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EXECUTIVE SUMMARY
Sensing Lungs is an interactive environmental sensing project investigating disparities in ozone pollution levels and ozone exposure's physiological effects in urban environments. 
Developed by Steven Shi, Jui Shih, and Erma Swartz as a way to better understand the embodied realities of inhabiting often polluted urban environments, the project combines hardware 
prototyping, three-dimensional design, environmental science, and statistical modeling to measure how urban residents embody the realities of urban living. 

Motivated by hypothesized disparities in air quality between Harlem, the Columbia University campus, and the North Wood of Central Park, the team wanted to know what the body of a 
student living in Harlem and studying at Columbia experienced throughout the average day. Does walking the dog, walking to school, going out in the neighborhood, or studying at home 
have different effects on the pollutants that a subject is exposed to? What are those differences, and what does the body do to respond to them? 

By designing and building a set of human lungs and enclosing real “breathing” sensors within them, the team set out to collect ozone pollution levels and  uncover what relationship 
between ozone exposure had on the target variable of the heart rate. The lungs had two chambers from which to breathe, one containing a Pulse Sensor Amped to monitor heart rate and 
an MQ-131 sensor to measure ambient ozone concentrations. These sensors feed data to an Arduino microcontroller, with results exported to SD cards for analysis.

Once the data was collected and cleaned, the analysis part of the process began. The team attempted several techniques to try and uncover the true relationship between ozone exposure 
and bodily reaction, including several machine learning models. This includes linear regression, polynomial regression, random forest, and ordinary least squares (OLS), and was done to 
examine the relationship between ozone levels and BPM. 

While initial models suggested a weak to moderate correlation, deeper investigation of the data had better results, with the OLS regression performing most successfully. These high results 
were in such contrast with the original linear regression results that our team felt the need to dive deeper into our findings. Once we explored the information more clearly, ozone appeared 
to have an impact on heart rate when grouped by location. Rather than answering our questions, this created clearer and more crucial questions for us to answer. If we controlled for 
environment and movement, would the results be as strong? 

When we re-calibrated our analysis, it became clear that it was never ozone impacting heart rate; rather, it was purely movement and environment that did so. The true drivers of heart rate 
variability, not ozone exposure. Once location-based confounders were controlled for, the direct correlation between ozone and heart rate diminished significantly.This finding underscores 
the complexity of environmental health monitoring and the necessity of accounting for contextual variables in sensor-based studies. It also highlights the potential of wearable and 
spatially aware technologies for generating granular environmental insights, especially when paired with robust data analysis.

While our experiment was successful at proving a null hypothesis, we believe that with more time and more data collected in the real world, we may have found different results. In addition, 
with more variance in location visited and spent in one place outdoors, without walking, we may have uncovered different, still significant findings. In the future, we envision refining the 
prototype, improving sensor calibration, and potentially expanding the study to include additional pollutants, biometric indicators, or real-time mapping functions. The project serves as 
both a critique of simplistic environmental-health correlations and a proof of concept for community-based sensing tools in public health research. 3



INTRODUCTION
Overview & Motivations
Our project is called the “Sensing Lungs”. It is a lung-shaped model measuring heart rate and 
ozone level simultaneously. The model is designed to have a sensor on each side of the “lungs” 
to measure either variable: heart rate or ozone level. Specifically, when facing the front of the 
model, the left side of it has the sensor measuring heart rate, while the right side has the 
sensor measuring ozone level. We ask our users to manually initiate both sensors inside the 
“lungs” at the same time, connect the heartbeat sensor to their finger or ear, and start walking 
around. The model has holes on the surface, which allows users to observe the circuit inside 
and make sure the model is working while walking. Whenever the users feel like stopping the 
model, they can simply plug the power cord out of the two sensors on the both sides. There is a 
SD card connected to each sensor, which is saving heart rate or ozone level data while the 
sensors are working.  After the sensors are stopped, users can take the SD card out and export 
the data to their own computers and conduct analysis.

Our motivation for this project comes from the fact that air quality keeps being a concern in 
the urban and rural contexts globally. New York City has specific concerns about ozone 
pollution levels, and there are disparities on ozone pollution levels between different parts of 
the city. We therefore wish to explore the potential difference on ozone pollution between 
Columbia University and its neighboring communities, such as Harlem and Central Park North. 
From literature, we are also aware of the impact of heart rate on how much air pollution can 
impact a person, so we also want to sense heartbeat to manifest the impact of ozone pollution 
on human body and health and to explore the potential correlations between these two 
variables.
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Team: Tackling Urban Issues, One Dog Walk at a Time

Meet 
Goose 
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Anecdotes
This project began with a simple observation: our bodies respond in real time to the environments 
we move through. At the individual level, we wanted to investigate measurable changes in heart 
rate linked not only to physical activity but the the urban realities of pollution. Knowing that our 
physiological responses rely on several variables, we set out to try and build an experiment that 
might help us isolate the embodied experienced of an individual urban dweller. 

Under time and weather constraints, we wanted our work to be applicable to our peers and to 
help work toward proving or disproving our hypothesis. While stationary, small levels of exposure 
and potential elevated stress levels triggered heart rate increases, suggesting that internal, 
embodied responses can serve as proxies for the invisible burdens of urban life, but that filtering 
these independent variables out of the process requires sometimes non-obvious approaches,

These micro-level signals become powerful when placed in dialogue with macro-level patterns. 
By grounding biometric data in specific localities like Harlem or Columbia’s campus, our 
anecdotal experience reveals how exposure to environmental stress varies not just by activity but 
by geography, infrastructure, and inequity.

The relationship between the body and the city is not new, but it is often overlooked in the design 
of public health interventions and environmental sensing. Our project surfaces the gap between 
lived experience and existing monitoring systems, which rarely account for how individuals 
encounter air quality differently across neighborhoods. 

In asking what it would mean to embed biometric sensing into community health tools, we’re not 
only proposing a new method but we are also challenging systems to recognize embodiment, 
subjectivity, and spatial injustice of urban realities. In that sense, our anecdote is not an outlier, but 
a lens for understanding how health is shaped at the intersection of place, policy, and perception.
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Local Interactions
At the local scale, whether it’s 1 meter, 10 meters, or 100 meters—the sensor installation reveals 
just how much micro-scale environments influence both exposure and experience. Within just 
a few meters, ozone levels can shift dramatically: from a courtyard to a sidewalk, from under a 
tree canopy to beside a bus exhaust. The 1-meter scale matters when the sensor is worn on 
the body; it’s capturing real-time exposure at breathing height, reflecting exactly what the 
wearer inhales. At 10 meters, you’re dealing with threshold transitions, stepping from inside to 
outside, crossing a street, or walking past an idling vehicle. These movements through the 
urban system making data interpretation more complex, and introduce key features that 
have an impact on the target feature we are working to understand. 

By 100 meters, you begin to see neighborhood-scale variation, such as how street orientation, 
building density, or green space influence pollutant behavior and dissipation. In the first 
chapter of our experiment, movement revealed changes in heart rate, but spatial variation 
did demonstrate important variance in the proportion of the pollutant itself. 

While causal realities at those scales are not obvious or seen in the data, and the embodied 
portion of pollutant exposure may not have become clear, even remaining in the same place 
did demonstrate that ozone, just as the urban resident, moves. And therefore movement 
remains key in understanding local urban experience. 

Therefore, the installation isn’t passive, it requires movement to function. It doesn’t just record 
data; it invites a mode of investigation that’s embodied. You become aware of how place, 
activity, and pollution intersect. Walking past traffic or pausing in shaded areas takes on new 
meaning when your heart rate responds and the ozone sensor jumps. In this way, the sensor 
instigates interactions—not only between human and device, but between body and 
environment. It reframes everyday movement as data-rich investigation, and encourages 
reflection on the conditions we normalize and the exposures we rarely feel until we measure 
them.

Individual 
Scale 
We noticed that when 
remaining in the same 
place, but experiencing 
stress, the heart rate of 
our subject changed 
significantly. Conversely, 
when we moved around 
and it was hot, the 
subjects heart rate 
increased 

The Local 
Scale 

Harlem has much higher 
traffic rates and busy, 
louder streets than 
Columbia's campus or 
the North Wood of 
Central Park. We thought 
this locality would prove 
our hypothesis 
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Site Selection
Walking the route from Columbia’s campus to 
Central Park through Morningside and East 
Harlem, you cross multiple environmental and 
social thresholds that shape exposure, often in 
ways that aren’t visible until you’re measuring the 
air.

On the west side, the area around Columbia and 
Morningside Heights is buffered by tree-lined 
streets, limited traffic, and academic 
infrastructure. Ozone still spikes here—especially 
near buildings and courtyards—but the 
environment is relatively controlled. As you move 
east, the landscape changes. Along 125th Street 
and Malcolm X Blvd, you pass wider intersections, 
dense bus traffic, and heat-retaining surfaces. 
This is where the built environment shifts—from 
institutional to infrastructural—and with it, the 
likelihood of sustained ozone exposure increases. 
Fewer trees, more pavement, more combustion.

By the time you hit East Harlem and approach 
Central Park, you’re in a historically 
under-resourced neighborhood with higher 
asthma rates, greater proximity to highways and 
waste transfer stations, and fewer health buffers. 
These aren’t just environmental 
differences—they’re structural. Who gets clean air 
is shaped by who has historically had power to 
shape spaces. So when we trace ozone exposure 
along this path, we’re not just tracking molecules 
in the air—we’re tracing a spatial record of 
inequality that becomes visible, sensor by sensor, 
meter by meter. 8



Technologies - Hardware: 
interior

Pulse Sensor MQ-131 Sensor 

We picked this sensor for it plug and play 
manner. We added an LED light to help 
Visualize heartbeat with a blinking LED. 

We picked this sensor as it is one that detects and 
measures ozone (O3) concentration in the air. We 
were curious about the pollution in the Harlem area 
as our subject lives and goes to school in the 
neighborhood. Additionally, this is an area with a lot 
of traffic and bad quality air. 

We aimed to measure two key 
indicators: human physiological 
response and environmental air quality. 

Specifically, we tracked heart rate using 
a Pulse Sensor, a lightweight optical 
sensor that detects changes in blood 
volume through photoplethysmography. 

To assess ambient ozone levels, we 
employed the MQ-131 Gas Sensor, which 
is sensitive to low concentrations of 
ozone and suitable for real-time 
monitoring. 

Both sensors were connected by circuits 
onto Arduino boards and powered with 
9V batteries, creating a portable device 
suitable for field deployment. To capture 
and store the data, we connected an MD 
disk drive and saved all readings onto a 
mini SanDisk for later analysis. 

This whole  setup allowed us to take the 
device on-site for real-world testing, 
enabling simultaneous collection of 
physiological and environmental data to 
explore potential correlations between 
bodily stress responses and air quality.
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Technologies - Hardware: exterior
To house our sensors securely while maintaining a 
strong visual metaphor, we designed a custom case 
shaped like a pair of lungs—symbolizing the very 
functions we were measuring: air quality and 
respiratory response.

Sketch & digital model on Rhino Set up on 3D printing Slicer 
software. Scale, and cut our model 
to fit with our needs

PLA filament printed 3D models, designed for adequate space & 
airflow for the sensors. The holes allow for ventilation and wiring. 10



Technologies - Software
We wrote the programs for the sensors in Arduino IDE. For both of the sensors, we 
utilized open-sourced packages and libraries and made modifications in order to 
adapt the sample codes for our sensors and model. Since we implemented the 2 
sensors in 2 separate arduino uno boards, we also wrote 2 separate programs for 
our sensors. 

Because design of our experiment requires us to bring the model and walk outside, 
we were not able to monitor the data collected while conducting the experiment. 
The last thing we wanted is to find out the data wasn’t saved properly after bring 
the model and walk for 3 hours. As a result, we had a lot of considerations when 
writing the programs in order to prevent and accommodate potential errors. For 
example, we implemented a LED light to the heartbeat sensor board such that the 
LED light will lit and indicate the program is working properly when conducting the 
experiment. We also put the SD initialization as the first part of both programs so 
that both of the sensors will only run if SD cards are initialized properly.

We also tested the sensors a lot of times before we actually brought them into the 
model and conducted the experiment. These considerations and testings helped 
us monitor the status of the sensors during the experiment and greatly reduced 
the chances of errors and failures.

11



Technologies - Data
The heartbeat sensors senses every 1 second, while the ozone sensor has be heat up first and then sense, which can take up to 3 minutes. In order to integrate the 
two sets of data together, we aggregated the data about heart rate so that we only save the BPM average for every minute. After the experiment, we joined the 
heartbeat data with ozone level data on the common variable which is minute. Changes in locations were manually recorded during the experiment and added to 
the dataset afterwards. Other notes such as climbing hills, sitting, walking faster than usual are also recorded. During our testing prior to the experiment, we also 
found out that the ozone sensor needs 10-15 minutes to heat up and sense the correct ozone pollution level. This is also reflected in our data cleaning process, 
which we discarded the data when the sensor was still heating up.
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Method For Data Analysis
We started with a basic question: is there any direct relationship between ozone and 
heart rate? A quick correlation test said no. The value was close to zero (r = -0.05), 
and a linear regression backed it up. Ozone alone wasn’t doing anything to explain 
changes in BPM.

Still, we tested whether the relationship might be non-linear. A polynomial 
regression gave us a better fit (R² ≈ 0.26), but it overreacted to extreme values and 
didn’t hold up to scrutiny. So we moved to a Random Forest model. That worked 
better, with an R² of about 0.63. It showed there was a pattern, but likely one tied to 
movement or environment rather than a direct physiological response.

To explore that, we built an OLS model with interaction terms: ozone by location and 
ozone by time. The results improved, especially for people who were moving (R² ≈ 
0.49), and dropped off for stationary cases (R² ≈ 0.11). It became clear the model was 
picking up on patterns in behavior, like where and when people were walking, rather 
than any consistent effect of ozone on heart rate.

So we tested that idea directly. We tagged certain locations as stationary and split 
the data. In those still points, the relationship between ozone and BPM completely 
disappeared. When people were moving, we saw a small negative trend, probably 
tied to exertion or environment. The takeaway is that ozone tracks with behavior, not 
biology. What really matters is context: movement, place, and time. That’s what the 
models are responding to.
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Spatial Findings 

This chart shows ozone levels over time during Session 1, the session we spent walking around the neighborhoods. Each point is color-coded by 
location. A clear peak of ~15 ppb occurs at minute 57 as we are heading are one of the busiest streets in harlem, 125th and Malcolm X (Lenox). 
Shortly after as we turn back  away from east harlem and toward central Harlem, ozone levels drop sharply and remain low across subsequent 
locations, including areas like 125th Street and F.D. Boulevard, which is west of Erma’s building and heads closer to central park and Columbia’s 
Morningside campus. Both of these locations have lower traffic rates and significantly more green space. The trend line highlights this rapid decline, 
suggesting a strong shift in environmental conditions based of neighborhood. Suggesting embodied racial environmental injustice, 
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When our subject sat in the same location, it 
because clear that ozone fluctuates in the air rapidly 
over time. 

Interesting the other thing that became very obvious, 
is that when the rain began to fall in both instances, 
the levels began to fall significantly. 

Ozone and Location

Ozone Solutions
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Initial Bodily Interaction Findings

This scatter plot compares the actual heart rate (BPM) to the 
predicted BPM generated by an Ordinary Least Squares (OLS) 
regression model. Each point represents a single observation, and 
the dashed red line indicates a line of perfect prediction, where 
predicted and actual BPM values would be equal. 

The clustering of points around this line suggests the model is 
moderately accurate, especially within the 60–90 BPM range where 
most data points fall.

However, some deviation from the perfect prediction line is visible, 
particularly at higher BPM values where the model begins to 
underpredict actual heart rates. This indicates the model may 
struggle with extreme or outlier readings. But it also made us 
wonder, could this indicate that something more complex is going 
on with the data?
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Error Analysis
So we decided to look at the errors occurring in the model. 

This residuals plot shows the difference between the actual BPM and 
predicted BPM from the OLS model, plotted against the predicted BPM 
values. Each point represents one observation, and the red dashed line 
at zero represents perfect predictions—where the residual (error) is 
zero.

What we observe here is that for most predictions between 65 and 80 
BPM, the residuals are fairly centered around zero, indicating 
reasonably accurate predictions. However, as predicted BPM increases 
beyond 100, the residuals begin to fan out and skew, suggesting that 
the model becomes less reliable at higher heart rates. Additionally, 
there’s a non-random pattern in the spread, especially a dense cluster 
of underestimated and overestimated points around 70–80 BPM, 
which may indicate heteroscedasticity (i.e., the variance of errors 
changes with the prediction) or missing explanatory variables that 
influence BPM differently at high vs. low ranges.

This plot reveals that while the model performs adequately in the 
middle range of BPM, it struggles to generalize well at the extremes, 
hinting that refinements or additional features (like activity state or 
environmental lag) could improve predictive accuracy.
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PCA Analysis

This PCA plot shows how ozone exposure and heart rate (BPM) vary 
together, with outliers removed for clarity. Each point is an observation, 
colored from blue (low BPM) to red (high BPM), and the axes represent the 
two main patterns of variation in the data.

Most points cluster in the lower left, suggesting similar ozone–BPM profiles 
across observations. A few outliers, especially one far right, reflect rare 
combinations like unusually high BPM or atypical ozone. 

The fact that BPM doesn’t vary clearly along either axis implies that heart 
rate is shaped by more than ozone alone, reinforcing the idea that 
movement or context plays a larger role.
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Correlation not Causation Discovered
● For moving individuals (blue), there’s a clear negative 

slope, as ozone levels increase, BPM tends to decrease. 
This may reflect behavioral or environmental factors (e.g., 
slowing down due to discomfort or location), not 
necessarily a physiological ozone response.

● For stationary individuals (orange), the regression line is 
almost flat, indicating no meaningful relationship 
between ozone and BPM when people aren’t moving.

● The confidence bands around the moving line are wider, 
reflecting more variability in that state—likely due to 
movement intensity, location changes, or effort level.

● R2 score =  0.445
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Wait wait wait… there is a potential issue here…

When we filtered out data to disclude the ozone ‘heat up’ 
period (15 minutes), the Random Forest model all of a sudden 
started performing better than the OLS model. 

Is this because the random forest model is muting all the other 
variables?

now our model is showing there is a pattern between heart 
rate and ozone… BUT It’s more likely that ozone is correlated 
with behavior or context, rather than directly causing BPM 
changes. That’s still important! It means ozone exposure and 
physical state co-occur in a meaningful, mappable way.
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Experiment Conclusion
Our experiment set out to explore how ozone pollution affects heart 
rate in real-world, embodied urban settings. Through a wearable 
sensor system, we collected and analyzed environmental and 
biometric data across multiple locations and movement states. 
What we found wasn’t a clear cause-and-effect link between ozone 
and BPM, but something more nuanced.

Heart rate was influenced less by ozone itself and more by where 
and how people moved. When we controlled for movement and 
location, the ozone, BPM relationship disappeared. This revealed that 
environmental context, not ozone in isolation, is what truly shapes 
physiological response. Our project doesn’t just refute a hypothesis; it 
reframes the question. The body is a sensor, and it tells us more 
when we listen across time, place, and motion.
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Urban Interactions & Forward 
Looking
If ozone and heart rate sensors like these were deployed pervasively across a city, we could move beyond static air quality 
maps to create a dynamic, real-time understanding of how environmental conditions affect people in motion. Instead of 
relying solely on fixed monitors or average pollution levels, we’d gain insight into how individuals experience exposure 
differently depending on where they go, how they move, and when they’re active. This would allow cities to visualize health 
impacts as lived, embodied experiences—not just concentrations on a map.

The key difference this approach highlights is the gap between ambient exposure and personal exposure. While citywide 
monitors may report air quality as “moderate,” wearable data reveals how certain micro-environments, like building 
courtyards, subway entrances, or street canyons, can produce sudden, harmful spikes in ozone or other pollutants. At the 
same time, heart rate data shows that these exposures don’t impact everyone the same way; physiological response 
varies depending on movement, stress, or even just where someone happens to stand for a few minutes.

The opportunity here is profound: policymakers could target interventions more precisely, improve urban design to 
minimize high-exposure zones, and empower individuals with real-time feedback to make healthier decisions. But 
challenges remain, data privacy, calibration across different devices, and making sense of vast, context-dependent 
datasets are real hurdles. Still, the imagined future is one where environmental health becomes personal and actionable, 
with cities shaped not just by where pollution is, but by how people feel it.

The Urban 
Scale

We pose the question: 
What if biometric 
sensing was built into 
community health 
monitoring? Could 
healthy equity be 
significantly improved? 
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Thank You Steven Shi,       fs2860@columbia.edu
Jui Shih,            js6676@columbia.edu
Erma Swartz,  es4284@columbia.edu 
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