

GFBTF – GIT Status Activity | Page 1 of 15 http://www.majorguidancesolutions.com

GIT: From Beginner to
Fearless

 GIT status, diff, log, and show Activity:
What is the state of my repo?

Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Status Activity | Page 2 of 15 http://www.majorguidancesolutions.com

Introduction
There will be many times we will want to check on the status of our repository. By “status,” we are actually looking to find out

what has been changed, as well as what is ready to be committed. Don’t worry if these terms are still new to you at this point,

because as we spend more time working through this activity, they will become quite a bit more familiar.

We’ve already worked through a few flow operations where we’ve seen files move from untracked to tracked to staged to

committed. Additionally, we’ve seen the “official” diagram regarding the general flow of files through different phases in GIT.

We’ve learned about the working directory, the Index (or staging area) and the Head, which is essentially a pointer to the last

commit on the checked-out branch.

In this activity, we’ll go through some of these things in detail, and learn about ways we can use the status command to get us

the information we need about the current state of our repo.

Let’s gets started!

GFBTF – GIT Status Activity | Page 3 of 15 http://www.majorguidancesolutions.com

GFBTF: GIT status, diff, log, and show Activity

Step 1: Start with a working copy of the repository
files:

a) Download the default web as a .zip file.
We’re going to start fresh for practice and to see the status change for various
objects
https://github.com/majorguidancesolutions/DefaultWeb

b) Alternatively, if you already have a copy and want to use what you have
 You could just copy the existing directory then delete the .git Folder

c) Alternatively, clone the repo
You could also clone the repo locally, then delete the .git Folder

Step 2: Establish a repository:
a) Check your folder structure

Use [ls -al] to determine if a repo already exists. If one exists, delete it

Step 3: Check Status:
a) Create a new repository

[git init]

Notes

https://github.com/majorguidancesolutions/DefaultWeb

GFBTF – GIT Status Activity | Page 4 of 15 http://www.majorguidancesolutions.com

 Use [ls -al] to see all files, validate a .git folder exists

b) Take a look at the status of the repo right now:
[git status]

 Note that at this time, all the listed objects are untracked.
 What do you think the red color means? ______________________________

c) Review the state of the repo again
 [git status –s]

 What do you think the red double ??’s mean?: _________________________

GFBTF – GIT Status Activity | Page 5 of 15 http://www.majorguidancesolutions.com

Step 4: Adding and Removing a file from the Index
[“Staging Area”]:

a) Add a single file to index
[git add About.html]
[git status]

 Note the added file is Green and the rest of the files are red. Green
 indicates the file is “staged” or is in the “Index” ready to be committed. If
 we were to type ‘git commit –m “…”’ we would commit just the About.html
 file. However, we’re not going to do that just yet.

b) Review the short status
 [git status -s]

Here it is very important to note something: look at how the first column is
“A “ [“A” and a BLANK]. What do you think this means?
The double ??’s indicate that the remaining files are both unstaged and
untracked.

c) Remove a file from INDEX
[git rm --cached About.html]

[git status]

GFBTF – GIT Status Activity | Page 6 of 15 http://www.majorguidancesolutions.com

[git status –s]

The files have returned to “UnIndexed” and “UnTracked”

*** IMPORTANT note. This ONLY works without consequences because we’ve
never committed the file. If we had committed the file, this would be a terrible
idea because it would remove it from the repo as well. If the file is already in the
repo and we need to roll back to where it was, we’d use [git reset]. We’ll
learn about the reset command later in the course.

Step 5: Adding and Removing multiple files:
a) Add all files that are unstaged to the INDEX

 [git add .]

 [git status -s]

b) Remove all of the files from the INDEX
 [git rm –cached -r .]

GFBTF – GIT Status Activity | Page 7 of 15 http://www.majorguidancesolutions.com

 [git status -s]

 Now we know a way to add and remove all files. Please remember that using rm
 is something we should be careful with. Once files are being tracked, this
 actually removes them from the repository, so we’ll use a command [git

 reset] when we just want to unstage files and not actually remove them from
 tracking.

c) Committing our files
Let’s add just one file – about.html – to the INDEX. What is the command again
to add just one file? __

After adding the about.html file to the INDEX, commit the file with a commit
message:

 [git commit –m ‘Added the About.html file’]
 [git status -s]

 Wait! Where is my About.html file? It’s not listed!!!

GFBTF – GIT Status Activity | Page 8 of 15 http://www.majorguidancesolutions.com

 Maybe if I use full git status I can see it?
 [git status]

 Oh no! I lost my file! --- or not? Right -It’s simply not shown because there are no
 changes to the file and it’s already committed as-is. Want to see it?

d) View files using the log and show commands
 [git log]

 [*note – this is an updated image, so the commit id is not correct for the original
 tree]

Note “Added the About.html file” is the commit message I typed. If you
typed something different, you’d see that there.

 [git show --summary]

This tells me that the file “About.html” was “created”
We can also see this with other versions of the show command:
[git show --stat]

 [git show --name-status]

GFBTF – GIT Status Activity | Page 9 of 15 http://www.majorguidancesolutions.com

e) Add the remaining files
Right now, we have just the About.html file committed (in HEAD). And the
rest of the files are Untracked, with nothing in Index (Staging).

Add the remaining files to the Index. What is the command again to add all
the untracked or modified file changes to Index?

 [git commit -m “Added the rest of the files”]
 [git status -s]

So all of our files are added, and note that the short version of status shows
nothing!
[git status]

 [git show --name-status]

GFBTF – GIT Status Activity | Page 10 of 15 http://www.majorguidancesolutions.com

Note: About.html is not shown. Why do you think that is?

Is About.html sill in the repo?

 How can I know for sure?

 [git log]

 Additionally, we can always list the names of the files and their statuses from
 any commit using the sha1 first six characters. For example,
 [git show –name-status 874d59]

 *reminder: I updated the image so commit changed. Yours will also be different.

Step 6: More Show and Log examples:
a) Make some changes

 [vim Details.html]
 When the file comes up, make modifications.
 [i] //hit ‘i’ to insert in VIM
 Add an h2 tag under the <h1> that says ‘details page with more content:
 [<h2>Git is awesome and I’m learning so much cool stuff!”</h2>]

 [{esc}] //hit the escape key to exit insert mode in VIM
 [:wq] //to write and quit VIM
 [git status -s]

GFBTF – GIT Status Activity | Page 11 of 15 http://www.majorguidancesolutions.com

 Note the file has a red “M”. The red “M” is in the second column. This
 means the file is “Modified” against the Index version of the file {which is yet
 another way to know we are tracking the file}. Note the “M” is RED
 because the file is not yet added to index.
 [git status]

b) Add the changes
Add the details.html file to the index. What is the command for adding a
single file to Index again?
__

What if I had just typed [git add .]? [all modified files would be staged

– and since only one file was modified, it would be staged just the same!]
 [git status -s]

Note: Now the file has a Green “M” in the Index column. We now know the
file is Modified and Added to Index [staged] for commit.

c) Commit the changes
Let’s commit the changes:
[git commit –m “Added an h2 tag to the details page”]
[git status -s]

[git log --oneline]

GFBTF – GIT Status Activity | Page 12 of 15 http://www.majorguidancesolutions.com

Note the three commits, and note HEAD -> master. This means the current
HEAD is at commit 331b29 and the branch we are on is master. Don’t worry if
that’s a little unclear still. We’ll be learning much more about this as we
progress through the course.

Step 7: Modified files that are already tracked, only
commit the things we want to commit:

a) Repeat the modification steps as above to make another change in
details.html.

 [vim details.html]

 [i]
 //under the <h2> tag we entered above, place the following line
 [<h3>Multiple changes are coming</h3>]

 [{esc}]
 [:wq]

 [git add details.html] //add the change for the <h3> tag to INDEX

b) Create another change
 [vim details.html]
 [i]
 //under the <h3> tag we entered above, place the following line

 [<h4>Yet another change</h4>]
 [{esc}]

 [:wq]
 //DO NOT add this change to staging (INDEX).

[git status -s]

 Whoa! Now we have one modification ready to add [Red, modified against
 HEAD but not in index] and one modification ready to commit [Green,
 modified against HEAD and Staged in INDEX]. That’s cool. But what will I
 commit if I commit from this state? [we know it’s just the h3 tag, but this is
 an easy activity. Think about hundreds of changes in a system with only
 some of them added to Index and some not added, or a practical situation
 where you want certain changes but don’t want others…]

GFBTF – GIT Status Activity | Page 13 of 15 http://www.majorguidancesolutions.com

c) See what is added and ready to commit
[git diff --cached details.html]

If we commit now, we’d see the green line added to the file in the new
HEAD. Exactly what we expect.

To see what changes would NOT be committed [they would NOT be lost, just
not committed to HEAD]:

[git diff details.html]

Here we can see that the changes for the <h4> tag are waiting to be staged.

It’s important to remember that ANYTHING that is not added to INDEX
[staged] at time of commit will be left out of the commit.

It is equally as important to remember that anything that is modified but not
staged is NOT deleted by a commit action. It’s just not included, and your
file remains altered with changes ready to be staged and committed.

d) Commit the partial changes
Let’s see this in action to lose any remaining fear we have:
[git commit -m “Added the h3 tag for upcoming changes”]

[git status -s]

GFBTF – GIT Status Activity | Page 14 of 15 http://www.majorguidancesolutions.com

Again, here we see that our h3 tag was added, and now we have ONLY the
remaining modification for the h4 tag. Since nothing is added to INDEX for
staging, [git diff –cached details.html] yields 0 results, but
[git diff details.html] still shows our remaining changes!

e) Final commit for the activity
Let’s do one final commit to wrap up the activity with the add and commit
command:
[git commit -am “Added the h4 tag change”]

Note: We can add and commit on the same line, in one command. Also note
this only works on files that are already tracked, so using ‘-am’ requires a

modification to a previously committed file in order to work as expected.

 Try it. Create a new file, but do not stage to index (don’t add). Try to run the
 command [git commit -am “my new file added”]. What happens?

Running ‘git log --oneline' reveals our final history:

Yours should be similar – but you commit ids will be different than mine, of
course.

GFBTF – GIT Status Activity | Page 15 of 15 http://www.majorguidancesolutions.com

Closing Thoughts

In this activity, we’ve worked through making changes and seeing the state of
our repo with the status command. We saw that status has both a long version
and a short version. This allows us flexibility in how we want to show the
status.

Additionally, we learned about how we can use the log and show commands to
be able to list out our commit history, see details about commits, and view the
contents of a commit.

We also learned that not everything has to be committed at one time, and also
how important it is to make sure that everything we want to commit is actually
staged into the INDEX. We can always see what is going to be added or review
what is not going to be added using the diff command. We’ll also learn in the
future that the diff command will be highly useful for comparing changes for
entire commits, as well as how we’ve used it here to view changes in the
working directory and index.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

