

Mealy Verilog FSM for Reduce-1s Example module reduce (clk, reset, in, out); input clk, reset, in; output out; reg out; reg state; // state register 0/0 reg next_state; parameter zero = 0, one = 1; zero always @(in or state) 1/0 0/0 case (state) // last input was a zero zero: begin if (in) next_state = one; else next_state = zero; out = 0; one1) 1/1 end one: // we've seen one 1 if (in) begin next_state = one; = 1; out end else begin next_state = zero; out = 0; end endcase always @(posedge clk) if (reset) state <= zero; else state <= next state;</pre> endmodule CS 150 - Fall 2005 - Lec #7: Sequential Implementation - 12

Uniquely Encode States

present state Q1 Q0		inputs D N			t state D0	output open	
0	0	0 0	01	0	0	0	
		1 1	0 1	1	0 —	0	
0	1	0 0	0 1	0 1	1 0	0	
		1 1	0	1	1	0	
1	0	0	0	1	0 1	0	
		1	0	1	1	0	
1	1	-	-	- 1	1	- 1	
				•			
CS 150 -	Fall 2005 -	– Lec #	#7: Sec	quential	Impleme	ntation – 19	

One-hot Encoding

present state	inputs		next state output				
Q3 Q2 Q1 Q0	D	Ν	D3	D2	D1	D0	open
0 0 0 1	0	0	0	0	0	1	0
	0	1	0	0	1	0	0
	1	0	0	1	0	0	0
	1	1	-	-	-	-	-
0 0 1 0	0	0	0	0	1	0	0
	0	1	0	1	0	0	0
	1	0	1	0	0	0	0
	1	1	-	-	-	-	-
0 1 0 0	0	0	0	1	0	0	0
	0	1	1	0	0	0	0
	1	0	1	0	0	0	0
	1	1	-	-	-	-	-
1 0 0 0	-	-	1	0	0	0	1

D0 = Q0 D' N' D1 = Q0 N + Q1 D' N' D2 = Q0 D + Q1 N + Q2 D' N' D3 = Q1 D + Q2 D + Q2 N + Q3 OPEN = Q3

CS 150 - Fall 2005 - Lec #7: Sequential Implementation - 21

- a long time pulse (TL),
- in normania to a set (ET) sia
- in response to a set (ST) signal.
- TS is to be used for timing yellow lights and TL for green lights

CS 150 - Fall 2005 - Lec #7: Sequential Implementation - 25

Sequential Logic Implementation Summary

- Models for representing sequential circuits
 - Abstraction of sequential elements
 - Finite state machines and their state diagrams
 - Inputs/outputs
 - Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - Verilog specification
 - Deriving state diagram
 - Deriving state transition table
 - Determining next state and output functions
 - I Implementing combinational logic

CS 150 - Fall 2005 - Lec #7: Sequential Implementation - 35