

AS Chemistry (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 v0.5

Session

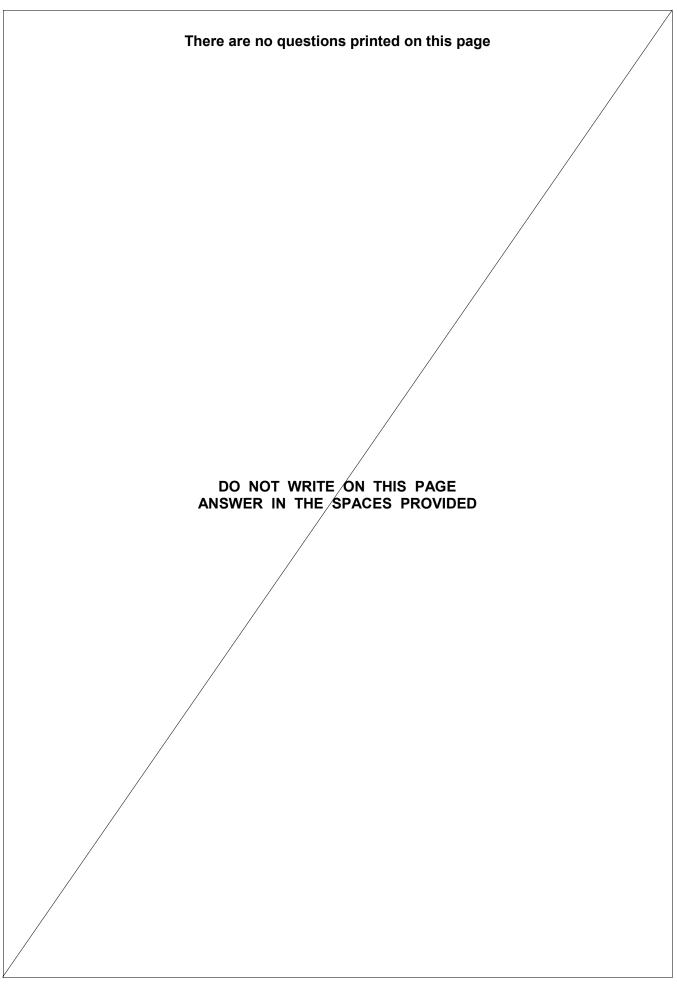
1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions


- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 80.

Please write cle	early, in block c	apitals.		
Centre number		Candidate nu	mber	
Surname				
Forename(s)]
Candidate signa	ature			 -)

7404/1

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds.
01.1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
01.2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
01.3	State the role of water in the reaction with calcium. [1 mark]
01.4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

02.1		of sulfur consisting of three isc ves the relative abundance of				f 32.16
		Table 1				
		Mass number of isotope	32	33		
		Relative abundance / %	91.0	1.8		
	number of	formation to determine the rel the third isotope. answer to the appropriate nun				ss [4 marks]
			Mass nu	mber =		
02.2	Describe h	now ions are formed in a time o	of flight (TC	DF) mass s	pectrometer.	[2 marks]

Evaluin why it is preserve to implement the measuring their mass is $z = T O$
Explain why it is necessary to ionise molecules when measuring their mass in a TOI mass spectrometer.
[2 mar
Turn over for the next question

$CH_4(g) + 4F_2(g) -$	\longrightarrow CF ₄ (g) +	- 4HF(g)	∆ <i>H</i> = –19	04 kJ mol⁻
Some mean bond entha	lpies are given ir	Table 3.		
	Table 3			
Bond		C–H	C–F	H–F
Mean bond enth	alpy / kJ mol ^{−1}	412	484	562
A student suggested tha weak F–F bond . Is the student correct? J		-	-	
weak F–F bond .		-	-	
weak F–F bond .		-	-	

4	Colourless solutions of X (aq) and Y (aq) react to form an orange solution according to the following equation. $\mathbf{X}(aq) + 2\mathbf{Y}(aq) \rightleftharpoons \mathbf{Z}(aq) \qquad \Delta H = -20 \text{ kJ mol}^{-1}$	n of Z (aq)
04.1	A student added a solution containing 0.50 mol of $X(aq)$ to a solution con 0.50 mol of $Y(aq)$ and shook the mixture. After 30 seconds, there was no further change in colour. The amount of $Z(aq)$ at equilibrium was 0.20 mol.	ntaining [2 marks]
04.2	Amount of X (aq) = ^{mol} Amount of Y (aq) = On the grid below, draw a graph to show how the amount of Z (aq) chang time of initial mixing until 60 seconds had elapsed.	

Typesetter code

04.3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $X(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } Z(aq) = 0.35 \text{ mol dm}^{-3}$. For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^{6}$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	_ mol dm ⁻³
04.4	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y (aq) in Question 4.3 .	((aq) and
	Suggest how the colour of the mixture changed. Give a reason for your answ	ver. [3 marks]
	Colour change	
	Reason	
04.5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions react differently from chloride ions.
	[3 marks]
	Equation
	Explanation
	A soleurloss solution contains a mixture of addium oblaride and addium bramida
0 5 . 2	Using aqueous silver nitrate and any other reagents of your choice, develop a procedure to prepare a pure sample of silver bromide from this mixture. Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate. [6 marks]

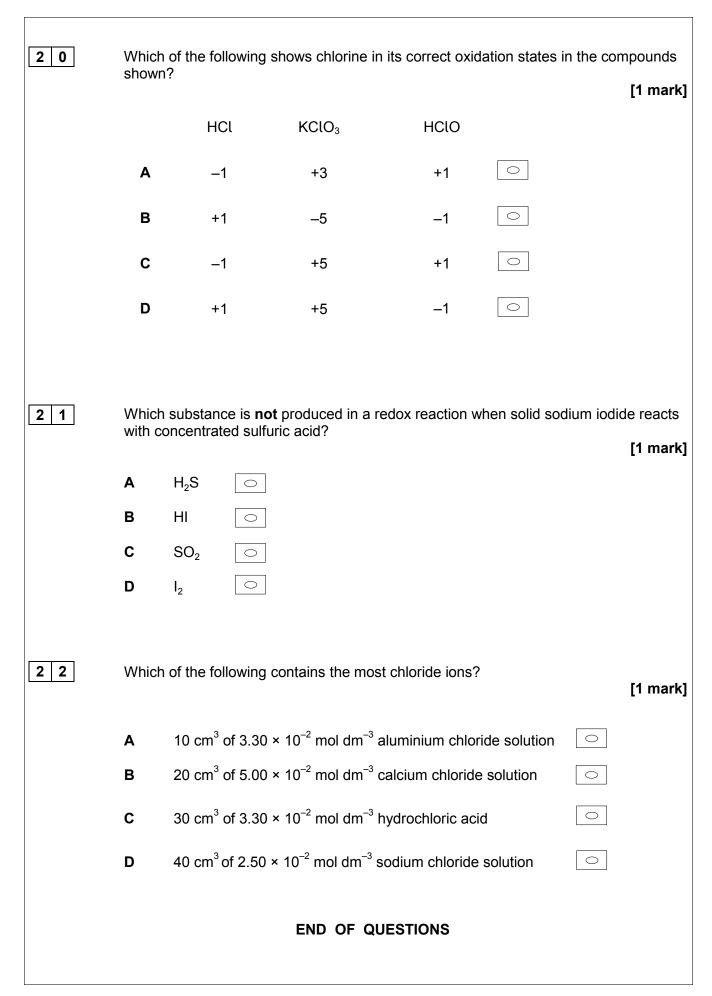
Typesetter code

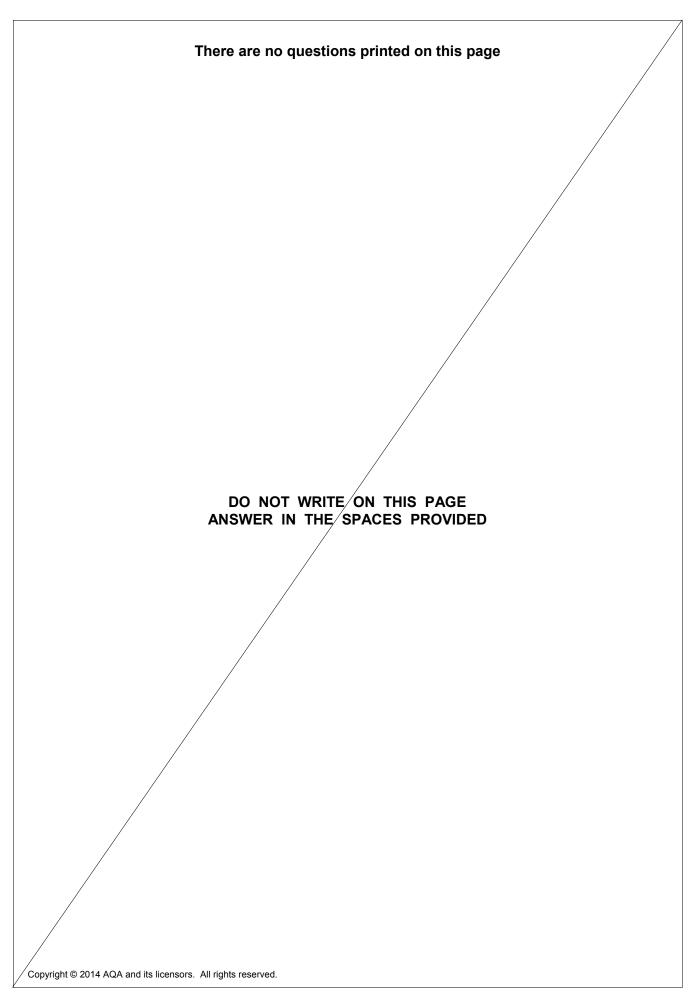
-	
0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium
	hydroxide solution.
	Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	Turn over for the next question

6	This question is about reactions of calcium compounds.
06.1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an experiment to calculate accurately the relative formula mass of the solid using this method. [8 marks]

Typesetter code

06.2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.
	The percentage yield of calcium sulfate was 83.4%.
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 marks]
	Mass of calcium sulfate formed = g
	Turn over for the next question


7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the ecoelow.	quation
	$2Mg(NO_3)_2(s) \longrightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$	
07.1	A 3.74 × 10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating	g.
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	[5 marks]
	Total volume of gas =	cm ³
07.2	The mass of MgO obtained in this experiment is slightly less than that expect the mass of $Mg(NO_3)_2$ used. Suggest one practical reason for this.	cted from [1 mark]


			Section B							
	Answer all questions in this section.									
Only one a	answer	per quest	tion is allowed.	$\overline{}$						
			ly fill in the circle alongside the appropriate answer.							
CORRECT MET										
If you wan	t to cha	nge your	answer you must cross out your original answer as shown.							
		rn to an a	answer previously crossed out, ring the answer you now wish to sele	ect						
as shown.										
0 8	Whic	h of these	e atoms has the largest atomic radius? [1 n	nark]						
	Α	Ar	\bigcirc							
	в	Cl	\bigcirc							
	С	Mg	\bigcirc							
	D	Na	\bigcirc							
09	Whic	h of these	e species is the best reducing agent? [1 n	nark]						
	Α	Cl_2	0							
	в	Cl⁻	\bigcirc							
	С	I_2	0							
	D	I_	\bigcirc							

10		of these pieces of rement shown?	f appara	tus has the low	est percen	tage uncertaiı	nty in the [1 mark]
	Α	Volume of 25 cm with an uncertair			ette	0	
	В	Volume of 25 cm cylinder with an u				0	
	С	Mass of 0.150 g with an uncertair			се	0	
	D	Temperature cha with a thermome				0	
11	acid. with a	ent is provided wit The student is ask concentration of 5 of these is the col	ed to de 5.00 × 10	vise a method 0 ⁻⁴ mol dm ⁻³ by	to prepare diluting the	a hydrochlori e sample with	c acid solution
	А	45.0 cm ³		\bigcirc			
	В	95.0 cm ³					
	С	100 cm ³		\bigcirc			
	D	995 cm ³		0			
12	Which	of these species I	has a trię	gonal planar sti	ucture?		[1 mark]
	Α	PH ₃	0				
	В	BCl ₃	\bigcirc				
	С	H ₃ O⁺	0				
	D	CH₃ [−]	0				

1 3			inding of intermolecular forces to predict which of these com	pounds
	has th	e highest bo		[1 mark]
	Α	HF	0	
	в	HCl	\bigcirc	
	С	HBr	\bigcirc	
	D	ні	\bigcirc	
1 4	Which	type of bond	d is formed between N and B when a molecule of NH_3 react	s with a
	molec	ule of BF ₃ ?		[1 mark]
	Α	lonic.	\bigcirc	
	в	Covalent.	\bigcirc	
	С	Co-ordinate	e. 🔾	
	D	Van der Wa	aals	
1 5	Which	of these ato	oms has the highest electronegativity?	[1 mark]
	Α	Na		[11100113]
	В	Mg		
	c	Cl		
	D	Ar		
	_	,		
1 6	Which	of these ato	oms has the smallest number of neutrons?	[1 mark]
	Α	³ Н	0	
	в	⁴ He	\bigcirc	
	С	⁵He		
	D	⁴ Li	\bigcirc	

1 7	Which	n of these substances does not show hydrogen bonding?	[1 mark]
	Α	HF O	
	в	NH ₃	
	С	CH ₃ COOH	
	D	CHF ₃	
1 8	What A	is the formula of calcium nitrate(V)? CaNO ₃	[1 mark]
	В		
	С	Ca(NO ₃) ₂ \bigcirc Ca ₂ NO ₂ \bigcirc	
	D	$Ca(NO_2)_2$ \bigcirc	
	U		
19	Which A B	Na O Mg O	[1 mark]
	С	Ne 💿	
	D	Ar 💿	

AQA Qualifications

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

7404 Specimen paper

Version 0.6

Section A

Question	Marking guidance	Mark	AO	Comments
01.1	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}$	1	AO1a	Allow correct numbers that are not superscripted
01.2	$Ca(s)+2H_2O(I) \longrightarrow Ca^{2+}(aq)+2OH^{-}(aq) + H_2(g)$	1	AO2d	State symbols essential
01.3	Oxidising agent	1	AO2c	
01.4	$Ca(g) \longrightarrow Ca^{+}(g) + e^{-}$	1	AO1a	State symbols essential Allow 'e' without the negative sign
01.5	Decrease	1	AO1a	If answer to 'trend' is not 'decrease', then chemical error $= 0/3$
	lons get bigger / more (energy) shells	1	AO1a	Allow atoms instead of ions
	Weaker attraction of ion to lost electron	1	AO1a	

Question	Marking guidance	Mark	AO	Comments
02.1	Abundance of third isotope = $100 - 91.0 - 1.8 = 7.2\%$	1	AO1b	
	$\frac{(32 \times 91) + (33 \times 1.8) + (y \times 7.2)}{100} = 32.16$	1	AO2f	
	7.2y = 32.16 × 100 – 32 × 91 – 33 × 1.8 = 244.6	1	AO2f	
	y = 244.6 / 7.2 = 33.97 y = 34	1	AO1b	Answer must be rounded to the nearest integer
02.2	(for electrospray ionisation)			
	A high voltage is applied to a sample in a polar solvent	1	AO1b	
	the sample molecule, M, gains a proton forming MH⁺	1	AO1b	
	OR			
	(for electron impact ionisation)			
	the sample is bombarded by high energy electrons	1	AO1b	
	the sample molecule loses an electron forming M^{+}	1	AO1b	

02.3	lons, not molecules, will interact with and be accelerated by an electric field	1	AO2e	
	Only ions will create a current when hitting the detector	1	AO2e	

Question	Marking guidance	Mark	AO	Comments
03.1	$C(s) + 2F_2(g) \longrightarrow CF_4(g)$	1	AO1a	State symbols essential
03.2	Around carbon there are 4 bonding pairs of electrons (and no lone pairs)	1	AO1a	
	Therefore, these repel equally and spread as far apart as possible	1	AO1a	
03.3	$\Delta H = \Sigma \Delta_{\rm f} H$ products – $\Sigma \Delta_{\rm f} H$ reactants or a correct cycle	1	AO1b	
	Hence = $(2 \times -680) + (6 \times -269) - (x) = -2889$	1	AO1b	
	x = 2889 – 1360 – 1614 = –85 (kJ mol ⁻¹)	1	AO1b	Score 1 mark only for +85 (kJ mol ⁻¹)
03.4	Bonds broken = $4(C-H) + 4(F-F) = 4 \times 412 + 4 \times F-F$			
	Bonds formed = $4(C-F) + 4(H-F) = 4 \times 484 + 4 \times 562$	1	AO3 1a	Both required
	-1904 = [4 × 412 + 4(F–F)] – [4 × 484 + 4 × 562]			
	4(F–F) = –1904 – 4 × 412 + [4 × 484 + 4 × 562] = 632	1	AO3 1a	
	F–F = 632 / 4 = 158 (kJ mol ⁻¹)	1	AO3 1a	
	The student is correct because the F–F bond energy is much less than the C–H or other covalent bonds, therefore the F–F bond is weak / easily broken	1	AO3 1b	Relevant comment comparing to other bonds (Low activation energy needed to break the F–F bond)

Question	Marking guidance	Mark	AO	Comments
04.1	amount of X = 0.50 – 0.20 = 0.30 (mol)	1	AO2h	
	amount of Y = 0.50 – 2 × 0.20 = 0.10 (mol)	1	AO2h	
04.2	Axes labelled with values, units and scales that use over half of each axis	1	AO2h	All three of values, units and scales are required for the mark
	Curve starts at origin	1	AO2h	
	Then flattens at 30 seconds at 0.20 mol	1	AO2h	
04.3	Expression = $K_c = \underline{[Z]}$ [X][Y] ²	1	AO1a	
	$[Y]^2 = \frac{[Z]}{[X] K_c}$	1	AO2b	
	$[Y] = (0.35 / 0.40 \times 2.9)^{0.5} = 0.5493 = 0.55 \text{ (mol dm}^{-3}\text{)}$	1	AO1b	Answer must be to 2 significant figures
04.4	Darkened / went more orange	1	AO2g	
	The equilibrium moved to the right	1	AO2g	
	To oppose the increased concentration of Y	1	AO2g	
04.5	The orange colour would fade	1	AO3 1a	

Question	Marking guidance	Mark	AO	Comments
05.1	$2NaBr + 2H_2SO_4 \longrightarrow Na_2SO_4 + Br_2 + SO_2 + 2H_2O$	1	AO1a	Allow ionic equation
				$2Br^{-} + 2H_2SO_4 \longrightarrow Br_2 + SO_4^{2-} + SO_2 + 2H_2O$
	Br ⁻ ions are bigger than Cl ⁻ ions	1	AO2c	
	Therefore Br^{-} ions more easily oxidised / lose an electron more easily (than Cl^{-} ions)	1	AO2c	

05.2		tion is marked using levels of response. Refer to the Mark nstructions for Examiners for guidance on how to mark ion. All stages are covered and the explanation of each stage is generally correct and virtually complete. Stages 1 and 2 are supported by correct equations. Answer communicates the whole process coherently and shows a logical progression from stage 1 to stage 2	6	2 AO1a 4 AO3 2b	Indicative chemistry content Stage 1: formation of precipitates • Add silver nitrate • to form precipitates of AgCl and AgBr • AgNO ₃ + NaCl \rightarrow AgCl + NaNO ₃ • AgNO ₃ + NaBr \rightarrow AgBr + NaNO ₃ Stage 2: selective dissolving of AgCl		
	Level 2 3–4 marks	and then stage 3. The steps in stage 3 are in a logical order.el 2All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies			 Add excess of dilute ammonia to the mixture of precipitates the silver chloride precipitate dissolves AgCl + 2NH₃ → Ag(NH₃)₂⁺ + Cl⁻ Stage 3: separation and purification of AgBr Filter off the remaining silver bromide precipitate Wash to remove soluble compounds Dry to remove water 		
	Level 1 1–2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.					
	Level 0 0 marks	Insufficient correct chemistry to warrant a mark.					

05.3	$Cl_2 + 2HO^- \longrightarrow OCl^- + Cl^- + H_2O$	1	AO1a	
	OCl [−] is +1 Cl [−] is –1	1	AO2b	Both required for the mark

Question	Marking guidance	Mark	AO	Comments
06.1				Extended response
	Stage 1: appreciation that the acid must be in excess and calculation of amount of solid that permits this.			Maximum of 7 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.
	Statement that there must be an excess of acid	1	AO2d	
	Moles of acid = $50.0 \times 0.200/1000 = 1.00 \times 10^{-2}$ mol	1	AO3 2a	
	2 mol of acid react with 1 mol of calcium hydroxide therefore moles of solid weighed out must be less than half the moles of acid = 0.5 $\times 1.00 \times 10^{-2} = 5.00 \times 10^{-3}$ mol	1	AO3 2b	
	Mass of solid must be $< 5.00 \times 10^{-3} \times 74.1 = < 0.371$ g	1	AO3 2a	
	Stage 2: Experimental method.			
	Measure out 50 cm ³ of acid using a pipette and add the weighed amount of solid in a conical flask	1	AO3 2b	
	Titrate against 0.100 (or 0.200) mol dm ⁻³ NaOH added from a burette and record the volume (v) when an added indicator changes colour	1	AO3 2b	
	Stage 3: How to calculate M_r from the experimental data.			
	Moles of calcium hydroxide = $5.00 \times 10^{-3} - (v/2 \times \text{conc NaOH})/1000 = z \text{ mol}$	1	AO3 2a	
	$M_{\rm r}$ = mass of solid / z	1	AO3 2a	

06.2	Moles of calcium chloride = $3.56 / 111.1 = 3.204 \times 10^{-2}$	1	AO2h	
	Moles of calcium sulfate = $3.204 \times 10^{-2} \times 83.4/100 = 2.672 \times 10^{-2}$	1	AO2h	
	Mass of calcium sulfate = $2.672 \times 10^{-2} \times 136.2 = 3.6398 = 3.64$ (g)	1	AO2h	Answer must be to 3 significant figures

Question	Marking guidance	Mark	AO	Comments
07.1				Extended response calculation
	Stage 1			
	$M_{\rm r}$ for Mg(NO ₃) ₂ = 148.3			
	Moles of Mg(NO ₃) ₂ = $\frac{3.74 \times 10^{-2}}{148.3}$ = 2.522 × 10 ⁻⁴ mol	1	AO2h	
	Stage 2			
	Total moles of gas produced = $5/2 \times \text{moles of } Mg(NO_3)_2$			
	$= 5/2 \times 2.522 \times 10^{-4} = 6.305 \times 10^{-4}$	1	AO2h	
	Stage 3			If ratio in stage 2 is incorrect, maximum marks for stage 3 is 2
	PV=nRT so volume of gas $V = nRT/P$	1	AO2h	
	$V = \frac{nRT}{P} = \frac{6.305 \times 10^{-4} \times 8.31 \times 333}{1.00 \times 10^{5}} = 1.745 \times 10^{-5} \text{ m}^{3}$	1	AO2h	
	$V = 1.745 \times 10^{-5} \times 1 \times 10^{6} = 17.45 \text{ cm}^{3} = 17.5 \text{ (cm}^{3})$	1	AO1b	Answer must be to 3 significant figures (answer could be 17.4 cm ³ dependent on intermediate values)
07.2	Some of the solid is lost in weighing product / solid is blown away with the gas	1	AO3 1b	

Section B

In this section, each correct answer is awarded 1 mark.

Question	Key	AO
8	D	AO1a
9	D	AO1b
10	А	AO3 1b
11	В	AO3 2a
12	В	AO2a
13	А	AO2a
14	С	AO1a
15	С	AO1a
16	D	AO2b
17	D	AO2a
18	В	AO1a
19	А	AO2a
20	С	AO2b
21	В	AO1b
22	В	AO2b