Implementation of Implicit-Explicit Time Integration for the Kinetic Modeling of Tokamak Plasma Edge

SIAM Conference on Computational Science and Engineering, Atlanta, GA

Debojyoti Ghosh¹ Milo Dorr¹ Mikhail Dorf² Jeffrey Hittinger¹

¹ Center for Applied Scientific Computing ² Physics Division

March 2, 2017

LLNL-PRES-725174 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background and Motivation

Inner edge: Adjacent to the core

- High temperature and density
- Mean free paths comparable to density/temperature gradients
- Weakly collisional

Requires kinetic simulation with collision model

Outer edge: Near tokamak wall

- Low temperature and density
- Short mean free paths compared to density/temperature gradients
- Strongly collisional

Introduces very small time scales

ITER tokamak

Plasma dynamics in the edge region is characterized by a large range of temporal scales

Governing Equations

Full-f gyrokinetic Vlasov equation for each ion species

4D (2D-2V) phase space

 $\mathbf{R} \equiv \{r, \theta\}$ $v_{\parallel}, \ \mu = \frac{1}{2} \frac{m_{\alpha} v_{\perp}^2}{B}$

Electric field **E** can be specified or computed from f_{α} using the Poisson equation for electrostatic potential

We consider *single-species cases* in this study.

Fokker-Planck Collision Model

Fokker-Planck-Rosenbluth equation

$$c\left[f_{\alpha}, f_{\beta}\right] = \lambda_{c} \left(\frac{4\pi Z_{\alpha} Z_{\beta} e^{2}}{m_{\alpha}}\right)^{2} \nabla_{\left(v_{\parallel}, \mu\right)} \cdot \left[\vec{\gamma}_{\beta} f_{\alpha} + \overleftarrow{\tau}_{\beta} \nabla_{\left(v_{\parallel}, \mu\right)} f_{\alpha}\right]$$

where the advective and diffusive coefficients are given by

$$\vec{\gamma}_{\beta} = \begin{bmatrix} \frac{\partial\varphi_{\beta}}{\partial v_{\parallel}} & 2\mu\frac{m_{\beta}}{B}\frac{\partial\varphi_{\beta}}{\partial\mu} \end{bmatrix}, \quad \overleftarrow{\tau}_{\beta} = \begin{bmatrix} -\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}^{2}} & -2\mu\frac{m_{\beta}}{B}\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}\mu} \\ -2\mu\frac{m_{\beta}}{B}\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}\mu} & -2\mu\left(\frac{m_{\beta}}{B}\right)^{2}\left\{2\mu\frac{\partial^{2}\varrho_{\beta}}{\partial\mu^{2}} + \frac{\partial\varrho_{\beta}}{\partial\mu}\right\} \end{bmatrix}$$

Rosenbluth potentials are related to f_{β} by the Poisson equations

$$\begin{aligned} \frac{\partial^2 \varphi_{\beta}}{\partial v_{\parallel}^2} + \frac{m_{\beta}}{B} \frac{\partial}{\partial \mu} \left(2\mu \frac{\partial \varphi_{\beta}}{\partial \mu} \right) &= f_{\beta} \\ \frac{\partial^2 \varrho_{\beta}}{\partial v_{\parallel}^2} + \frac{m_{\beta}}{B} \frac{\partial}{\partial \mu} \left(2\mu \frac{\partial \varrho_{\beta}}{\partial \mu} \right) &= \varphi_{\beta} \end{aligned}$$

term

Each evaluation of the Fokker-Planck term requires Poisson solve in the velocity space

COGENT: Spatial Discretization

Vlasov term

- Mapped, multi-block grids for complex geometries
- o 4th order finite-volume discretization
- $\,\circ\,$ 5 th order WENO scheme for reconstruction at cell faces
- Colella, et al., J. Comput. Phys., 2011; McCorquodale, et al.,
 J. Comput. Phys., 2015

Fokker-Planck collision term

- Conservative finite-difference discretization on Cartesian velocity grid
- 5th order upwind discretization for the advective terms; 4th order central discretization for the diffusive terms
- Poisson equations for Rosenbluth potentials discretized using 2nd order central differences (*Dorf, et al., Contrib. Plasma Phys., 2014*)
- Energy-conserving modification implemented (Taitano, et al., J. Comput. Phys., 2015)

Time Integration

Spatial discretization yields **semi-discrete ODE in time**

$$\frac{d\tilde{f}}{dt} = \mathcal{R}\left(\tilde{f}\right) \equiv \underbrace{\mathcal{V}\left(\tilde{f}\right)}_{} + \underbrace{\mathcal{C}\left(\tilde{f}\right)}_{}$$

Spatially-discretized Vlasov and collisions terms

Explicit time integration: Runge-Kutta methods

$$\Delta t\left(\lambda\left[\frac{d\mathcal{R}\left(\tilde{f}\right)}{d\tilde{f}}\right]\right) \in \left\{z:\left|R\left(z\right)\right| \leq 1\right\}$$

Time step constrained by eigenvalues (time scales) of *entire RHS*

Implicit-Explicit (IMEX) time integration: Additive Runge-Kutta (ARK) methods

$$\mathcal{R}\left(\tilde{f}\right) = \underbrace{\mathcal{R}_{\text{stiff}}\left(\tilde{f}\right)}_{\text{Implicit}} + \underbrace{\mathcal{R}_{\text{nonstiff}}\left(\tilde{f}\right)}_{\text{Explicit}}$$

$$\Delta t \left(\lambda \left[\frac{d\mathcal{R}_{\text{nonstiff}}\left(\tilde{f}\right)}{d\tilde{f}}\right]\right) \in \{z : |R(z)| \le 1\}$$

IMEX: time step constrained by eigenvalues (time scales) of *stiff component of RHS*

Temporal Scales at Tokamak Edge

Temporal Scales at Tokamak Edge

Implicit-Explicit (IMEX) Time Integration

High-order, conservative multistage Additive Runge-Kutta (ARK) methods

ARK2

- 2nd order, 3 stage
- Giraldo, et al., SIAM J.
 Sci. Comput., 2013

ARK3

- \circ 3rd order, 4 stage
- Kennedy & Carpenter, J.
 Comput. Phys., 2003

ARK4

- 4th order, 6 stage
- Kennedy & Carpenter, J.
 Comput. Phys., 2003

Implicit Stage Solution

Implicit stages require the solution to a *nonlinear system of equations*

$$\frac{1}{\Delta t \tilde{a}_{ii}} \tilde{f}^{(i)} - \mathcal{C}\left(\tilde{f}^{(i)}\right) - \left[\tilde{f}_n + \Delta t \sum_{j=1}^{i-1} \left\{a_{ij} \mathcal{V}\left(\tilde{f}^{(j)}\right) + \tilde{a}_{ij} \mathcal{C}\left(\tilde{f}^{(j)}\right)\right\}\right] = 0$$

$$\mathcal{F}\left(y\right) = 0 \quad \text{where} \quad y \equiv \tilde{f}^{(i)}$$

Jacobian-free Newton-Krylov method (Knoll & Keyes, J. Comput. Phys., 2004):

 $y_0 \equiv \tilde{f}_0^{(i)} = \tilde{f}^{(i-1)}$ $y_{k+1} = y_k - \mathcal{J}(y_k)^{-1} \mathcal{F}(y_k)$ GMRES solver: $\mathcal{J}(y_k) \Delta y = \mathcal{F}(y_k)$ Initial guess: Newton update: $\mathcal{J}(y_k) x = \left. \frac{d\mathcal{F}(y)}{dy} \right|_{\mathcal{H}} x \approx \frac{1}{\epsilon} \left[\mathcal{F}(y_k + \epsilon x) - \mathcal{F}(y_k) \right]$

Action of the Jacobian on a vector approximated by directional derivative

Preconditioning

- Use lower order finite differences to construct the preconditioning matrix
- More sparse than the actual Jacobian
- o Assembled and stored as a sparse matrix

5th order upwind for advective terms
 4th order central for diffusion terms

1st order upwind for advective terms 2nd order central for diffusion terms

• Results in a 9-banded matrix

Eigenvalues of the Jacobian of the actual collisions term and the approximation for preconditioning

The preconditioner is inverted using the *Gauss-Seidel method* (computationally inexpensive)

Test Problem: Ion Parallel Heat Transport

A 2D slab (in configuration space), representative of cold edge

Transport time scale

- Temperature equilibrates to constant value
- Density assumes cosine shape to balance electrostatic potential

Collisional time scale

 Heat flux attains values consistent with temperature gradient

Performance of IMEX Time Integrators

- Problem setup:
 - Grid size: 6 (x) × 64 (y) × 36 ($v_{||}$) × 24 (μ)
 - Reference solution computed with RK4 using very low Δt
- IMEX methods achieve theoretical orders of convergence
- Fastest stable solution: IMEX schemes are 4x (ARK4) to 10x (ARK2) faster with 25x larger time steps.

Effect of Preconditioner

Computational cost of ARK4 with and without preconditioner

Gauss-Seidel solver with 80 iterations

Vlasov CFL	Collision CFL	Number of Function Calls [*]			Wall time (seconds)		
		No PC	With PC	Ratio	No PC	With PC	Ratio
0.04	0.5	2164	2067	0.96	711.33	719.1	1.01
0.11	1.2	991	879	0.89	321.5	307.9	0.96
0.22	2.4	586	457	0.78	190.5	161.2	0.85
0.55	6.0	355	211	0.59	123.1	75.5	0.61
1.10	12.0	190	95	0.50	63.3	35.1	0.55

* Number of function calls = Calls from time integrator (time steps × stages) + number of Newton iterations + number of GMRES iterations

Preconditioner results in significant speed-up

• Overhead of assembling and inverting the preconditioning matrix is relatively small

Conclusions and Future Work

- IMEX approach for highly-collisional tokamak edge plasma
 - ✓ Collisions integrated in time implicitly while Vlasov term integrated in time explicitly
 - ✓ Wall time for fastest stable solution significantly reduced
 - ✓ Low order preconditioning results in lower computational cost at high collision CFL numbers
- Future work
 - More efficient solver for inverting the preconditioning matrix (Gauss-Seidel needs 80 iterations!)
 - Implement IMEX for other fast scales (*electrostatic Alfven waves, parallel electron transport, ion acoustic modes, parallel ion transport*)

Thank you. Questions?

