

Excel Macros
& VBA School

Learn how to automate repetitive or complex

tasks using the power of Excel Macros & VBA

 MODULE 6

The Big Three

(Workbooks, Worksheets, Ranges)

Module 6 – The Big Three (Workbooks, Worksheets, Ranges)

We cover the basics of workbooks:

• Workbook commands (with no user input)

• Workbook commands (with user input)

• Workbook information (properties)

We learn how to work with worksheets:

• Worksheet information (types and naming)

• Worksheet commands

We discover the realities of ranges:

• Range basics (cells vs ranges, select, write, read, clear)

• Range borders and interiors

• Cell comments

• Range Cut Copy Paste

• Range Insert and Delete

• Range Hide and Unhide

• Rows

• Columns

• Resizing Ranges

• Variable Size Ranges

Make sure you watch the video tutorial lessons for step-by-step instruction on how to use

these building blocks.

And check out the projects for some hands on fun.

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Workbook Commands (Without User Input)

Create New Workbook

To add a new workbook to the Workbooks collection, use the “.Add” method

Workbooks.Add

Or

Dim Wbk_New As Workbook

Set Wbk_New = Workbooks.Add

Close Workbook

To close a workbook use the “.Close” method to a workbook object

Wbk_New.Close

Open Workbook

To open an existing use the “.Open” method and specify Filename (including the Path)

Workbooks.Open "C:\Temp\Demo-Workbook.xlsx"

Workbooks.Open Filename:="C:\Temp\Demo-Workbook.xlsx"

Save Workbook

To save an open workbook use the “.Save” method

Wbk_New.Save

Save Workbook As

To save an open workbook as a different filename use the “.SaveAs” method

Wbk_New.SaveAs Filename:="C:\Temp\Demo-Workbook-2", _

 FileFormat:=xlOpenXMLWorkbook

Official Microsoft documentation here:

https://msdn.microsoft.com/en-us/vba/excel-vba/articles/workbook-saveas-method-excel

http://www.launchexcel.com/
http://launchexcel.teachable.com/
https://msdn.microsoft.com/en-us/vba/excel-vba/articles/workbook-saveas-method-excel

Note on File Formats

When you use SaveAs in Excel 2007+ you need to specify the File Format.

You can either use the built-in constant name or the actual numerical value.

Here is a list of common file formats in Excel VBA:

Built-In

Constant Name

Equivalent

Constant

Value

Type of File

xlOpenXMLWorkbook 51 .xlsx

Excel 2007+ (No macros)

xlOpenXMLWorkbookMacroEnabled 52 .xlsm

Excel 2007+ (Macro-enabled)

xlExcel12 50 .xlsb

Excel 2007+ (Binary workbook)

You can find a comprehensive list on Microsoft’s website here:

https://msdn.microsoft.com/en-us/vba/excel-vba/articles/xlfileformat-enumeration-excel

You can read up on the Binary workbook file format here:

http://www.spreadsheet1.com/how-to-save-as-binary-excel-workbook.html

http://www.launchexcel.com/
http://launchexcel.teachable.com/
https://msdn.microsoft.com/en-us/vba/excel-vba/articles/xlfileformat-enumeration-excel
http://www.spreadsheet1.com/how-to-save-as-binary-excel-workbook.html

Workbook Commands (With User Input)

Open Workbook chosen by User

To open a workbook with a dialog box use the “GetOpenFilename” method on the Excel

Application object

Official Microsoft documentation here:

https://msdn.microsoft.com/VBA/Excel-VBA/articles/application-getopenfilename-method-excel

Save Workbook As File chosen by User

To open a workbook with a dialog box use the “GetSaveAsFilename” method on the Excel

Application object

Official Microsoft documentation here:

https://msdn.microsoft.com/en-us/vba/excel-vba/articles/application-getsaveasfilename-method-excel

VBA Sample Code

Sub Workbook_Commands_With_User_Input()

Dim FName As String

Dim Wbk As Workbook

'// OPEN WORKBOOK CHOSEN BY USER

FName = Application.GetOpenFilename(FileFilter:="Excel (*.xls*),*.xls*")

Workbooks.Open Filename:=FName

Set Wbk = ActiveWorkbook

'// PROMPT USER TO SAVE AS

FName = Application.GetSaveAsFilename(InitialFileName:="New-workbook", _

 FileFilter:="Excel (*.xlsx),*.xlsx", _

 Title:="Please save your workbook")

If FName <> "False" Then

 Wbk.SaveAs Filename:=FName

 Wbk.Close

End If

End Sub

http://www.launchexcel.com/
http://launchexcel.teachable.com/
https://msdn.microsoft.com/VBA/Excel-VBA/articles/application-getopenfilename-method-excel
https://msdn.microsoft.com/en-us/vba/excel-vba/articles/application-getsaveasfilename-method-excel

Workbook Information (Properties)

Workbook Name

The property “.Name” is the workbook name

Debug.Print ActiveWorkBook.Name

Workbook Path

The property “.Name” is the workbook path (to the folder where the workbook is stored)

Debug.Print ActiveWorkBook.Path

Workbook Full Name

The property “.FullName” is the full name including the workbook path

Debug.Print ActiveWorkBook.FullName

Workbook Saved?

The property “.Saved” shows True if workbook has been saved since it was modified, and

False if workbook has not been saved since it was modified

Debug.Print ActiveWorkBook.Saved

Workbook Password Protected?

The property “.HasPassword” shows whether the workbook is password protected

Debug.Print ActiveWorkBook.HasPassword

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Worksheet Information (Types and Naming)

“Sheet” types

There are three “sheet” types we mention in this course.

• Sheets (all types of sheets, including worksheets and charts)

• Worksheets (sheets with grids of rows and columns)

• Charts (sheets with only charts on them)

We look at Worksheets in the most detail because they are most useful for data analysis.

Referring to Sheets

The term “Sheets” is used for the collection of all Sheets in a workbook, like this:

Thisworkbook.Sheets

You can refer to individual sheets in the collection like this:

Thisworkbook.Sheets(1)

Similarly you can refer to individual worksheets in the collection of worksheets like this:

Thisworkbook.Worksheets(1)

Worksheets are numbered in the order they appear onscreen. This is different from what

their actual names are. See further below for worksheet names.

Let’s say you have 5 worksheets in a workbook. The following code picks the worksheet

furthest to the right:

Thisworkbook.Worksheets(5)

As you can see from the screenshot, it doesn’t matter what the names are only the position.

Which brings us onto worksheet names…

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Worksheet names

There are two different name types.

• Codename – only visible in the VBA Editor

• Name – shows on the main Excel screen

They can be the same (e.g. “Sheet1” and “Sheet1”) or you can choose different names

(e.g. “cn_Instructions” for the codename and “Instructions” for the name).

Here is a screenshot showing the Properties window in the VBA Editor:

To change a worksheet’s codename you click in the box next to (Name) in the Properties

window.

Codenames are handy when you refer to worksheets in the same workbook as the VBA code.

You cannot refer to a worksheet in a different workbook by its codename.

Activating a worksheet by name
cn_Instructions.Activate '// Using the codename

Worksheets(“Instructions”).Activate '// Using the public name

Finding out a worksheet’s name with VBA

Here is code that prints the names of worksheet 1 to the Immediate Window:

'// WORKSHEET NAME vs CODENAME

With ThisWorkbook

 Debug.Print ""

 Debug.Print .Worksheets(1).Name '// Public name

 Debug.Print .Worksheets(1).CodeName '// Code name

End With

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Worksheet Commands

Add Worksheet

To add a worksheet to the active workbook:

 Worksheets.Add

Or Sheets.Add Type:=xlWorksheet

Remember you can also choose which workbook to add to like this:

Workbooks("Module 6 Projects.xlsm").Worksheets.Add

Add Chart sheet

To add a chart sheet to the active workbook:

 Sheets.Add Type:=xlChart

Add Worksheet before

To add a worksheet before the second worksheet

 Worksheets.Add before:=.Worksheets(2)

Add Worksheet after

Add a Worksheet after the last worksheet

 Worksheets.Add after:=.Worksheets(.Worksheets.Count)

Add many Worksheets

To add three worksheets after the last worksheet

 Worksheets.Add after:=.Worksheets(.Worksheets.Count), Count:=3

Delete Sheet

To delete a sheet from the active workbook:

Worksheets(1).Delete

Or Worksheets("Sheet1").Delete

Or Charts(1).Delete

Delete Last Sheet

To delete the last sheet from the active workbook:

 Sheets(.Sheets.Count).Delete

This is counting the number of sheets in the workbook to work out which to delete.

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Display Alerts

To stop Excel warning you every time you delete sheets:

Application.DisplayAlerts = False

To turn the automatic warnings back on:

Application.DisplayAlerts = True

Move Sheet

To move a sheet you specify whether to move before or after, and then specify the sheet you

want to move before or after.

Here is sample code to move the first sheet to the end of the workbook, then move the last

sheet once space to the left.

Dim LastSheet As Long

LastSheet = Wbk.Sheets.Count

With Wbk

 .Sheets(1).Move after:=.Sheets(LastSheet)

 .Sheets(LastSheet).Move before:=.Sheets(LastSheet - 1)

End With

Copy Sheet

To copy a sheet you specify whether to move before or after, and then specify the sheet you

want to copy before or after.

Here is sample code to copy the first sheet to the end of the workbook, then make a copy of

the first sheet at the beginning.

Dim LastSheet As Long

LastSheet = Wbk.Sheets.Count

With Wbk

 .Sheets(1).Copy after:=.Sheets(LastSheet)

 .Sheets(1).Copy before:=.Sheets(1)

End With

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Hide / Show Sheet

The sheet property “.Visible” allows you to specify three different states:

• xlSheetHidden – Can unhide using the Excel user interface

• xlSheetVeryHidden – Cannot unhide using the Excel user interface

• xlSheetVisible – Visible in the Excel user interface

To hide or show the sheet use the following VBA code:

Sheets(1).Visible = xlSheetHidden

Sheets(1).Visible = xlSheetVeryHidden

Sheets(1).Visible = xlSheetVisible

Protect Sheet

To protect a worksheet with a password:

 Sheets(1).Protect Password:="ExcelVBA"

To unprotect a worksheet with a password:

 Sheets(1).Unprotect Password:="ExcelVBA"

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Basics

Cells vs Ranges

A Range object represents a range of cells in a worksheet.

For example “A1:B5” is a range starting in cell A1, with two columns and five rows.

Officially there is no such thing as a “Cell” object in Excel!

It might seem sensible to expect that “Cells” are objects (or a collection of “Cell” objects) but

VBA treats the “Cells” keyword as a property.

When you use the Cells keyword, VBA returns you a Range object.

Read on to understand more…

Select Cell

You can only select one cell at a time using the Cells keyword.

To select a cell you specify its Row and Column as numbers.

Cells (Row , Column)

I find it helps to remember the order of Row, Column by saying to myself the letters RC

(which can stand for Radio Control or Rubik’s Cube or Roman Catholic – pick one that helps

you most)

Here are examples:

Cells(5, 1).Select '// Select cell A5

Cells(1, 3).Select '// Select cell C1

Select Range

You can select multiple cells in a continuous range using the .Select method

Range("A1:A10").Select

http://www.launchexcel.com/
http://launchexcel.teachable.com/

To select multiple ranges, separate them with a comma inside the quote marks:

Range("A1:A10, C1:C10").Select

When you select multiple ranges, the first cell becomes the active cell:

Range("C10, B9, A8, B7, C6, B5").Select

In the above example, C10 becomes the active cell.

Write to Range

To write to a range you can assign a value like this:

Range("C1") = "Knock knock"

You can also set the .value property like this:

Range("C2").Value = "Who's there?"

You can mix Range and Cells to write to many cells at once.

Range(Cells(1, 1), Cells(3, 3)) = "Hello"

Write to Range (using Cells)

To write values to multiple cells you can use a For loop.

This is where the R, C parameters of Cells (Row, Column) come in handy.

You can use a variable to loop through a counter.

Dim Counter As Long

For Counter = 1 To 10

 Cells(Counter, 2).Value = Counter

Next Counter

Here is the output of that code:

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Read directly from Range

To read the value in a cell:

myValue1 = Rng.Value

To read the text in a cell:

myValue2 = Rng.Text

The .Value represents the actual content of the cell (whether it’s a number or text).

The .Text represents what is visible in the Excel window (which might be different).

Here is an example to illustrate:

Using “Cells” to Read from Range

Use a For loop to read from different cells:

For Counter = 1 To 10

 myValue1 = Cells(Counter, 3).Value

 Cells(Counter, 6).Value = myValue1

Next Counter

Clear Range

To clear contents and formatting:

 Range(“A1:C1”).Clear

To clear contents only:

 Range(“A1:C1”).ClearContents

To clear formatting only:

 Range(“A1:C1”).ClearFormats

To clear contents and formatting for a whole worksheet:

 Worksheets(1).Cells.Clear

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Borders and Interiors

Change Border Style

It can be very useful to change the border around the cells of a range to highlight that cell.

Here are different styles of border you can set:

To set the border change the .LineStyle property. Here is sample code:

Dim Rng As Range

Set Rng = cn_Ranges.Range("B2:E10")

With Rng.Borders

 .LineStyle = xlContinuous

 .LineStyle = xlDot

 .LineStyle = xlDash

 .LineStyle = xlDouble

 .LineStyle = xlDashDot

 .LineStyle = xlDashDotDot

 .LineStyle = xlSlantDashDot

End With

Clear Border

To clear the borders:

Rng.Borders.Linestyle = xlLineStyleNone

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Change Border Line Thickness

To change the border line thickness change the .Weight property. Here is sample code:

Dim Rng As Range

Set Rng = cn_Ranges.Range("B2:E10")

With Rng.Borders

 .Weight = xlHairline

 .Weight = xlThin

 .Weight = xlMedium

 .Weight = xlThick

End With

Change Border Color

To change the border color change the .Color property.

You can use RGB(red, green, blue) to specify a color.

Here is sample code that changes line style, color and weight:

Dim Rng As Range

Set Rng = cn_Ranges.Range("B2:E10")

With Rng.Borders

 .LineStyle = xlContinuous

 .Color = RGB(40, 40, 180)

 .Weight = xlThin

End With

Set Border Around Outside

To set a border around only the outside of a range:

Range(B2:E10").BorderAround LineStyle:=xlContinuous, Weight:=xlThick

Set Range Background Color

To set the range background color change the .Color property of the .Interior property:

Range(B2:E10").Interior.Color = RGB(170, 215, 235)

Clear Formatting

Remember, to clear the formatting but not the contents of a range:

Range(B2:E10").ClearFormats

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Cell Comments

Add Comment to Cell

To add a comment to a cell:

Dim Rng As Range

Set Rng = Range("C5")

Rng.AddComment ("I'm just a simple comment...")

Show / Hide Comment

To make a comment visible:

Rng.Comment.Visible = True

To hide a comment:

Rng.Comment.Visible = False

Read Comment Author

To show the comment author in a Message Box:

MsgBox prompt:="Comment author: " & Rng.Comment.Author

Read Comment Text

To show the comment text in a Message Box:

MsgBox prompt:="Comment text: " & Rng.Comment.Text

Add Many Comments

To add comments in cells C5:C15 using a For Loop:

Dim Counter As Long

For Counter = 5 To 15

 Cells(Counter, 3).AddComment ("I'm just a comment...")

 Cells(Counter, 3).Comment.Visible = True

Next Counter

To Delete a Comment

Check there is a comment in the range using a double negative. If there is no comment and

you try to delete a comment then Excel reports an error:

Dim rng As Range

 Set rng = ActiveSheet.Cells(4, 4)

 If Not (rng.Comment Is Nothing) Then rng.Comment.Delete

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Cut Copy Paste

Cut and Paste Range

To cut and paste a range you need to specify a paste destination:

Dim Rng As Range

Set Rng = Range("A1:A10")

Rng.Cut Destination:=Range("C1")

Copy and Paste Range

To copy and paste a range you need to specify a paste destination:

Set Rng = Range("C1:C10")

Rng.Copy Destination:=Range("E1")

Autofit Column Width

After you paste to the new range you can get Excel to autofit the Column Width to match

the contents:

Range("E1").Columns.AutoFit

Paste Special

To paste a specific aspect of the original range, use the Paste Special method.

This is like using Paste Special in Excel.

First copy the range:

Rng.Copy

Then specify a destination range to paste:

Range("D2").PasteSpecial xlPasteAll

Range("D3").PasteSpecial xlPasteValues

Range("D4").PasteSpecial xlPasteFormats

Range("D5").PasteSpecial xlPasteComments

Range("D6").PasteSpecial xlPasteColumnWidths

Range("D7").PasteSpecial xlPasteAllExceptBorders

Range("D8").PasteSpecial xlPasteValuesAndNumberFormats

Clear Cut / Copy Mode

After you Cut or Copy a range, Excel remembers that range and displays it with an animated

border that looks like “marching ants”. To clear that range from selection:

Application.CutCopyMode = False '// Clear Cut Copy Mode

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Insert and Delete

Insert a Copied Range

To copy range A1:J2 and insert it into range A8:J8 (while shifting that range down):

Range("A1:J2").Copy

Range("A8:J8").Insert shift:=xlShiftDown

To copy range K1:K16 and insert it into range F1:F16 (while shifting that range right):

Range("K1:K16").Copy

Range("F1:F16").Insert shift:=xlShiftToRight

Insert Rows and Columns

To insert 3 rows at Row 6:

Range("6:9").Insert

To insert 2 columns at Column C:

Range("C:D").EntireColumn.Insert

Delete Range

To delete row 6:

Range("6:6").Delete

To delete range E4 and shift cells up:

Range("E4").Delete shift:=xlShiftUp

To delete range E5 and shift cells to the left:

Range("E5").Delete shift:=xlShiftToLeft

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Hide and Unhide

Hide Row or Column

To hide row 5 and column 5:

Rows(5).Hidden = True

Columns(5).Hidden = True

Unhide Row or Column

To unhide row 5 and column 5:

Rows(5).Hidden = False

Columns(5).Hidden = False

Unhide all Rows or Columns

To unhide all rows and columns:

Rows.Hidden = False '// Unhide all rows

Columns.Hidden = False '// Unhide all columns

Cells.Hidden = False '// This unhides everything

Hide Many Rows or Columns

To hide rows 2 to 9 and columns 2 to 9 using a For loop:

For Counter = 2 To 9

 Rows(Counter).Hidden = True

 Columns(Counter).Hidden = True

Next Counter

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Rows

Select Rows

To select a single row, specify the row number:

Rows(1).Select

To select an entire row from a single cell reference:

 Range("A5").EntireRow.Select

To select rows 1 to 10 using quote marks:

 Range("1:10").Select

To select rows 1, 3, 5, 7 and 9 using quote marks:

 Range("1:1, 3:3, 5:5, 7:7, 9:9").Select

Set Row Height

To set row height to a specific value:

 Rows(1).RowHeight = 40

Set Height of Many Rows

To set rows 1 to 10 to row height 40:

Dim Wks As Worksheet

Set Wks = Worksheets(1)

Dim Counter As Long

For Counter = 1 To 10

 Wks.Rows(Counter).RowHeight = 40

Next Counter

Set Row to Standard Height

To reset rows 1 to 10 to standard height:

Dim Wks As Worksheet

Set Wks = Worksheets(1)

Dim Counter As Long

For Counter = 1 To 10

 Wks.Rows(Counter).RowHeight = Wks.StandardHeight

Next Counter

Reset All Rows Heights

To reset all the row heights on a worksheet:

Wks.Rows.UseStandardHeight = True

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Columns

Select Columns

To select a single column, specify the column number:

 Columns(1).Select

To select an entire column from a single cell reference:

Range("C1").EntireColumn.Select

To select columns A to J using quote marks:

 Range("A:J").Select

To select columns A, C, E, G, I using quote marks:

 Range("A:A, C:C, E:E, G:G, I:I").Select

Set Column Width

To set column width to a specific value:

 Columns(1).ColumnWidth = 2.5

Set Width of Many Columns

To set columns 1 to 10 to column width 2.5:

Dim Wks As Worksheet

Set Wks = Worksheets(1)

Dim Counter As Long

For Counter = 1 To 10

 Wks.Columns(Counter).ColumnWidth = 2.5

Next Counter

Set Column to Standard Width

To reset columns 1 to 10 to standard width:

Dim Wks As Worksheet

Set Wks = Worksheets(1)

Dim Counter As Long

For Counter = 1 To 10

 Wks.Columns(Counter).ColumnWidth = Wks.StandardWidth

Next Counter

Reset All Column Widths

To reset all the row heights on a worksheet:

Wks.Columns.UseStandardWidth = True

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Resizing Ranges

Range Resize

To resize a range specify the new rowsize and columnsize as whole numbers:

Set Rng = Rng.Resize(rowsize:=3, columnsize:=3)

Here is code that sets Rng to range “B4” then resizes it to range “B4:D6”

by adding 2 rows and 2 columns:

Dim nRows As Long

Dim nCols As Long

Dim Rng As Range

Set Rng = Range("B4")

nRows = Rng.Rows.Count + 2

nCols = Rng.Columns.Count + 2

Set Rng = Rng.Resize(rowsize:=nRows, columnsize:=nCols)

Rng.Borders.LineStyle = xlDot

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Offset

To choose a new range that is offset from the current range specify the row offset and

column offset as whole numbers:

 Rng2 = Rng.Offset(row offset, column offset)

Here is code that sets Rng to range “B4:D6” then sets Rng2 to range “C4:E6”

by offset 1 column to the right:

Dim Rng As Range

Set Rng = Range("B4:D6")

Dim Rng2 As Range

Set Rng2 = Rng.Offset(0, 1)

Rng2.Cells.Interior.Color = RGB(170, 215, 235) '// Shade in blue

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Intersect

To choose a new range that comes from the intersection of two ranges specify the first range

and second range:

 Set Rng3 = Intersect(Rng, Rng2)

Here is code that sets Rng to range “B4:D6” then sets Rng2 to range “C4:E6”

then sets Rng3 as the intersection of Rng and Rng2:

Dim Rng As Range

Set Rng = Range("B4:D6")

Dim Rng2 As Range

Set Rng2 = Range("C4:E6")

Dim Rng3 As Range

Set Rng3 = Intersect(Rng, Rng2)

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Range Union

To choose a new range that comes from joining two ranges:

 Set Rng3 = Union(Rng, Rng2)

Here is code that sets Rng to range “B4:D6” then sets Rng2 to range “C2:C12”

then sets Rng3 as the joining of Rng and Rng2:

Dim Rng As Range

Set Rng = Range("B4:D6")

Dim Rng2 As Range

Set Rng2 = Range("C2:C12")

Dim Rng3 As Range

Set Rng3 = Union(Rng, Rng2)

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Variable Size Ranges

Current Region

When you deal with ranges sometimes you want to select all the cells with data that are

surrounding your current range.

To do this you use the Current Region property.

This selects the surrounding region that is bounded by blank rows and columns.

It has the same effect as choosing Home > Editing > Find & Select > GoTo Special and

choosing the Current Region option.

To expand your range to the Current Region surrounding your existing range:

 Set Rng = Range("A1").CurrentRegion

Here is code that copies the current region around range “C5” to range “H5”:

Dim Rng As Range

Set Rng = Range("C5")

Rng.CurrentRegion.Copy Range("H5")

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Selecting to End of Column

If you want to select to the end of the current column of cells you can’t use the Current

Region property.

Instead use the End(xlDown) method. This is like pressing CTRL + down arrow in Excel.

To move down from the active cell to the last cell in a column of cells:

ActiveCell.End(xlDown).Select

To select a range combine Range with the End method. This is like pressing CTRL + SHIFT +

down arrow in Excel.

To see what I mean when I say you combine Range with the End method, here is code that

selects downwards from the active cell:

Cells(1, 1).Select

Range(ActiveCell, ActiveCell.End(xlDown)).Select

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Selecting to End of Row

If you want to select to the end of the current row of cells you can’t use the Current Region

property.

Instead use the End(xlToRight) method. This is like pressing CTRL + right arrow in Excel.

To move right from the active cell to the last cell in a row of cells:

ActiveCell.End(xlToRight).Select

To select a range combine Range with the End method. This is like pressing CTRL + SHIFT +

right arrow in Excel.

To see what I mean when I say you combine Range with the End method, here is code that

selects right from the active cell:

Cells(1, 1).Select

Range(ActiveCell, ActiveCell.End(xlToRight)).Select

http://www.launchexcel.com/
http://launchexcel.teachable.com/

More Selections using “End”

You can combine more than one selection movement.

Here is an example that selects down, then selects to the right:

Range(ActiveCell, ActiveCell.End(xlDown).End(xlToRight)).Select

You have four options when using the End method:

• xlUp

• xlDown

• xlToLeft

• xlToRight

Mix and match these to your heart’s content!

http://www.launchexcel.com/
http://launchexcel.teachable.com/

Hands On Fun with Projects
With Module 6 it is critical that you practice.

Being able to manipulate workbooks, worksheets and ranges is very useful. And it’s a skill

that only gets better when you practice.

To help you practice I created a number of projects. They range from simple to challenging:

I advise you to try the projects after you watch the video lessons. And use this handout as a

handy reference guide for specific code.

Remember – practice lots and have fun!

Most good programmers do programming not because they

expect to get paid or get adulation by the public, but

because it is fun to program.

Linus Torvalds

http://www.launchexcel.com/
http://launchexcel.teachable.com/

