1.3a: Solving Equations

Translating Verbal Expressions and Algebraic Expressions

Ex\#1:

a) Please translate the verbal expressions into an algebraic expressions. three times the difference of a number and eight
the cube of a number increased by 4 times the same number
b) Please translate the algebraic expression into a verbal expression.

$$
p^{3}+4 p
$$

Ex\#2: Please write a verbal sentence to represent the equation.

$$
2 c=c^{2}-4
$$

Properties of Equality - common math operations, used to solve equations

For any real numbers, a, b, and c		
Property	Using only symbols	Additional examples
Reflexive	$\mathrm{a}=\mathrm{a}$	$b+8=b+8$
Symmetric	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{b}=\mathrm{a}$	$\begin{array}{ll} \text { If } & 2 b+c=20, \\ \text { Then } & 20=2 b+c \\ \hline \end{array}$
Transitive	If $a=b$, and $b=c$, then $\mathrm{a}=\mathrm{c}$	$\begin{array}{lr} \text { If } & 2 a+12=30, \\ \text { and } & 30=5 c-8, \\ \text { then } & 2 a+12=5 c-8 \end{array}$
Substitution	If $a=b$, then a can be replaced by b b can be replaced by a	If $\quad(5+2) x=21$, Then $7 x=21$

Ex\#3: Please name the property illustrated by the following statement.
If $-11 a+2=-3 a$, then $-3 a=-11 a+2$

Additional Properties of Equality

"Whatever operation you do to one side of the equation, you must do to the other."

For any real number 'a'		
Property		Example
Addition	if then	$\begin{aligned} a & =a \\ a+8 & =a+8 \end{aligned}$
Subtraction	if then	$\begin{aligned} a & =a \\ a-4 & =a-4 \end{aligned}$
Multiplication	if then	$\begin{aligned} a & =a \\ a \cdot 3 & =a \cdot 3 \end{aligned}$
Division	if then	$\begin{aligned} a & =a \\ a \div 7 & =a \div 7 \end{aligned}$

Ex\#4: Please solve the following equations, noting which property of equality is being utilized.
a) $x-14.29=25$
b) $\frac{2}{3} y=-18$
c) $\quad-10 x+3(4 x-2)=6$

Ex\#5: Please solve for h in the following formula for area of a trapezoid. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ Please note the property used for each step.

