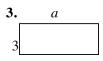
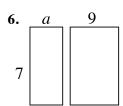
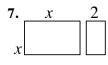

Task #11: Distributive Property Using Area

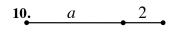

Distributive Property Using Area

Name _____

Write the expression that represents the area of each rectangle.






Find the area of each box in the pair.

Write the expression that represents the total length of each segment.

Write the area of each rectangle as the product of $length \times width$ and also as a sum of the areas of each box.

12.	х	12
r		
x		

13.	a	8
a		

AREA AS	AREA AS
PRODUCT	Sum
5(X+7)	<i>5</i> X+3 <i>5</i>

AREA AS	AREA AS
PRODUCT	Sum

M

This process of writing these products as a sum uses the distributive property.

Use the distributive property to re-write each expression as a sum. You may want to draw a rectangle on a separate page to follow the technique above.

14.
$$4(x+7) =$$

16.
$$-2(x+4) =$$

18.
$$a(a-1) =$$

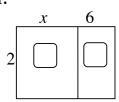
20.
$$-4(a-4) =$$

15.
$$7(x-3) =$$

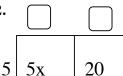
17.
$$x(x+9) =$$

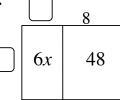
19.
$$3m(m+2) =$$

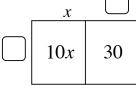
21.
$$a(a-12) =$$


Task #12: Factoring a Common Factor Using Area

Factoring a Common Factor Using Area


Name_____


Fill in the missing information for each: dimensions, area as product, and area as sum


1.

2(x+6)

2x+12

Fill in the missing dimensions from the expression given.

٥.	5x +	35 =	= 5(

6.
$$2x+12=2(____)$$

7.
$$3x-21 = ($$
_____)

8. 7x-21=__(__

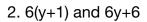
9. -3x-15=-3(____)

10. -5x+45=

This process of writing a sum or difference as the product of factors is called **factoring**.

Factor these:

11.
$$4x-16=$$


12.
$$-7x-35 =$$

13.
$$9x-81 =$$

14.
$$4x + 18 =$$

Task #13: Distributive Property

Are the expressions equivalent? Sketch and simplify to prove. If the two expressions are not equal write the correct equivalence.

3.
$$x(x+4)$$
 and x^2+4

Math Ready . Unit 1 . Lesson 6

5. $x(x+y+2)$ and $x^2+xy+2x$

6.
$$2x(x+3)$$
 and $2x+6$

Distribute the following. Use a sketch or just distribute if you can.

- 1. 3(x+2)
- 2. 4(y-1)
- 3. x(x+6)
- 4. x(y+4)
- 5. 3x(x+y-1)