

GFBTF – GIT Cherry Picking Activity | Page 1 of 14 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Cherry Picking Activity:
Get a specific commit into your history from a

chain of commits
Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Cherry Picking Activity | Page 2 of 14 https://www.majorguidancesolutions.com

Introduction
Imagine you are developing away on a feature branch when you discover a simple bug in some existing code. One strategy

you might take is to commit your changes, go back to the master, create a new branch, and then checkout the new branch

and make the fix, merge, pull down to local, merge into feature branch and then continue. This is a great way to solve the

problem, but creates a few merge commits and also is a lot of extra jumping around (albeit very safe!).

Another scenario exists where you might be developing and you get something completed, and then you keep developing,

and you then want to merge part of what you had done in order to get it tested, or just to get the code out the door. As

above, there are many ways you can go about working with your codebase to do this.

Yet another scenario is that developer A and B accidentally were working on the same feature. Developer B’s solution is

farther along and ready to move forward, but there is one part of Developer A’s branch that really makes sense to merge into

the source for Developer B to use (and just throw away the rest of developer A’s work – sorry dev A). Once again, there are

many ways to accomplish this.

However, in all of these scenarios what we really want is just part of a feature branch’s commit chain to be merged into

master. This is where cherry-picking can be a great tool to use. Be advised that cherry-picking is one of the more complicated

activities in GIT, but with more complication generally comes more power, right?

Let’s dive in and find out!

GFBTF – GIT Cherry Picking Activity | Page 3 of 14 https://www.majorguidancesolutions.com

GFBTF: Git Cherry Picking Activity

Step 1: Make sure we have a working repository that
is up to date

a) Start with any repo, make sure you have the latest in master, and
create a feature branch.
First clone the repo if it doesn’t exist:
[git clone <link> <folder>]

If you didn’t clone, make sure master is up to date
[git checkout master]
[git fetch origin]
[git pull origin master]
[git checkout –b feature-branch]

b) Make 3 commits that are easily identified. Understand that if we take
commit 2, commit 1 will be included by default and only commit 3
would be left out, so make your changes accordingly, and clear.
[code info.txt] //leave it open
[git commit -am “CherryPickingActivity – commit #1”]
[make changes in info.txt]
[git commit -am “CherryPickingActivity – commit #2”]
[make changes in info.txt]
[git commit -am “CherryPickingActivity – commit #3”]

Notes

GFBTF – GIT Cherry Picking Activity | Page 4 of 14 https://www.majorguidancesolutions.com

Step 2: Make one or more commits on the master at
GitHub

a) Go out to GitHub and create a new commit to move the master
forward one commit. [Don’t create a conflict unless you want to have
practice resolving conflicts] You can make the commit directly on
master to save some time.

GFBTF – GIT Cherry Picking Activity | Page 5 of 14 https://www.majorguidancesolutions.com

Step 3: Get master up to date, create a branch to pick
to

a) Get the latest changes into master
[git checkout master]
[git fetch origin]
[git pull origin master]

b) Checkout a new branch for cherry-picking into:
[git checkout <feature-branch>]

Step 4: Perform the cherry-pick operation
 Before we begin, I’d like to point out that if we want all of the commits we could
 easily do a simple rebase with [rebase master], which would bring all three
 commits over. If the final commit is easy to undo, it might be easier to rebase,
 and then revert the last commit. However, this activity is only a simple change,
 whereas in real life the changes probably wouldn’t be that easy to mess with,
 and the cherry-pick is probably the safer and more trustworthy approach.

GFBTF – GIT Cherry Picking Activity | Page 6 of 14 https://www.majorguidancesolutions.com

a) Begin the cherry-pick with a call to the commit (and by default its
parents if any) that we want to pick. Here we will take the second
commit, id dd6a211 in our history
[git cherry-pick dd6a211]

 As expected, we have to resolve some merge conflicts. Here is where we’ll need
 to tell GIT what to keep on the cherry-pick. Note that the terminal tells us that
 we are ‘CHERRY-PICKING’. If for some reason we want out, we could simply
 abort. Do that now:
 [git cherry-pick --abort]

 Nothing is done, and we go back to where we were. Of course we actually want
 to pick, so hit the up arrow a couple of times and re-run the command to
 cherry-pick dd6a21. Also, before doing that, if you want to validate, you could
 run a [git log --oneline] to see no extra commits have been added.

b) Resolve the merge conflicts

GFBTF – GIT Cherry Picking Activity | Page 7 of 14 https://www.majorguidancesolutions.com

Here you can see simple commits I had done for the first two commits. The
commit #3 is not shown because I’m not picking it [commit 29092d4]. This is
exactly what I want. Of course in real life it will be more complex to hit all the
changes, but that is ok as well, because we’ll know what we should keep and
what we should not keep.
I’ll hit [Accept Incoming Change].
Then save and exit the mergetool
[git status]

Good thing I read that! I was about to commit! Instead, I’ll run ‘git cherry-pick –
continue’ as the terminal suggests:
[git cherry-pick --continue]
//which just gives me a chance to edit the commit message ☺

So I’ll take this message, save, and close the editor

GFBTF – GIT Cherry Picking Activity | Page 8 of 14 https://www.majorguidancesolutions.com

And the history:
[git log --oneline]

Sweet, it squashed my two commits into one. That’s awesome. But now I need
to clear out that other branch, so I need to be SURE that I don’t want what’s in
commit 3 before doing that. I should also make sure I merge my branch to
master and get that all squared away so that I have my expected changes before
cleaning up.

c) Push the feature picked branch to GitHub, do a pull request, merge to
master, then update master locally with the history from GitHub
[git push -u origin <your-branch-name>]

Then at GitHub:

GFBTF – GIT Cherry Picking Activity | Page 9 of 14 https://www.majorguidancesolutions.com

You can either do a regular merge, a squash and merge, or a merge with rebase
here, it doesn’t matter – as long as we delete our branch after for all but the
regular merge commit.
I’m going to do a regular merge pull request as shown.

I’m also going to delete the branch.

Back at local, get master up to date
[git checkout master]
[git fetch origin]
[git pull origin master]

GFBTF – GIT Cherry Picking Activity | Page 10 of 14 https://www.majorguidancesolutions.com

d) Make sure changes we want are on master from feature branch
//if not using gitvis, would need to look into the reflog
[git reflog]

Note the three original commit ids at HEAD@{9}, HEAD@{8}, and HEAD@{7}.
Since I’m using GitVis, it’s easy to see them on the overall diagram from the
previous page [same ids as shown on the reflog].

If the cherry-pick and merge was successful, master, commit c6d7fb4, will have
everything from commit a2abc2a and dd6a211, but not 29092d4. Of course if I
changed anything during the pick it may have a few differences [or whitespace
differences]. That being said, we should be pretty solid for this activity.

Also note-even if we had deleted the branch and had these commit ids, we
could still do the comparison:

In fact, let’s do it! NO FEAR! [we can get them back if something goes wrong!]
[git branch –D <your-branch-name>] //have to use –D to force it! One commit
lost forever [right?]!

GFBTF – GIT Cherry Picking Activity | Page 11 of 14 https://www.majorguidancesolutions.com

They are still there in cache!
[git reflog]

And in reflog too! If I need 29092d4 back, I can just check it out, create a branch
and go with it!

[git difftool c6d7fb4 a2abc2a]

 Wait, what? How come there is a difference? Because this was the first of TWO
 commits, and so it looks like there is a difference from this perspective [so be
 careful!].

GFBTF – GIT Cherry Picking Activity | Page 12 of 14 https://www.majorguidancesolutions.com

 Ah crap – I forgot I made a change at master too. Of course that is different.
 Let’s check the second commit – which should only have the change at master,
 and let’s flip the order. Green is better than red, right?

 [git difftool dd6a211 c6d7fb4]

 Oh whitespace, how I loathe thee.

 Looks good.

 Let’s validate that commit 3 is not in there..
 [git difftool 29092d4 dd6a211]

 And it’s not. That’s great!

e) Clean up the unreachables.
Now that we know the commits that are unreachable don’t matter to us
anymore, let’s use the reflog expire and garbage collector to clean them up.
[git reflog expire --expire-unreachable=now --all]
[git gc --prune=now]

f) Clean up the branch that is behind master now and not at origin
anymore, then show the final state of the repo after this activity
[git branch -d feature-picked-branch]

GFBTF – GIT Cherry Picking Activity | Page 13 of 14 https://www.majorguidancesolutions.com

[git reflog]

This concludes our cherry-picking activity.

GFBTF – GIT Cherry Picking Activity | Page 14 of 14 https://www.majorguidancesolutions.com

Closing Thoughts
Cherry picking can be scary, so hopefully this activity has removed a lot (if not
all) of that fear for you. What we’ve seen is that we can get the changes from a
chain of commits and leave part of the changes out by not including one or
more of the commits.

Cherry picking does give us an all-or-nothing operation on the commit, so if
you’re looking to get just part of a commit, you’d have to use something else,
or do the pick and be careful during merge resolution as to what is included.

Because of the nature of the pick, we also got to see a few more things about
the reflog and how we can get to ‘unreachable’ commits even after they don’t
have a direct reference. We also used the reflog to expire the unreachables
and the garbage collector to get rid of those commits.

In the end, this powerful tool allowed us to easily merge the parts of our
changes that we wanted while leaving the others behind.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

