

GFBTF – GIT Stashing Activity | Page 1 of 11 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Stash Activity:
Sometimes you just don’t want to commit and you

need to get the changes back
Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Stashing Activity | Page 2 of 11 https://www.majorguidancesolutions.com

Introduction
I have a background that includes too many years in .Net to count. My first version control system was Visual Source Safe 6,

which, if any of you have used or encountered, left more than a little bit to be desired.

Fast forward to 2012-2015 when I was using Team Foundation Server and Visual Studio Team System (now Azure DevOps or

TeamCity or something like that) for professional development (Git/BitBucket for personal). Anyway, one of my favorite

features to use in this centralized source-control system was a feature called “Shelving.” Shelving was great because I could

put my changes “on the shelf” and basically reset the repository back to the last commit. Anytime I wanted to, I could then

pull my changes “off the shelf” and start working with them again.

As such, I was super excited to learn about a feature in Git called “Stashing.” My first reaction was “I can’t wait to learn about

that, because I’m going to use it all the time. It will be the most important feature that Git has to offer, I have no doubt.

Ok, so guess what. It’s not. It’s great, but it’s mostly unnecessary if you don’t want to use it. The simple fact of the matter is

that creating a branch in Git is so inexpensive and easy to do, that it is easier to just check out and commit my changes to a

new branch than to put them “on the shelf” with a stash command.

Add into that – using stash out of the box is a bit counter-intuitive, and without proper planning can quickly become pretty

useless, confusing, and un-memorable.

There is one feature that I have found, however, that is perfect for stashing. The feature is when I want to repeatedly do

something that I’m not going to check in and I want to be able to do that on any branch, at any time. Also, it’s a change, not a

command, obviously.

In this activity, we’ll go over that one scenario while getting familiar with how the stash command works.

Let’s gets to stashing!

GFBTF – GIT Stashing Activity | Page 3 of 11 https://www.majorguidancesolutions.com

GFBTF: Git Stashing Activity

Step 1: Start with a copy of my StashActivity
repository [has the web.config file, etc]

a) Start with a copy of the repo and create a feature branch.
First fork [then clone local] my repo [it has the coveted web.config file in it]
If you don’t want to fork go to the link and download the files and use them to
create your own repo:
[git clone
https://github.com/majorguidancesolutions/GFBTFStashingActivity.git
<folder>]

 [git checkout –b feature-branch]

Nothing spectacular here. The main thing is we have that web.config to play
with, and some other files as well.

Notes

GFBTF – GIT Stashing Activity | Page 4 of 11 https://www.majorguidancesolutions.com

b) Modify the web.config file to use your local db settings.
In case you are not a .net developer, the web.config file is traditionally a simple
configuration file that sets up the project and configurable variables [like
connection string info] for .Net projects. We’re going to simulate this file [not
an actual one, and no real db connection, etc]. Our main goal will be to stash
our local connection string info while only have the test version of the file in
the repository.

 [code web.config]
 [change the connection string settings from test to local

<add name="AppContext"

 connectionString="Server=local_server;Database=dbApp_Local;

 User

Id=local_user;Password=local_user_pwd;"

 providerName="System.Data.SqlClient"/>

 <add name="AuthContext"

connectionString="Server=local_auth_server;Database=dbAuth_Local;

 User

Id=local_auth_user;Password=local_auth_user_pwd;"

 providerName="System.Data.SqlClient"/>

 [git status]

Instead of committing, we are going to stash these changes. Doing this will add
it to the stash and reset the repo.

Step 2: Simple Stashing
 Now that we have the changes we want to use multiple times in our repository
 across branches, we stash the change:

GFBTF – GIT Stashing Activity | Page 5 of 11 https://www.majorguidancesolutions.com

a) Add the change to stash
 [git stash]
 [git status]

b) List the stash
[git stash list]

So that isn’t very useful. Also, look at the state of our repo

There is some kind of weird thing for refs/stash. What is that?

Open in code:

So there is a commit id in that file. It essentially gives us a pointer to the
changes we made on that stash.

Note back up to the list, that the stash points to the main commit.

GFBTF – GIT Stashing Activity | Page 6 of 11 https://www.majorguidancesolutions.com

c) Get changes back and remove from stash
[git stash pop]

So popping removes from the stash and applies to local (would have to resolve
any conflicts of course).

Compare to head to see that changes are as expected:
[git difftool head]

Perfect.

Re-add the stash:
[git stash save web-config-changes]

So naming is possible – we can then know which one to get later when we want
to put the changes back in place.

GFBTF – GIT Stashing Activity | Page 7 of 11 https://www.majorguidancesolutions.com

d) Get Changes back and leave in stash
[git stash apply]

So getting our config changes back and leaving the changes in stash is possible.

Step 3: Advanced stash operations
 We’ve seen one simple stash, and know how to pop and apply, as well as list.
But what happens when there are multiple stash entries and we want to put just
one in place? What about untracked files?

a) Stash all changes, including untracked files.
[git reset –hard head]
[touch aNewFile.txt]
[code info.txt]
[git status]

[git stash save -u “A new file and modified info.txt”]
[git status]

GFBTF – GIT Stashing Activity | Page 8 of 11 https://www.majorguidancesolutions.com

[git stash list]

 I wish I could just apply from the names I gave, but it’s not that easy. Instead, I
 have to use the refs.
 [git stash apply stash@{1}]

 I could re-add to stash and get another entry that is the same as stash@{1}, but
 that would be pointless. Also note that this is like a stack – Last in = first out.
 So stash@{0} is always the top of the ‘stack’, and would be what is popped. As
 you add more to the stash, the original entries get pushed farther down. This
 means stash@{1} won’t necessarily always be my web.config, which is another
 important reason to name them.

b) Checking out a branch from stash:
[git reset –hard head]
[git status]
[git stash list]

GFBTF – GIT Stashing Activity | Page 9 of 11 https://www.majorguidancesolutions.com

 [git stash branch feature-changes]

 Notice that it took the first stash only by default. The branch also changed.

 [git stash save -u “A new file and modified info.txt”]

 Our repo is getting pretty messy with all this stashing going on…

[git stash list]

c) Removing from stash without applying or popping
[git stash drop stash@{0}]

GFBTF – GIT Stashing Activity | Page 10 of 11 https://www.majorguidancesolutions.com

Keep our changes by applying them, then clearing stash
[git stash apply stash@{0}]

[git stash clear]

[git stash save web-config-changes]

This concludes our stashing activity.

GFBTF – GIT Stashing Activity | Page 11 of 11 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity we saw how it is possible to stash changes and get them back at
a later time.

We also learned how we can save the stash with a name to help us remember
what is stashed, and how to apply them while keeping the stash intact.

Stashing is useful for small changesets that need to be applied across multiple
branches repeatedly. If the changes are fairly major and/or are specific to a
branch, I would recommend just committing the changes to a branch rather
than working with stash.

Also, some really good news for visual studio users is that VS2019 now includes
stashing as part of the Git integration tools in VS out of the box. This is a great
improvement over VS2017, which did not have stashing built-in.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

