

GFBTF – GIT Reflog Activity | Page 1 of 7 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Reflog Activity:
A simple exercise using git reflog

Brian Gorman, Author/Instructor/Trainer

©2109 - MajorGuidanceSolutions

GFBTF – GIT Reflog Activity | Page 2 of 7 https://www.majorguidancesolutions.com

Introduction
In life, things go wrong. In GIT, if you do something that somehow messed up your repo (which is not that easy to do), along

comes REFLOG to save the day.

If you’ve seen any of the videos for the course where I use GitViz, or have worked through other activities where a branch was

deleted, commits were reset, amended, or otherwise became ‘unreachable.’ When we look at regular log in GIT, an

unreachable commit is not listed. However, the reflog shows us everything that we have in cache for our current repository.

And, to answer your question -> Yes, GitHub has a reflog as well. However, I believe that using the GitHub reflog would

require using the GitHub API, and that is outside the scope of what we are covering in this course.

For this activity, we’re going to take a look at our local reflog and see how we can glean information from it, as well as how

that information is useful to us when things are not quite going the way we’d have liked them to.

Let’s gets started!

GFBTF – GIT Reflog Activity | Page 3 of 7 https://www.majorguidancesolutions.com

GFBTF: Git Reflog Activity

Step 1: Taking a look at the reflog
a) In order to do this activity, you should be on an active local repo that

has a chain of commits.
If you don’t have an active repo with a few commits, then take a moment right
now to create a local repo that has 5-10 commits. Make sure to also do a few
things like switch your branch a couple of times. If you want to get even more
ambitious, do some amend, rebase, revert, and/or reset operations.

b) Reviewing the reflog
To take our first look at the reflog, simply enter the command:
[git reflog]
Note: Your reflog will undoubtedly be different – but also similar to this:

Here, I have some 15 objects in my reflog, and these are mostly commits and
resets. Had I switched branches, that would show here as well.

Note that each commit has the commit message, which can be useful.
Additionally, the commit SHA1 that tracks the action is listed to the left. For
example, I “added the rest of the files” to commit 874d595, then did stuff and
reset back to it two more times. Pretty cool to see this.

Note that each entry has “HEAD@{n}”. This means we can start the list from
any place (for example if you had 100 reflog entries, you could start at 50).
Something similar to this:

[git reflog HEAD@{9}]

Notes

GFBTF – GIT Reflog Activity | Page 4 of 7 https://www.majorguidancesolutions.com

c) Using time entries to review the reflog
The reflog is powerful in ways that we can check the state of the repo at specific
commits as well as specific times. For example, suppose you want to see the
reflog for some time periods. You know you had a branch 2 days ago:
[git reflog HEAD@{2.days.ago}]

Here you can see that this repo is actually quite a bit older. If your repo is
newer, then it becomes more useful. Here are some of the different time
constraints we can use:
{1.minute.ago}…{2.minutes.ago}…{253.minutes.ago}…{<n>.minutes.ago}
{1.hour.ago}…{2.hours.ago}…{n.hours.ago}
{1.day.ago}…{2.days.ago}…
{yesterday}
{1.week.ago}…{2.weeks.ago}…{n.weeks.ago}
{n.month(s).ago}
{n.year(s).ago}
And specific date {yyyy-mm-dd.hh:mm:ss}
[git reflog HEAD@{2017-07-05.11:51:38}]

Note, if you try a date prior to the repo, GIT will yell at you and tell you that
there are no such entries
[git reflog HEAD@{4.years.ago}]

Step 2: Show differences between two reflog entries
a) Find a couple of entries in your reflog to compare by index

If you don’t have a lot, then you will want to create some.

[git diff HEAD@{9} HEAD@{3}]

[git difftool HEAD@{9} HEAD@{3}]

//shows a bunch of changes so we can see the differences between the two
commits

mailto:HEAD@%7b2.days.ago%7d
mailto:HEAD@%7B2017-07-05.11:51:38%7D
mailto:HEAD@%7b4.years.ago%7d

GFBTF – GIT Reflog Activity | Page 5 of 7 https://www.majorguidancesolutions.com

b) Compare the differences in a repo over a timespan
[git diff HEAD@{1.day.6.hours.ago} HEAD@{14}]
[git difftool HEAD@{1.day.6.hours.ago} HEAD@{14}]
//more differences
[git diff HEAD@{14.days.22.hours.ago} HEAD@{1.minute.ago}]
[git difftool HEAD@{84.days.ago} HEAD@{now}]
//etc. You can keep playing with this as you would like.

c) Checkout a reflog
[git reflog]

Assume for some reason you need to go back to HEAD@{10}

 [git checkout HEAD@{10}]

If we wanted to do anything, we could checkout a branch from here to create a
new commit, etc.

 [git reflog]

Note we can see the movement.
Go back to master
[git checkout master]

mailto:HEAD@%7b1.day.6.hours.ago%7d
mailto:HEAD@%7b1.day.6.hours.ago%7d
mailto:HEAD@%7b14.days.22.hours.ago%7d
mailto:HEAD@%7b1.minute.ago%7d
mailto:HEAD@%7b84.days.ago%7d

GFBTF – GIT Reflog Activity | Page 6 of 7 https://www.majorguidancesolutions.com

Step 3: Set expire and use garbage collection to
cleanup unreachable commits.
 There are many times when we rewrite history, drop branches, or perform
 other various operations in GIT which end up “orphaning” a commit.
 Essentially, the commit is in a state that is referred to as “unreachable.”
 Keeping these commits around is not always a bad idea (as long as they are
 around we can checkout the commit and work with it). However, there are
 other times when you just want to clean up or perhaps the unreachable
 commits are getting very stale. In these cases we want to cleanup the
 unreachable commits at a certain expiration date.

a) Cleanup anything older than 14 days
[git reflog expire --expire-unreachable=14.days.ago –all]
[git gc --prune=14.days.ago]

b) Clean up all the loose objects and expired/unreachable commits as of
now
[git reflog expire --expire-unreachable=now --all]

[git gc –prune=now]

This concludes our git reflog activity.

GFBTF – GIT Reflog Activity | Page 7 of 7 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity, we learned about looking into the reflog in order to see the
history of our repo as it has been interacted with at the local level. The reflog
is a powerful tool when you need to find the general commits around a
timeframe or within a few commits.

Once we pull up the reflog, we can easily start comparing the repository on
reflog indexes as well as via timespan queries. This can be very useful when we
need to recover some history that has been incorrectly dropped. Perhaps a
rebase went awry or a cherry-pick missed a commit. We can use the reflog to
look for the lost commits and then can work to restore that commit into our
history as necessary.

We also saw how to do this by performing a checkout directly at any reflog
entry. Once checked out, we enter the detached-head state, where we can
further checkout a branch based on the state of the repo at a particular
moment as shown in the reflog. This would allow us to work from that commit
if we wanted to make further changes from that point in history.

Finally, we saw how we can use the reflog to set unreachable objects to expired
and then run the garbage collector to clean up the expired unreachable
objects. This is a nice way to clean up the unreachable commits, but is
probably not something you will want to do regularly – especially if you might
want to restore a commit from the reflog.

Take a few minutes to make some notes about the various commands we’ve
learned about in this activity, and practice using them.

Notes

