

GFBTF – GIT Real Life Activity 02 | Page 1 of 17 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Real Life Activity 02:
I accidentally committed to master on my local and

pushed to remote. What do I do?
Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Real Life Activity 02 | Page 2 of 17 https://www.majorguidancesolutions.com

Introduction
You have been working on your local branch which is in sync with remote, and you have pushed a couple of commits. You are

therefore currently one or more commits ahead of master [or some other integration branch your team uses that you should

not push to]. Obviously, you don’t want to affect the master branch or your team’s main working-tree integration branch.

You were about to perform a merge to your local branch, so you switch to the working tree master/develop branch, fetch and

pull to make sure you are up-to-date locally.

You step away for a minute, a meeting, or some other distraction, and you come back to continue where you left off working.

You forget you were in the middle of working on merging master to your local branch and you make some changes and

commit and then push to remote without thinking – and without checking what branch you are on. You have now moved the

team master at remote to a commit that is out of sync, both with the branch you actually wanted to push to, as well as on the

remote.

Panic sets in, and you immediately notify the team that something is broken. If you are lucky, you can also stop the

automated build in time to prevent the commit from propagating further in your pipeline.

How do you fix the broken master branch, both locally, and at remote?

In this activity, we will run through this scenario so that we both have the confidence and the know-how to fix the repository.

The steps to fix this are:

1) Stop the pipeline build if possible to prevent auto-deployment

2) Backup master – for our own peace of mind

3) Checkout a new branch from master

4) Restore local master to the correct commit via a reset operation

5) Force push the corrected branch to master at remote

6) Pick the changes you wanted to save into your feature branch

7) Merge updated master into your branch to resolve any conflicts

8) Merge your feature into master

9) Clean it all up

Let’s get started.

GFBTF – GIT Real Life Activity 02 | Page 3 of 17 https://www.majorguidancesolutions.com

GFBTF: Git Real Life Activity 02 – Reset, Force Push, Cherry-Pick

Step 1: Setup – working on your feature branch:
a) Check out a new branch “rebase-pick-scenario-two”.

This branch is going to be the branch you are performing your feature updates
on.
[git checkout -b rebase-pick-scenario-two]

Simulate work by moving the branch ahead a couple of commits. Simply put in
a couple changes. Here I’ve changed the about page in the default web repo:

Notes

GFBTF – GIT Real Life Activity 02 | Page 4 of 17 https://www.majorguidancesolutions.com

b) Create a pull request at GitHub for the two commits.
git push origin -u rebase-scenario-two

 DO NOT merge this at GitHub yet.

Step 2: Simulate another developer affecting master
a) In the time you’ve been working, another developer’s changes were

merged
It is up to you if you want to create a conflict. Perhaps the first time through
this scenario avoid having files that are in direct conflict with your changes.

GFBTF – GIT Real Life Activity 02 | Page 5 of 17 https://www.majorguidancesolutions.com

Create a change with PR at GitHub from the “other” developer:

b) Merge the pull request
Merge the PR and delete the branch

Step 3: Sync your local branch with master
a) Checkout your local master branch

[git checkout master]

GFBTF – GIT Real Life Activity 02 | Page 6 of 17 https://www.majorguidancesolutions.com

b) Fetch and Pull to get up to date with remote
[git fetch --prune]

[git pull]

c) Make sure you are even with master locally
[git log --oneline]

Note that your other branch is still one or more commits ahead as well:

Step 3: Push a commit to local master, then sync
a) On local master, make another change and commit it

Again, here it is up to you if you want to create a conflict or not. Assuming you
would notice changes were missing if you were on the same file as before, I’m
selecting a third file – Contact Us- and changing it the copyright date:

GFBTF – GIT Real Life Activity 02 | Page 7 of 17 https://www.majorguidancesolutions.com

Note: My changes are on master, so now I’m one commit ahead of remote
master, but I forget to check that… and then I

b) Push to remote without thinking
Warning: Don’t do this if you are working on an important repository unless
you are confident you know what you are doing to “undo the mess it created.”
[git push]

Or
[git push origin master]

 Watch the magic happen

c) Immediately notify your team and stop the build
At this point, you’ve created a large problem in that you’ve pushed a commit to
a public branch that your team wants to keep sacred. Also, you’ve likely
triggered your automated build pipeline, which could create other problems. If
possible, immediately stop the build. If you don’t catch this in time, hopefully
you can re-deploy a previous build as fast as possible.

Also, make sure your team is aware you are going to be rewriting master’s
history, and to please do not pull master locally or create any branches off of
master locally or at GitHub until you have completed the repairs.

GFBTF – GIT Real Life Activity 02 | Page 8 of 17 https://www.majorguidancesolutions.com

Step 4: Repair Master
a) Remember that everything you do at GIT can be undone, and

branches are inexpensive.
First, for your own peace-of-mind, go to GitHub and make a backup of the
master branch. You will NOT need this, but it will make you feel safer in what
you are about to do:

b) On your local machine, create a new branch “keep-commit-for-fix”
from master
Locally, just checkout a new branch from master that you will use later to
restore your missing changes. In this scenario, I’ve only committed once, but
there may be times when you could have a chain of commits. Either way, as
long as you keep them around locally, you’ll be good to go.
[git checkout -b keep-changes-for-fix]

GFBTF – GIT Real Life Activity 02 | Page 9 of 17 https://www.majorguidancesolutions.com

c) Determine the id of the last good commit, and make note of any
commits that you will want to get back later.
I’ve only got one commit [f37f194] that is bad to get back later. You might
have more than one. Determine your last good commit to keep on master. In
this case, for me, the commit I need is [3fb1d23]. Depending on your
workflow, the last good commit likely has a message such as “Merge pull
request #n…. from …..”

[git checkout master]

[git log --oneline]

Make note of commits:
[last good commit]: [3fb1d23]
[commits to restore later]: [f37f194, ….] //you might have more than one

d) Hard reset your local master to the last good commit:
Having identified the last good commit to keep, perform a hard reset against
master [make sure you are on the master branch locally]
[git reset --hard <good-commit-id>]

Now local master is set to where it should be.

GFBTF – GIT Real Life Activity 02 | Page 10 of 17 https://www.majorguidancesolutions.com

e) Force push the reset to remote
This will be the scariest part of the whole operation, because now remote has
to also be reset. If you want, first take a look at the commits at REMOTE:

Here we can see the same history we have locally with the “bad” commit.
There are also more commits to follow – your history likely has a bunch of
commits.

Again: You should NOT run a force against a public branch unless you know
what you are doing and everyone is aware of it. This will rewrite public history
and could cause you problems. Since we told our team what is going on,
nobody has the bad commit in their master branch history yet and no branches
are created off of this bad commit.

Make sure you are on master and run the command:
[git push -f origin master]

Or
[git push -f]

 At this point it is safe to let your teammates resume work against master.

GFBTF – GIT Real Life Activity 02 | Page 11 of 17 https://www.majorguidancesolutions.com

 As we can see, the bad commit is gone from the master branch in our public
 repository. This is what we intended.

f) Make sure to re-sync your local master so it doesn’t have the bad
commit [still from master branch locally]
[git fetch --prune]

[git pull]

This step is likely unnecessary, but will give you peace-of-mind. Note: we were
“already up to date”

Step 5: Pick your commit and put it on the branch
where you meant to commit

a) Make sure to checkout your feature branch:
 [git checkout rebase-pick-scenario-two]

 [git log --oneline]

GFBTF – GIT Real Life Activity 02 | Page 12 of 17 https://www.majorguidancesolutions.com

b) Merge local master like you had intended to do before you messed
everything up:
[git merge master]

Or
[git merge origin/master]

 And the merge completes:

 Now we are even with master but also two commits ahead. However, we want
 to get the commit f37f194 into our tree as well before we merge at remote.

c) Pick the commit(s) that contain your remaining changes
Here we have the one commit [f37f194] that we wanted to put in our feature.
[git cherry-pick f37f194]

Because there was no conflict, this just works. If there would have been a
conflict, we would have to resolve that before committing the cherry-pick.

 As expected, the commit gets a new ID, but we have our changes in the correct
 branch now:

GFBTF – GIT Real Life Activity 02 | Page 13 of 17 https://www.majorguidancesolutions.com

 Performing a diff on the commits abff8a5 and f37f194 should be clean at this
 point since they would contain the same bits.

d) Push your changes to remote to update your open PR
Now that we have everything, and we are synced up, push to remote
[git push]

Review the commits you are adding to master:

 [git log --oneline --reverse master..]

e) Merge the PR and delete the branch

GFBTF – GIT Real Life Activity 02 | Page 14 of 17 https://www.majorguidancesolutions.com

GFBTF – GIT Real Life Activity 02 | Page 15 of 17 https://www.majorguidancesolutions.com

Step 6: Cleanup
a) Remove the backup branch and all fully-merged branches at GitHub

We know our commits are good and we don’t need that backup anymore.

So I have nothing left but master at remote.

b) Fetch and prune locally, update local master
[git checkout master]

[git fetch --prune]

[git pull]

GFBTF – GIT Real Life Activity 02 | Page 16 of 17 https://www.majorguidancesolutions.com

c) Check branches, then cleanup
[git branch -a]

 [git branch -vv | grep ‘: gone]’ | awk ‘{print $1}’ | xargs

 git branch -d]

[git branch -D keep-changes-for-fix]

[git log --oneline]

This concludes our git commit to local and remote master activity.

GFBTF – GIT Real Life Activity 02 | Page 17 of 17 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity we worked through a scenario where we really messed up. First,
we made a bunch of commits in our feature, but then another developer got
their changes into master before us.

We were going to merge master locally, but walked away in the middle and
forgot to move back to our feature branch after pulling the latest master.

We made another mistake by committing locally and then pushing that commit
off to remote.

At that point, we had to stop the presses, and cleanup the branches. We
backed up master for peace-of-mind at GitHub, and created a keep-commit-fix
branch locally to have a reference to our work.

Next we worked locally to hard reset the master branch and force-push it to
GitHub. Once that was good, we made sure we were up-to-date, and then
moved back to our feature branch.

On our feature branch, we cherry-picked the commit with our work, and then
pushed to remote and merged.

Finally, we cleaned everything up so that we are in a good state to move
forward with future development.

In the end, we have our repository where it needs to be with all of our changes,
and we didn’t have any lost work, even though we had merged and pushed to
master and then had to fix our mistake.

Notes

