In this chapter:
* Components
* Peers

* Layouts

* Containers

* And the Rest

* Summary

Abstract Window

Toolkit Overview

For years, programmers have had to go through the hassles of porting software
from BSD-based UNIX to System V Release 4-based UNIX, from OpenWindows to
Motif, from PC to UNIX to Macintosh (or some combination thereof), and
between various other alternatives, too numerous to mention. Getting an applica-
tion to work was only part of the problem; you also had to port it to all the plat-
forms you supported, which often took more time than the development effort
itself. In the UNIX world, standards like POSIX and X made it easier to move appli-
cations between different UNIX platforms. But they only solved part of the prob-
lem and didn’t provide any help with the PC world. Portability became even more
important as the Internet grew. The goal was clear: wouldn’t it be great if you
could just move applications between different operating environments without
worrying about the software breaking because of a different operating system, win-
dowing environment, or internal data representation?

In the spring of 1995, Sun Microsystems announced Java, which claimed to solve
this dilemma. What started out as a dancing penguin (or Star Trek communicator)
named Duke on remote controls for interactive television has become a new
paradigm for programming on the Internet. With Java, you can create a program
on one platform and deliver the compilation output (byte-codes/class files) to
every other supported environment without recompiling or worrying about the
local windowing environment, word size, or byte order. The first generation of Java
programs consisted mostly of fancy animation applets that ran in a web browser
like Netscape Navigator, Internet Explorer, or HotJava. We’re beginning to see the
next generation now: powerful distributed applications in areas ranging from com-
merce to medical imaging to network management. All of these applications
require extreme portability: Joe’s Online Bait Shop doesn’t have the time or

2 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

energy to port its “Online Bait Buyer” program to every platform on the Internet
but doesn’t want to limit its market to a specific platform. Java neatly solves their
problem.

Windowing systems present the biggest challenges for portability. When you move
an application from Windows to the Macintosh, you may be able to salvage most of
the computational guts, but you’ll have to rewrite the window interface code com-
pletely. In Java, this part of the portability challenge is addressed by a package
called AWT, which stands for Abstract Window Toolkit (although people have
come up with many other expansions). AWT provides the magic of maintaining
the local look and feel of the user’s environment. Because of AWT, the same appli-
cation program can look appropriate in any environment. For example, if your
program uses a pull-down list, that list will look like a Windows list when you run
the program under Windows; a Macintosh list when you run the program on a
Mac; and a Motif list when you run the program on a UNIX system under Motif.
The same code works on all platforms. In addition to providing a common set of
user interface components, AWT provides facilities for manipulating images and
generating graphics.

This book is a complete programmer’s guide and reference to the java.awt pack-
age (including java.awt.image, java.awt.event, java.awt.datatransfer, and
java.awt.peer). It assumes that you're already familiar with the Java language and
class libraries. If you aren’t, Exploring Java, by Pat Niemeyer and Josh Peck, pro-
vides a general introduction, and other books in the O’Reilly Java series provide
detailed references and tutorials on specific topics. This chapter provides a quick
overview of AWT: it introduces you to the various GUI elements contained within
the java.awt package and gives you pointers to the chapters that provide more
specific information about each component. If you’re interested in some of the
more advanced image manipulation capabilities, head right to Chapter 12, Image
Processing. The book ends with a reference section that summarizes what you need
to know about every class in AWT.

In using this book, you should be aware that it covers two versions of AWT: 1.0.2
and 1.1. The Java 1.1 JDK (Java Developer’s Kit) occurred in December 1996. This
release includes many improvements and additions to AWT and is a major step for-
ward in Java’s overall functionality. It would be nice if I could say, “Forget about
1.0.2, it’s obsolete—use this book to learn 1.1.” However, I can’t; at this point,
since browsers (Netscape Navigator in particular) still incorporate 1.0.2, and we
have no idea when they will incorporate the new release. As of publication, Naviga-
tor 4.0 is in beta test and incorporates 1.0.2. Therefore, Java release 1.0.2 will con-
tinue to be important, at least for the foreseeable future.

1.1 COMPONENTS 3

In this summary, we’ll point out new features of Java 1.1 as they come up. However,
one feature deserves mention and doesn’t fit naturally into an overview. Many of
the methods of Java 1.0.2 have been renamed in Java 1.1. The old names still work
but are “deprecated.” The new names adhere strictly to the design patterns dis-
cussed in the JavaBeans documentation:* all methods that retrieve the value of an
object’s property begin with “get,” all methods that set the value of a property
begin with “set,” and all methods that test the value of some property begin with
“is.” For example, the size() method is now called getSize(). The Java 1.1 com-
piler issues warnings whenever you used a deprecated method name.

1.1 Components

Modern user interfaces are built around the idea of “components”: reusable gad-
gets that implement a specific part of the interface. They don’t need much intro-
duction: if you have used a computer since 1985 or so, you’re already familiar with
buttons, menus, windows, checkboxes, scrollbars, and many other similar items.
AWT comes with a repertoire of basic user interface components, along with the
machinery for creating your own components (often combinations of the basic
components) and for communicating between components and the rest of the
program.

The next few sections summarize the components that are part of AWT. If you're
new to AWT, you may find it helpful to familiarize yourself with what’s available
before jumping into the more detailed discussions later in this book.

1.1.1 Static Text

The Label class provides a means to display a single line of text on the screen.
That’s about it. They provide visual aids to the user: for example, you might use a
label to describe an input field. You have control over the size, font, and color of
the text. Labels are discussed in Section 5.2. Figure 1-1 displays several labels with
different attributes.

1.1.2 User Input

Java provides several different ways for a user to provide input to an application.
The user can type the information or select it from a preset list of available
choices. The choice depends primarily on the desired functionality of the pro-
gram, the user-base, and the amount of back-end processing that you want to do.

* http://splash.javasoft.com/beans/spec.html

4 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

E%;,Applel Yiewer: labels _ (O] x|
Applet

Dialog Hehlvetica TimesRoman
Courier Dialoginput

CGOR KM E) S &

Applet started.

Figure 1-1: Multiple Label instances

1.1.2.1 The TextField and TextArea classes

Two components are available for entering keyboard input: TextField for single
line input and TextArea for multi-line input. They provide the means to do things
from character-level data validation to complex text editing. These are discussed in
much more detail in Chapter 8, Input Fields. Figure 1-2 shows a screen that con-
tains various TextField and TextArea components.

E%?,Applel Yiewer: texts _ (O] x|

Applet

IEmply String

| Hele Prorkd

ScratchPadonlce =l

" o

Applet started.

Figure 1-2: lextlField and TextArea elements

1.1.2.2 The Checkbox and CheckboxGroup classes

The remaining inputoriented components provide mechanisms for letting the
user select from a list of choices. The first such mechanism is Checkbox, which lets
you select or deselect an option. The left side of the applet in Figure 1-3 shows a
checkbox for a Dialog option. Clicking on the box selects the option and makes

1.1 COMPONENTS 5

the box change appearance. A second click deselects the option.

The CheckboxGroup class is not a component; it provides a means for grouping
checkboxes into a mutual exclusion set, often called a set of radio buttons. Select-
ing any button in the group automatically deselects the other buttons. This behav-
ior is useful for a set of mutually exclusive choices. For example, the right side of
the applet in Figure 1-3 shows a set of checkboxes for selecting a font. It makes
sense to select only one font at a time, so these checkboxes have been put in a
CheckboxGroup.

[E3 Applet Viewer: checkboxes [H[=] EX " = |Applet Viewer: checkboxes.class
Applet fplet

" Helvetica

" TimesAoman +w Helvetica

[T Dialog " Courier ~wTimesRoman
¢ Dialoglnput dDialeg « Courier
~ ZapfDingbats ~ Dialeglnput

wZzapfDingbats

Applet started.

IP.[:nplet started,
Windows Motif
Figure 1-3: Examples of Checkbox and CheckboxGroup

The appearance of a checkbox varies from platform to platform. On the left, Fig-
ure 1-3 shows Windows; the right shows Motif. On most platforms, the appearance
also changes when a checkbox is put into a CheckboxGroup.

1.1.2.3 The Choice class

Checkbox and CheckboxGroup present a problem when the list of choices becomes
long. Every element of a CheckboxGroup uses precious screen real estate, which
limits the amount of space available for other components. The Choice class was
designed to use screen space more efficiently. When a Choice element is displayed
on the screen, it takes up the space of a single item in the list, along with some
extra space for decorations. This leaves more space for other components. When
the user selects a Choice component, it displays the available options next to or
below the Choice. Once the user makes a selection, the choices are removed from
the screen, and the Choice displays the selection. At any time, only one item in a
Choice may be selected, so selecting an item implicitly deselects everything else.
Section 9.1 explores the details of the Choice class. Figure 1-4 shows examples of
open (on the right of the screens) and closed (on the left) Choice items in
Windows 95 and Motif.

6 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

E‘g’ghpplel Yiewer: choicebox

Applet

IDiaIug j Dialog j
Dialog

¥ﬂ;§gﬁ?ﬂan =] Applet Yiewer: choicebox B
Courier
z Applet

ZapfDingbats

Applet started. Dialog _i | Dialeg =

Windows Helvetica

TimesRoman
Courier
Dialeglnput
ZapfDingbats

Motif Applet started.

Figure 1-4: Open and closed Choice items

1.1.2.4 The List class

Somewhere between Choice and CheckboxGroup in the screen real estate business
is a component called List. With a List, the user is still able to select any item.
However, the programmer recommends how many items to display on the screen
at once. All additional choices are still available, but the user moves an attached
scrollbar to access them. Unlike a Choice, a List allows the user to select multiple
items. Section 9.2 covers the List component. Figure 1-5 shows List components
in different states.

ng,.hpplel Yiewer: listex M=
Applet

Dialog a | |Courier -
Helvetica Dialoglnput
TimezRoman > | |ZapiDingbats ﬂ

Helvetica AI
TimezRoman

-

Applet started.

Figure 1-5: List components in different states

1.1 COMPONENTS 7

1.1.2.5 Menus

Most modern user interfaces use menus heavily; therefore, it’s no surprise that Java
supports menus. As you’d expect, Java menus look like the menus in the window-
ing environment under which the program runs. Currently, menus can only
appear within a Frame, although this will probably change in the future. A Menu is a
fairly complex object, with lots of moving parts: menu bars, menu items, etc. Java
1.1 adds hot keys to menus, allowing users to navigate a menu interface using key-
board shortcuts. The details of Menu are explored in Chapter 10, Would You Like to
Choose from the Menu? Figure 1-6 shows frames with open menus for both Windows
and Motif. Since tear-off menus are available on Motif systems, its menus look and
act a little differently. Figure 1-6 also includes a tear-off menu. The shortcuts
(Ctrl+F8) are newly supported in Java 1.1.

* Menu Example !EIE rﬂ Menu Example
File
File | |
Mew'Web Browser Ctl+F8 P File Tear—off
MNew Mail Message Cirl+Shift+F8 New beb Browser 1
MNew Folder New Hail Hessage M
= Mew Folder Hew Hail MHezzage
it Close Mew Folder
Ouit Close
Quit
l |
Windows Motif Tear-off

Figure 1-6: Examples of menus

1.1.2.6 The PopupMenu class

The PopupMenu class is new to Java 1.1. Pop-up menus can be used for context-sen-
sitive, component-level menus. Associated with each Component can be its own pop-
up menu. The details of creating and working with the PopupMenu class and the
fun time you have catching their events are covered in Chapter 10, Would You Like
to Choose from the Menu? Figure 1-7 shows an example of a pop-up menu.

1.1.3 Event Triggers

Java provides two components whose sole purpose is to trigger actions on the
screen: Button and Scrollbar. They provide the means for users to signal that
they are ready to perform an operation. (Note that all components except labels
generate events; I'm singling out buttons and scrollbars because their only pur-
pose is to generate events.)

CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

{Applet Viewer: . M=l E3

Applet

Select Al

Lndo

)
Eejer
Faste
[Delete

Figure 1-7: A Pop-up menu

1.1.3.1 The Scrollbar class

Most people are familiar with scrollbars. In a word processor or a web browser,
when an image or document is too large to fit on the screen, the scrollbar allows
the user to move to another area. With Java, the Scrollbar performs similarly.
Selecting or moving the scrollbar triggers an event that allows the program to pro-
cess the scrollbar movement and respond accordingly. The details of the Scroll-
bar are covered in Section 11.1. Figure 1-8 shows horizontal and vertical scrollbars.

E%'Applel Viewer: scroll
Applet

IS [=] B3

j;l\%l=’_P

Applet Viewer: gri’

Four

r

SEMEN

1

Applet started.

Figure 1-8: Horizontal and vertical scrollbars

Note that a scrollbar is just that. It generates events when the user adjusts it, but
the program using the scrollbar is responsible for figuring out what to do with the
events, such as displaying a different part of an image or the text, etc. Several of

1.1 COMPONENTS 9

the components we’ve discussed, like TextArea and List, have built-in scrollbars,
saving you the trouble of writing your own code to do the actual scrolling. Java 1.1
has a new container called a ScrollPane that has scrolling built in. By using a
scroll pane, you should be able to avoid using scroll bars as a positioning mecha-
nism. An example of ScrollPane appears later in this chapter.

1.1.3.2 The Button class

A button is little more than a label that you can click on. Selecting a button trig-
gers an event telling the program to go to work. Section 5.3 explores the Button
component. Figure 1-9 shows Button examples.

=3 Applet Vie... [H[=]

Applet

Dialog | Helvetica |

TimezRoman |

Courier | Dialoglnput |

ZapliDingbats |

Applet started.

Figure 1-9: Various buttons

The Java Management API includes a fancier button (ImageButton) with pictures
rather than labels. For the time being, this is a standard extension of Java and not
in the Core API. If you don’t want to use these extensions, you’ll have to imple-
ment an image button yourself.

1.1.4 Expansion
1.1.4.1 The Canvas class

The Canvas class is just a blank area; it doesn’t have any predefined appearance.
You can use Canvas for drawing images, building new kinds of components, or cre-
ating super-components that are aggregates of other components. For example,
you can build a picture button by drawing a picture on a Canvas and detecting
mouse click events within the area of the Canvas. Canvas is discussed in Section
5.5.

10 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.2 Peers

Java programs always have the look and feel of the platform they are running on. If
you create your program on a UNIX platform and deliver it to Microsoft Windows
users, your program will have Motif’s look and feel while you're developing it, but
users will see Microsoft Windows objects when they use it. Java accomplishes this
through a peer architecture, shown in Figure 1-10.

Native Platform Objects |«—— Peer Interfaces |<«—— Java Components
— —

Win32 / Motif / Mac / ... User Subclasses

Figure 1-10: Peer architecture

There are several layers of software between your Java program and the actual
screen. Let’s say you are working with a scrollbar. On your screen, you see the
scrollbar that’s native to the platform you’re using. This system-dependent scroll-
bar is the “peer” of the Java Scrollbar object. The peer scrollbar deals with events
like mouse clicks first, passing along whatever it deems necessary to the corre-
sponding Java component. The peer interface defines the relationship between
each Java component and its peer; it is what allows a generic component (like a
Scrollbar) to work with scrollbars on different platforms.

Peers are described in Chapter 15, Toolkit and Peers. However, you rarely need to
worry about them; interaction between a Java program and a peer takes place
behind the scenes. On occasion, you need to make sure that a component’s peer
exists in order to find out about platform-specific sizes. This process usually
involves the addNotify () method.

1.3 Layouts

Layouts allow you to format components on the screen in a platform-independent
way. Without layouts, you would be forced to place components at explicit loca-
tions on the screen, creating obvious problems for programs that need to run on
multiple platforms. There’s no guarantee that a TextArea or a Scrollbar or any
other component will be the same size on each platform; in fact, you can bet they
won’t be. In an effort to make your Java creations portable across multiple plat-
forms, Sun created a LayoutManager interface that defines methods to reformat

1.3 LaAvourTs 11

the screen based on the current layout and component sizes. Layout managers try
to give programs a consistent and reasonable appearance, regardless of the plat-
form, the screen size, or actions the user might take.

The standard JDK provides five classes that implement the LayoutManager inter-
face. They are FlowLayout, GridLayout, Borderlayout, CardLayout, and Grid-
BagLayout. All of these layouts are covered in much greater detail in Chapter 7,
Layouts. This chapter also discusses how to create complex layouts by combining
layout managers and how to write your own LayoutManager. The Java 1.1 JDK
includes the LayoutManager? interface. This interface extends the LayoutManager
interface for managers that provide constraint-based layouts.

1.3.1 FlowLayout

The FlowLayout is the default layout for the Panel class, which includes its most
famous subclass, Applet. When you add components to the screen, they flow left to
right (centered within the applet) based upon the order added and the width of
the applet. When there are too many components to fit, they “wrap” to a new row,
similar to a word processor with word wrap enabled. If you resize an applet, the
components’ flow will change based upon the new width and height. Figure 1-11
shows an example both before and after resizing. Section 7.2 contains all the
FlowLayout details.

X

E‘g’,i'.hpplel Viewer: Card_._ [l[=] E3 E%-_%Ap... =] E3

Applet Applet
ﬁl il ll test | applet | M is 1'
test | applet |

flow] flon 3

Applet started. Applet started.

Big Narrow

Figure 1-11: A FlowLayout before and after resizing

1.3.2 GridLayout

The GridLayout is widely used for arranging components in rows and columns. As
with FlowLayout, the order in which you add components is relevant. You start at
row one, column one, move across the row until it’s full, then continue on to the
next row. However, unlike FlowLayout, the underlying components are resized to

12 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

fill the row-column area, if possible. GridLayout can reposition or resize objects
after adding or removing components. Whenever the area is resized, the compo-
nents within it are resized. Figure 1-12 shows an example before and after resizing.
Section 7.4 contains all the details about GridLayout.

[} Applet Viewer: Card... [H[=] B3 EiAp... M=
Applet Applet
thiz 53 a thiz | is a
test applet test |apple
gnd j Igrid j
Applet started. Applet started.
Big Narrow

Figure 1-12: A GridLayout before and after resizing

1.3.3 BorderLayout

BorderLayout is one of the more unusual layouts provided. It is the default layout
for window, along with its children, Frame and Dialog. BorderlLayout provides five
areas to hold components. These areas are named after the four different borders
of the screen, North, South, East, and West, with any remaining space going into
the Center area. When you add a component to the layout, you must specify which
area to place it in. The order in which components are added to the screen is not
important, although you can have only one component in each area. Figure 1-13
shows a BorderLayout that has one button in each area, before and after resizing.
Section 7.3 covers the details of the BorderLayout.

1.3.4 CardLayout

The CardLayout is a bit on the strange side. A CardLayout usually manages several
components, displaying one of them at a time and hiding the rest. All the compo-
nents are given the same size. Usually, the CardLayout manages a group of Panels
(or some other container), and each Panel contains several components of its
own. With a little work, you can use the Cardlayout to create tabbed dialog boxes
or property sheets, which are not currently part of AWT. CardLayout lets you assign
names to the components it is managing and lets you jump to a component by
name. You can also cycle through components in order. Figure 1-11, Figure 1-12,
and Figure 1-13 show multiple cards controlled by a single CardLayout. Selecting
the Choice button displays a different card. Section 7.5 discusses the details of
CardLayout.

1.4 CONTAINERS 13

2} Applet Viewer: Card... EiAp... M=
Applet Applet
thiz thiz
is applet test is | applet | test
a a
border j I border hd |
Applet started. Applet started.
Big Narrow

Figure 1-13: A BorderLayout

1.3.5 GridBaglLayout

GridBaglayout is the most sophisticated and complex of the layouts provided in
the development kit. With the GridBaglayout, you can organize components in
multiple rows and columns, stretch specific rows or columns when space is avail-
able, and anchor objects in different corners. You provide all the details of each
component through instances of the GridBagConstraints class. Figure 1-14 shows
an example of a GridBaglayout. GridBaglayout and GridBagConstraints are dis-
cussed in Section 7.6 and Section 7.7.

E3Applet V.. M= B3

Applet
One | Two Three

Four

- Five
Six | Seven

Applet started.

Figure 1-14: A GridBagl.ayout

1.4 Containers

A Container is a type of component that provides a rectangular area within which
other components can be organized by a LayoutManager. Because Container is a
subclass of Component, a Container can go inside another Container, which can go
inside another Container, and so on, like Russian nesting dolls. Subclassing Con-
tainer allows you to encapsulate code for the components within it. This allows
you to create reusable higher-level objects easily. Figure 1-15 shows the compo-
nents in a layout built from several nested containers.

14 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Eg_{ihpplet Yiewer: multiimg
Applet
North [Label ||
TextAreg ——f——— Button
Gridlayout Panel Button Fast
BorderLayout Panel —— Button
e
South
FlowLayout Panel | | Button Button Button
Applet started.

Figure 1-15: Components within containers

1.4.1 Panels

A Panel is the basic building block of an applet. It provides a container with no
special features. The default layout for a Panel is FlowLayout. The details of Panel
are discussed in Section 6.2. Figure 1-16 shows an applet that contains panels
within panels within panels.

E%'Applet Yiewer: panelex M= E3

Applet

Di|
He |
i
o
i |
Za|

- | L |2

Di|He| Ti| Co| Di | £Za Di|He| Ti| Co| Di| Za

=]

EEEEEE

™

Applet started.

Figure 1-16: A multilevel panel

1.4.2 Windows

A window provides a top-level window on the screen, with no borders or menu bar.
It provides a way to implement pop-up messages, among other things. The default
layout for a Window is BorderLayout. Section 6.4 explores the Window class in
greater detail. Figure 1-17 shows a pop-up message using a Window in Microsoft
Windows and Motif.

1.4 CONTAINERS 15

. .

Windows Motif

Figure 1-17: Pop-up windows

1.4.3 Frames

A Frame is a Window with all the window manager’s adornments (window title, bor-
ders, window minimize/maximize/close functionality) added. It may also include
a menu bar. Since Frame subclasses Window, its default layout is BorderLayout.
Frame provides the basic building block for screen-oriented applications. Frame
allows you to change the mouse cursor, set an icon image, and have menus. All the
details of Frame are discussed in Section 6.5. Figure 1-18 shows an example Frame.

g_?, My Frame

Figure 1-18: A frame

16 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.4.4 Dialog and FileDialog

A Dialog is a Window that accepts input from the user. BorderLayout is the default
layout of Dialog because it subclasses Window. A Dialog is a pop-up used for user
interaction; it can be modal to prevent the user from doing anything with the
application before responding. A FileDialog provides a prebuilt Dialog box that
interacts with the filesystem. It implements the Open/Save dialog provided by the
native windowing system. You will primarily use FileDialog with applications since
there is no guarantee that an applet can interact with the local filesystem.
(Netscape Navigator will throw an exception if you try to use it.) The details of
Dialog are revealed in Section 6.6, while FileDialog is discussed in Section 6.7.
Figure 1-19 shows sample Dialog and FileDialog boxes.

! Open File...
Filter
fhomesiazukow /book/%
Direct: Files

border.gif
button.class
butten.gif
butten.html
button.java
CardlayoutTest.class
CardLayoutTest html

L_L-

o s |

Dialog 7 |CardlayoutTestjava |,
Fii R JE—
(selection
Bpen e 21 | fhome/iazukow/book
- omefjazukow/books
Loak jr: Ia Awtcode j il IE__
glowbuttar.java @ Hellow™1 jug.class |3
Girid |8 Hellaw-z = || open | Filter | Cancel |
gridbag.claszs helloworld.java jug.java @
Gridbag horizbag.class uaTextField. class
gridbag & horizbag @ Labels E Motif FileDiang
gridbag.java horizbag.java £ labels E

1 o
File name: Ichoicebox Open I

Files of ype: [N | Cancel

Windows FileDialog

Figure 1-19: Examples of Dialog and FileDialog boxes

1.5 AND THE REST 17

1.4.5 ScrollPane

Java 1.1 introduces the ScrollPane container. In version 1.0, if you want to have a
scrolling area (for example, to display an image that won'’t fit onto the screen),
you create a panel using BorderLayout that contains scrollbars on the right and
bottom, and display part of the image in the rest of the screen. When the user
scrolls, you capture the event, figure out what part of the image to display, and
update the screen accordingly. Although this works, its performance is poor, and
it’s inconvenient. With version 1.1 of Java, you can tell the ScrollPane what needs
to scroll; it creates the scrollbars and handles all the events automatically. Section
11.4 covers the ScrollPane; Figure 1-20 shows a ScrollPane. Chapter 11, Scrolling,

covers the Adjustable interface that Scrollbar implements and ScrollPane uti-
lizes.

t Applet Yiewer: scroll I [=] 3

Applet
n-2 | Button-3 | Button-4 | Button5 | 2
n-10 | Buiton-11 | Button-12 | Button-13
n-18 | Button-19 | Button-20 | Button-21
r-26 | Button-27 | Button-28 | Button-29 | —
n-34 | Button-35 | Button-36 | Button-37

A _—

Applet started.

Figure 1-20: A ScrollPane

1.5 And the Rest

Several of the remaining classes within java.awt are important to mention here

but did not fit well into a general category. The following sections are a grab bag
that summarize the remaining classes.

1.5.1 Drawing and Graphics

Java provides numerous primitives for drawing lines, squares, circles, polygons,
and images. Figure 1-21 shows a simple drawing. The drawing components of AWT
are discussed in Chapter 2, Simple Graphics.

The Font, FontMetrics, Color, and SystemColor classes provide the ability to alter
the displayed output. With the Font class, you adjust how displayed text will
appear. With FontMetrics, you can find out how large the output will be, for the

18 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

specific system the user is using. You can use the Color class to set the color of text
and graphics. SystemColor is new to Java 1.1; it lets you take advantage of desktop
color schemes. These classes are discussed in Chapter 3, Fonts and Colors.

E%'Applet Yiewer: star H=] E3

Applet

Hi

Applet started.

Figure 1-21: A simple drawing

AWT also includes a number of classes that support more complex graphics
manipulations: displaying images, generating images in memory, and transforming
images. These classes make up the package java.awt.image, which is covered in
Chapter 12.

1.5.2 Events

Like most windows programming environments, AWT is event driven. When an
event occurs (for example, the user presses a key or moves the mouse), the envi-
ronment generates an event and passes it along to a handler to process the event.
If nobody wants to handle the event, the system ignores it. Unlike some windowing
environments, you do not have to provide a main loop to catch and process all the
events, or an infinite busy-wait loop. AWT does all the event management and pass-
ing for you.

Probably the most significant difference between versions 1.0.2 and 1.1 of AWT is
the way events work. In older versions of Java, an event is distributed to every com-
ponent that might conceivably be interested in it, until some component declares
that it has handled the event. This event model can still be used in 1.1, but there is
also a new event model in which objects listen for particular events. This new
model is arguably a little more work for the programmer but promises to be much
more efficient, because events are distributed only to objects that want to hear
about them. It is also how JavaBeans works.

1.6 SUMMARY 19

In this book, examples that are using the older (1.0.2) components use the old
event model, unless otherwise indicated. Examples using new components use the
new event model. Don’t let this mislead you; all components in Java 1.1 support
the new event model. The details of Event for both version 1.0.2 and 1.1 can be
found in Chapter 4, Events.

1.5.3 Applets

Although it is not a part of the java.awt package, the Core Java API provides a
framework for applet development. This includes support for getting parameters
from HTML files, changing the web page a browser is displaying, and playing
audio files. Chapter 14, And Then There Were Applets, describes all the details of the
java.applet package. Because audio support is part of java.applet, portable
audio playing is limited to applets. Chapter 14 also shows a nonportable way to
play audio in applications. Additional audio capabilities are coming to the Java
Core APl in the announced extensions.

1.5.4 Clipboards

In Java 1.1, programs can access the system clipboard. This process makes it easier
to transfer (cut, copy, and paste) data between various other sources and your Java
programs and introduces developers to the concepts involved with JavaBeans.
Chapter 16, Data Transfer, describes the java.awt .datatransfer package.

1.5.5 Printing

Java 1.1 adds the ability to print. Adding printing to an existing program is fairly
simple: you don’t have to do much beside adding a Print menu button. Chapter
17, Printing, describes these capabilities.

1.6 Summary

The java.awt package provides a great deal of functionality and flexibility. The
package goes well beyond the basics presented in this chapter. Do not be intimi-
dated by the vast libraries available to you in Java. With the help of this book, you
should get an excellent grasp of the java.awt, java.awt.image, java.awt.data-
transfer, java.awt.event, and java.applet packages, along with some pieces of
the proprietary sun.awt and sun.audio packages.

Do not feel the need to read this book cover to cover. Pick the section that inter-
ests you most, where you feel you do not fully understand something, or where you
have an immediate question to be answered and dive right in.

	Components
	Static Text
	User Input
	Event Triggers
	Expansion

	Peers
	Layouts
	FlowLayout
	GridLayout
	BorderLayout
	CardLayout
	GridBagLayout

	Containers
	Panels
	Windows
	Frames
	Dialog and FileDialog
	ScrollPane

	And the Rest
	Drawing and Objects
	Events
	Applets
	Clipboards
	Printing

	Summary

