

GFBTF – GIT Squash And Merge Activity | Page 1 of 15 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 Squash And Merge Activity:
Squashing commits during merge at GitHub

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Squash And Merge Activity | Page 2 of 15 https://www.majorguidancesolutions.com

Introduction
Many times we have a pull request that contains a feature that was developed in a local repository. The feature has been

completed and has been through all the rigor required to be implemented. During the development of the feature, multiple

commits were recorded, and the history at master would reflect each of these commits if the pull request is directly merged

with a regular merge operation.

Depending on the rules of your repository, the size of the commit chain, and a number of personal factors, one option that

can be done is to merge the pull request using a “Squash and Merge” operation. If this option is selected, the multiple

commit history will be compacted into one commit at the time the merge is completed, with a regular merge message and

details that automatically contain all of the commit messages [at GitHub].

An important word about using squash and merge, however, before everyone jumps on the ‘this is incredibly awesome’

bandwagon. When a squash and merge operation is completed, it is very critical that the feature branch is then deleted

following the merge, both at Remote and at Local. Failing to do this will result in a commit history mismatch.

Depending on the order you’ve worked through some of the activities, you might have heard me talk about never changing

history on a publicly available branch. This is the same thing in reverse, with the caveat that it is entirely possible to continue

working on the feature branch at local, and the problem will mostly surface during merge when it looks like many commits

need to be merged, even though their code bits should already be merged into master from the previous merge operation.

In this activity, we’ll walk through doing the pull request with a squash and merge, and see what it looks like when we don’t

delete the branch, and then we’ll do it again while also deleting the branch to show how I would recommend using this option

for merging code.

Let’s gets started!

GFBTF – GIT Squash And Merge Activity | Page 3 of 15 https://www.majorguidancesolutions.com

GFBTF: Git Squash And Merge Activity

Step 1: Make sure you have a working repository that
is up to date.

a) Start with any repo, make sure you have the latest in master, and
create a feature branch.
First clone the repo if it doesn’t exist:

[git clone <link> <folder>]

If you didn’t clone, make sure master is up to date
[git checkout master]
[git fetch origin]

[git pull origin master]
[git checkout –b SquashAndMergeFeature]

Step 2: Make four commits, push, squash and merge.

a) For this activity, we need to do 3-4 commits on our branch.
[code info.txt] //leave it open after saving

[git commit -am “Squash and Merge commit #1”]
[make another change in info.txt]
[git commit -am “Squash and Merge commit #2”]
[make another change in info.txt]

[git commit -am “Squash and Merge commit #3”]

Notes

GFBTF – GIT Squash And Merge Activity | Page 4 of 15 https://www.majorguidancesolutions.com

[make another change in info.txt]
[git commit -am “Squash and Merge commit #4”]

b) Push to GitHub, Create a Pull Request
[git push -u origin SquashAndMergeFeature]

GFBTF – GIT Squash And Merge Activity | Page 5 of 15 https://www.majorguidancesolutions.com

GFBTF – GIT Squash And Merge Activity | Page 6 of 15 https://www.majorguidancesolutions.com

c) Squash and merge the request – DO NOT delete branch
First, select “Squash And Merge”

 Next, hit the ‘Squash and Merge’ button

 Then note the commit messages are put into the details. You can change the
 commit message if you would like

 Confirm the squash and merge [reminder, do not delete the branch]

GFBTF – GIT Squash And Merge Activity | Page 7 of 15 https://www.majorguidancesolutions.com

Step 3: Go back to local and get master up to date,
then compare with the feature branch.

a) Get LOCAL master up to date
[git checkout master]

[git fetch origin]
[git pull origin master]

Here we can see that our feature four commits do not line up with the master
commit history – this is to be expected, but it poses a problem. If we were to try
to do a pull request we end up looking like we have multiple commits.

GFBTF – GIT Squash And Merge Activity | Page 8 of 15 https://www.majorguidancesolutions.com

b) Merge master into feature
[git checkout <feature>]
[git merge master]

 So now our local master has nothing in it that feature doesn’t. Also, the original
 four commits are in master as one commit. Let’s add one quick change to the
 feature.
 [code info.txt]

GFBTF – GIT Squash And Merge Activity | Page 9 of 15 https://www.majorguidancesolutions.com

 [git commit –am “A single new commit on feature”]

Step 3: Push to GitHub and merge.

a) Now let’s do another push and create a pull request at GitHub to see
what this looks like…
[git push –u origin <featurebranch>]

6 commits ahead. Obviously there are only the two we would want (merge
master and the new change). This shows why not deleting the branch is an
issue. What if this was a major change? Would you ‘trust’ that your original
changes were in master?

GFBTF – GIT Squash And Merge Activity | Page 10 of 15 https://www.majorguidancesolutions.com

Create the pull request. Before merging, look:

There are my first four commits again, the merge commit, and the new change.
6 commits to get up to date for a simple change.
Notice also that the squash and merge option is still selected. Make sure to
change that back if you don’t want to squash and merge every time you finish a
code review.

Luckily, even with the bad commits showing, the file is still only showing the
simple changes that were made:

 Go ahead and do a regular merge or a squash and merge if you want just one
 more commit. This time, delete the branch on completion:

GFBTF – GIT Squash And Merge Activity | Page 11 of 15 https://www.majorguidancesolutions.com

Step 4: Repeat all of the operations from step 2. This
time, delete the feature branch after merge.

a) Get our repo up to date
[git checkout master]
[git fetch origin --prune]
[git pull origin master]

 [git branch -d SquashAndMergeFeature]
 [git checkout –b SquashAndMergeFeature2]

b) Perform four commits on the feature, push to GitHub, create PR,
squash and merge it.
[code info.txt] //leave it open

[git commit –am “Squash and Merge #6]
[make changes]
[git commit –am “Squash and Merge #7]
[make changes]

[git commit –am “Squash and Merge #8]
[make changes]

GFBTF – GIT Squash And Merge Activity | Page 12 of 15 https://www.majorguidancesolutions.com

[git commit –am “Squash and Merge #9]

c) Get the pull request going, commit with squash and merge, delete the
branch

GFBTF – GIT Squash And Merge Activity | Page 13 of 15 https://www.majorguidancesolutions.com

Step 5: Clean up the local repo, get master up to date.
a) Get master up to date

b) Delete the feature branch
We’ll have to force the delete because once again we have four commits that
don’t line up with the history in master. If we don’t use the –D option, git will
warn us about unmerged commits:

GFBTF – GIT Squash And Merge Activity | Page 14 of 15 https://www.majorguidancesolutions.com

 Note that we now have four unreachable commits. We can optionally clean
 these up.

c) Expire unreachables and garbage collect.
[git reflog expire –expire-unreachable=now –all]

[git gc --prune=now]

This completes our SquashAndMerge at GitHub activity.

GFBTF – GIT Squash And Merge Activity | Page 15 of 15 https://www.majorguidancesolutions.com

Closing Thoughts
Squashing and merging is an easy way to get a number of commits down to just
one for merge commit into the remote repository. Often, this would take place
at the completion of a feature branch, when we don’t care about each induvial
commit, but only the entire changeset.

Since the squash and merge operation does change history, it’s pretty
important to delete your local branch after completing a squash and merge,
simply because your repo at local won’t line up with the commit history in
master any longer. If you need to continue work for some reason, you could
delete your branch, then open a new branch off of master which would work
the same as if you had continued to develop on the branch, with no worry of
having bad commit ids in the history tree.

In the end, we see that when done properly, a squash and merge is a simple
way to limit the commits in your master branch and help to maintain a solid
linear operational history.

This activity squashed and merged changes for multiple commits at remote
during the merge of a pull request. It is also possible to squash at local before
even opening a pull request, although it is a bit more involved. To squash
locally, we must perform an interactive rebasing operation [covered in another
activity].

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

