

S.O.L.I.D. Principles
of OOP

History of SOLID Principals
• The SOLID principles date back to March of 1995.

• The principles are from Robert “Uncle Bob” Martin.

• Started as writings, which ultimately were turned into
the book “Agile Software Development: Principles,
Patterns, and Practices.

• Michael Feathers is credited with coming up with the
SOLID acronym.

Why Use the SOLID Principles of OOP?
• Object Oriented Programming is a powerful concept

• But, OOP does not always lead to quality software

• The 5 principles focus on dependency management

• Poor dependency management leads to code that is brittle,
fragile, and hard to change

• Proper dependency management leads to quality code that
is easy to maintain.

Single Responsibility Principle
• Every Class should have a single responsibility.

• There should never be more than one reason for a class to
change.

• Your classes should be small. No more than a screen full of
code.

• Avoid ‘god’ classes.

• Split big classes into smaller classes.

Open/Closed Principle
• Your classes should be open for extension

• But closed for modification

• You should be able to extend a classes behavior, without
modifying it.

• Use private variables with getters and setters - ONLY when
you need them.

• Use abstract base classes

Liskov Subsitution Principle
• By Barbara Liskov, in 1998

• Objects in a program would be replaceable with instances
of their subtypes WITHOUT altering the correctness of the
program.

• Violations will often fail the “Is a” test.

• A Square “Is a” Rectangle

• However, a Rectangle “Is Not” a Square

Interface Segregation Principle
• Make fine grained interfaces that are client specific

• Many client specific interfaces are better than one “general
purpose” interface

• Keep your components focused and minimize
dependencies between them

• Notice relationship to the Single Responsibility Principle?

• ie avoid ‘god’ interfaces

Dependency Inversion Principle
• Abstractions should not depend upon details

• Details should not depend upon abstractions

• Important that higher level and lower level objects
depend on the same abstract interaction

• This is not the same as Dependency Injection - which is
how objects obtain dependent objects

Summary

• The SOLID principles of OOP will lead you to better
quality code.

• Your code will be more testable and easier to maintain.

• A key theme is avoiding tight coupling in your code.

