitude and frequency content 
[79], [80].

With a long-term goal of crowdsourcing structural vibra-
tion data, recent work has looked at stationary smartphones 
and participation from pedestrians. In an application on 
an indoor pedestrian bridge, spatiotemporally mixed data 
were collected by consecutively placing one smartphone 
at eight positions; then, the frequency domain decomposi-
tion (FDD) technique [81] was implemented to find three 
natural frequencies, whose corresponding mode shapes 
were constructed after combining phase information from 
reference results [82]. Additional studies have focused on 
reducing the influence of certain undesirable features of 
smartphone data so that they may be better suited for SHM 
methods available for fixed sensor data [83]. The biome-
chanical effects of a standing human were isolated to mini-
mize pedestrian-induced vibrations [84]. Gyroscope and 
magnetometer sensors were utilized to correct misaligned 
signals from phones fixed to a structure [77].

In an average sense, signal features of crowdsourced smart-
phone data can more closely match estimates from a higher 
quality accelerometer. Recent applications using smartphones 
as seismometers have suggested that, in some applications, 
it is possible to overcome measurement fidelity problems by 
aggregating heterogeneous data sets [76], [85], [86].
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III .  BR IDGE FR EQU ENC Y DETECTION 
USING SM A RTPHONES IN PA SSING 
V EHICLES:  A PPLIC ATION ON THE 
H A RVA R D BR IDGE

A. Objectives and Scope

This section investigates a real-world example of moni-
toring bridge vibrations using a smartphone in a moving 
vehicle, which is applicable to an individual’s daily com-
mute. The Harvard Bridge is a 25-span (five continuous sec-
tions), haunched steel girder bridge with a total length of 
about 660 m; it connects Boston and Cambridge over the 
Charles River in Massachusetts, USA and serves on the order 
of 30 000 daily trips. The study has three main objectives:

1)  estimate modal frequencies of the Harvard Bridge 
using a traditional fixed sensor network and SID 
procedure;

2)  demonstrate the capabilities of an individual smart-
phone accelerometer in the context of a passing 
vehicle;

3)  evaluate the prominence of the bridge frequencies in 
aggregate mobile sensing data collected using smart-
phones in moving vehicles.

The mobile sensor data considered in the application 
are a limited representation of the variety presented by a 
smartphone-based crowdsensing platform. In a true wide-
spread crowdsourced implementation, the vehicle system, 
vehicle speed and path, smartphone model, and its position 
within the vehicle are all influential variables. This applica-
tion considers a fairly large data set which includes variety 
among vehicles and sensors. Yet, a limited range of vehicle 
speeds and only one sensor position (flat on dashboard) are 
considered.

B. Frequency Identification of the Harvard Bridge 
Using a Fixed Sensor Network

A network of 11 wired accelerometers (PCB 393B04) 
was distributed across seven spans (13–19) of the Harvard 
Bridge. The sensor network [pictured in Fig. 4(a) and (b)] 
recorded traffic-induced bridge vibrations on the east side-
walk at 2048 Hz during two consecutive high-traffic hours. 
The measured accelerations are expected to have cap-
tured the operational behavior of the bridge such that the 
dominant frequencies in the data are representative of the 
bridge’s structural dynamical properties.

The Harvard Bridge is not a simple structure; it comprises 
five continuous sections. The deck joints introduce dynam-
ics that are more complex than those of a fully continuous 
bridge, e.g., closely spaced modes. Yet, it is difficult to under-
stand its behavior in full with an unknown excitation and a 
limited number of fixed sensors. The power spectral density 
(PSD) estimates (solid colored lines in Fig. 5) show several 
frequency regions with significant power levels, each suggest-
ing the presence of a structural modal frequency. A few of 
these regions include smaller peaks that are consistent among 
the sensors, e.g., just below 3 Hz. At a first glance, it appears 
that the bridge has some closely spaced modal frequencies 
but overall this is inconclusive. A formal SID method must 
be implemented to determine which of the peaks in the PSD 
estimates correspond to structural modal frequencies. 

The ERA-NExT method [87] was selected for SID 
using the SMIT computer program [88]. For each data set, 

Fig. 4. (a) Plan and elevation views of a segment (spans 13�19) 
of the Harvard Bridge with fixed sensor network layout. 
(b) Photograph of the fixed sensors on the East side of the Harvard 
Bridge. (c) Photograph of the reference sensor and smartphones on 
a vehicle dashboard.

Fig. 5. Power spectral density (PSD) estimates and ERA-NExT 
stabilization diagram (determined using the SMIT program) based on 
fixed sensor data set #18. The solid lines are the PSD estimates for 
four sensors (6, 7, 9, and 11) with power levels indicated on the left 
ordinate. The black markers (circles and crosses) superposed on the 
plot indicate convergence at a particular model order (right ordinate) 
during the ERA-NExT process. Vertical trends of convergence markers 
confirm structural modal properties in the data. In other words, these 
frequency peaks can be explained by the bridge dynamic system. 
Note an absence of a convergence marker trend does not necessarily 
reject a peak as a structural modal frequency. It is instructive to 
process additional data sets to confirm further modes.
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ERA-NExT produced a stabilization diagram, whose purpose 
is to highlight the peaks that are associated with structural 
modes. The standard method is to view the identification 
results for increasing SID model orders and measure the con-
sistency among the estimates using convergence criteria. In 
Fig. 5, a stabilization diagram is superposed on the PSD esti-
mate to illustrate this process for one data set (#18). The right 
ordinate of the plot indicates the model order (even numbers 
2 through 200). The vertical trends of the black convergence 
markers confirm specific structural modal frequencies.

The participation (presence) of individual structural 
modes within the measurements is dependent on the dynamic 
loading conditions, e.g., traffic on a bridge. In most cases, the 
input excitation of the structure cannot be measured and as a 
result, multiple sets of structural response data are analyzed. 
In this study, the bridge’s modal properties were evaluated by 
reviewing 18 stabilization diagrams, each corresponding to 
one 6-min data set. Afterwards, three dominant frequencies 
were identified as 2.05 Hz, 2.66 Hz, and 2.88 Hz; these are 
only a few of the modal frequencies of the Harvard Bridge.

C. Mobile Sensing Experiments on the Harvard 
Bridge

Regarding the mobile sensor data, acceleration measure-
ments were collected using two smartphones (iPhone 5S and 
iPhone 6) and a reference sensor (Mide Slam Stick C). In each 
vehicle trip, the sensors were mounted on the dashboard of 
the vehicle [illustrated in Fig. 4(c)] and were triggered manu-
ally. The data includes 42 trips, mixed between two vehicles 
(Honda CRV and Honda Civic) over the bridge at slow speeds 
during rush hour (further details in Table 2). Smartphone 

sensor data were recorded at 100 Hz using the Sensor Play 
iOS app, which includes gyroscope and GPS measurements.

In general, high traffic conditions create special circum-
stances that can improve data quality: larger bridge vibra-
tion amplitudes, slower vehicle speeds, and longer data sets. 
Large bridge excitation levels can increase the presence of 
bridge vibration signatures, e.g., modal properties, within 
the mobile sensor data. Slower vehicle speeds provide more 
samples per location (higher spatial resolution) and reduce 
noise generated by poor pavement conditions. Finally, a 
larger number of observations of the involved dynamical sys-
tems will better support the solutions to the inverse problem.

D. Frequency Analyses of Aggregate Acceleration 
Data

The mobile sensor data were analyzed using simple 
frequency domain techniques to exemplify the content 
within raw, or minimally processed, smartphone accelera-
tion measurements. The methods here are “model-free”; 
they do not require spatial information to function and are 
applicable to unsynchronized data sets. It is expected that 
the inclusion of additional sensor data, e.g., GPS, gyroscope, 
and/or the implementation of a more elaborate technique, 
designed specifically to process mobile sensor data for SID 
or DID, could extract further detailed information.

First, as a comparison between the frequency content 
recorded among the various sensors, a short-time Fourier 
transform (STFT) was implemented to display time-depend-
ent frequency signatures. Fig. 6 displays three STFT plots 
for the longest data set (#11, 464 s), which was collected 
within vehicle 1. During heavy traffic, the vehicle traveled 
at a slower average speed (stop-and-go conditions), which 

Fig. 6. Short-time Fourier transform (STFT) of mobile sensor data collected within vehicle 1, traveling southbound over the Harvard Bridge 
during heavy traffic (trip #11): (a) reference sensor (Mide Slam Stick C); (b) smartphone 1 (iPhone 5S); and (c) smartphone 2 (iPhone 6).
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resulted in a data set about three times longer than usual. 
Vertical trends in Fig. 6 indicate consistently dominant 
frequencies in the signal over time, which are expected to 
reveal characteristics of the dynamic vehicle-bridge system. 
Overall, Fig. 6 shows similar frequency trends among the 
different sensors. The smartphone sensors were able to cap-
ture temporal frequency patterns which matched those of 
the reference sensor, further supporting the performance 
of the smartphone accelerometers. This plot suggests that 
the information retrieved through individual vehicle scan-
ning may not be significantly limited by the capabilities of 
accelerometers available in smartphones, i.e., qualitatively, 
smartphones can capture accurate frequency content. 

To gain further insight on the prominence of particu-
lar frequencies in the mobile sensor data, power spectral 
density (PSD) estimates were computed for the vertical 
acceleration channels using Welch’s method of averaged 
periodograms [89]. These plots describe the signal’s power 
levels at each frequency over the entire trip rather than 
specific instants. The basic hypothesis here is that bridge 
resonant frequencies will have a persistent presence in the 
vehicle trips, despite data heterogeneity.

The method used to evaluate dominate frequencies and 
aggregate results is described graphically in Fig. 7. Local max-
ima of the PSD estimates were detected and evaluated using 
a generic peak-picking method. In this study, the prominence 
of a peak was evaluated as the power level at the peak of inter-
est minus the lowest power level of the adjacent local minima. 
With this relative measure, contributions from nearby peaks 
can be removed. These values were aggregated and divided into 
12 categories based on variable combinations (smartphone 1, 
smartphone 2, both smartphones, reference sensor, vehicle 1, 
vehicle 2, and both vehicles). Finally, the values in each cat-
egory were normalized to have a maximum value of 100.

The normalized cumulative prominences (hereafter 
“peak scores” for simplicity) are shown versus frequency in 
Fig. 8. For each category, detection thresholds are defined 
based on the 95-percentile of the peak score distribution 
(Fig. 7, panel 4); the thresholds are indicated as red dashed 
horizontal lines in the plots. Simultaneously, the Harvard 
Bridge modal frequencies—determined using fixed sen-
sor data—are included as colored vertical bars, each with 
a width of ±3%. The P and R values in the top-left corner 
display the precision and recall metrics for each data cat-
egory [90]. Precision is the ratio of true positives to the total 
number of positives; it measures the relevancy of the signifi-
cant peak scores (i.e., the positives). Precision values below 
50 indicate a larger portion of false positives. Recall is the 
ratio of true positives to the sum of true positives and false 
negatives; it measures the completeness of the relevant peak 
scores (those at the bridge frequencies). For example, recall 

Table 2 Summary of Vehicle Trips Over the Harvard Bridge

Fig. 7. Spectral peak evaluation process utilized for the mobile sensor data. Acceleration data (1) is processed to estimate the PSD (2). 
Peaks in the PSD estimates are detected (3) and evaluated using a ªpeak scoreº (a metric that can be defined per application). The peak 
scores are aggregated (4) and statistically significant values can be identified using empirical cumulative distribution functions.
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values of 100 correspond to the detection of three true posi-
tives (one at each bridge frequency). 

Overall, the peak scores from the aggregated smart-
phone data are consistent with those from the reference 
sensor. Out of all the categories, those pertaining to the ref-
erence sensor had the highest precision values, i.e., fewest 
false positives, which is expected. In all 12 categories, there 
were significant peak scores at two out of three bridge fre-
quencies (first and third), resulting in recall values greater 
than 66. For the exception of one case [Fig. 8(b)], all data 
categories contained significant peak scores for all three 
bridge frequencies (recall values equal to 100).

Most notably, when the smartphone categories were 
aggregated (third row of plots), the precision improved. For 
example, for vehicle 1, the combined results from smart-
phones 1 and 2 [Fig. 8(g)] were just as good as those from the 
reference sensor [Fig. 8(j)]. In addition, combining smart-
phones was observed to be effective in suppressing false 
positives. For instance, for vehicle 2, there is a false positive 
at 1.55 Hz for the individual smartphone cases [Fig. 8(b) and 
(e)] while the peak score at this frequency is insignificant 
for the reference sensor [Fig. 8(k)]. Yet, when the smart-
phone data are combined [Fig. 8(h)], the peak score falls 
just below the threshold, and thus becomes a true negative. 

Further suppression of this frequency is observed when 
both the smartphones and vehicles are combined [Fig. 8(i)]. 
These results show that the bridge’s modal frequencies have 
a notable presence in the moving smartphone data.

There were some significant peak scores that only per-
sisted in each vehicle category and could not be explained by 
the bridge’s dynamic properties. These peaks occurred near 
0.70 Hz, 1.84 Hz, and 3.43 Hz (and elsewhere) in vehicle 1 
data (first column of plots) and around 2.42 Hz and 3.15 Hz 
in vehicle 2 data (second column of plots); it is possible these 
frequencies represent aspects of the moving vehicle dynam-
ics. If the effects of different vehicles and smartphones are 
random and independent, these results suggest two points: 1) 
frequencies unrelated to the vehicle–bridge system may van-
ish, in an average sense, as the aggregated data sets become 
more diverse; and 2) collective smartphone accelerometer 
data can generate information comparable to a higher qual-
ity accelerometer (precision in this example).

E. Considerations for Future Work

The previous section demonstrated how an intrinsic 
structural feature can be extracted from a specific class 
of smartphone data that are readily available in urban 

Fig. 8. Normalized cumulative peak prominences (referred to here as ªpeak scoresº) at each frequency for sensor data collected in a 
vehicle traveling over the Harvard Bridge. In each data subset, the peak scores above the horizontal dashed line are in the upper five 
percentiles. Three bridge frequencies identified from the fixed sensor data (2.05 Hz, 2.66 Hz, and 2,88 Hz) are highlighted as colored 
vertical bands, each enclosing ±3%. The data are divided into 12 subsets: (a) smartphone 1 and vehicle 1; (b) smartphone 1 and vehicle 2; 
(c) smartphone 1 and both vehicles; (d) smartphone 2 and vehicle 1; (e) smartphone 2 and vehicle 2; (f) smartphone 2 and both vehicles; 
(g) both smartphones and vehicle 1; (h) both smartphones and vehicle 2; (i) both smartphones and both vehicles; (j) reference sensor and 
vehicle 1; (k) reference sensor and vehicle 2; and (l) reference sensor and both vehicles.
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environments. Modal properties do not necessarily provide 
a measure of structural condition; yet, condition evalua-
tions can benefit from incorporating modal property infor-
mation. Furthermore, crowdsourcing such data presents 
an opportunity to estimate the modal properties of poten-
tially thousands of bridges, cost-effectively, which would 
be useful to engineers, and over time, can support condi-
tion assessments. While these results are encouraging, it 
is important to reiterate that the limits of this simple data-
driven approach have not yet been fully tested. In general, 
PSD estimates are affected by sensor noise, sampling rate, 
data length, and spectral smoothing. The key benefits here 
are the cost-effectiveness of smartphone data and the added 
value in aggregating the results from numerous trips.

Vehicle scanning data are influenced by dynamic  
vehicle–bridge interaction; variables encompassing the 
vehicle system, vehicle route, road profile, and bridge system 
define the complexity of the interaction effects as well as 
the presence of bridge vibrations within the recorded signal. 
Over the past two decades, studies related to the interaction 
problem have established the governing differential equa-
tions, constructed helpful simplified models, and conducted 
experiments (real and synthetic) [58]–[61]. For instance, 
studies on single-span bridges have concluded that vehicle 
scanning data include special signals at vehicle vibration 
frequencies and a driving frequency, which are independent 
of the bridge system. In addition, it is known that certain 
aspects of the interaction are subdued in the cases of slow 
vehicle speeds, stiff vehicle suspensions, and smooth road 
surfaces [91], [92]. These interaction effects were not con-
sidered explicitly in this approach, although based on the 
literature, it is expected that in the application, slow vehicle 
speeds during peak traffic hours contributed to the method’s 
success.

It is suggested that data acquisition and preprocessing 
methods could include supplementary information (meta-
data) to preselect (or otherwise identify) scientifically 
preferable circumstances and mitigate experimental uncer-
tainty. In future work, additional smartphone sensors such 
as GPS, magnetometer, or gyroscope can be incorporated to 
enhance the results, e.g., reconfigure the smartphone coor-
dinate system [77], compile measurements at particular 
locations [93], estimate structural mode shapes [62], etc. 
There is also a need to study the synchronization problem 
posed by multiple moving sensors with independent and 
potentially irregular sampling properties [78], [94], [95]. 
Finally, as vehicular networks emerge for urban sensing, 
the design of intercommunication systems should consider 
costs related to data processing and transmission [96]–[99].

I V.  CROW DSOU RCING BR IDGE 
V IBR ATION DATA

A. Long-Term Goals and Data Stream Characteristics

An overarching goal behind collecting mass smart-
phone data is to reform the nature of the challenges faced 

throughout infrastructure management. Structural evalua-
tions and decision making are based solely on subjective and 
infrequently collected information, sets of visual inspections 
of bridges, which are constrained by municipality budgets, 
can miss early signs of damage, and can lead to inaccurate 
prognoses. If local municipalities could access enormous data 
sets from smartphone vehicle scans and the bridge informa-
tion potential concealed within, infrastructure maintenance 
problems could be reshaped into those rooted in engineering 
and computer science, for which there is preexisting motiva-
tion for engineers, researchers, and businesses to solve.

Aggregating results from lower quality sensors can collec-
tively deliver rich content [85], [86], [100], and in this case, 
the public has already purchased the sensors (their smart-
phones), and will deploy them sufficiently during their daily 
routines. Municipalities may need to vest the responsibilities 
and initial costs for data management, such as initiating data 
procurement programs via smartphone apps and configuring 
data repositories. Yet, this presents an opportunity for a local 
government to collaborate with academic institutions and/
or industry partners who have mutual interests and comple-
menting strengths. Furthermore, a mobile smartphone bridge 
monitoring program could be supported by acceleration and 
GPS data that are being collected as part of an existing civic 
engagement program, e.g., Street Bump or Boston’s Safest 
Driver. Regardless, the effort is an investment: the potential 
volume and spatiotemporal resolution of subsequent struc-
tural health informatics could help engineers and govern-
ment entities make more informed decisions on bridge man-
agement, which are intended to reduce maintenance costs 
and increase a bridge’s service by extending its lifespan.

There are two key advantageous characteristics of crowd-
sourced bridge vibration data streams: 1) high volume; and 
2) high velocity. Details of these attributes are dependent 
on individual participation, which can be difficult to predict 
with high accuracy; generally speaking, they govern the size 
of the big data. Yet, given the high annual average daily traf-
fic levels for urban bridges, even low penetration rates can 
generate thousands of data sets daily.

Another important characteristic of the crowdsourced 
data is heterogeneity [101]. Vehicle scanning measure-
ments of the same bridge will differ substantially among 
users, thereby adding a layer of complexity on the interac-
tion effects. Vehicle properties, smartphone model, location 
within the vehicle, and other variables, are all contributing 
factors. User metadata can help explain or account for the 
influences of some of these variables. Some information 
such as vehicle make and model, number of passengers, tire 
pressure, etc., could potentially be entered into an interface 
by the user. These metadata could generate direct feedback 
to the user, e.g., suggest a tailored smartphone setup for 
optimal data quality, and/or be stored for analytical con-
text. Alternatively, certain properties may be estimated to 
an extent using data recorded in normal driving conditions 
(nonbridge trips). Overall, data diversity becomes a useful 
feature as the number of data sets available becomes very 
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large. If these variables are random and independent, it is 
expected that the most persistent frequencies in the collected 
data would be those representative of bridge dynamics.

B. Toward an Automated Bridge Management 
System

A bridge management system receiving daily streams 
of vehicle scanning data has four functions, which may be 
automated:

1)  extraction of bridge condition information from 
incoming mobile sensing data;

2)  organization of data archives and prior statistics;
3)  condition evaluations based on vehicle-scanning 

informatics, structural plans, and visual inspection 
records;

4)  dissemination of reports to authorities and coordina-
tion of corresponding actions.

Analyses of data from an initial gathering period, e.g., a 
few months, up to one year, are needed to establish the base-
line (reference) conditions of a bridge. Subsequently, bridge 
informatics computed from incoming data can be compared 
with those observed in the past, under similar circumstances. 
One goal is to determine whether the most recent analytics 
indicate a structural state that is different from the refer-
ence condition. Statistical methods for classification, clus-
tering, or control processes [46], [102], etc., can be applied 
to identify substantial changes or abnormal trends in struc-
tural features while accounting for uncertainty [103], [104]. 
As historical information on structural condition accumu-
lates in the database, a confidence is earned in data-driven 

evaluations, and artificial intelligence [105] or deep learning 
techniques may be implemented to extract further latent 
insights. That is, the bridge management system can develop 
an ability to learn, similar to capabilities of speech recogni-
tion algorithms [106], [107] or self-driving vehicles.

These tools are most effective when they supplement 
existing maintenance protocols; their added value is that they 
empower more frequent and data-substantiated structural 
evaluations at a relatively low cost. While there are bound to 
be highly technical aspects embedded in such an automated 
bridge management system, visual inspections by profes-
sional engineers are irreplaceable. Furthermore, structural 
condition results must be conveyed in a manner that is clearly 
interpretable by those who have the authority and expertise 
needed to make judgements, such as public works offices, city 
officials, stakeholders, etc. An automated bridge management 
system is an interactive platform that acts as an interface 
between the digital and physical worlds by integrating visual 
inspection data, e.g., photos, and presenting analytics visu-
ally. Previous research has shown that state departments of 
transportation have interest in incorporating interactive digi-
tal platforms into existing bridge management systems [108].

The design and deliverables of a prospective automated 
bridge management system are illustrated in Fig. 9. On the 
right of the dashboard screen, high-level information related 
to overall bridge health, upcoming maintenance actions, and 
recent data streams are provided. On the left, the analytics 
are mapped to an interactive bridge model, which facilitates 
the understanding of structural behavior at a component 
level for nonexperts as well as highly localized information 
for inspectors. Fig. 9 demonstrates one instance, out of all 

Fig. 9. Depiction of a digital dashboard of a bridge management system, which is fueled by streams of mobile sensor data. Current structural 
conditions can be displayed in a manner that is informative to professional engineers and city officials. Baseline structural performance 
metrics are established over an initial data gathering period�their precision improves as data accumulates. Statistically significant changes 
in informatics can serve as early indicators of structural damage, at which point a detailed inspection may be warranted.
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the possible forms and functions, of such bridge manage-
ment systems, which are to be customized according to 
the specific needs of the appropriate public works offices, 
engineers, and officials in the city.

V. SUM M A RY A ND CONCLUSION

A coincidence of circumstances in consumer technology, 
ageing infrastructure, government innovation, and struc-
tural health monitoring (SHM) research has established 
an opportunity to monitor bridge vibrations using crowd-
sourced smartphone data. Cities worldwide are enduring 
widespread infrastructure epidemics at a time when they 
are experiencing rapid technological developments and 
paradigm shifts in human mobility. Standard bridge evalu-
ation methods rely on visual inspections, which face limi-
tations in frequency and subjectivity that ultimately affect 
the structural assessments on which maintenance plans are 
based. The operational (everyday) behavior of a bridge must 
be observed over an extended period, e.g., years, to suffi-
ciently track its health and avoid unexpected rehabilitation. 
SHM sensor networks utilize dedicated devices to record 
field measurements, which are analyzed using mathemati-
cal tools to determine the true conditions of a structural sys-
tem. Mobile sensor networks are conducive to monitoring 
urban bridges vibrations regularly, with benefits that have 
been demonstrated in recent SHM research.

The Mayor’s Office of New Urban Mechanics in the City 
of Boston initiated two smartphone-based civic engagement 
programs which demonstrated smartphone capabilities for 
crowdsourcing sensory data, and explored how big data 
can be an asset to addressing complex urban issues. Prior 
research with smartphone accelerometers suggested that 
resulting information may not be significantly limited by 
the capabilities of cheaper sensors. In an application on the 
Harvard Bridge, it was shown that smartphone data, col-
lected within a moving vehicle, contained consistent and 

significant indicators of the first three modal frequencies 
of the bridge. This result confirmed that bridge modal fre-
quencies can be detected from this class of mobile smart-
phone data. In particular, when aggregated, the smartphone 
results improved in precision and, in one case, rivaled those 
of the reference sensor. The outcome is an opportunity for 
local governments to collaborate with entities having com-
plementing strengths, to encourage mass collection of data 
containing bridge vibrations, which can contribute to more 
effective management and informed decision making. Over 
a longer period of time, continued programs can keep these 
urban assets in circulation throughout their design lives, 
reduce their maintenance costs, and potentially increase 
their service by extending their lifespans. 
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