
GUI APPLICATION CLASS

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Java GUI Programming
AWT/SWING - GUI

Java GUI frameworks. What to choose? Swing, SWT,
AWT, SwingX, JGoodies, JavaFX, Apache Pivot?
AWT (java.awt)
Is the foundation of swing, it performs well but is lacking in advanced components. If
you intend to create rich applications, AWT is probably not the way to go. However for
smaller GUI applications that doesn't require rich user interfaces. This might suit
perfectly as it's a tried and proven framework.

Swing (javax.swing)
Based on AWT as previously stated. In its infancy it was regarded as slow and buggy
and caused IBM to create SWT for Eclipse. However with Java 6, Swing became the
framework of choice for building new applications. Swing has a lot of rich components
but are still lacking in some areas. One example being that there isn't a full featured
TreeTable component which can do sorting and filtering/searching.

Java GUI frameworks. What to choose? Swing, SWT,
AWT, SwingX, JGoodies, JavaFX, Apache Pivot?
SWT
Created by IBM for Eclipse, they seemed to think that Swing was not suited for Eclipse at the time. By
itself is pretty low-level, and it uses the platform's native widgets through JNI. It is not related to Swing
and AWT at all. Their API is however somewhat clunky and not intuitive. They do have some advanced
component's like a TreeTable. (but i don't think they support sorting and filtering out of the box). SWT
uses some native bindings and the rant on the internet is that this framework should not be used in
today's projects.

JavaFX (javafx)
The latest flagship of Java/Oracle. promising to be the facto standard in developing rich desktop or web
applications.

Java GUI frameworks. What to choose? Swing, SWT,
AWT, SwingX, JGoodies, JavaFX, Apache Pivot?

Apache Pivot
It renders UI using Java2D, thus minimizing the impact of (IMO, bloated) legacies of Swing and AWT.
It's main focus seems to be on RIA (Rich internet applications), but it seems it can also be applied to
desktop applications. And as a personal comment, Looks very interesting! I Especially like that it's an
apache project.

https://cwiki.apache.org/PIVOT/frequently-asked-questions-faq.html

Qt Jambi (Good for Desktop Applications, Qt package Cross-language, C/C++, Python, Java)
A java wrapper to the native qt library which is written in c/c++. Very powerful, widely used and accepted.
Has a lot of GUI components and a easy to use API.

http://qt-jambi.org/

https://cwiki.apache.org/PIVOT/frequently-asked-questions-faq.html
http://qt-jambi.org/

Java GUI Applications
Web page GUI applications (applets): going obsolete
because of security issue but with rich programming
examples that can be converted to other applications. We
will use applets to show the program examples for AWT and
Swing because of its easiness to create an application.

Desktop (JFC, Javafx): Main focus in this course.

Responsive Web Page Design (Javafx 2.0/3.0): good
direction (at current time) to move on, but lack of
educational materials.

AWT Packages
AWT is huge! It consists of 12 packages (Swing is even bigger, with 18 packages as of JDK 1.7!).
Fortunately, only 2 packages - java.awt and java.awt.event - are commonly-used.
The java.awt package contains the core AWT graphics classes: (Structural Modeling, like HTML)

• GUI Component classes (such as Button, TextField, and Label),
• GUI Container classes (such as Frame, Panel, Dialog and ScrollPane),
• Layout managers (such as FlowLayout, BorderLayout and GridLayout),
• Custom graphics classes (such as Graphics, Color and Font).

The java.awt.event package supports event handling: (Behavioral Modeling, like Javascript)
• Event classes (such as ActionEvent, MouseEvent, KeyEvent and WindowEvent),
• Event Listener Interfaces (such as ActionListener, MouseListener, KeyListener and

WindowListener),
• Event Listener Adapter classes (such as MouseAdapter, KeyAdapter, and WindowAdapter).

AWT provides a platform-independent and device-independent interface to develop graphic
programs that runs on all platforms, such as Windows, Mac, and Linux.

AWT Container Classes
Top-Level Containers: Frame, Dialog and Applet

Each GUI program has a top-level container. The commonly-used top-level
containers in AWT are Frame, Dialog and Applet:

• A Frame provides the "main window" for the GUI application, which has a title bar

(containing an icon, a title, the minimize, maximize/restore-down and close

buttons), an optional menu bar, and the content display area. To write a GUI

program, we typically start with a subclass extending from java.awt.Frame to

inherit the main window as follows:

GUI Application Using Frame

GUI Application Using Dialog/Applet
• An AWT Dialog is a "pop-up window" used for interacting with the

users. A Dialog has a title-bar (containing an icon, a title and a
close button) and a content display area, as illustrated.

• An AWT Applet (in package java.applet) is the top-level container
for an applet, which is a Java program running inside a browser.
Applet will be discussed in the later chapter.

Javafx Application Class
Application class from which JavaFX applications extend.

Life-cycle

The entry point for JavaFX applications is the Application class. The JavaFX runtime

does the following, in order, whenever an application is launched:

1.Constructs an instance of the specified Application class

2.Calls the init() method

3.Calls the start(javafx.stage.Stage) method

4.Waits for the application to finish, which happens when either of the following occur:

•the application calls Platform.exit()

•the last window has been closed and the implicitExit attribute on Platform is true

5.Calls the stop() method

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html#init--
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html#start-javafx.stage.Stage-
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html#exit--
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html#stop--

FirstEx
The example shows a text in the middle of the application's window.

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.layout.StackPane;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.stage.Stage;
The essential JavaFX classes, collections, and properties reside in the javafx package.

public class FirstEx extends Application {
Application is the main class of a JavaFX program.

FirstEx
@Override
public void start(Stage stage) {

initUI(stage);
}
The Application's start() method is overridden. The start() method is the main entry point to the JavaFX
program. It receives a Stage as its only parameter. (Stage is the main application window or area.) The
user interface is built in the initUI() method.

StackPane root = new StackPane();
StackPane is a container used for organizing nodes. It uses a simple layout manager that places its content
nodes in a back-to-front single stack. In our case, we only want to center a single node.

FirstEx
Scene scene = new Scene(root, 300, 250);
Scene is the container for all content in a scene graph. It takes a root node as its first parameter. The
StackPane is a root node in this scene graph. The next two parameters specify the width and the height of
the scene.

Label lbl = new Label("Simple JavaFX application.");
lbl.setFont(Font.font("Serif", FontWeight.NORMAL, 20));
A Label control is created and its font is set with the setFont() method. Label is a non-editable text control.

root.getChildren().add(lbl);
The label control is added to the StackPane. The getChildren() method returns the list of children of a
pane.

FirstEx
stage.setTitle("Simple application");
The setTitle() method of a Stage sets a title for the main window.

stage.setScene(scene);
The scene is added to the stage with the setScene() method.

stage.show();
The show() method shows the window on the screen.

public static void main(String[] args) {
launch(args);

}
The traditional main() method is not needed. It is only used as a fallback for situations in which JavaFX
launching is not working.

Demo Program:
(download GUI_basic.zip for file structure, put files into appropriate
directory)

Go BlueJ!!!

