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Abstract: This article uses the formulation of the
structural identification using expectation maximization
(STRIDE) algorithm for compatibility with the trun-
cated physical model (TPM) to enable scalable, output-
only modal identification using dynamic sensor network
(DSN) data. The DSN data class is an adaptable and ef-
ficient technique for storing measurements from a very
large number of sensing nodes, which is the case in mo-
bile sensor networks and BIGDATA problems. In this
article, the STRIDEX output-only identification algo-
rithm is proposed for the stochastic TPM to estimate
structural modal properties (frequencies, damping ratios,
and mode shapes) directly from DSN data. The spa-
tial information produced by this novel algorithm, called
STRIDEX (“X” for extended), is scalable, as demon-
strated in a strategy to construct high-resolution mode
shapes from a single DSN data set using a series of in-
dependent identification runs. The ability to extract de-
tailed structural system information from DSN data in
a computationally scalable framework is a step toward
mobile infrastructure informatics in a large urban set-
ting. The performance of the STRIDEX algorithm is
demonstrated, using the simulated response of a 5,000
DOF structure, and experimentally, using measurements
from two mobile sensor cars, which scanned about 8,000
points on a beam specimen in the laboratory. In the ex-
perimental results, a mobile sensor is shown to provide
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over 120 times more mode shape points than a fixed sen-
sor.

1 INTRODUCTION

Structural engineers are in perpetual exploration of
methodologies that expedite the extraction of infor-
mation from infrastructure systems. Advancements
in sensor technology and innovative data collection
techniques target prompt retrieval of structural health
metrics, which are essential for short- and long-term
structural condition assessments as well as effective
maintenance planning. Over the past two decades,
structural health monitoring (SHM) applications have
incorporated wireless sensing technology (Lynch,
2007), which has facilitated the use of dense sensor
arrays in large-scale structures (Ko and Ni, 2005; Lynch
et al., 2006; Pakzad et al., 2008). The smart sensing
subcategory has offered devices with on-board micro-
processors (among other components), which enable
enhanced communication, distributed computing, and
improved power consumption (Gao et al., 2006; Lynch,
2002; Spencer et al., 2004).

Optimal sensor placement techniques acknowledge
high equipment costs and aim to minimize the number
of sensors needed to achieve a particular set of struc-
tural information from the data, for example, damage
detection (Guo et al., 2004; Kim et al., 2000), modal
identification (Chang and Pakzad, 2014, 2015; Meo and
Zumpano, 2005), and so on. Compressed sensing strate-
gies recognize scalability issues in SHM methods and
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seek mathematically guided alternatives to brute force
when processing very large data sets, that is, BIGDATA
(Huang et al., 2014; Matarazzo, et al., 2015b; O’Connor
et al., 2014; Yao et al., 2017).

Researchers aspire for data sets that are larger, more
informative, and obtained more frequently. Currently
in SHM, these data goals are attained by designing and
implementing fixed sensor networks (wired or wireless)
that are spatially dense (Ko and Ni, 2005; Ni et al.,
2009; Pakzad and Fenves, 2009) and/or are incorporated
within a long-term monitoring system (Cha et al., 2016;
Jang et al., 2010; Kurata et al., 2011, 2013; Soyoz and
Feng, 2009; Spiridonakos et al., 2016). Recent imple-
mentations of sensing systems with internet connectiv-
ity have demonstrated an ability to streamline data col-
lection, storage, and permit real-time results for civil
structures, for example, wind-turbines (Smarsly et al.,
2012), tall buildings (Kijewski-Correa et al., 2013; Yuen
and Mu, 2015), and highway bridges (Zhang et al.,
2016). Yet, there remains high value in reducing the
cost and labor needed to achieve advanced infrastruc-
ture insights (Adeli, 2001; Adeli and Jiang, 2006; Qarib
and Adeli, 2015; Sun and Betti, 2015). These constraints
are byproducts of the fixed sensor paradigm in SHM:
numerous fixed sensors are needed to obtain sufficient
spatial information, for example, high-resolution mode
shapes, and each with a corresponding cost in dollars
and setup/maintenance time. Mobile sensors address
the shortcomings of fixed sensors: a single mobile sensor
delivers spatial information comparable to that which is
retrievable from numerous fixed sensors (Horner et al.,
2015; Matarazzo and Pakzad, 2016a; Unnikrishnan and
Vetterli, 2012) at a lower cost.

1.1 Toward the acquisition and analysis
of crowdsourced infrastructure vibration data

What if the general public had access to portable, high-
quality sensors and contributed a volume of informa-
tive infrastructure data to SHM every day? Although
consumer technology and civil participation have yet
to converge in this regard, the recent boom in public
smartphone ownership is unprecedented (MediaPost,
2015); the number of connected devices worldwide has
already tripled the human population and is multiplying
at a faster rate (Hotel News Resource, 2015). This intro-
duction of a mass quantity of different types of sensors
including triaxial accelerometers, GPS devices, digital
cameras, microphones, and others to the urban environ-
ment has quickly impacted how researchers perceive,
acquire, and utilize digital data sets (Calabrese et al.,
2011; Herrera et al., 2010; Mohan et al., 2008). In the
context of SHM, the expected volume of daily mobile

smartphone data streams greatly surpasses what a long-
term fixed sensor network can supply.

Recent studies have selected smartphones, based on
their potential for scalability, to evaluate road qual-
ity. For instance, Pothole Patrol, a system which gath-
ered and analyzed data from vehicles equipped with a
triaxial accelerometer and GPS sensor to assess road
surface conditions, was developed by Eriksson et al.
(2008) and implemented using seven taxis in Boston,
Massachusetts, USA. Potholes were confirmed visually
at 39 out of 48 sites identified by the system; the remain-
ders were mostly attributed to sunken manholes, rail-
way crossings, and expansion joints.

SmartRoadSense, a system and mobile application to
assess road surface condition from smartphone accel-
eration records, was proposed by Alessandroni et al.
(2014). In experiments, the data were collected by Mo-
torola Moto G smartphones fixed in public bus cabins
in Italy; road quality indices were computed for 275 km
total. Road surface conditions in India were monitored
by Kumar et al. (2016) using data from smartphones
mounted on motorbikes, exemplifying a highly tech-
nological impact in a country with an emerging econ-
omy and a low level of individual smartphone owner-
ship (Pew Research Center, 2016).

The use of stationary smartphones for identifying
structural vibration characteristics was discussed by
Feng et al. (2015), in which the performances of var-
ious common smartphone accelerometers were com-
pared to a reference sensor in laboratory and field dy-
namic tests. It was concluded that selected smartphone
models are capable of recording sinusoidal vibrations
with a specified accuracy that depends on the amplitude
and frequency of the signal. Power spectral density es-
timates of vibration test data collected from a bridge in
Princeton, New Jersey, USA displayed peaks within 1%
of the fundamental frequency, suggesting that smart-
phone data may be suitable for system identification
(SID).

Although smartphone data quality varies, and can
suffer from basic signal processing problems, for exam-
ple, time synchronization errors, noise, clipping, missing
data, and so on, the inherent mobility of smartphones
poses a more substantial challenge in SHM, because
modern models and techniques have been developed
exclusively to process data from fixed sensors—not mo-
bile sensors. Furthermore, to fully capitalize on the
wealth of public smartphone data that contain infras-
tructure information, SHM methods must be designed
to properly consider data volumes that are magnitudes
larger than today’s, that is, BIGDATA (this is currently
nonstandard in SID and damage detection; Matarazzo
et al., 2015a); promising preliminary results indicate that
it is no longer prudent to delay these inquires under any
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assumption that sufficient computing power might soon
be available, for example, Moore’s Law.

In particular, the rate at which the SHM community
incorporates crowdsourced smartphone data depends
on the adaptability and computational scalability of
upcoming analytical tools (rather than the evolution
of commercial central processing units). These two
features target the inherent “variety” and “volume”
characteristics of BIGDATA, established by Laney
(2001). SHM tools must be (i) adaptable to atypical
or heterogeneous sensor networks and (ii) computa-
tionally scalable with respect to the number of sensors
and sensing nodes represented by the data set. If such
a new data stream is truly desired, these two features
must be prioritized in the development of data analysis
techniques. Otherwise, the data sets applicable to
structural vibration analyses will remain those retrieved
primarily by researchers, in which case, information will
be produced and shared at the current capacity, which
provides limited public service. As it will be demon-
strated, with its ability to process the dynamic sensor
network (DSN) data class (Matarazzo and Pakzad,
2016b), and a strategy to produce high-resolution mode
shapes, the proposed extended structural identification
using expectation maximization (STRIDEX) method
for output-only modal identification is the first to be
both adaptable and scalable.

1.2 State of system identification using mobile sensor
networks

Over the past decade, there has been notable atten-
tion to the problem of identifying modal properties
from mobile sensor network data. In summary, these
studies have proven that mobile sensor data can con-
tain modal property information. At this time, the SID
methods applicable to mobile sensor data cannot pro-
duce a full modal property set (frequency, damping,
and mode shape) and/or have restrictions on the sens-
ing configuration. One objective in the development of
STRIDEX was to provide a comprehensive modal iden-
tification, one that includes frequency, damping, and
mode shape estimates, using DSN data (a general sen-
sor data class), to match the existing capabilities of SID
methods for fixed sensor data.

Frequency identification was explored analytically in
Yang et al. (2004), in which equations were developed
to describe the dynamic response of a vehicle as it
crossed over a bridge. Variations in vehicle speeds
and bridge properties were considered and verified
using finite element analyses—overall concluding that
it is possible to extract the fundamental frequency of
the bridge from vehicle vibration (acceleration) data.
These findings were verified experimentally by Lin

and Yang (2005), in which a tractor-trailer, towing an
instrumented cart, drove over the Da-Wu-Lan Bridge
in Taiwan. The fundamental frequency of the bridge
was successfully extracted from the acceleration spectra
of the cart response for three passing speeds (13, 17,
and 35 km/h). This was explored further in Yang and
Chang (2009) with parametric studies and simulations
that considered two bridge frequencies. In Siringoringo
and Fujino (2012), an analytical bridge-vehicle model,
additional finite element simulations, and further para-
metric studies on vehicle velocity, vehicle frequency,
and bridge frequency were presented; the study con-
cluded with a field experiment at a bridge in southeast
Tokyo. The first frequency was successfully identified
from the power spectral density (PSD) estimate of the
acceleration data collected by an instrumented vehicle,
at three speeds (10, 20, and 30 km/h).

With a vehicle-bridge-interaction (VBI) model, a
method to estimate bridge damping ratios using accel-
eration measurements from a moving vehicle was pro-
posed by Gonzalez et al. (2012). The technique assumes
Rayleigh structural damping and relies on the double in-
tegration of the recorded accelerations to estimate the
bridge displacements under the wheel of the vehicle.
The method was verified with finite element model sim-
ulations that considered various bridge lengths, 21 ve-
hicle speeds, and 9 levels of damping. The sensitivity of
these estimates with respect to road surface roughness,
measurement noise, and particular modeling inaccura-
cies were also studied.

A mode shape identification procedure, developed
by Marulanda et al. (2016), requires the use of at least
two sensors: one mobile sensor and one fixed sensor.
The modal frequencies are first identified using the
data from the fixed sensor; then, spatially dense mode
shapes can be extracted from a space–frequency repre-
sentation, which is constructed using short-time Fourier
transforms. In a theoretical example with a stationary
and mobile sensor, assuming noise-free data and known
natural frequencies, three mode shapes were accurately
identified with 479 points each—further demonstrating
the rich spatial information provided by a mobile sen-
sor. In an experimental setup in a laboratory, a sensor
car, equipped with a wireless iMote2 sensor, crossed
a simply supported beam instrumented with a fixed
sensor. The beam was excited by white noise using a
dynamic shaker and manually with a rubber hammer.
Three mode shapes, with 21 ordinates each, were suc-
cessfully identified and verified using results from a
dense fixed sensor network.

Flexure-based mobile sensing nodes (capable of
climbing) were introduced in Zhu et al. (2010) to
automate the spatial arrangements of a fixed sensor
network, allowing data collection at desirable structural
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points with minimal manual labor. In a subsequent
study, the team redesigned the units to better navigate
structural elements. Four nodes were deployed on
a pedestrian steel truss bridge and reported to five
sensing configurations, where they paused to collect
ambient acceleration data (Zhu et al., 2012). With the
use of static reference sensors, three modes were com-
pletely and accurately identified from the flexure-based
mobile sensing node data, which included detailed
mode shapes. The collected data sets had an improved
spatial resolution in comparison to a fixed sensor net-
work of the same size, although the potential for spatial
information was restricted by the nature of stationary
sensing configurations. Accordingly, the data was
categorized as fixed sensor data and was processed for
SID accordingly with ERA-NExT (James et al., 1993).

Previously, the authors have viewed mobile sensor
data as a dense fixed sensor data matrix subjected to the
missing data problem. Matarazzo and Pakzad (2016a)
presented new equations for the structural identifica-
tion using expectation maximization (STRIDE) method
(Matarazzo and Pakzad, 2016c) to accept data sets with
missing observations; the method was successfully ap-
plied to simulated mobile sensing data by strategically
eliminating entries from a complete data matrix. Al-
though the identified modal properties are accurate and
comprehensive, the flaw of this perspective is that of
the standard state–space model: the sensing nodes are
linked to the model size. As a result, this model lacks
scalability because it is computationally inefficient when
high-resolution mode shapes are desired.

This article considers a general interpretation of
mobile sensor data in which measurements are sampled
as sensors move in space. With this definition, a mobile
sensor network reduces to a fixed sensor network if
the positions of the sensors do not change over time.
The following sections review how mobile sensor data
are classified as DSN data and can be modeled exactly
using the truncated physical model (TPM).

In past work by the authors in this framework, an ex-
perimental mobile sensing testbed was developed and a
preliminary version of STRIDEX was successfully ap-
plied (Horner et al., 2015; Matarazzo et al., 2016a). In
one study, three vertical modes were identified using
four mobile sensors; mode shapes contained up to 150
points—although fixed sensor results were unavailable
for comparison (Matarazzo et al., 2016b; Matarazzo
et al., 2016a).

1.3 Contributions

This article builds on fundamental knowledge and prac-
tice of DSNs, a data class that includes mobile sensor
networks and BIGDATA. The TPM (Matarazzo and

Pakzad, 2016b) was introduced as an efficient approach
to include DSN data into the model of the structural
system. An extension of the STRIDE output-only iden-
tification algorithm (Matarazzo and Pakzad, 2016c) is
presented, and named STRIDEX (“X” for extended),
for the TPM. The proposed technique has four novel
features:

(1) Comprehensive and convenient: estimates fre-
quencies, damping, and mode shapes simultane-
ously.

(2) Adaptable: there are no methodological restric-
tions on sensor arrangement or mobility as long
as the positions of each sensor are known for all
samples.

(3) Scalable information: with a new virtual probing
location (VPL) assignment, an additional identifi-
cation run can produce a new set of mode shape
ordinates from the same set of DSN data.

(4) Computationally scalable: (i) the size of the
TPM is independent of the density of the spatial
grid applied during measurement and (ii) in the
construction of high-resolution mode shapes, the
computational needs of individual runs are nearly
equivalent to one another.

The first two features match the capabilities of tradi-
tional SID methods in regards to fixed sensor data. The
third feature harnesses DSNs’ high capacity for spatial
information, which enables high-resolution mode shape
estimates using few sensors. Finally, the computational
scalability of STRIDEX (along with its adaptability) is
conducive for processing large data streams and BIG-
DATA volumes.

There are two central technical challenges within
STRIDEX, which result from the inherent presence of
spatial discontinuities in DSN data matrices: (i) the time
variant nature of the observation equation and (ii) the
apparent reliance of the TPM on mode shape informa-
tion prior to identification. These complications are ad-
dressed in Section 3.3.

An output-only modal identification method that can
successfully process DSN data is applicable to crowd-
sourced smartphone data. Furthermore, high-resolution
mode shapes are highly valuable to SHM processes that
are sensitive to spatial features such as damage de-
tection based on mode shape curvature (Abedl Wa-
hab and De Roeck, 1999; Chandrashekhar and Ganguli,
2009; Pandey et al., 1991). It is worthwhile to note that,
more generally, the objective of this article is to extract
some form of structural information from the DSN data
class using a time-series model (in the state-space for-
mulation). Because such models (and variations, e.g.,
ARMA; Box et al., 2008) and their parameters (or
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coefficients) play a fundamental role in numerous dam-
age detection and model updating algorithms (Carden
and Brownjohn, 2008; Nigro et al., 2014; Shahidi et al.,
2015; Yao and Pakzad, 2012), it is suggested that por-
tions of this work may also serve as a framework for pro-
cessing DSN data in SHM in a more generic application.

2 MODELING DYNAMIC SENSOR NETWORK
MEASUREMENTS FROM A STRUCTURAL

SYSTEM

2.1 Review of dynamic sensor networks

DSN data (Matarazzo and Pakzad, 2016b) are a gen-
eral data class in which the sensor configuration changes
during measurement. DSN data are scalable with re-
spect to sensor quantity; through concatenation, addi-
tional measurement channels may be included in the
data matrix without affecting its dimensions. DSNs have
a high capacity for spatial information and store struc-
tural responses in a compact data matrix. By contrast,
fixed sensor network data contain costly, yet restricted
spatial information. For instance, in SID, a dense fixed
sensor network can have substantial equipment and
processing requirements: a sensing device must be in-
stalled at every point where a mode shape ordinate is
desired, whereas the addition of a measurement chan-
nel to the data set affects computational costs cubically
(Matarazzo et al., 2015b)—a result comparable to that
of increasing model orders for stabilization diagrams
(Chang and Pakzad, 2013a, b).

DSNs account for changes in sensing configurations
with spatial discontinuities in the data matrix. In the ap-
plications presented, the switching times are known and
intentional; it is the source of these spatial discontinu-
ities which characterize the DSN type as either online,
offline, or hybrid (a detailed explanation of these types
is available in Matarazzo and Pakzad (2016b)). At each
time step, k, the sensors’ locations are sO

k ∈ R
NO , where

the superscript O indicates the set of observed sensing
nodes, which covers NO points at every time step and N
sensing nodes over the entire time series.

2.2 Stochastic truncated physical model

In this section, the stochastic TPM is presented to con-
sider randomly driven states and noisy observations in
the output-only identification problem (ambient vibra-
tion data). For best comprehension, it is recommended
that the reader reviews the deterministic TPM, as intro-
duced in Matarazzo and Pakzad (2016b) prior to delv-
ing into the following equations. Note, in this article,
there exist some slight symbolic differences in regards
to mathematical entities; a notation table with descrip-
tions follows the References.

In the standard state-space model, the sensing nodes
are coupled with the state variable (model DOF); thus
a dense grid applied during measurement requires a
highly complex dynamic model (Matarazzo and Pakzad,
2016b). In the TPM, the system states do not rely on the
sensing nodes covered in the DSN data. As a result, an
intuitive relationship is formed between DSN observa-
tions and model size.

In the TPM, the state variable represents the trun-
cated physical structural response at user-selected
VPLs, which are Nα static points, defined as sα ∈ R

Nα .
The VPLs are the points at which the structural re-
sponses will be modeled, as well as where mode shape
ordinates will be evaluated. The VPL choice is a mod-
eling decision and therefore independent of the DSN
data. The asterisk superscripts in TPM entities pre-
sented in Matarazzo and Pakzad (2016b) are omitted
here for simplicity. More specifically, the TPM state vec-
tor, xk ∈ R

pNα , and state matrix, A ∈ R
pNα×pNα , are x∗

k
and A∗ from equations (31) and (28), respectively, in
Matarazzo and Pakzad (2016a), where p is the model or-
der. The observation matrix, C ∈ R

M×pNα , is defined as
C ≡ �αC∗ (C∗ is found within equations (30) and (33)
of Matarazzo and Pakzad (2016a)) to reduce the total
number of unknown parameters; the identification of
this product is sufficient for evaluating pNα structural
mode shapes at the VPLs. The observations yk ∈ R

NO

are the measurements of the DSN data at time-step k.
Finally, the mode shape regression (MSR) term, �k ∈
R

NO ×M , is defined as �k ≡ �O
k (�α)−1 and relates the

modal ordinates of the VPL (denoted by superscript α)
to the sensor locations (observations) at time-step k (de-
noted by superscript O). This time-variant term is syn-
chronized with the spatial discontinuities in the DSN
data because it is a function of the sensors’ loca-
tions. For the purpose of establishing the identification
framework, it is first assumed that the MSR term is
known at all time steps. This assumption is revisited in
Section 3.3.

Equations (1) and (2) are the state and observa-
tion equations for the stochastic TPM for time-steps
k = 1, 2, · · · , K and Equations (3)–(5) define aleatory
variables.

xk = Axk−1 + ηk (1)

yk = �k C xk + νk (2)

x1 ∼ N
(
μ̄, V̄

)
(3)

ηk ∼ N (0, Q) (4)

νk ∼ N (0, R) (5)
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As in the original STRIDE formulation, the state
input ηk ∈ R

pNα and observation error/noise νk ∈ R
NO

terms are assumed to be zero-mean and uncorrelated
Gaussian vectors with diagonal covariance matrices Q ∈
R

pNα×pNα and R ∈ R
NO ×NO , respectively. The superpa-

rameter, �, which is updated with each iteration, is de-
fined in Equation (6); note the absence of the time-
variant parameter �k .

� = (
μ̄, V̄ , A, Q,C, R

)
(6)

The complete data log-likelihood function of the
TPM is a mixture of three Gaussian densities that de-
pend on the superparameter:

ln (L X,Y (�)) = − (NO + pNα) K

2
ln (2π)

−1
2

ln
∣∣V̄ ∣∣− 1

2
(x1 − μ̄)T V̄ −1 (x1 − μ̄)

−1
2

ln |R| − 1
2

K∑
k=1

( yk −�kC xk)T R−1 ( yk −�kC xk)

−1
2

ln |Q| − 1
2

K∑
k=2

(xk − Axk−1)T Q−1 (xk − Axk−1)

(7)

Because the complete data (states) are unmeasured,
the conditional expectations of the states are computed
based on the observations and a superparameter esti-
mate. The conditional expectation of the log-likelihood
function under the observations Y = y1 , . . . , yK and the
superparameter at iteration j is defined in Equation (8).

G (� j+1|� j ) = E [ln (L X,Y (� j )) |Y ] (8)

With the stochastic TPM and its parameters specified,
the next section discusses the equations needed to iden-
tify the maximum likelihood estimate (MLE) of the su-
perparameter.

3 STRIDEX ALGORITHM

The procedure and the goal of STRIDEX remains the
same as those of STRIDE (Matarazzo and Pakzad,
2016c). The algorithm begins with an initial parameter
set �0 = (μ̄0, V̄0, A0, Q0,C0, R0) and iterates between
the expectation and maximization steps (E-step and
M-step, respectively), maximizing the conditional
log-likelihood function G(� j+1|� j ) (henceforth G)
each time. The procedure continues until the slope of G
is nearly zero, that is, below a nominal slope threshold
(it is suggested to start with θ = 5 × 10−4). Some

modifications are needed in the original E-step equa-
tions to adjust to the time-variant nature of the
observation equation in the TPM (Equation (2)). For
the M-step, the update formulae must be derived an-
alytically from the log-likelihood function in Equation
(8). Otherwise, the procedures for initial superpa-
rameter estimation and guidelines for model order
selection may be implemented as specified for STRIDE
in Matarazzo and Pakzad (2016c).

3.1 E-step for STRIDEX

The goal of the E-step is to provide minimum mean-
squared error (MSE) estimates and covariances for the
hidden state variable. Given the data and a superparam-
eter estimate, the conditional expectation of the states
and their covariances are defined in Equations (9)–(11).

x̂k|K = E [xk |Y ] (9)

V̂k,k|K = E
[
(xk − x̂k|K )T (xk − x̂k|K ) |Y

]
(10)

V̂k,k−1|K = E
[
(xk − x̂k|K )T (xk−1 − x̂k−1|K ) |Y

]
(11)

These estimates are achieved using the recursive
Kalman filter and Rauch-Tung-Striebel (RTS) equa-
tions presented along STRIDE (Matarazzo and Pakzad,
2016c) with the following change of variables: given the
time-varying observation equation, it is convenient to
implement an equivalent observation matrix at each
time step, k, equal to C (eq)

k = �kC , where �k and C
are those within Equation (2). With this substitution,
the filtered and smoothed estimates for the states
and state covariances may be computed for a given
superparameter.

3.2 M-step for STRIDEX

The updating formulae for the unknown parameters are
obtained through the maximization of the conditional
log-likelihood function at iteration j , that is, the solu-
tion of ∂G/∂ψ = 0 for ψ ∈ �. Despite the new likeli-
hood function for the stochastic TPM in Equation (7),
the updating equations for A j+1, Q j+1, μ̄ j+1, and V̄ j+1

end up identical to those in STRIDE because they are
uninvolved in the observation equation.

A j+1 =
K∑

k=1

[
x̂k|K x̂T

k−1|K + V̂k,k−1|K
]

×
(

K∑
k=1

[
x̂k−1|K x̂T

k−1|K + V̂k−1,k−1|K
])−1

(12)
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Q j+1 = 1
K − 1

(
K∑

k=2

(
x̂k|K x̂T

k|K + V̂k,k|K
)

−A j+1

K∑
k=2

(
x̂k−1|K x̂T

k|K + V̂k−1,k|K
))

(13)

μ̄ j+1 = x̂1|K (14)

V̄ j+1 = V̂1,1|K (15)

Next, the two updating formulae pertaining to obser-
vation equation parameters are derived. A shorthand
notation E (Y, j) [()] = E[()|Y, � j ] is adapted to simplify
a recurring conditional expectation. Equation (16) is the
partial derivative of G with respect to the observation
matrix C .

∂G

∂C
= 0 = ∂

∂C

(
E (Y, j)

[
−1

2

K∑
k=1

( yk −�kC xk)T R−1

× ( yk −�kC xk)

])

=
K∑

k=1

(
�T

k yk E (Y, j) [xT
k

]− �T
k �kC E (Y, j) [xk xT

k

])

(16)

0 = vec

(
K∑

k=1

�T
k yk E (Y, j) [xT

k

])

−vec

(
K∑

k=1

�T
k �kC E (Y, j) [xk xT

k

])

0 = vec

(
K∑

k=1

�T
k yk E (Y, j) [xT

k

])

−
(

K∑
k=1

E (Y, j) [xk xT
k

]⊗�T
k �k

)
vec (C)

vec (C j+1) =
(

K∑
k=1

E (Y, j) [xk xT
k

]⊗�T
k �k

)−1

× vec

(
K∑

k=1

�T
k yk E (Y, j) [xT

k

])
(17)

In Equation (17), the individual terms of Equation
(16) are vectorized and the Kronecker product is
implemented to remove the observation matrix from
the summation of the second-term. The last two lines

of Equation (17) show the new M-step formula for the
observation matrix C j+1.

Next, the updating formula for the observation noise
covariance is considered; Equation (18) shows the par-
tial derivative of G with respect to R−1. The newest ob-
servation matrix, C j+1, is used in the observation noise
covariance updating formula in Equation (19).

∂G

∂R−1
= 0 = ∂

∂R−1

(
E (Y, j)

[
− K

2
ln (R)

−1
2

K∑
k=1

( yk −�kC xk)T R−1 ( yk −�kC xk)

])

= K

2
R − 1

2

K∑
k=1

(
yk yT

k − yk E (Y, j) [xT
k

]
CT�T

k

−�kC E (Y, j) [xk] yT
k +�kC E (Y, j) [xk xT

k

]
CT�T

k

)

R j+1 = 1
K

K∑
k=1

(
yk yT

k − yk E (Y, j) [xT
k

]
CT�T

k

−�kC E (Y, j) [xk] yT
k +�kC E (Y, j) [xk xT

k

]
CT�T

k

)
(18)

R j+1 = 1
K

K∑
k=1

(
yk yT

k − yk E (Y, j) [xT
k

]
CT

j+1�
T
k

−�kC j+1 E (Y, j) [xk] yT
k

+ �kC j+1 E (Y, j) [xk xT
k

]
CT

j+1�
T
k

)
(19)

With the M-step formulae provided in this section,
the superparameter for the TPM can be updated and the
algorithm proceeds to the next iteration, namely j + 1
(Equation (20)).

� j+1 = (
μ̄ j+1, V̄ j+1, A j+1, Q j+1,C j+1, R j+1

)
(20)

The procedure continues until the likelihood slope is
below the threshold, θ . The estimated modal properties
are computed from the MLE of the superparameter na-
mely �M L = (μ̄M L , V̄M L , AM L , QM L ,CM L , RM L). The
modal properties corresponding to the MLE are com-
puting using the state matrix, AM L , and observation
matrix, CM L . An eigendecomposition of AM L produces
the diagonal eigenvalue matrix, 
M L , and the eigen-
vector matrix, �M L . The estimated natural frequency
and damping ratio vectors in Equations (21) and (22),
respectively, are computed using the diagonal elements
of 
M L . In Equation (23), the estimated mode shape
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ordinates correspond to the coordinates of the VPLs.

f̂ = 2π
∣∣ln [diag (
M L)]

∣∣
�t

(21)

ζ̂ = − cos (�ln [diag (
M L)]) (22)

�̂ = CM L�M L (23)

3.3 On the estimation of the mode shape regression
term

With a time-variant observation equation in the TPM,
the linear time-invariant (LTI) dynamic system depends
on a time-varying parameter, namely the mode shape
regression (MSR) term, �k . Thus it is appropriate to
categorize the identification of the TPM as a linear
parameter-varying (LPV) model identification problem
(Bamieh and Giarré, 2002; Lee and Poolla, 1999; Tóth
et al., 2009; Verdult and Verhaegen, 2002). In this
framework, the observations, Y , are dependent on the
LTI system and a scheduling signal (Toth, 2010). In
particular, the so-called schedule of the observations is
the sensor-position matrix of the DSN data (sO

k at time
step, k).

In the preceding sections, it was assumed the exact
MSR relations, �k , were available with the data; how-
ever, in practice, this is not the case because the mode
shapes are unavailable prior to system identification
thus, these relations must be estimated. With the TPM,
the unknown MSR matrix may be accurately approx-
imated using sinc or spline basis functions (Matarazzo
and Pakzad, 2016b). Through this relation, all unknown
model parameters are time invariant and the identifica-
tion of the TPM is considerably simplified.

Influenced by Moheimani et al. (2003), Matarazzo
and Pakzad (2016b) reformulated Whitaker-
Kotelnikov-Shannon (WKS) (Kotelnikov, 1933;
Shannon, 1998; Whittaker, 1915, 1929) sampling recon-
struction theory exclusively for spatial interpolation of
structural mode shapes. More specifically, mode shape
ordinates at one set of sensing nodes were related to
mode shape ordinates at another set through basis
functions. The relation demonstrated that a sinc basis
can be used as an estimator of the MSR term, say �̂k , in
the TPM. It was shown that a B-spline basis could also
reasonably estimate the MSR term, with less accuracy.
To implement this approach for DSN data in the TPM,
the locations of all sensors in the DSN must be known
for each sample and VPLs must be selected. For opti-
mal reconstruction and simplicity, it was recommended
that the VPLs be spaced uniformly (Matarazzo and

Fig. 1. Illustration depicting the construction of a mode
shape with 36 ordinates from four unique sets of nine VPLs.

Pakzad, 2016b). As a review, the VPLs are a modeling
choice, achieved by defining the MSR estimator:

�̂k =

⎡
⎢⎢⎢⎢⎢⎢⎣

sinc
( 1
�sα

(
sO

k − sα1
))

sinc
( 1
�sα

(
sO

k − sα2
))

...

sinc
( 1
�sα

(
sO

k − sαNα
))

⎤
⎥⎥⎥⎥⎥⎥⎦

T

(24)

where sO
k is the vector of the positions of the obser-

vations in the DSN data set at sample k, sαi is the lo-
cation of the ith VPL (Nα total), and �sα is the dis-
tance between the VPLs. The spacing of the VPLs must
be chosen to avoid spatial aliasing. The condition for
perfect reconstruction of the Mth mode of a uniform
simply supported beam with length L , is �sα < L/M
(Matarazzo and Pakzad, 2016b; Moheimani et al., 2003).
Although, this rule is not unique to VPLs; it governs the
arrangement of a fixed sensor network.

3.4 Scalable strategy for high-resolution mode shapes

This subsection discusses the strategy to construct high-
resolution mode shapes by compiling STRIDEX re-
sults. The rich spatial information available in DSN
permits the estimation of mode shapes at a theoreti-
cally unlimited number of points, because they do not
necessarily need to coincide with sensing nodes. Af-
ter a STRIDEX implementation, the estimated mode
shape matrix contains one set of modal ordinates for
each identified mode, which corresponds to the cho-
sen VPLs. The identification process can be repeated
using the same DSN data set, yet with new (ideally
non-overlapping) VPLs, to increase the total quantity
of modal ordinates available. This process may be re-
peated as deemed necessary by the analyst. Once the
desired number of modal ordinates has been reached,
they are aggregated into a high-resolution mode shape.

Figure 1 illustrates this strategy in which 9 mobile sen-
sors provide a mode shape with 36 ordinates. Consider a
DSN data set, Y , with size K × NO , where NO = 9. Nine
uniformly spaced VPLs are chosen (Nα = NO = 9),
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and STRIDEX processes the DSN data, producing 9
modal ordinates at “Set I”; these results are stored.
Next, a new set of VPLs is chosen while analyzing the
same DSN data with STRIDEX; as a result, 9 modal or-
dinates are added (18 total). This procedure continues
twice more to produce 18 additional unique modal ordi-
nates for each identified mode shape. Note these analy-
ses are independent of one another. Finally, the modal
ordinates (four sets of nine) are aggregated so that each
identified mode shape contains 36 points. Note a simi-
lar result can be obtained using data from four mobile
sensors and applying nine different sets of four VPLs.

This strategy is scalable both in regards to spatial in-
formation and computational requirements. Similar to
STRIDE, STRIDEX is most computationally sensitive
to the model order, p, the number of observations in
the DSN, NO , and the slope threshold, θ (a detailed ac-
count of the computational operations within STRIDE
is available in Matarazzo and Pakzad (2016c)); the new
E- and M-step equations specific to STRIDEX have a
negligible impact on the overall computational costs.
Through the application of this strategy, only the VPLs
are updated, all other settings remain unchanged, that
is, data size, model order, slope threshold, and so on.
Thus, the computational needs of individual STRIDEX
runs are practically equivalent to one another. The num-
ber of iterations required to achieve the prescribed
slope threshold will vary marginally with each run. It
should be emphasized that each additional STRIDEX
run can extract further mode shape ordinates from the
same DSN data set; this scalable information feature is
exemplified in the following application sections.

4 NUMERICAL VALIDATION OF STRIDEX
WITH 5,000-DOF BEAM

In this section, a uniform 5,000-DOF beam, with natural
frequencies ranging from 0.27 to 98 Hz and 1% damping
in all modes, is analyzed. The structure is subjected to a
vertical white noise ground motion at the supports with
a frequency cut off at 25 Hz. The objective is to identify
the first four modal properties of this system using DSN
data.

4.1 Description of mobile sensor network data

In this simulation, each sensing node was modeled as a
lumped mass DOF in the beam. Figure 2 illustrates how
the simulated network of six mobile sensors scanned
4,992 sensing nodes in unison, with two back-and-forth
motions, passing each node at least four times. For
wide coverage, mobile sensors were equally spaced at
715 nodes apart and were each designated a zone with

Fig. 2. A network of six equally-spaced mobile sensors scans
4,992 points on the beam at the same speed. Each sensor

scans its designated zone four times, twice in each direction,
without pause: (a) sensors begin forward scan; (b) sensors
complete forward scan; (c) sensors begin reverse scan; (d)

sensors complete reverse scan; (e) sensors begin next
scanning cycle and eventually stop at their starting positions

(step not shown).

a width of 1,430 nodes (50% overlap). The nodes in
overlapping portions of these zones were each mea-
sured eight times, that is, double coverage for sensing
nodes within the central 71%. The corresponding DSN
data were calculated as the observations of the time-
variant TPM, using the exact MSR relations. Alterna-
tively, this data could have been generated by either
the standard or modal TPM discussed in Matarazzo and
Pakzad (2016b). For the minimum model size, the num-
ber of modes included in the response was set equal to
the observation size in the DSN data matrix (M = NO ).
In the case of online DSN data, the observation size
is also equal to the number of sensor channels, that
is, NO = Nmc. In this example, M = NO = Nmc = 6.

The mobile sensors recorded acceleration at 50 Hz,
moving to the next sensing node (DOF for discretized
systems) in their respective routes after each sample.
The DSN data was composed of six observations with
3,328 samples each, which represented the vibrations of
4,992 points over the course of about 67 seconds. Fi-
nally, 1% random noise was added to the DSN data to
simulate measurement errors.

4.2 Selection of VPLs and modal identification results

With the DSN data specified, the analyst can choose the
VPLs. To preserve the minimum model size of the TPM,
the number of VPLs, Nα , should be set equal to the
number of modes included in the response, M ; that is,
Nα = M = 6. In this example, 24 ordinates are targeted
for each mode shape; therefore, it is necessary to select
four sets of six VPLs.

Table 1 details the four VPL sets considered; these
are the points at which mode shapes will be evaluated
in SID. In all sets, the VPLs are spaced equally to
the nearest integer (either by 714 or 715 nodes). For
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Table 1
Each VPL set includes six points (DOFs in this example) and

dictates where on the structure the mode shapes will be
evaluated during identification. Four VPL sets are detailed

below: sα(I ), sα(II), sα(III), and sα(I V ). In each set, the VPLs are
spaced equally (by 714 or 715) to the nearest integer

VPL Set sα1 sα2 sα3 sα4 sα5 sα6

sα(I ) 571 1,285 2,000 2,714 3,428 4,142
sα(I I ) 714 1,428 2,142 2,857 3,571 4,285
sα(I I I ) 857 1,571 2,285 2,999 3,714 4,428
sα(I V ) 1,000 1,714 2,428 3,142 3,857 4,571

clarification, the DSN data is independent of the VPL
selection; although it is true that in this case, the mobile
sensors share this spacing, it is coincidental and was only
chosen for illustration. Furthermore, the VPL sets are
essentially shifted versions of one another. For instance,
the points in sα(I ) are 143 (142 for sα3 ) nodes apart from
those in sα(I I ).

The STRIDEX method was performed four times,
once for each VPL set, using the same DSN data. A
model order of four, p = 4, and a slope threshold of
θ = 5 × 10−4 (the standard value) were selected and the
initial estimates for A0 and C0 were provided by ERA-
OKID-OO (Chang and Pakzad, 2013b) (also p = 4).
The remaining parameters were set in accordance with
the initialization guidelines for STRIDE (Matarazzo
and Pakzad, 2016c): μ̄0 was the zero vector with size
pNα , whereas V̄0, Q0, and R0 were the identity matrices
with sizes pNα , pNα , and NO , respectively.

Each STRIDEX run produced a comprehensive set
of modal property estimates. In Table 2, the frequency
and damping estimates computed for each VPL set are
compared with the exact MDOF values; the STRIDEX
mean and the coefficient of variation (CoV) values were
computed based on the VPL results and provide a mea-
sure of precision. The individual and mean STRIDEX
frequency estimates matched the exact values for each
mode. The STRIDEX CoV for the frequencies was
also low, showing a consistent accuracy. The STRIDEX
damping ratio estimates were also quite close to the true
values; this is significant because damping estimates in
output-only SID are typically associated with large er-
ror margins (Au, 2013; Chang and Pakzad, 2013b). In
particular, the mean damping estimates for modes two
and four were within 8% and 3% of the exact values,
respectively. The CoV of the STRIDEX damping es-
timates also indicate consistency. Overall, the accura-
cies of the frequency and damping estimates provided
by STRIDEX are aligned with those achieved in fixed
sensor SID.

Figure 3 superposes the high-resolution mode shapes,
estimated using the mobile sensor data, on the exact val-
ues at all 24 DOFs under consideration. To reiterate,
modal ordinates at twenty-four unique beam locations
were estimated using only six sensors. In other words,
each mobile sensor provided the spatial information of
four fixed sensors. Moreover, as it will be demonstrated
more explicitly in the following experimental applica-
tion, STRIDEX shows that mobile sensors can provide
practically unlimited spatial information in the scanned
region.

In addition to the high quantity of modal ordinates
provided using only six mobile sensors, the accuracy of
the estimates is also noteworthy. The consistency be-
tween the STRIDEX mode shapes and the exact val-
ues were evaluated using the modal assurance criterion
(MAC) and are displayed in Figure 3. All four val-
ues were greater than 0.98, of which three surpassed
0.99. Within the third mode, there is one point (at DOF
3,428) that is misaligned; the magnitude of this modal
ordinate is correct, although the reversed sign reduces
the MAC value for the shape.

In summary, the STRIDEX method demonstrated its
ability to produce reliable modal property estimates for
frequencies, damping ratios, and dense mode shapes
for a 5,000-DOF beam. The estimation efficiency of the
mode shapes is particularly promising: the accuracy and
scalability of STRIDEX are displayed.

5 EXPERIMENTAL APPLICATION

This section presents an experimental implementation
of a mobile sensor network, which scans the vibrations
of a flexible steel beam specimen, a platform intro-
duced in Horner et al. (2015). The resulting DSN data
is processed with the STRIDEX algorithm to deter-
mine comprehensively the fundamental mode. For val-
idation, fixed sensor data was also collected and pro-
cessed for SID using ERA-NExT and STRIDE.

5.1 Mobile sensing platform and beam specimen

The beam specimen (pictured in Figure 4a) is a sim-
ply supported steel plate with an adjustable posttension-
ing system, which can control the midspan deflection
while permitting analyses of various dynamic systems.
The beam is a 6.35-mm (¼ in) thin steel plate that is 635
mm (25 in) wide by 3.66 m (12 ft) long, and is supported
305 mm (12 in) from each end. Beneath the plate, a
steel shore post (manufactured by Ellis—not visible in
Figure 4a), with its adjustable length, provides a
selectable horizontal posttensioning force on the
supports.
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Table 2
STRIDEX frequency and damping estimates for the first four modes of the 5,000-DOF beam and exact values

Frequencies (Hz) Damping ratios (%)

VPL set f1 f2 f3 f4 ζ1 ζ2 ζ3 ζ4

sα(I ) 0.2682 1.094 2.438 4.341 4.497 1.126 0.839 1.114
sα(I I ) 0.2685 1.093 2.440 4.342 2.077 1.038 0.858 0.966
sα(I I I ) 0.2684 1.092 2.437 4.338 3.558 1.249 0.916 0.970
sα(I V ) 0.2694 1.095 2.439 4.348 1.494 0.905 0.922 1.059
Mean 0.2686 1.093 2.439 4.342 2.906 1.079 0.884 1.027
CoV (× 10−4) 18.97 10.56 5.940 9.507 4716 1344 469.4 703.7
Exact value 0.2735 1.088 2.448 4.352 1.000 1.000 1.000 1.000

Fig. 3. High-resolution mode shape estimates for the first
four modes. Each shape contains 24 modal ordinates, which

are compared with the exact values.

At both ends of the specimen, there are wooden
pedestals that carry the motor-driven pulley system.
Rotational shafts with gears were mounted on the
pedestals and the step motor (STAC6-Si by Applied
Motion) was installed on the East one. Figure 4a
shows four blue belts, which extend over the speci-
men, from one pedestal to the other, and make con-
tact with the roof of the mobile sensor cars parked
at the West support. Figure 4b shows a close-up of
a sensor car, which was used in Horner et al. (2015)
and was constructed out of small plastic components.
Figure 4c shows the step-motor assemblage on the East
pedestal that drives the pulley system. Each car car-
ries an IPR2420 Imote2 configured with TinyOS boot-
loader (Pakzad et al., 2008), an IBB2400CA battery
board (three 1.2 V batteries), and an ISM400 sensor
board (Spencer, 2011).

A script for controlling the rotational speed and
direction of the step-motor, therefore, the paths of the

Fig. 4. (a) Aerial photo of beam specimen at Lehigh
University. Two mobile sensor cars are shown at their

starting positions; (b) mobile sensor car equipped with a
wireless accelerometer; (c) step motor, shaft assemblage, and

four belts.

mobile sensor cars, was developed using Si Programmer
(Applied Motion Products, 2009). Starting as shown in
Figure 4a, the sensor cars traveled in unison at about
114 mm/s (4.5 in/s), while sampling acceleration at 280
Hz, toward the other support; as soon as the cars passed
the East support, they reversed and returned to their
initial positions. In each direction, the sensors scanned
7,788 points across the span. According to the mobile
sensing protocol, the cars scanned the same 7,788 points
on their return, resulting in 15,576 samples total (about
56 sec). Several bumps, with known locations, were
installed on the surface of the beam to examine the
precision of the spatiotemporal grid established by the
step-motor and discrete-time sampling. The positions
of the sensor cars provided by the motor program were
estimated within 1.3% of the true positions.

During data collection, the plate was excited man-
ually by two lab assistants, who applied impulse-like
forces of moderate intensities at various locations along
the main span to excite multiple modes. For validation
of the estimated modal properties, acceleration data
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was collected from the specimen using a network of four
wireless fixed sensors (stationary sensor cars). The SID
procedures and results for the mobile and fixed sensor
networks are discussed in the following sections.

5.2 Practical considerations for DSN data processing
and VPL selection

In practice, a continuous structure is scanned, as op-
posed to discretized elements in computer simulations.
It is important to review details of DSN data and VPLs
in this context. Although this article focuses on a specific
subcategory of structures for validation, the formulation
is based on general concepts, with applications exceed-
ing this subcategory.

During measurement, the locations of the mobile sen-
sors must be recorded or tracked by some means to es-
tablish the spatiotemporal grid, that is, sensing nodes
and sensor-position time-series. In simulations, this task
is trivial because it is a prerequisite for producing the
DSN data. Furthermore, the units of the position entries
are arbitrary, yet because they are a component of the
DSN data set; it is recommended they are programmed
with intuition to simplify the organization and interpre-
tation of multiple analyses.

The experiment in this article exemplifies the case
in which the locations of the sensors the positions are
known with high certainty. In the case of smartphones,
sensor-position vectors can be modeled by integrating
associated sensor data, for example, GPS, accelerom-
eter, gyroscope, and so on—a procedure with an esti-
mation accuracy and precision that is independent of
STRIDEX.

Generally, for sensors within moving vehicles, the
measured signals are subject to noise generated through
dynamic vehicle-bridge interaction (Cantieni, 1992;
Jiang et al., 2004; Ward and Iagnemma, 2009; Yang and
Chang, 2009), which is dependent on bridge dynamics,
vehicle dynamics, vehicle speed, and road profile. In this
application, the vibrations of the beam dominated the
recorded signal because (i) the sensor cars are much
stiffer than the beam specimen; (ii) the beam surface
is smoothed with a layer of paper; and (iii) the sensor
cars are not moving quickly. This study focuses on an ex-
perimental validation of the STRIDEX method; a com-
prehensive study on the impact of these parameters on
identification is reserved for future work.

Finally, the VPLs need not coincide with any of the
points scanned during measurement because the do-
main of the sinc interpolation function is continuous,
that is, VPLs can be chosen in-between sensing nodes.
As a result, the mode shape estimates that follow exist
in a continuum; theoretically, their spatial resolutions
are unlimited.

5.3 VPLs, SID results, and discussion

The network of two mobile sensors corresponded to an
online DSN data matrix with two measurement chan-
nels, Nmc = 2, and two observations, NO = 2. For min-
imum model size, each VPL set contained two points,
that is, Nα = 2 and M = Nα . The VPLs are virtual points
that are established in the TPM; although, with real
structures, they also have an explicit representation in
physical space. In each set, the VPLs were separated by
1.22 m (4 ft, 40% of the main span). The VPL sets were
generated as uniformly shifted versions of one another.
For instance, the points of one VPL set were spaced
about 12.1 mm (0.48 in, 0.4% of the main span) from
the adjacent set. Overall, 144 VPL sets were analyzed
(144 STRIDEX runs, thus 144 sets of modal property
estimates), which corresponded to 288 aggregate mode
shape ordinates.

The fixed sensor data was collected by four station-
ary sensor cars and was processed independently us-
ing two SID methods: ERA-NExT (James et al., 1993)
and STRIDE (Matarazzo and Pakzad, 2016c). The free,
Matlab-based Structural Modal Identification Toolsuite
(SMIT) (Chang and Pakzad, 2013b) program was se-
lected to implement ERA-NExT 50 times at even mod-
els orders 2–100, and construct the corresponding stabi-
lization diagram. Because the modal estimates can vary
significantly among model orders (Chang and Pakzad,
2013b), the results from ERA-NExT model order 74
(p = 74) were selected to represent the method be-
cause they were consistent with the mean frequency and
damping estimates of all model orders. The STRIDE
method processed the data at a model order of four and
with the default slope threshold (p = 4, θ = 5 × 10−4).
The initial state and observation matrices were pro-
vided by ERA-OKID-OO (Chang and Pakzad, 2013b)
at model order four and the remainder of the superpa-
rameter was the default assignment.

The mobile sensor data was processed using
STRIDEX at a model order of six and the default
slope threshold (p = 6, θ = 5 × 10−4). Recall with
STRIDE, a higher model order can be selected to
force further system poles using fewer sensors, for
example, Nmc = 2. The same practice is applicable to
STRIDEX in cases where the DSN data contain few
observations, for example, NO = 2. Initial estimates for
the TPM state and observation matrices were provided
by ERA-OKID-OO (Chang and Pakzad, 2013b) at
model order six, with the remaining parameters set as
the defaults.

The frequency and damping estimates for the first
mode of the structure are provided in Table 3. The mean
frequency and damping values for the 50 ERA-NExT
estimates are shown as “ERA-NExT mean” and those
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Table 3
A comparison of frequency and damping estimates for the

first vertical mode: “ERA-NExT mean” are the average
values out of 50 model orders considered; “ERA-NExT (p =
74)” are the estimates from model order 74; and “STRIDE”

are the estimates from model order 4

SID method Frequency (Hz) Damping (%)

ERA-NExT mean 8.225 0.8914
ERA-NExT (p = 74) 8.237 0.8937
STRIDE 8.226 1.035
STRIDEX mean 8.304 0.7069
ERA-NExT CoV 2.059 × 10−3 993.4 × 10−3

STRIDEX CoV 2.077 × 10−3 187.8 × 10−3

from model order 74 are “ERA-NExT (p = 74)”; corre-
sponding CoV values are also displayed. Similarly, the
mean and CoV values of the 144 STRIDEX runs are in-
dicated as “STRIDEX mean” and “STRIDEX CoV”;
the mean values are interpreted as the modal estimates
from the mobile sensor data. The frequency estimates
of the fixed sensor data and the mobile sensing data are
in agreement. The STRIDE and ERA-NExT estimates
are slightly lower than those from STRIDEX, yet they
are all within 1% of each other. Furthermore, the CoV
of the STRIDEX estimates are on the same magnitude
as those observed in the ERA-NExT stabilization dia-
gram, demonstrating high precision.

The damping estimates are quite consistent among
the different data sets and SID methods considered.
The estimation of damping for a real structure through
output-only SID is particularly challenging; not only
are such estimates often accompanied with a larger
standard deviation but the true values are unavailable
for comparison (Au, 2013; Chang and Pakzad, 2013b;
Matarazzo and Pakzad, 2015; Pakzad and Fenves, 2009).
Given these challenges, the STRIDEX damping esti-
mates are promising because they fit well with those
computed using fixed sensor data. Finally, the CoV of
the STRIDEX damping estimates have the same magni-
tude as those seen in the stabilization diagram of ERA-
NExT. These results indicate that the accuracy and pre-
cision standards of fixed sensor networks and existing
SID methods are also achievable with mobile sensing
data and STRIDEX, which is quite encouraging.

The ordinates of the first mode shape are compared in
Figure 5. With the DSN data and the scalable VPL strat-
egy, 288 raw points were available. The spacing and the
generation of the VPLs were such that 40 x-coordinates
near midspan had two corresponding modal ordinates;
only one modal ordinate is plotted for each point on the
span. The resulting mode shape was scaled and shifted
mildly in the x-direction to align its zero ordinates with

Fig. 5. First mode shape of the beam specimen: the mode
shape estimated from the mobile sensor data contains 248

points.

Table 4
A comparison of the first mode shape using modal assurance

criterion (MAC): the SID results from the fixed sensors
(ERA-NExT and STRIDE) are compared with one another

and then with those from the mobile sensors (STRIDEX)

SID methods MAC

ERA-NExT (p = 74) & STRIDE 1.000
ERA-NExT (p = 74) & STRIDEX 0.9935
STRIDE & STRIDEX 0.9935

the supports. Finally, the mode shape was normalized to
have a maximum value of one.

Figure 5 shows 248 ordinates computed from the
mobile sensor data and four points produced from the
fixed sensor data. In other words, each mobile sensor
produced over 120 more mode shape points than each
fixed sensor. This result further quantifies how DSN
data sets can store dense spatial information efficiently
in a compact data matrix. The “fixed” points shown in
Figure 5 were computed using STRIDE and were iden-
tical to those estimated by ERA-NExT (as indicated
by a MAC value of unity in Table 4). The accuracy of
the high-resolution mode shape could only be verified
at four points due to the limited size of the fixed sensor
network. In Table 4, the mode shape estimates from
three methods are compared with one another using
the MAC (Allemang and Brown, 1982) metric, in which
a value of one signifies perfect consistency between the
mode shape vectors. The MAC between the STRIDEX
mode shape and either fixed sensor estimate exceeded
0.99, indicating excellent consistency.
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In summary, this experimental application further
established how frequency and damping estimates
obtained through SID with mobile sensor data and
STRIDEX are on par with modern techniques that con-
sider fixed sensor data. The dense mode shape estimate
with 248 points exemplified the rich spatial information
available in DSN data and successfully demonstrated
its extraction through a series of STRIDEX runs.

6 SUMMARY AND CONCLUSIONS

� The rate at which the SHM community incorpo-
rates crowdsourced smartphone data depends on the
adaptability and computational scalability of upcom-
ing analytical tools. For instance, an output-only
modal identification method that is capable of pro-
cessing DSN data is also applicable to smartphone
data.

� The STRIDEX algorithm was proposed for output-
only modal identification of the stochastic TPM using
DSN data, that is, mobile sensor data or BIGDATA.

� The STRIDEX identification algorithm has four key
features:

1. Comprehensive and convenient: estimates fre-
quencies, damping, and mode shapes simultane-
ously.

2. Adaptable: there are no methodological restric-
tions on sensor arrangement or mobility as long
as the positions of each sensor are known for all
samples.

3. Scalable information: with a new VPL assign-
ment, an additional identification run can pro-
duce a new set of mode shape ordinates from
the same set of DSN data.

4. Computationally scalable: (i) the size of the
TPM is independent of the density of the spatial
grid applied during measurement and (ii) in the
construction of high-resolution mode shapes,
the computational needs of individual runs are
nearly equivalent to one another.

� With STRIDEX, the mode shape estimates of a real
structure exist in a continuum; theoretically, their
spatial resolutions are unlimited.

� It was shown that the accuracy and precision stan-
dards established by fixed sensor SID methods, for
example, ERA-NExT and STRIDE, are also achiev-
able using mobile sensors and STRIDEX.

� In a simulation where a network of six mobile sensors
scanned a 5,000-DOF beam, the STRIDEX method
demonstrated its ability to provide reliable modal
property estimates of frequencies and damping ra-
tios for the first four modes. A series of independent

STRIDEX runs produced mode shape estimates with
24 points each (four times more points per sensor
than a fixed sensor network) and were nearly per-
fectly consistent with the exact values.

� In an experimental application, two mobile sensor
cars measured acceleration from about 8,000 points
on a beam specimen in less than 1 minute. By compil-
ing results from a series of independent STRIDEX
runs, a dense mode shape with 248 ordinates (over
120 times more efficient than a fixed sensor network)
was produced with a verified accuracy at four points,
further proving the utility of an adaptable and scal-
able SID method.
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NOTATION

The following symbols were used in this article:

Symbol Description

A TPM state matrix; size is pNα × pNα . For
minimum model size: Nα = NO = M

C TPM observation matrix; size is M × pNα .

C(eq)
k Equivalent time-variant observation matrix

exclusively defined for E-step; equal to �kC ;
size is NO × pNα

p Model order; scalar
sα Location vector of Nα VPLs in TPM; size is Nα ;

element is sαi
sO

k Location vector of NO observations at time-step
k; size is NO

�sα Distance between uniformly spaced VPLs
j Iteration index; integer
θ Log-likelihood slope threshold; scalar
k Time-step index; integer
K Total number of time steps; integer
xk State vector in TPM; size is pNα . For minimum

model size: Nα = NO = M
μ̄ Mean vector for initial state vector x1; size is pNα
V̄ Covariance matrix for initial state vector x1; size

is pNα × pNα
yk Observation vector in TPM; size is NO
Y Aggregated observations (DSN data)
Nα Number of VPLs; integer
NO Number of observations; integer
Nmc Number of measurement channels; integer
N Number of sensing nodes; integer
M Number of modes in TPM; integer
� j Superparameter for TPM at iteration j
�k Mode shape regression (MSR) term; size is

NO × M .
�̂k Approximation of MSR term using sinc basis
ηk Gaussian state input vector; size is pNα
νk Gaussian measurement noise vector; size is NO
Q State input covariance matrix; size is pNα × pNα
R Measurement noise covariance matrix; size is

NO × NO
x̂k|K Minimum mean squared-error estimate of state

vector at time-step k; size is pNα
V̂k1,k2|K Covariance matrix for estimated states at

time-steps k1 and k2; size is pNα × pNα
L X,Y (� j ) Complete data log-likelihood function for TPM;

scalar
G(� j+1|� j ) Conditional expectation of TPM log-likelihood

function given observations and
superparameter estimate at iteration j

�O
k Mode shape matrix containing ordinates at

observation locations; size is NO × M
�α Mode shape matrix containing ordinates at VPLs;

size is Nα × M

 Diagonal eigenvalue matrix of A; size is

pNα × pNα
� Eigenvector matrix A; size is pNα × pNα
f̂ Vector of estimated modal frequencies; size is

pNα
ζ̂ Vector of estimated damping ratios; size is pNα
�̂ Matrix of estimated mode shapes (at VPLs); size

is NO × pNα
�t Sampling period in seconds; scalar


