

GFBTF – GIT Remove commits from history | Page 1 of 20 https://www.majorguidancesolutions.com

GIT: From Beginner To
Fearless

 GIT Real-Life Activity 03:
Remove a developer’s commits from master and
retain commits after the developer commits; fix

your team members’ broken branches
Brian Gorman, Author/Instructor/Trainer

©2019 - MajorGuidanceSolutions

GFBTF – GIT Remove commits from history | Page 2 of 20 https://www.majorguidancesolutions.com

Introduction
Everything is going along smoothly for your team. Multiple developers are working away and getting stuff done. Everyone is

playing nicely together, creating feature branches, merging via Pull Requests, and, in general, following the rules.

However, stuff can still go wrong, even when everyone is playing nicely. Consider the situation where developer one created

a feature with a couple of commits and the commits were approved and merged. Then developer two performed a rebase

and also submitted a pull request, which was merged.

Later, another party (client, manager, ba, etc) comes back to your team and says “I have bad news. The feature that was

implemented by Developer one is no longer approved, and we need to remove that functionality from our system. Can you

do that?”

Of course there are multiple ways to do this, some safely, and some not-so-safely. If we wanted to play this safely, we could

revert all of the commits from the two developers, and then re-apply the feature commits. We could just try to revert the two

commits and see what happens. Either way, a public tree with reverted commits should be safe.

For the purpose of learning, however, we’re not going to play it safely this time. We want to do some surgery on our tree, so

that we can make it as if these commits never happened, and keep the two commits that we want in our repository.

Before we do this, we need to make it clear to everyone -> No branches are to be created from any of the commits that exist

from the PRs merged for developer 1 and developer 2’s feature commits. Additionally, if any branches exist from any of these

commits, the branches are going to need to be reworked after the repository is updated. We’ll dive in and see how all of this

will work (it’s also going to be an exercise on how to respond to someone mucking up public history that breaks your personal

repository tree).

The steps to complete this operation are:

1) Make a backup of master [for our own peace of mind – just in case]

2) Get everything local, checkout a branch from master that contains all of the commits (good and bad)

3) Reset local master to the last good commit before the bad

4) Pick the commits to keep

5) Once master is correct, force push it to remote [resets and keeps the commits]

6) Get other team-members’ branches to work again

7) Cleanup by removing old branches.

Let’s get started.

GFBTF – GIT Remove commits from history | Page 3 of 20 https://www.majorguidancesolutions.com

GFBTF: Git Remove commits from history Activity

Step 1: Get setup for the activity
a) Create two commits as developer one, commit and create a PR.

Developer one is going to be the first one to commit a couple of changes.
These are going to be simple changes for this activity. Of course in real-life it
will be much more involved. You can make commits on any file, just make sure
it is obvious to you where each commit is. For now, I would avoid conflicts but
if you want to practice with conflicts, feel free to do so.

[git checkout -b activity-three-dev-1-feature]

Perform two commits that are easy enough to validate are missing later
[make an obvious change]

[commit the change]

[make a second obvious change]

Notes

GFBTF – GIT Remove commits from history | Page 4 of 20 https://www.majorguidancesolutions.com

[commit the change]

 Push to remote, and create a PR. Do not merge yet.
 [git push origin -u activity-three-dev-1-feature]

 Current status:

GFBTF – GIT Remove commits from history | Page 5 of 20 https://www.majorguidancesolutions.com

 Create the PR but don’t merge it yet:

b) Create two commits as developer two, commit and merge via PR.
Checkout master, then checkout dev-2 feature branch. This will simulate
another developer working by getting changes, then rebasing on top of dev 1
changes after merge, then getting changes merged into master.

[git checkout master]

[git checkout -b activity-three-dev-2-feature]

GFBTF – GIT Remove commits from history | Page 6 of 20 https://www.majorguidancesolutions.com

Make a couple of obvious, non-conflicting changes, and commit each change.

Push to remote
[git push origin -u activity-three-dev-2-feature]

Create the pull request for developer 2’s changes, but do not merge it

GFBTF – GIT Remove commits from history | Page 7 of 20 https://www.majorguidancesolutions.com

c) Create a branch from current master (before dev 1 or dev 2’s commits
merged for developer #3.

d) Merge developer 1’s changes, and delete branch:

GFBTF – GIT Remove commits from history | Page 8 of 20 https://www.majorguidancesolutions.com

e) Create a branch from new public commits after dev1 merged as
developer #4
Create a branch from merged public commits that will later be removed. This
will create a very large problem once public history is rewritten for developer 4.

f) Rebase master on to dev 2, commit, and push, then commit the PR:
[git checkout master]

[git fetch --prune]

 [git pull]

 [git checkout activity-three-dev-2-feature]

 [git rebase origin/master]

 [git push --force-with-lease]

 [git branch -d activity-three-dev-1-feature]

 After performing all of those commands, dev 2 should be two commits ahead
 of master, and dev 1 branch should not show. Dev 3 points to master before
 any changes, dev 4 is master after dev 1 changes
 [git log --oneline]

GFBTF – GIT Remove commits from history | Page 9 of 20 https://www.majorguidancesolutions.com

g) Merge dev 2 at remote, so that all changes are in public history;
delete the branch

h) Get local up to speed, delete dev 2 branch locally
[git checkout master]

[git fetch --prune]

[git pull]

[git branch -d activity-three-dev-2-feature]

GFBTF – GIT Remove commits from history | Page 10 of 20 https://www.majorguidancesolutions.com

 Finally, we are setup for the activity!

GFBTF – GIT Remove commits from history | Page 11 of 20 https://www.majorguidancesolutions.com

Step 2: Backup Master at remote, checkout master
locally and create a branch to store all commits

a) Create the master backup at GitHub for our own peace of mind:

b) Checkout master locally, and make a fix backup copy to keep all
commits. Make notes of all commit ids that are important
We’ll use the backup branch to save all commits we need.
[git checkout -b activity-three-fix-backup]

Step 3: Return to master, and reset hard to original
commit before dev 1 and dev 2 changes were
merged

a) Identify the commits to keep and the commits to remove
[git checkout master]

[git log --oneline]

GFBTF – GIT Remove commits from history | Page 12 of 20 https://www.majorguidancesolutions.com

b) Go to GitHub and move dev 3 and dev 4 branches ahead one commit
Let’s assume they have been working and have some public history changes.
To make it more difficult, create multiple commits on each branch.

 [git fetch --prune]

 [git pull]

 [git branch -a]

GFBTF – GIT Remove commits from history | Page 13 of 20 https://www.majorguidancesolutions.com

c) Reset master with a hard reset to 814d421
[git reset --hard 814d421]

 Master is now back to where it was before either developer committed
 changes. Now it gets interesting. We know there are two other developers
 with changes that are pending. WE can fix things for them, or we can force
 push and they will be forced to clean up their branches. Either way, we should
 make sure they know not to do any more changes to their branches until we
 get things cleaned up.

 Additionally, we need to consider – does it matter when the other developers
 branched? For example, do we want to reset dev 3 to before or after dev 2’s
 original changes? The scenario of course will depend on your real-life situation.

 For our purposes, we are going to keep dev 2’s changes and get dev 3 and 4
 restored to the end of the chain. Things would be more difficult if they had
 also made changes.

d) Checkout all other developer branches
This way we can fix everything locally. In the real world, it will likely be messier
than this. Likely, one or more developers will have to fix things on their own
branches.
[git checkout actvity-three-dev-4-feature]
*I spelled it wrong at GitHub
[git checkout activity-three-dev-3-feature]

Which shows us we need to keep the commits on branch dev 3 and the
commits on branch dev 4. We’ll fix all of this as we go, for now, we are in a
good place.

e) Get the “good” commits onto master
Again, we’re assuming these two commits are important and other features
need to be on top of them. Pick each commit onto the master

GFBTF – GIT Remove commits from history | Page 14 of 20 https://www.majorguidancesolutions.com

[git checkout master]

[git cherry-pick 6fcffcb]

If you want, you could verify the file affected to make sure you have the details.
This could be manual or with a [git diff <commit-1> <commit-2>]
command
[git cherry-pick 27be515]

This gets both the commits we want to keep on top of master.
[git log --oneline]

Now that master is where it should be, force-push it to remote so that history is
officially rewritten.
[git push origin --force]

This gets master on remote back to where we want it. The dev 1 commits are
no longer in history.

GFBTF – GIT Remove commits from history | Page 15 of 20 https://www.majorguidancesolutions.com

Step 4: Fix developer 3 and developer 4 branches
while maintaining their changes so that they may
resume work

a) Fixing developer 3 is going to be easy – because their parent history
commit still exists at the public repository
Even better news. Since dev 3 had branched off of the original master and that
original master commit is still in our “new” history, developer 3 only needs to
do a simple rebase, and their branch is good to go. Likely, developer three
would do this on their own machine, but I’ll fix it here:
[git checkout activity-three-dev-3-feature]

[git rebase origin/master]

And then I’ll just do a force-push to make sure their branch is correct at origin.
They would have done the same thing from their own branch anyway. Also, I’ll
use force with lease, in case they didn’t listen and kept developing on their
branch.

GFBTF – GIT Remove commits from history | Page 16 of 20 https://www.majorguidancesolutions.com

[git push --force-with-lease]

In the real world, dev 3 would then checkout master and pull latest from
master, then do a reset of their branch from origin by running this command
[you should not run it in this scenario]

[git reset --hard origin/activity-three-dev-3-

feature]

[we aren’t going to do anything else with dev 3 branch – it’s good to go from
here].

b) Fix the developer 4 branch
Fixing developer 4’s branch is not going to be that easy. This branch has the
master in its history, but was based on a branch that no longer exists. A simple
rebase won’t work, because we’ll keep the commits we don’t want. Therefore,
we need to do this differently.

First, checkout a new branch off local master, and then pick the one commit we
need.

GFBTF – GIT Remove commits from history | Page 17 of 20 https://www.majorguidancesolutions.com

[git checkout master]

[git checkout -b new-dev-4-branch]

[git cherry-pick c2ffb02]

Here we could compare to make sure that the commit is as expected
[git log --oneline]

 [git diff 9a77b9c 8c6ac17] – new to master
 [git diff c2ffb02 95be31c] – old commit to it’s parent
 And we can then compare to see the bits are the same

c) Force push the new dev 4 to original dev 4
We could push dev 4 out to remote and they would be able to just pull that and
work from it. Let’s go ahead and make their original branch be what they
would want and then they can reset their local to match

Note that we are going to overwrite their branch, we will use the force with
lease option so that we don’t lose any commits they may have done if they
didn’t listen and kept developing and making more commits. Also, it’s a good
idea before doing this to make sure to talk with the other developer to make
sure it’s ok to overwrite their branch.

[git push origin HEAD:activity-three-dev-4-feature –

force-with-lease]

GFBTF – GIT Remove commits from history | Page 18 of 20 https://www.majorguidancesolutions.com

 Dev 4 will need to perform a hard reset to get their branch in sync locally.

 So now both dev 3 and dev 4 are good to go, and we have the two commits
 from dev 2 and we have eliminated dev 1’s commits. Locally we still have all
 the references to the older commits, but dev 3 and 4 can go forward, and the
 rest of the team can also resume making changes off master. If anyone is out
 of sync, they may need to also run a hard reset against origin.

Step 5: Cleanup
a) Delete master-backup at GitHub

We no longer need this.

b) Resume development on dev 3 and dev 4, then merge with PRs

Merge dev 3, then merge dev 4 [could rebase, etc]

GFBTF – GIT Remove commits from history | Page 19 of 20 https://www.majorguidancesolutions.com

c) Cleanup local
[git checkout master]

[git fetch --prune]

[git pull]

[git branch -D activity-three-fix-backup]

[git branch -D actvity-three-dev-4-feature]

[git branch -d activity-three-dev-3-feature]

[git branch -d new-dev-4-branch]

d) [Optional] Expire cached unreachable commits
[git reflog expire –expire-unreachable=now --all]

[git gc --prune=now]

[now the local is clear of any orphaned commits]

This concludes our Remove commits from history activity.

GFBTF – GIT Remove commits from history | Page 20 of 20 https://www.majorguidancesolutions.com

Closing Thoughts
In this activity we saw what happens when we need to remove a couple of
commits from the public commit history, and had the opportunity to see what
it takes to fix up other developers’ branches after doing history rewrites.

As we can see, with the right planning and the right information, it is possible
to do quite a lot of fantastic things with the GIT history. Here, we completely
removed public commits as if they never happened.

While there are always many ways to complete an activity like this, the way I
showed you is my preferred action because it’s the way that I understand how
GIT works the best.

With this activity, combined with other things that we have learned through
the course, we are now in a position to be able to work with GIT at some of the
most advanced levels possible.

I hope you have found the information and activities useful, and I hope you are
now in a position to be able to lead the GIT charge for your team, now, and
into the future.

Notes

