Triangle Congruence

I. Name the congruent triangles.

1. Δ*OGD* ≅Δ_____

3. $\triangle LIN \cong \triangle$

2. *△RAC* ≅*△*_____

4. Δ*FOX* ≅Δ_____

II. Name the congruent triangle and the congruent parts..

△*FGH* ≅△_____

$$\overline{FG}\cong$$

$$\measuredangle G \cong \measuredangle$$

$$\overline{GH}\cong$$

$$\overline{FH}\cong$$

Use the congruency statement to fill in the corresponding congruent parts.

$$\angle E \cong \angle$$

$$\overline{FE}\cong$$

$$\angle E \cong \angle \underline{\hspace{1cm}} \qquad \overline{FE} \cong \underline{\hspace{1cm}} \angle EFI \cong \angle \underline{\hspace{1cm}}$$

$$\overline{FI} \cong \underline{\hspace{1cm}} \checkmark FIE \cong \checkmark \underline{\hspace{1cm}} \overline{IE} \cong \underline{\hspace{1cm}}$$

9. $\triangle PQR \cong \triangle MNR$. Find x.

10. $\triangle ABC \cong \triangle ADC$. Find y.

Third Angles Theorem (add to Theorems, Postulates and Definitions Card) –

Proving Triangles Congruent

Given: $\angle P$ and $\angle M$ are right angles. R is the midpoint of \overline{PM} .

 $\overline{PQ}\cong \overline{MN}, \overline{QR}\cong \overline{NR}$

Prove: $\triangle PQR \cong \triangle MNR$

Triangle Congruence Worksheet #1

For each pair of triangles, tell which postulates, **if any**, make the triangles congruent.

12. $\triangle ABC \cong \triangle EFD$

14. $\triangle ABC \cong \triangle EFD$

21. ∆MAD ≅ ∆MBC _____

23. $\triangle ACB \cong \triangle ADB$

23.

13. $\triangle ABC \cong \triangle CDA$

15. ΔADC ≅ ΔBDC _____

 $\triangle ABE \cong \triangle CDE$

23. $\triangle MNP \cong \triangle MQP$

Triangle Congruence Worksheet #2

- I. For each pair of triangles, tell which postulate, if any, can be used to prove the triangles congruent.
- 1. $\triangle AEB \cong \triangle DEC$

3. ΔDEA ≅ ΔBEC _____

5. ΔRTS ≅ ΔCBA _____

7. $\triangle BAP \cong \triangle BCP$ Given: \overrightarrow{BD} bisects $\angle ABC$

2. ΔCDE ≅ ΔABF _____

4. ΔAGE ≅ ΔCDF _____

6. ΔABC ≅ ΔADC _____

8. ΔSAT ≅ ΔSAR _____

II. For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent.

1.

b. Δ____ ≅ Δ ____

c. _____

b. Δ____ ≅ Δ ____

3. Given: T is the midpoint of \overline{WR}

b. Δ____ ≅ Δ ____

4.

b. Δ____ ≅ Δ ____

c. _____

5. Given: IH Bisects∠WIS

b. Δ____ ≅ Δ ____

c. _____

6.

b. Δ____ ≅ Δ ____

c. _____

7.

b. Δ_____ ≅ Δ _____

c. _____

8.

b. Δ_____ ≅ Δ _____

c. _____

9.

b. Δ____ ≅ Δ ____

c. _____

10. Given: I is the midpoint of ME and SL

- a.
- b. Δ____ ≅ Δ ____
- c. _____

11.

- a.
- b. Δ____ ≅ Δ ____
- c. _____

12.

- a. _____
- b. Δ____ ≅ Δ ____
- c. _____
- III. Using the given postulate, tell which parts of the pair of triangles should be shown congruent.
- 1. SAS

2. ASA

_____ ≅ ____

3. SSS

_____ ≅ ____

4. AAS

_____ ≅ ____

5. HL

_____ ≅ ____

6. ASA

Triangle Proofs Worksheet

For each problem below, write a two-column proof on a separate piece of paper.

I. Proving Triangles Congruent:

1. Use AAS to prove the triangles congruent.

Given: $\overline{AD} \parallel \overline{BC}, \overline{AD} \cong \overline{CB}$ Prove: $\triangle AED \cong \triangle CEB$

5. Given: *B* is the midpoint of \overline{DC} . $\overline{AB} \perp \overline{DC}$ Prove: $\triangle ABD \cong \triangle ABC$

2. Given: $\overline{KM} \perp \overline{JL}$, $\overline{JM} \cong \overline{LM}$, $\angle JMK \cong \angle LMK$

Prove: $\triangle JKM \cong \triangle LKM$

6. Use AAS to prove the triangles congruent.

Given: $\angle R$ and $\angle P$ are right angles.

Prove: $\triangle QPS \cong \triangle SRQ$

3. Given: $\overline{AB} \cong \overline{DE}$, $\angle C \cong \angle F$

Prove: $\triangle ABC \cong \triangle DEF$

4. Given: $\overline{JK} \cong \overline{ML}$, $\angle JKL \cong \angle MLK$ Prove: $\triangle JKL \cong \triangle MLK$

II. Using CPCTC

7. Given: *G* is the midpoint of \overline{FH} .

 $\overline{EF} \cong \overline{EH}$

Prove: $\angle 1 \cong \angle 2$

10. Given: $\overline{WX} \cong \overline{XY} \cong \overline{YZ} \cong \overline{ZW}$

Prove: $\angle W \cong \angle Y$

8. Given: \overline{LM} bisects $\angle JLK$. $\overline{JL} \cong \overline{KL}$

Prove: M is the midpoint of \overline{JK} .

11. Given: *M* is the midpoint of

 \overline{PQ} and \overline{RS} .

Prove: $\overline{QR} \cong \overline{PS}$

9. Given: $\overline{AC} \cong \overline{AD}$, $\overline{CB} \cong \overline{DB}$

Prove: \overline{AB} bisects $\angle CAD$.

Review: Triangles and Triangle Congruence

You will need a separate piece of paper to show all your work. This review is *not* comprehensive; always be sure to go back through your old homework and quizzes.

© I can write a congruency statement representing two congruent polygons

1. Write a congruency statement for the two triangles at right.

I can identify congruent parts of a polygon, given a congruency statement

2. List ALL of the congruent parts if $\triangle EFG \cong \triangle HGF$

© I can use algebra to find the side lengths and angle measures of congruent polygons

3. $\triangle WXY \cong \triangle ZYX$. Find p.

4. $\triangle ADC \cong \triangle CBA$. Find x.

 $@ I \ can \ name \ the \ five \ ways \ to \ prove \ triangles \ are \ congruent$

5. Name the 5 ways to prove triangles congruent.

© I can prove triangles are congruent

For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent.

8. Given: I is the midpoint of \overline{ME} and \overline{SL}

© I can mark pieces of a triangle congruent given how they are to be proved congruent

9. What information is missing to use HL?

10. What information is missing to use SAS?

IV. For which value(s) of x are the triangles congruent?

3. *x* = _____

4. *x* = _____

5. *x* = _____

© I can write a two-column proof over congruent triangles

11.

Given: $\overline{JK} \cong \overline{ML}$, $\angle JKL \cong \angle MLK$

Prove: $\triangle JKL \cong \triangle MLK$

12. Complete and review ALL proofs on the proofs worksheet.