

GFBTF – GIT Real Life Activity 01 | Page 1 of 20 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Real Life Activity 01:
I accidentally committed to master on my local.

What do I do?
Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Real Life Activity 01 | Page 2 of 20 https://www.majorguidancesolutions.com

Introduction
It happened. You were working away and you didn’t realize it, but you accidentally put a couple of commits directly to the

local master branch. Thankfully, you never pushed the commits to remote, but you need to keep your changes, and you need

to get them on their own branch, while also restoring your master branch back to the state it should be in sync with the

remote master.

At this point, we can breathe a bit easy because nothing was harmed at remote. However, we want to keep our changes as

they should have been on our own branch, not master.

How do we fix the problem, keeping our commits and restoring master?

1) If scared, could backup master locally. There is no reason to do this, however.

2) Pick the commits to keep into our feature branch so that we don’t lose them and have them where we want them

3) Make a choice: Could just delete local master and get a new local copy from remote [simplest option] OR

4) Perform a hard reset of master from remote [fastest option]

5) Checkout the feature branch with the correct commits and merge master into it OR rebase master

6) Push final version to remote from feature branch

7) Create PR and merge your changes

Let’s get started.

GFBTF – GIT Real Life Activity 01 | Page 3 of 20 https://www.majorguidancesolutions.com

GFBTF: Git Real-Life Activity 01 – Accidentally committed to master

Step 1: Setup the situation
a) Create a feature branch.

Make sure you are even with remote from master, then create a local feature
branch.
[git checkout -b pick-and-reset]

[git push -u origin pick-and-reset]

Move the feature branch ahead a couple of commits to simulate your
workflow.

b) Create a couple of remote commits to move master ahead.
We need to simulate that we had a reason to sync up with master – which is
why we would check it out and go wrong.
Go to Github and simulate another team member making some changes

Make any changes and then merge the pull request.

Notes

GFBTF – GIT Real Life Activity 01 | Page 4 of 20 https://www.majorguidancesolutions.com

This is where we go wrong. Checkout master and perform a fetch and pull to
get even with remote.
[git checkout master] – [git fetch]

GFBTF – GIT Real Life Activity 01 | Page 5 of 20 https://www.majorguidancesolutions.com

[git status] – [git pull] – [git log --oneline]

c) Forget to go back to feature branch, and create a couple of new
commits
Forget to checkout the feature branch and make two or more new commits on
master directly

 [git commit -am “your message…”]

 [git status]

Now that we are on master instead of our feature branch making commits, we
realize our mistake, and need to clean it up.

GFBTF – GIT Real Life Activity 01 | Page 6 of 20 https://www.majorguidancesolutions.com

Step 2: Pick the commits that are on local master to
the correct feature branch

a) Find the commits you want to keep from your local master
[git log --oneline]

Here I’ve identified commits 0e41cb3 and 11190f7, which I want to put on
my feature branch.

b) Switch to the feature branch and validate commits before picking

c) Try to cherry-pick the two commits from master to the feature branch
[git cherry-pick 11190f7..0e41cb3]

Uh-oh, that doesn’t look like it did what I hoped

GFBTF – GIT Real Life Activity 01 | Page 7 of 20 https://www.majorguidancesolutions.com

I have one commit, but does it have both of my changes?

No, it did not. Let’s undo that pick:
[git reset --hard 73ec767]

Ok, let’s try going in the “other” direction…maybe that was the problem
[git cherry-pick 0e41cb3..11190f7]

GFBTF – GIT Real Life Activity 01 | Page 8 of 20 https://www.majorguidancesolutions.com

Ok, so that’s not the answer either.

d) Pick the commits one-by-one onto the branch
One solution is we could just pick the commits one-by-one onto our branch:
[git cherry-pick 11190f7]

Followed by
[git cherry-pick 0e41cb3]

And review
[git log --oneline]

So we know this would work, and we could go on…but what if there was an
easier way?

e) [Optional] Reset and then get the commits with a rebase --onto
operation:
This is optional, but I want to show it. First, reset back to the commit where
you were two steps in but still needing the other two steps [should be the same
reset command as earlier]:
[git reset --hard 73ec767]

GFBTF – GIT Real Life Activity 01 | Page 9 of 20 https://www.majorguidancesolutions.com

Lots of orphaned commits – we’ll clean them up in a bit

Now perform a "rebase --onto" operation. Important, the “Base-commit” is
where you are putting commits to. The first commit is exclusive, so choose the
commit PRIOR to the first commit you want to include, the last commit is
inclusive, so choose the last commit in the chain (could be 3,4,5, or more
commits ahead, still only use base, first, and last:

[git rebase --onto <base-commit> <first-commit> <last-commit>]

This is doing what we want, but it’s in a detached head state:

GFBTF – GIT Real Life Activity 01 | Page 10 of 20 https://www.majorguidancesolutions.com

So our options are to checkout a new branch and then push that with our four
commits and remove the ‘pick-and-reset’ branch, Or we could checkout a new
branch and then merge that to pick-and-reset. It’s the same result either way.
Since we’ll have all four and don’t need a merge commit, let’s do our new
branch to upstream and then remove the local and upstream version of the
original branch
[git checkout -b pick-and-reset-2]

[git push –u origin pick-and-reset-2]

Now delete pick-and-reset at local and at origin
[git branch -D pick-and-reset]

GFBTF – GIT Real Life Activity 01 | Page 11 of 20 https://www.majorguidancesolutions.com

[git push origin :pick-and-reset]

Now we have all of our changes in the pick-and-reset-2 branch, and we just
need to cleanup master.

f) [Optional] Clean up local commit refs from the rebase and other reset
operations.
As we have a bunch of orphaned commits, could clean these up locally by
forcing the garbage collector to run.
[git reflog expire --expire-unreachable=now --all]

[git gc –prune=now]

GFBTF – GIT Real Life Activity 01 | Page 12 of 20 https://www.majorguidancesolutions.com

Which gets us nice and clean:

Step 3: Perform a hard reset of master
a) Hard reset local master to sync up with origin master

IMPORTANT: DON’T forget to checkout local master FIRST!
[git checkout master]

Perform a hard reset against origin/master to sync up the local master with
remote [NOTE: this does NOT affect the remote branch, so no fear!]
 [git reset --hard origin/master]

GFBTF – GIT Real Life Activity 01 | Page 13 of 20 https://www.majorguidancesolutions.com

 And we have more orphaned commits, but that’s ok, our local master is now
 good-to-go. We’ll cleanup the orphaned commits later

Step 4: Rebase master to your local feature, then
create the Pull Request to merge your feature at
remote
 Since we’ve been doing a lot of merging, I want to do a rebase to get a better
 commit history in-line. Also, why not practice a rebase now, right?
 NOTE: your master should be up-to-date after hard reset. If you walked away
 for a bit and a team member moved master forward, you would want to reset
 again or just do a fetch and pull to make sure your local master is even

a) Checkout feature branch and rebase master
[git checkout pick-and-reset-2]

 [git rebase origin/master] [or] [git rebase master]

 Cool. That looks right!
 But….

GFBTF – GIT Real Life Activity 01 | Page 14 of 20 https://www.majorguidancesolutions.com

 Oh CRAP, now we are out of sync with four new commit ids!

b) Sync after rebase local with master by doing a force-push to branch at
origin.

 This is where it will make sense to push your branch to origin with a “force-
 with-lease” --- which is the safe way to push without fear that someone else
 might have put a change in your commit tree at remote [i.e. checked in a
 commit after fbf4ac9] [note, again, make sure you are on your feature branch
 that you intend to push to remote, not master or another branch by accident]
 [git push --force-with-lease]

 By doing this, we make sure our remote is in sync with our local

GFBTF – GIT Real Life Activity 01 | Page 15 of 20 https://www.majorguidancesolutions.com

 Now we know everything is ok and we are good-to-go! Prove it? Ok…
 [git log --oneline --reverse master..]

Step 5: Create and merge the pull request, and
optional local cleanup

a) Now that everything is kosher, create and merge the pull request at
remote:

GFBTF – GIT Real Life Activity 01 | Page 16 of 20 https://www.majorguidancesolutions.com

 [delete the branch after merging]
 [also going to cleanup my [another-dev-feature] branch

GFBTF – GIT Real Life Activity 01 | Page 17 of 20 https://www.majorguidancesolutions.com

 SO now I have no active branches at remote, and I’ve completed the cleanup at
 GitHub.

b) Cleanup local branches by deleting pick branch and fetch/pull of
master
[git checkout master]

[git fetch --prune]

[git pull]

Note that this has cleaned up my local origin refs to the deleted branches

Delete any branches that are fully merged locally that no longer exist at remote

 [git branch -vv | grep ‘: gone]’ | awk ‘{print $1}’

 | xargs git branch -d]

 [git log –oneline]

GFBTF – GIT Real Life Activity 01 | Page 18 of 20 https://www.majorguidancesolutions.com

c) [Optional] Clean up the local orphaned commits
[git reflog expire --expire-unreachable=now --all]

[git gc –prune=now]

GFBTF – GIT Real Life Activity 01 | Page 19 of 20 https://www.majorguidancesolutions.com

 Now there are no more orphaned commits and all of our branches are cleaned
 up and we are ready to continue with our feature development on the next
 story.

This concludes our git real-life activity for accidental commit to local master.

GFBTF – GIT Real Life Activity 01 | Page 20 of 20 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity we saw what it takes to undo the problem we created by
committing on our local master branch.

This would have been bad if we would have pushed it out to remote, so we
knew we had to do something to fix the issue. Additionally, we wanted to keep
our commit so that we would not lose the changes that we had applied in that
commit.

Essentially, we go to combine some of the advanced skills we’ve learned
around resetting and picking, and applied some additional commands along the
way.

Now that we understand how this works, we can do more advanced scenarios
requiring us to rewrite history and make sure that commits are in history the
correct way that we expect them to be, and not directly committed to our
master branch.

Notes

