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INtENDED AuDIENCE
An Introduction to Statistical Methods and Data Analysis, Seventh Edition, provides 
a broad overview of statistical methods for advanced undergraduate and graduate 
students from a variety of disciplines. This book is intended to prepare students to 
solve problems encountered in research projects, to make decisions based on data 
in general settings both within and beyond the university setting, and finally to 
become critical readers of statistical analyses in research papers and in news reports. 
The book presumes that the students have a minimal mathematical background 
(high school algebra) and no prior course work in statistics. The first 11 chapters 
of the textbook present the material typically covered in an introductory statistics 
course. However, this book provides research studies and examples that connect 
the statistical concepts to data analysis problems that are often encountered in 
undergraduate capstone courses. The remaining chapters of the book cover regres-
sion modeling and design of experiments. We develop and illustrate the statistical 
techniques and thought processes needed to design a research study or experiment 
and then analyze the data collected using an intuitive and proven four-step approach. 
This should be especially helpful to graduate students conducting their MS thesis 
and PhD dissertation research.

MAjoR FEAtuREs oF tEXtbook

Learning from Data
In this text, we approach the study of statistics by considering a four-step process 
by which we can learn from data:

 1. Defining the Problem
 2. Collecting the Data
 3. Summarizing the Data
 4. Analyzing the Data, Interpreting the Analyses, and Communicating 

the  Results

Case studies
In order to demonstrate the relevance and critical nature of statistics in solving real-
world problems, we introduce the major topic of each chapter using a case study. 
The case studies were selected from many sources to illustrate the broad applica-
bility of statistical methodology. The four-step learning from data process is illus-
trated through the case studies. This approach will hopefully assist in overcoming 
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the natural initial perception held by many people that statistics is just another 
“math course.’’ The introduction of major topics through the use of case studies 
provides a focus on the central nature of applied statistics in a wide variety of 
research and business-related studies. These case studies will hopefully provide the 
reader with an enthusiasm for the broad applicability of statistics and the statistical 
thought process that the authors have found and used through their many years 
of teaching, consulting, and R & D management. The following research studies 
 illustrate the types of studies we have used throughout the text.

●● Exit Polls Versus Election Results:  A study of why the exit polls 
from 9 of 11 states in the 2004 presidential election predicted John 
Kerry as the winner when in fact President Bush won 6 of the 11 
states.

●● Evaluation of the Consistency of Property Assessors:  A study to 
determine if county property assessors differ systematically in their 
determination of property values.

●● Effect of Timing of the Treatment of Port-Wine Stains with Lasers:   
A prospective study that investigated whether treatment at a younger 
age would yield better results than treatment at an older age.

●● Controlling for Student Background in the Assessment of Teaching:   
An examination of data used to support possible improvements to 
the No Child Left Behind program while maintaining the important 
concepts of performance standards and accountability.

Each of the research studies includes a discussion of the whys and hows of the 
study. We illustrate the use of the four-step learning from data process with each 
case study. A discussion of sample size determination, graphical displays of the 
data, and a summary of the necessary ingredients for a complete report of the sta-
tistical findings of the study are provided with many of the case studies.

Examples and Exercises
We have further enhanced the practical nature of statistics by using examples and
exercises from journal articles, newspapers, and the authors’ many consulting 
experiences. These will provide the students with further evidence of the practical 
usages of statistics in solving problems that are relevant to their everyday lives.
Many new exercises and examples have been included in this edition of the book. 
The number and variety of exercises will be a great asset to both the instructor and 
students in their study of statistics. 

Topics covered
This book can be used for either a one-semester or a two-semester course. Chapters 
1 through 11 would constitute a one-semester course. The topics covered would 
 include

 Chapter 1—Statistics and the scientific method
 Chapter 2—Using surveys and experimental studies to gather data
 Chapters 3 & 4—Summarizing data and probability distributions
 Chapters 5–7—Analyzing data: inferences about central values and 
 variances
 Chapters 8 & 9—One-way analysis of variance and multiple 
comparisons



 Chapter 10—Analyzing data involving proportions
 Chapter 11—Linear regression and correlation

The second semester of a two-semester course would then include model building
and inferences in multiple regression analysis, logistic regression, design of experi-
ments, and analysis of variance:

Chapters 11–13—Regression methods and model building: multiple re-
gression and the general linear model, logistic regression, and building 
 regression models with diagnostics

Chapters 14–19—Design of experiments and analysis of variance: design 
concepts, analysis of variance for standard designs, analysis of covari-
ance, random and mixed effects models, split-plot designs, repeated 
measures  designs, crossover designs, and unbalanced designs

Emphasis on Interpretation, not Computation
In the book are examples and exercises that allow the student to study how to 
 calculate the value of statistical estimators and test statistics using the definitional 
form of the procedure. After the student becomes comfortable with the aspects of 
the data the statistical procedure is reflecting, we then emphasize the use of com-
puter software in making computations in the analysis of larger data sets. We provide 
output from three major statistical packages: SAS, Minitab, and SPSS. We find that 
this approach provides the student with the experience of computing the value of the 
procedure using the definition; hence, the student learns the basics  behind each pro-
cedure. In most situations beyond the statistics course, the student should be using 
computer software in making the computations for both  expedience and quality of 
calculation. In many exercises and examples, the use of the computer allows for more 
time to emphasize the interpretation of the  results of the computations without hav-
ing to expend enormous amounts of time and effort in the  actual computations.

In numerous examples and exercises, the importance of the following aspects 
of hypothesis testing are demonstrated:

 1. The statement of the research hypothesis through the summarization  
of the researcher’s goals into a statement about population 
parameters.

 2. The selection of the most appropriate test statistic, including sample 
size computations for many procedures.

 3. The necessity of considering both Type I and Type II error 
rates (a and b) when discussing the results of a statistical test of 
hypotheses.

 4. The importance of considering both the statistical significance and 
the practical significance of a test result. Thus, we illustrate the 
importance of estimating effect sizes and the construction of confi-
dence intervals for population parameters.

 5. The statement of the results of the statistical test in nonstatistical 
jargon that goes beyond the statement ‘‘reject H0’’ or ‘‘fail to 
reject H0.’’

New to the Seventh Edition
●● There are instructions on the use of R code. R is a free software package 

that can be downloaded from http:/ /lib.stat.cmu.edu/R/CRAN. 



Click your choice of platform (Linux, MacOS X, or Windows) for the 
precompiled binary distribution. Note the FAQs link to the left for 
additional information. Follow the instructions for installing the base 
system software (which is all you will need).

●● New examples illustrate the breadth of applications of statistics to 
real-world problems.

●● An alternative to the standard deviation, MAD, is provided as a 
measure of dispersion in a population/sample.

●● The use of bootstrapping in obtaining confidence intervals and 
p-values is discussed.

●● Instructions are included on how to use R code to obtain percentiles 
and probabilities from the following distributions: normal, binomial, 
Poisson, chi-squared, F, and t.

●● A nonparametric alternative to the Pearson correlation coefficient: 
Spearman’s rank correlation, is provided.

●● The binomial test for small sample tests of proportions is presented.
●● The McNemar test for paired count data has been added.
●● The Akaike information criterion and Bayesian information criterion 

for variable selection are discussed.

Additional Features Retained from Previous Editions
●● Many practical applications of statistical methods and data analysis 

from agriculture, business, economics, education, engineering, medi-
cine, law, political science, psychology, environmental studies, and 
sociology have been included.

●● The seventh edition contains over 1,000 exercises, with nearly 400 of 
the exercises new.

●● Computer output from Minitab, SAS, and SPSS is provided in 
numerous examples. The use of computers greatly facilitates the use 
of more sophisticated graphical illustrations of statistical results.

●● Attention is paid to the underlying assumptions. Graphical 
procedures and test procedures are provided to determine if assump-
tions have been violated. Furthermore, in many settings, we provide 
alternative procedures when the conditions are not met.

●● The first chapter provides a discussion of “What Is Statistics?” We 
provide a discussion of why students should study statistics along with 
a discussion of several major studies that illustrate the use of statistics 
in the solution of real-life problems.

Ancillaries 
● Student Solutions Manual (ISBN-10: 1-305-26948-9;  

ISBN-13: 978-1-305-26948-4), containing select worked solutions  
for problems in the textbook. 

● A Companion Website at www.cengage.com/statistics/ott, containing  
downloadable data sets for Excel, Minitab, SAS, SPSS, and others,  
plus additional resources for students and faculty. 
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Chapter 1

Statistics and 
the Scientific 
Method

1.1 Introduction

1.2 Why Study Statistics?

1.3 Some Current 
applications of Statistics

1.4 a Note to the Student

1.5 Summary

1.6 exercises

 1.1 Introduction 

Statistics is the science of designing studies or experiments, collecting data, and 
modeling/analyzing data for the purpose of decision making and scientific discov-
ery when the available information is both limited and variable. That is, statistics is 
the science of Learning from Data.

Almost everyone, including social scientists, medical researchers, superin-
tendents of public schools, corporate executives, market researchers, engineers, 
government employees, and consumers, deals with data. These data could be in the 
form of quarterly sales figures, percent increase in juvenile crime, contamination 
levels in water samples, survival rates for patients undergoing medical therapy, 
census figures, or information that helps determine which brand of car to purchase. 
In this text, we approach the study of statistics by considering the four-step process 
in Learning from Data: (1) defining the problem, (2) collecting the data, (3) sum-
marizing the data, and (4) analyzing the data, interpreting the analyses, and com-
municating the results. Through the use of these four steps in Learning from Data, 
our study of statistics closely parallels the Scientific Method, which is a set of prin-
ciples and procedures used by successful scientists in their  pursuit of knowledge. 
The method involves the formulation of research goals, the design of observational 
studies and/or experiments, the collection of data, the modeling/analysis of the 
data in the context of research goals, and the testing of hypotheses. The conclusion 
of these steps is often the formulation of new research goals for  another study. 
These steps are illustrated in the schematic given in Figure 1.1.

This book is divided into sections corresponding to the four-step process in 
Learning from Data. The relationship among these steps and the chapters of the 
book is shown in Table 1.1. As you can see from this table, much time is spent dis-
cussing how to analyze data using the basic methods presented in Chapters 5–19. 
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However, you must remember that for each data set requiring analysis, someone 
has defined the problem to be examined (Step 1), developed a plan for collecting 
data to address the problem (Step 2), and summarized the data and prepared the 
data for analysis (Step 3). Then following the analysis of the data, the results of the 
analysis must be interpreted and communicated either verbally or in written form 
to the intended audience (Step 4).

All four steps are important in Learning from Data; in fact, unless the prob-
lem to be addressed is clearly defined and the data collection carried out properly, 
the interpretation of the results of the analyses may convey misleading informa-
tion because the analyses were based on a data set that did not address the problem 
or that was incomplete and contained improper information. Throughout the text,  

TABLE 1.1
Organization of the text  The Four-Step Process Chapters

 1 Defining the Problem 1 Statistics and the Scientific Method
 2 Collecting the Data 2 Using Surveys and Experimental Studies to Gather Data
 3 Summarizing the Data 3 Data Description
   4 Probability and Probability Distributions
 4 Analyzing the Data,  5 Inferences about Population Central Values
  Interpreting the Analyses,  6 Inferences Comparing Two Population Central Values
  and Communicating 7 Inferences about Population Variances
  the Results 8  Inferences about More Than Two Population Central Values
   9 Multiple Comparisons
   10 Categorical Data
   11 Linear Regression and Correlation
   12 Multiple Regression and the General Linear Model
   13 Further Regression Topics
   14  Analysis of Variance for Completely Randomized Designs
   15 Analysis of Variance for Blocked Designs
   16 The Analysis of Covariance
   17  Analysis of Variance for Some Fixed-, Random-, and  

Mixed-Effects Models
   18 Split-Plot, Repeated Measures, and Crossover Designs
   19  Analysis of Variance for Some Unbalanced Designs

FIGURE 1.1
Scientific Method 

Schematic

Make decisions:

written conclusions,
oral presentations

Formulate new
research goals:

new models,
new hypotheses

Draw inferences:

graphs, estimation,
hypotheses testing,
model assessment

Collect data:

data management

Formulate research goal:

research hypotheses, models

Design study:

sample size, variables,
experimental units,

sampling mechanism
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we will try to keep you focused on the bigger picture of Learning from Data 
through the four-step process. Most chapters will end with a summary section 
that emphasizes how the material of the chapter fits into the study of statistics—
Learning from Data.

To illustrate some of the above concepts, we will consider four situations 
in which the four steps in Learning from Data could assist in solving a real-world 
problem.

1. Problem: Inspection of ground beef in a large beef-processing facility. 
A beef-processing plant produces approximately half a million pack-
ages of ground beef per week. The government inspects packages 
for possible improper labeling of the packages with respect to the 
percent fat in the meat. The inspectors must open the ground beef 
package in order to determine the fat content of the ground beef. 
The inspection of every package would be prohibitively costly and 
time consuming. An alternative approach is to select 250 packages 
for inspection from the daily production of 100,000 packages. The 
fraction of packages with improper labeling in the sample of 250 
packages would then be used to estimate the fraction of packages 
improperly labeled in the complete day’s production. If this fraction 
exceeds a set specification, action is then taken against the meat 
processor. In later chapters, a procedure will be formulated to deter-
mine how well the sample fraction of improperly labeled packages 
approximates the fraction of improperly labeled packages for the 
whole day’s output.

2. Problem: Is there a relationship between quitting smoking and 
gaining weight? To investigate the claim that people who quit 
smoking often  experience a subsequent weight gain, researchers 
selected a random sample of 400 participants who had successfully 
participated in programs to quit smoking. The individuals were 
weighed at the beginning of the program and again 1 year later. 
The average change in weight of the participants was an increase of 
5 pounds. The investigators concluded that there was evidence that 
the claim was valid. We will develop techniques in later chapters to 
assess when changes are truly significant changes and not changes 
due to random chance.

3. Problem: What effect does nitrogen fertilizer have on wheat production? 
For a study of the effects of nitrogen fertilizer on wheat production, 
a total of 15 fields was available to the researcher. She randomly 
assigned three fields to each of the five nitrogen rates under inves-
tigation. The same variety of wheat was planted in all 15 fields. The 
fields were cultivated in the same manner until harvest, and the 
number of pounds of wheat per acre was then recorded for each of 
the 15 fields. The experimenter wanted to determine the optimal 
level of nitrogen to apply to any wheat field, but, of course, she was 
limited to running experiments on a limited number of fields. After 
determining the amount of nitrogen that yielded the largest produc-
tion of wheat in the study fields, the  experimenter then concluded 
that similar results would hold for wheat fields possessing charac-
teristics somewhat the same as the study fields. Is the experimenter 
justified in reaching this conclusion?
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4. Problem: Determining public opinion toward a question, issue, 
product, or candidate. Similar applications of statistics are brought 
to mind by the frequent use of the New York Times/CBS News, 
Washington Post/ABC News, Wall Street Journal/NBC News, Harris, 
Gallup/Newsweek, and CNN/Time polls. How can these pollsters 
determine the opinions of more than 195 million Americans who are 
of voting age? They certainly do not contact every potential voter in 
the United States. Rather, they sample the opinions of a small num-
ber of potential voters, perhaps as few as 1,500, to estimate the reac-
tion of every person of voting age in the country. The amazing result 
of this process is that if the selection of the voters is done in an unbi-
ased way and voters are asked unambiguous, nonleading questions, 
the fraction of those persons contacted who hold a particular opinion 
will closely match the fraction in the total population holding that 
opinion at a  particular time. We will supply convincing supportive 
evidence of this assertion in subsequent chapters.

These problems illustrate the four-step process in Learning from Data. 
First, there was a problem or question to be addressed. Next, for each prob-
lem a study or experiment was proposed to collect meaningful data to solve the 
problem. The government meat inspection agency had to decide both how many 
packages to inspect per day and how to select the sample of packages from the 
total daily output in order to obtain a valid prediction. The polling groups had to 
decide how many voters to sample and how to select these individuals in order 
to obtain information that is representative of the population of all voters. Simi-
larly, it was necessary to carefully plan how many participants in the weight-gain 
study were needed and how they were to be selected from the list of all such 
participants. Furthermore, what variables did the researchers have to measure 
on each participant? Was it necessary to know each participant’s age, sex, physi-
cal fitness, and other health-related variables, or was weight the only important 
variable? The results of the study may not be relevant to the general population 
if many of the participants in the study had a particular health condition. In the 
wheat experiment, it was important to measure both the soil characteristics of 
the fields and the environmental conditions, such as temperature and rainfall, to 
obtain results that could be generalized to fields not included in the study. The 
design of a study or experiment is crucial to obtaining results that can be general-
ized beyond the study.

Finally, having collected, summarized, and analyzed the data, it is important 
to report the results in unambiguous terms to interested people. For the meat 
inspection example, the government inspection agency and the personnel in the 
beef-processing plant would need to know the distribution of fat content in the 
daily production of ground beef. Based on this distribution, the agency could then 
impose fines or take other remedial actions against the production facility. Also, 
knowledge of this distribution would enable company production personnel to 
make adjustments to the process in order to obtain acceptable fat content in their 
ground beef packages. Therefore, the results of the statistical analyses cannot 
be presented in ambiguous terms; decisions must be made from a well-defined 
knowledge base. The results of the weight-gain study would be of vital interest to 
physicians who have patients participating in the smoking-cessation program. If 
a significant increase in weight was recorded for those individuals who had quit 
smoking, physicians would have to recommend diets so that the former smokers 
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would not go from one health problem (smoking) to another (elevated blood 
pressure due to being overweight). It is crucial that a careful description of the 
participants—that is, age, sex, and other health-related information—be included 
in the report. In the wheat study, the experiment would provide farmers with 
information that would allow them to economically select the optimum amount of 
nitrogen required for their fields. Therefore, the report must contain  information 
concerning the amount of moisture and types of soils present on the study fields. 
Otherwise, the conclusions about optimal wheat production may not pertain to 
farmers growing wheat under considerably different conditions. 

To infer validly that the results of a study are applicable to a larger group 
than just the participants in the study, we must carefully define the population 
(see Definition 1.1) to which inferences are sought and design a study in which the 
sample (see Definition 1.2) has been appropriately selected from the designated 
population. We will discuss these issues in Chapter 2. 

population

sample 

A population is the set of all measurements of interest to the sample collector. 
(See Figure 1.2.)

DEFINITION 1.1

A sample is any subset of measurements selected from the population.  
(See Figure 1.2.) 

DEFINITION 1.2

FIGURE 1.2
Population and sample Set of all measurements:

the population

Set of measurements
selected from the

population:
the sample

 1.2 Why Study Statistics? 

We can think of many reasons for taking an introductory course in statistics. One 
reason is that you need to know how to evaluate published numerical facts. Every 
person is exposed to manufacturers’ claims for products; to the results of socio-
logical, consumer, and political polls; and to the published results of scientific 
research. Many of these results are inferences based on sampling. Some infer-
ences are valid; others are invalid. Some are based on samples of adequate size; 
others are not. Yet all these published results bear the ring of truth. Some peo-
ple (particularly statisticians) say that statistics can be made to support almost 
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anything. Others say it is easy to lie with statistics. Both statements are true. It 
is easy,  purposely or unwittingly, to distort the truth by using statistics when 
presenting the results of sampling to the uninformed. It is thus crucial that you 
become an  informed and critical reader of data-based reports and articles.

A second reason for studying statistics is that your profession or employment 
may require you to interpret the results of sampling (surveys or experimentation) 
or to employ statistical methods of analysis to make inferences in your work. For 
example, practicing physicians receive large amounts of advertising describing 
the benefits of new drugs. These advertisements frequently display the numerical 
 results of experiments that compare a new drug with an older one. Do such data 
 really imply that the new drug is more effective, or is the observed difference in 
 results due simply to random variation in the experimental measurements? 

Recent trends in the conduct of court trials indicate an increasing use of 
probability and statistical inference in evaluating the quality of evidence. The use 
of statistics in the social, biological, and physical sciences is essential because all 
these sciences make use of observations of natural phenomena, through sample 
surveys or experimentation, to develop and test new theories. Statistical methods 
are employed in business when sample data are used to forecast sales and profit. 
In addition, they are used in engineering and manufacturing to monitor product 
quality. The sampling of accounts is a useful tool to assist accountants in conduct-
ing audits. Thus, statistics plays an important role in almost all areas of science, 
business, and industry; persons employed in these areas need to know the basic 
concepts, strengths, and limitations of statistics. 

The article “What Educated Citizens Should Know About Statistics and Prob-
ability,” by J. Utts (2003), contains a number of statistical ideas that need to be 
understood by users of statistical methodology in order to avoid confusion in the 
use of their research findings. Misunderstandings of statistical results can lead to 
major errors by government policymakers, medical workers, and consumers of this 
information. The article selected a number of topics for discussion. We will sum-
marize some of the findings in the article. A complete discussion of all these topics 
will be given throughout the book.

1. One of the most frequent misinterpretations of statistical findings 
is when a statistically significant relationship is established between 
two variables and it is then concluded that a change in the explana-
tory  variable causes a change in the response variable. As will be 
discussed in the book, this conclusion can be reached only under 
very restrictive constraints on the experimental setting. Utts exam-
ined a recent Newsweek article discussing the relationship between 
the strength of religious beliefs and physical healing. Utts’ article 
discussed the  problems in reaching the conclusion that the stronger 
a patient’s religious beliefs, the more likely the patient would be 
cured of his or her ailment. Utts showed that there are  numerous 
other factors involved in a patient’s health and the conclusion that 
religious beliefs cause a cure cannot be validly reached.

2. A common confusion in many studies is the difference between 
(statistically) significant findings in a study and (practically) signifi-
cant findings. This problem often occurs when large data sets are 
involved in a study or experiment. This type of problem will be dis-
cussed in detail throughout the book. We will use a number of exam-
ples that will illustrate how this type of confusion can be avoided by 
researchers when reporting the findings of their experimental results. 
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Utts’ article illustrated this problem with a discussion of a study that 
found a statistically significant difference in the average heights of 
military recruits born in the spring and in the fall. There were 507,125 
recruits in the study and the difference in average height was about 
1/4 inch. So, even though there may be a difference in the actual aver-
age heights of recruits in the spring and the fall, the difference is so 
small (1/4 inch) that it is of no practical  importance.

3. The size of the sample also may be a determining factor in studies 
in which statistical significance is not found. A study may not have 
 selected a sample size large enough to discover a difference between 
the several populations under study. In many government-sponsored 
studies, the researchers do not receive funding unless they are able 
to demonstrate that the sample sizes selected for their study are of 
an  appropriate size to  detect specified differences in populations if 
in fact they exist. Methods to determine appropriate sample sizes 
will be provided in the chapters on hypotheses testing and experi-
mental  design.

4. Surveys are ubiquitous, especially during the years in which national 
elections are held. In fact, market surveys are nearly as widespread 
as political polls. There are many sources of bias that can creep 
into the most reliable of surveys. The manner in which people are 
selected for  inclusion in the survey, the way in which questions are 
phrased, and even the manner in which questions are posed to the 
subject may affect the conclusions  obtained from the survey. We will 
discuss these issues in Chapter 2.

5. Many students find the topic of probability to be very confusing. One 
of these confusions involves conditional probability where the prob-
ability of an event occurring is computed under the condition that a 
second event has occurred with certainty. For example, a new diag-
nostic test for the pathogen Escherichia coli in meat is proposed to 
the U.S. Department of Agriculture (USDA). The USDA evaluates 
the test and determines that the test has both a low false positive rate 
and a low false negative rate. That is, it is very unlikely that the test 
will declare the meat contains E. coli when in fact it does not contain 
E. coli. Also, it is very unlikely that the test will  declare the meat does 
not contain E. coli when in fact it does contain E. coli.  Although the 
diagnostic test has a very low false positive rate and a very low false 
negative rate, the probability that E. coli is in fact present in the meat 
when the test yields a positive test result is very low for those situa-
tions in which a particular strain of E. coli occurs very infrequently. 
In Chapter 4, we will demonstrate how this probability can be com-
puted in order to provide a true assessment of the performance of a 
diagnostic test.

6. Another concept that is often misunderstood is the role of the degree 
of variability in interpreting what is a “normal” occurrence of some 
naturally occurring event. Utts’ article provided the following exam-
ple. A company was having an odor problem with its wastewater 
treatment plant. It attributed the problem to “abnormal” rainfall dur-
ing the  period in which the odor problem was occurring. A company 
official stated that the facility experienced 170% to 180% of its 
“normal” rainfall during this period, which resulted in the water in 
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the holding ponds  taking longer to exit for irrigation. Thus, there was 
more time for the pond to develop an odor. The company official did 
not point out that yearly rainfall in this region is extremely variable. 
In fact, the historical range for rainfall is between 6.1 and 37.4 inches 
with a median rainfall of 16.7 inches. The rainfall for the year of the 
odor problem was 29.7 inches, which was well within the “normal” 
range for rainfall. There was a confusion between the terms “aver-
age” and “normal” rainfall. The concept of natural variability is cru-
cial to correct interpretation of statistical  results. In this example, the 
company official should have evaluated the percentile for an annual 
rainfall of 29.7 inches in order to demonstrate the abnormality of 
such a rainfall. We will discuss the ideas of data summaries and per-
centiles in Chapter 3.

The types of problems expressed above and in Utts’ article represent common 
and important misunderstandings that can occur when researchers use statistics in 
 interpreting the results of their studies. We will attempt throughout the book to dis-
cuss possible misinterpretations of statistical results and how to avoid them in your 
data analyses. More importantly, we want the reader of this book to become a dis-
criminating reader of statistical findings, the results of surveys, and  project  reports. 

 1.3 Some Current applications of Statistics 

Defining the problem: Obtaining Information  
from Massive Data Sets
Data mining is defined to be a process by which useful information is obtained 
from large sets of data. Data mining uses statistical techniques to discover patterns 
and trends that are present in a large data set. In most data sets, important patterns 
would not be discovered by using traditional data exploration techniques because 
the types of relationships between the many variables in the data set are either too 
complex or because the data sets are so large that they mask the relationships.

The patterns and trends discovered in the analysis of the data are defined 
as data mining models. These models can be applied to many different situations, 
such as:

●● Forecasting: Estimating future sales, predicting demands on a power 
grid, or estimating server downtime

●● Assessing risk: Choosing the rates for insurance premiums, selecting 
best customers for a new sales campaign, determining which medical 
therapy is most appropriate given the physiological characteristics of 
the patient

●● Identifying sequences: Determining customer preferences in online 
purchases, predicting weather events

●● Grouping: Placing customers or events into cluster of related items, 
analyzing and predicting relationships between demographic char-
acteristics and purchasing patterns, identifying fraud in credit card 
purchases

A new medical procedure referred to as gene editing has the potential to 
assist thousands of people suffering many different diseases. An article in the 
Houston Chronicle (2013 ), describes how data mining techniques are used to 
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explore massive genomic data bases to interpret millions of bits of data in a per-
son’s DNA. This information is then used to identify a single defective gene, 
which is cut out, and splice in a correction. This area of research is referred to as 
biomedical informatics and is based on the premise that the human body is a data 
bank of incredible depth and complexity. It is predicted that by 2015, the average 
hospital will have approximately 450 terabytes of patient data consisting of large, 
complex images from CT scans, MRIs, and other imaging techniques. However, 
only a small fraction of the current medical data has been analyzed, thus opening 
huge opportunities for persons trained in data mining. In a case described in the 
article, a 7-year-old boy tormented by scabs, blisters, and scars was given a new 
lease on life by using data mining techniques to discover a single letter in his faulty 
genome. 

Defining the problem: Determining the effectiveness  
of a New Drug product
The development and testing of the Salk vaccine for protection against poliomy-
elitis (polio) provide an excellent example of how statistics can be used in solving 
practical problems. Most parents and children growing up before 1954 can recall 
the panic brought on by the outbreak of polio cases during the summer months. 
Although relatively few children fell victim to the disease each year, the pattern 
of outbreak of polio was unpredictable and caused great concern because of the 
possibility of paralysis or death. The fact that very few of today’s youth have even 
heard of polio demonstrates the great success of the vaccine and the testing pro-
gram that preceded its release on the market. 

It is standard practice in establishing the effectiveness of a particular drug prod-
uct to conduct an experiment (often called a clinical trial) with human partici pants. 
For some clinical trials, assignments of participants are made at random, with half 
receiving the drug product and the other half receiving a solution or tablet that does 
not contain the medication (called a placebo). One statistical problem concerns the 
determination of the total number of participants to be included in the clinical trial. 
This problem was particularly important in the testing of the Salk vaccine because 
data from previous years suggested that the incidence rate for polio might be less 
than 50 cases for every 100,000 children. Hence, a large number of participants had 
to be included in the clinical trial in order to detect a difference in the incidence rates 
for those treated with the vaccine and those receiving the placebo.

With the assistance of statisticians, it was decided that a total of 400,000 
children should be included in the Salk clinical trial begun in 1954, with half of them 
randomly assigned the vaccine and the remaining children assigned the placebo. No 
other clinical trial had ever been attempted on such a large group of participants. 
Through a public school inoculation program, the 400,000 participants were treated 
and then observed over the summer to determine the number of  children contract-
ing polio. Although fewer than 200 cases of polio were reported for the 400,000 
participants in the clinical trial, more than three times as many cases appeared in 
the group receiving the placebo. These results, together with some statistical cal-
culations, were sufficient to indicate the effectiveness of the Salk  polio vaccine. 
However, these conclusions would not have been possible if the statisticians and 
scientists had not planned for and conducted such a large  clinical trial. 

The development of the Salk vaccine is not an isolated example of the use 
of statistics in the testing and development of drug products. In recent years, 
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the U.S. Food and Drug Administration (FDA) has placed stringent requirements 
on pharmaceutical firms wanting to establish the effectiveness of proposed new 
drug products. Thus, statistics has played an important role in the development 
and testing of birth control pills, rubella vaccines, chemotherapeutic agents in the 
treatment of cancer, and many other preparations. 

Defining the problem: lmproving the reliability  
of evidence in Criminal Investigations
The National Academy of Sciences released a report (National Research Council, 
2009) in which one of the more important findings was the need for applying sta-
tistical methods in the design of studies used to evaluate inferences from evidence 
gathered by forensic technicians. The following statement is central to the report: 

“Over the last two decades, advances in some forensic science disciplines, espe-
cially the use of DNA technology, have demonstrated that some areas of foren-
sic science have great additional potential to help law enforcement identify 
criminals. . . . Those advances, however, also have revealed that, in some cases, 
substantive information and testimony based on faulty forensic science analy-
ses may have contributed to wrongful convictions of innocent people. This fact 
has demonstrated the potential danger of giving undue weight to evidence and 
testimony derived from imperfect testing and analysis.” 

There are many sources that may impact the accuracy of conclusions inferred 
from the crime scene evidence and presented to a jury by a forensic investigator. 
Statistics can play a role in improving forensic analyses. Statistical principles can 
be used to identify sources of variation and quantify the size of the impact that 
these sources of variation can have on the conclusions reached by the forensic 
investigator.

An illustration of the impact of an inappropriately designed study and 
statistical analysis on the conclusions reached from the evidence obtained at 
a crime scene can be found in Spiegelman et al. (2007). They demonstrate that 
the evidence used by the FBI crime lab to support the claim that there was not 
a second assassin of President John F. Kennedy was based on a faulty analysis 
of the data and an overstatement of the results of a method of forensic testing 
called Comparative Bullet Lead Analysis (CBLA). This method applies a chemi-
cal analysis to link a bullet found at a crime scene to the gun that had discharged 
the bullet. Based on evidence from chemical analyses of the recovered bullet frag-
ments, the 1979 U.S. House Select Committee on Assassinations concluded that all 
the bullets striking President Kennedy were fired from Lee Oswald’s rifle. A new 
analysis of the bullets using more appropriate statistical analyses demonstrated 
that the evidence presented in 1979 was overstated. A case is presented for a new 
analysis of the assassination bullet fragments, which may shed light on whether the 
five bullet fragments found in the Kennedy assassination are derived from three or 
more bullets and not just two bullets, as was presented as the definitive evidence 
that Oswald was the sole shooter in the assassination of President Kennedy.

Defining the problem: estimating Bowhead Whale 
population Size 
Raftery and Zeh (1998) discuss the estimation of the population size and rate of 
 increase in bowhead whales, Balaena mysticetus. The importance of such a study 
 derives from the fact that bowheads were the first species of great whale for 
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which commercial whaling was stopped; thus, their status indicates the recovery 
prospects of other great whales. Also, the International Whaling Commission 
uses these estimates to determine the aboriginal subsistence whaling quota for 
Alaskan Eskimos. To obtain the necessary data, researchers conducted a visual 
and acoustic census off Point Barrow, Alaska. The researchers then applied sta-
tistical models and estimation techniques to the data obtained in the census to 
determine whether the bowhead population had increased or decreased since 
commercial whaling was stopped. The statistical estimates showed that the 
 bowhead popu lation was increasing at a healthy rate, indicating that stocks of 
great whales that have been decimated by commercial hunting can recover after 
hunting is  discontinued.

Defining the problem: Ozone exposure  
and population Density 
Ambient ozone pollution in urban areas is one of the nation’s most pervasive envi-
ronmental problems. Whereas the decreasing stratospheric ozone layer may lead 
to increased instances of skin cancer, high ambient ozone intensity has been shown 
to cause damage to the human respiratory system as well as to agricultural crops 
and trees. The Houston, Texas, area has ozone concentrations and are rated sec-
ond only to those of Los Angeles. that exceed the National Ambient Air Quality 
Standard. Carroll et al. (1997) describe how to analyze the hourly ozone meas-
urements collected in  Houston from 1980 to 1993 by 9 to 12 monitoring stations. 
Besides the ozone level, each station recorded three meteorological variables: 
temperature, wind speed, and wind direction. 

The statistical aspect of the project had three major goals: 

1. Provide information (and/or tools to obtain such information) 
about the amount and pattern of missing data as well as about the 
quality of the ozone and the meteorological measurements.

2. Build a model of ozone intensity to predict the ozone concentration 
at any given location within Houston at any given time between 1980 
and 1993.

3. Apply this model to estimate exposure indices that account for 
either a long-term exposure or a short-term high-concentration 
exposure; also, relate census information to different exposure 
indices to achieve population exposure indices. 

The spatial–temporal model the researchers built provided estimates dem-
onstrating that the highest ozone levels occurred at locations with relatively small 
populations of young children. Also, the model estimated that the exposure of 
young children to ozone decreased by approximately 20% from 1980 to 1993. An 
examination of the distribution of population exposure had several policy impli-
cations. In particular, it was concluded that the current placement of monitors 
is not ideal if one is concerned with assessing population exposure. This project 
involved all four components of Learning from Data: planning where the moni-
toring stations should be placed within the city, how often the data should be 
collected, and what variables should be recorded; conducting spatial–temporal 
graphing of the data; creating spatial–temporal models of the ozone data, mete-
orological data, and demographic data; and, finally, writing a report that could 
assist local and federal officials in formulating policy with respect to decreasing 
ozone levels.
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Defining the problem: assessing public Opinion 
Public opinion, consumer preference, and election polls are commonly used to 
 assess the opinions or preferences of a segment of the public regarding issues, 
products, or candidates of interest. We, the American public, are exposed to the 
results of these polls daily in newspapers, in magazines, on the internet, on the 
radio, and on television. For example, the results of polls related to the following 
subjects were printed in local newspapers:

●● Public confidence in the potential for job growth in the coming year
●● Reactions of Texas residents to the state legislature’s failure to expand 

Medicaid coverage
●● Voters’ preferences for tea party candidates in the fall congressional 

elections
●● Attitudes toward increasing the gasoline tax in order to increase 

funding for road construction and maintenance
●● Product preference polls related to specific products (Toyota vs. Ford, 

DirecTV vs. Comcast, Dell vs. Apple, Subway vs. McDonald’s)
●● Public opinion on a national immigration policy

A number of questions can be raised about polls. Suppose we consider a poll 
on the public’s opinion on a proposed income tax increase in the state of Michigan. 
What was the population of interest to the pollster? Was the pollster  interested in 
all residents of Michigan or just those citizens who currently pay income taxes? 
Was the sample in fact selected from this population? If the population of interest 
was all persons currently paying income taxes, did the pollster make sure that all 
the individuals sampled were current taxpayers? What questions were asked and 
how were the questions phrased? Was each person asked the same question? Were 
the questions phrased in such a manner as to bias the responses? Can we believe 
the results of these polls? Do these results “represent’’ how the general public 
currently feels about the issues raised in the polls?

Opinion and preference polls are an important, visible application of statis-
tics for the consumer. We will discuss this topic in more detail in Chapters 2 and 
10. We hope that after studying this material you will have a better understanding 
of how to interpret the results of these polls.

 1.4 a Note to the Student 

We think with words and concepts. A study of the discipline of statistics requires 
us to memorize new terms and concepts (as does the study of a foreign language). 
Commit these definitions, theorems, and concepts to memory. 

Also, focus on the broader concept of making sense of data. Do not let details 
obscure these broader characteristics of the subject. The teaching objective of this 
text is to identify and amplify these broader concepts of statistics. 

 1.5 Summary

The discipline of statistics and those who apply the tools of that discipline deal 
with  Learning from Data. Medical researchers, social scientists, accountants, 
agronomists, consumers, government leaders, and professional statisticians are all 
involved with data collection, data summarization, data analysis, and the effective 
communication of the results of data analysis. 
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 1.6 Exercises

 1.1 Introduction
 Bio. 1.1  Hansen (2006) describes a study to assess the migration and survival of salmon released  

from fish farms located in Norway. The mingling of escaped farmed salmon with wild salmon 
raises several concerns. First, the assessment of the abundance of wild salmon stocks will be 
biased if there is a presence of large numbers of farmed salmon. Second, potential interbreed-
ing between farmed and wild salmon may result in a reduction in the health of the wild stocks. 
Third, diseases present in farmed salmon may be transferred to wild salmon. Two batches of 
farmed salmon were tagged and released in two locations, one batch of 1,996 fish in northern 
Norway and a second batch of 2,499 fish in southern Norway. The researchers recorded the 
time and location at which the fish were captured by either commercial fisherman or anglers 
in fresh water. Two of the most important pieces of information to be determined by the 
study were the distance from the point of the fish’s release to the point of its capture and the 
length of time it took for the fish to be captured.

 a. Identify the population that is of interest to the researchers.
 b. Describe the sample.
 c. What characteristics of the population are of interest to the researchers?
 d.  If the sample measurements are used to make inferences about the population 

characteristics, why is a measure of reliability of the inferences important?

 Env. 1.2 During 2012, Texas had listed on FracFocus, an industry fracking disclosure site, nearly 
6,000 oil and gas wells in which the fracking methodology was used to extract natural gas. 
Fontenot et al. (2013 ) reports on a study of 100 private water wells in or near the Barnett Shale 
in Texas. There were 91 private wells located within 5 km of an active gas well using fracking, 4 
private wells with no gas wells located within a 14 km radius, and 5 wells outside of the Barnett 
Shale with no gas well located with a 60 km radius. They found that there were elevated levels 
of potential contaminants such as arsenic and selenium in the 91 wells closest to natural gas 
extraction sites compared to the 9 wells that were at least 14 km away from an active gas well 
using the £racking technique to extract natural gas. 

 a. Identify the population that is of interest to the researchers.
 b. Describe the sample.
 c. What characteristics of the population are of interest to the researchers?
 d.  If the sample measurements are used to make inferences about the population 

characteristics, why is a measure of reliability of the inferences important? 

 Soc. 1.3 In 2014, Congress cut $8.7 billion from the Supplemental Nutrition Assistance Program 
(SNAP), more commonly referred to as food stamps. The rationale for the decrease is that 
providing assistance to people will result in the next generation of citizens being more depend-
ent on the government for support.  Hoynes (2012) describes a study to evaluate this claim. The 
study examines 60,782 families over the time period of 1968 to 2009 which is subsequent to the 
introduction of the Food Stamp Program in 1961. This study examines the impact of a posi-
tive and policy-driven change in economic resources available in utero and during childhood 
on the economic health of individuals in adulthood. The study assembled data linking family 
background in early childhood to adult health and economic outcomes. The study concluded 
that the Food Stamp Program has effects decades after initial exposure. Specifically, access 
to food stamps in childhood leads to a significant reduction in the incidence of metabolic 
syndrome (obesity, high blood pressure, and diabetes) and, for women, an increase in eco-
nomic self-sufficiency. Overall, the results suggest substantial internal and external benefits  
of SNAP.

 a. Identify the population that is of interest to the researchers.
 b. Describe the sample.
 c. What characteristics of the population are of interest to the researchers?
 d.  If the sample measurements are used to make inferences about the population 

characteristics, why is a measure of reliability of the inferences important?
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 Med. 1.4 Of all sports, football accounts for the highest incidence of concussion in the United States 
due to the large number of athletes participating and the nature of the sport. While there is gen-
eral agreement that concussion incidence can be reduced by making rule changes and teaching 
proper tackling technique, there remains debate as to whether helmet design may also reduce the 
incidence of concussion. Rowson et al. (2014) report on a retrospective analysis of head impact 
data collected between 2005 and 2010 from eight collegiate football teams. Concussion rates for 
players wearing two types of helmets, Riddell VSR4 and Riddell Revolution, were compared. A 
total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The 
relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet 
was 46.1%. This study illustrates that differences in the ability to reduce concussion risk exist 
between helmet models in football. Although helmet design may never prevent all concussions 
from occurring in football, evidence illustrates that it can reduce the incidence of this injury.

 a. Identify the population that is of interest to the researchers.
 b. Describe the sample.
 c. What characteristics of the population are of interest to the researchers?
 d.  If the sample measurements are used to make inferences about the population 

characteristics, why is a measure of reliability of the inferences important?

 pol. Sci. 1.5 During the 2004 senatorial campaign in a large southwestern state, illegal immigration was 
a major issue. One of the candidates argued that illegal immigrants made use of educational 
and social services without having to pay property taxes. The other candidate pointed out that 
the cost of new homes in their state was 20–30% less than the national average due to the low 
wages received by the large number of illegal immigrants working on new home construction. A 
random sample of 5,500 registered voters was asked the question, “Are illegal immigrants gen-
erally a benefit or a liability to the state’s economy?” The results were as follows: 3,500 people 
responded “liability,” 1,500 people responded “benefit,” and 500 people responded “uncertain.”

 a. What is the population of interest?
 b. What is the population from which the sample was selected?
 c. Does the sample adequately represent the population?
 d.  If a second random sample of 5,000 registered voters was selected, would the 

results be nearly the same as the results obtained from the initial sample of 
5,000 voters? Explain your answer.

 edu. 1.6 An American history professor at a major university was interested in knowing the history 
literacy of college freshmen. In particular, he wanted to find what proportion of college freshmen 
at the university knew which country controlled the original 13 colonies prior to the American 
Revolution. The professor sent a questionnaire to all freshman students enrolled in HIST 101 and 
received responses from 318 students out of the 7,500 students who were sent the questionnaire. 
One of the questions was “What country controlled the original 13 colonies prior to the American 
Revolution?”

 a. What is the population of interest to the professor?
 b. What is the sampled population?
 c. Is there a major difference in the two populations. Explain your answer.
 d.  Suppose that several lectures on the American Revolution had been given in 

HIST 101 prior to the students receiving the questionnaire. What possible source 
of bias has the professor introduced into the study relative to the population of 
interest?



 2.1 Introduction and abstract of research Study

As mentioned in Chapter 1, the first step in Learning from Data is to define the 
problem. The design of the data collection process is the crucial step in intelli-
gent data gathering. The process takes a conscious, concerted effort focused on the 
 following steps: 

●● Specifying the objective of the study, survey, or experiment 
●● Identifying the variable(s) of interest 
●● Choosing an appropriate design for the survey or experimental study 
●● Collecting the data 

To specify the objective of the study, you must understand the problem being 
addressed. For example, the transportation department in a large city wants to 
assess the public’s perception of the city’s bus system in order to increase the use 
of buses within the city. Thus, the department needs to determine what aspects of 
the bus system determine whether or not a person will ride the bus. The objective 
of the study is to identify factors that the transportation department can alter to 
increase the number of people using the bus system. 

To identify the variables of interest, you must examine the objective of the 
study. For the bus system, some major factors can be identified by reviewing stud-
ies conducted in other cities and by brainstorming with the bus system employ-
ees. Some of the factors may be safety, cost, cleanliness of the buses, whether or 
not there is a bus stop close to the person’s home or place of employment, and 
how often the bus fails to be on time. The measurements to be obtained in the 
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study would consist of importance ratings (very important, important, no opin-
ion, somewhat unimportant, very unimportant) of the identified factors. Demo-
graphic  information, such as age, sex, income, and place of residence, would also 
be measured. Finally, the measurement of variables related to how frequently a 
person  currently rides the buses would be of importance. Once the objectives are 
determined and the variables of interest are specified, you must select the most 
appropriate method to collect the data. Data collection processes include surveys, 
experiments, and the examination of existing data from business records, censuses, 
government records, and previous studies. The theory of sample surveys and the 
theory of experimental  designs provide excellent methodology for data collection. 
Usually surveys are passive. The goal of the survey is to gather data on existing 
conditions, attitudes, or behaviors. Thus, the transportation department would 
need to construct a questionnaire and then sample current riders of the buses and 
persons who use other forms of transportation within the city. 

Experimental studies, on the other hand, tend to be more active: The per-
son conducting the study varies the experimental conditions to study the effect of 
the conditions on the outcome of the experiment. For example, the transporta-
tion  department could decrease the bus fares on a few selected routes and assess 
whether the use of its buses increased. However, in this example, other factors 
not under the bus system’s control may also have changed during this time period. 
Thus, an increase in bus use may have taken place because of a strike of subway 
workers or an increase in gasoline prices. The decrease in fares was only one of 
several factors that may have “caused” the increase in the number of persons rid-
ing the buses.

In most experimental studies, as many as possible of the factors that affect 
the measurements are under the control of the experimenter. A floriculturist wants 
to determine the effect of a new plant stimulator on the growth of a commercially 
produced flower. The floriculturist would run the experiments in a greenhouse, 
where temperature, humidity, moisture levels, and sunlight are controlled. An 
equal number of plants would be treated with each of the selected quantities of 
the growth stimulator, including a control—that is, no stimulator applied. At the 
conclusion of the experiment, the size and health of the plants would be measured. 
The optimal level of the plant stimulator could then be determined because ideally 
all other factors affecting the size and health of the plants would be the same for 
all plants in the experiment.

In this chapter, we will consider some sampling designs for surveys and some 
designs for experimental studies. We will also make a distinction between an 
 experimental study and an observational study.

abstract of research Study: exit polls Versus election results
As the 2004 presidential campaign approached Election Day, the Democratic Party 
was very optimistic that its candidate, John Kerry, would defeat the incumbent, 
George Bush. Many Americans arrived home the evening of Election Day to watch 
or listen to the network coverage of the election with the expectation that John 
Kerry would be declared the winner of the presidential race because throughout 
Election Day, radio and television reporters had provided exit poll results showing 
John Kerry ahead in nearly every crucial state, and in many of these states lead-
ing by substantial margins. The Democratic Party, being better organized with a 
greater commitment and focus than in many previous presidential elections, had 
produced an enormous number of Democratic loyalists for this election. But, as 
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the evening wore on, in one crucial state after another the election returns showed 
results that differed greatly from what the exit polls had predicted.

The data shown in Table 2.1 are from a University of Pennsylvania techni-
cal report by Steven F. Freeman entitled “The Unexplained Exit Poll Discrepancy.” 
Freeman obtained exit poll data and the actual election results for 11 states that 
were considered by many to be the crucial states for the 2004 presidential election. 
The exit poll results show the number of voters polled as they left the voting booth 
for each state along with the corresponding percentage favoring Bush or Kerry 
and the predicted winner. The election results give the actual outcomes and winner 
for each state as reported by the state’s election commission. The final column of 
the table shows the difference between the predicted winning percentage from the 
exit polls and the actual winning percentage from the election.

This table shows that the exit polls predicted George Bush to win in only 2 
of the 11 crucial states, and this is why the media were predicting that John Kerry 
would win the election even before the polls were closed. In fact, Bush won 6 of the 
11 crucial states, and, perhaps more importantly, we see in the final column that 
in 10 of these 11 states the difference between the actual margin of victory from 
the election results and the predicted margin of victory from the exit polls favored 
Bush.

At the end of this chapter, we will discuss some of the cautions one must take 
in using exit poll data to predict actual election outcomes.

 2.2 Observational Studies

A study may be either observational or experimental. In an observational study, 
the researcher records information concerning the subjects under study without 
any interference with the process that is generating the information. The researcher 
is a passive observer of the transpiring events. In an experimental study (which will 
be discussed in detail in Sections 2.4 and 2.5), the researcher actively manipulates 
certain variables associated with the study, called the explanatory variables, and 
then records their effects on the response variables associated with the experimen-
tal subjects. A severe limitation of observational studies is that the recorded values 

observational study

experimental study

explanatory variables
response variables

TABLE 2.1 Predicted vs. actual percentages in battleground states

Crucial 
Exit Poll Results Election Results 

Election
State Sample Bush Kerry Difference Bush Kerry Difference vs. Exit

Colorado 2,515 49.9% 48.1% Bush 1.8% 52.0% 46.8% Bush 5.2% Bush 3.4%
Florida 2,223 48.8% 49.2% Kerry 0.4% 49.4% 49.8% Kerry 0.4% No Diff.
Iowa 2,846 49.8% 49.7% Bush 0.1% 52.1% 47 .1% Bush 5.0% Bush 4.9%
Michigan 2,502 48.4% 49.7% Kerry 1.3% 50.1% 49.2% Bush 0.9% Bush 2.2%
Minnesota 2,452 46.5% 51.1% Kerry 4.6% 47 .8% 51.2% Kerry 3.4% Kerry 1.2%
Nevada 2,178 44.5% 53.5% Kerry 9.0% 47 .6% 51.1% Kerry 3.5% Kerry 5.5%
New Hampshire 2,116 47 .9% 49.2% Kerry 1.3% 50.5% 47 .9% Bush 2.6% Bush 3.9%
New Mexico 1,849 44.1% 54.9% Kerry 10.8% 49.0% 50.3% Kerry 1.3% Kerry 9.5%
Ohio 1,951 47 .5% 50.1% Kerry 2.6% 50.0% 48.9% Bush 1.1% Bush 3.7%
Pennsylvania 1,963 47 .9% 52.1% Kerry 4.2% 51.0% 48.5% Bush 2.5% Bush 6.7%
Wisconsin 1,930 45.4% 54.1% Kerry 8.7% 48.6% 50.8% Kerry 2.2% Kerry 6.5%
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of the response variables may be affected by variables other than the explana-
tory variables. These variables are not under the control of the researcher. They 
are called confounding variables. The effects of the confounding variables and the 
explanatory variables on the response variable cannot be separated due to the lack 
of control the researcher has over the physical setting in which the observations are 
made. In an experimental study, the researcher attempts to maintain control over 
all variables that may have an effect on the response variables.

Observational studies may be dichotomized into either a comparative study 
or a descriptive study. In a comparative study, two or more methods of achieving 
a result are compared for effectiveness. For example, three types of healthcare 
delivery methods are compared based on cost effectiveness. Alternatively, several 
groups are compared based on some common attribute. For example, the starting 
incomes of engineers are contrasted from a sample of new graduates from private 
and public universities. In a descriptive study, the major purpose is to characterize 
a population or process based on certain attributes in that population or process—
for example, studying the health status of children under the age of 5 years old in 
families without health insurance or assessing the number of overcharges by com-
panies hired under federal military contracts.

Observational studies in the form of polls, surveys, and epidemiological stud-
ies, for example, are used in many different settings to address questions posed 
by researchers. Surveys are used to measure the changing opinion of the nation 
with respect to issues such as gun control, interest rates, taxes, the minimum 
wage, Medicare, and the national debt. Similarly, we are informed on a daily basis 
through newspapers, magazines, television, radio, and the Internet of the results of 
public opinion polls concerning other relevant (and sometimes irrelevant) politi-
cal, social, educational, financial, and health issues.

In an observational study, the factors (treatments) of interest are not manip-
ulated while making measurements or observations. The researcher in an envi-
ronmental impact study is attempting to establish the current state of a natural 
setting to which subsequent changes may be compared. Surveys are often used by 
natural scientists as well. In order to determine the proper catch limits of commer-
cial and recreational fishermen in the Gulf of Mexico, the states along the Gulf of 
Mexico must sample the Gulf to determine the current fish density.

There are many biases and sampling problems that must be addressed in 
order for the survey to be a reliable indicator of the current state of the sampled 
population. A problem that may occur in observational studies is assigning cause-
and-effect relationships to spurious associations between factors. For example, in 
many epidemiological studies, we study various environmental, social, and eth-
nic factors and their relationship with the incidence of certain diseases. A public 
health question of considerable interest is the relationship between heart disease 
and the amount of fat in one’s diet. It would be unethical to randomly assign vol-
unteers to one of several high-fat diets and then monitor the people over time to 
observe whether or not heart disease develops.

Without being able to manipulate the factor of interest (fat content of the 
diet), the scientist must use an observational study to address the issue. This could 
be done by comparing the diets of a sample of people with heart disease with the 
diets of a sample of people without heart disease. Great care would have to be taken 
to record other relevant factors such as family history of heart disease, smoking 
habits, exercise routine, age, and gender for each person, along with other physical 
characteristics. Models could then be developed so that differences between the 
two groups could be adjusted to eliminate all factors except fat content of the diet.  

confounding variables

comparative study 
descriptive study

cause-and-effect 
relationships
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Even with these adjustments, it would be difficult to assign a cause-and-effect 
relationship between the high fat content of a diet and the development of heart 
disease. In fact, if the dietary fat content for the heart disease group tended to be 
higher than that for the group free of heart disease after adjusting for relevant 
 factors, the study results would be reported as an association between high dietary 
fat content and heart disease, not a causal relationship.

Stated differently, in observational studies, we are sampling from populations 
where the factors (or treatments) are already present, and we compare samples 
with respect to the factors (treatments) of interest to the researcher. In contrast, 
in the controlled environment of an experimental study, we are able to randomly 
assign the people as objects under study to the factors (or treatments) and then 
observe the response of interest. For our heart disease example, the distinction is 
shown here:

Observational study: We sample from the heart disease population and 
heart disease–free population and compare the fat content of the 
diets for the two groups.

Experimental study: Ignoring ethical issues, we assign volunteers to one 
of several diets with different levels of dietary fat (the treatments) 
and compare the different treatments with respect to the response of 
interest (incidence of heart disease) after a period of time.

Observational studies are of three basic types:

●● A sample survey is a study that provides information about a popula-
tion at a particular point in time (current information).

●● A prospective study is a study that observes a population in the pre-
sent using a sample survey and proceeds to follow the subjects in the 
sample forward in time in order to record the occurrence of specific 
outcomes.

●● A retrospective study is a study that observes a population in the 
present using a sample survey and also collects information about the 
subjects in the sample regarding the occurrence of specific outcomes 
that have  already taken place.

In the health sciences, a sample survey would be referred to as a cross-sectional 
or prevalence study. All individuals in the survey would be asked about their 
current disease status and any past exposures to the disease. A prospective study 
would identify a group of disease-free subjects and then follow them over a period 
of time until some of the individuals develop the disease. The development or 
nondevelopment of the disease would then be related to other variables meas-
ured on the subjects at the beginning of the study, often referred to as exposure 
variables. A retrospective study identifies two groups of subjects: cases—subjects 
with the disease—and controls—subjects without the disease. The researcher 
then attempts to correlate the subjects’ prior health habits to their current health 
status.

Although prospective and retrospective studies are both observational stud-
ies, there are some distinct differences.

●● Retrospective studies are generally cheaper and can be completed 
more rapidly than prospective studies.

●● Retrospective studies have problems due to inaccuracies in data due 
to recall errors.

association
causal

sample survey

prospective study

retrospective study
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●● Retrospective studies have no control over variables that may affect 
disease occurrence.

●● In prospective studies, subjects can keep careful records of their daily 
 activities.

●● In prospective studies, subjects can be instructed to avoid certain 
activities that may bias the study. 

●● Although prospective studies reduce some of the problems of retro-
spective studies, they are still observational studies, and hence the 
potential influences of confounding variables may not be completely 
controlled. It is possible to somewhat reduce the influence of the 
confounding variables by restricting the study to matched subgroups 
of subjects.

Both prospective and retrospective studies are often comparative in nature. Two 
specific types of such studies are cohort studies and case-control studies. In a 
cohort study, a group of subjects is followed forward in time to observe the differ-
ences in characteristics between subjects who develop a disease and those who do 
not. Similarly, we could observe which subjects commit crimes while also recording 
information about their educational and social backgrounds. In case-control stud-
ies, two groups of subjects are identified, one with the disease and one without the 
disease. Next, information is gathered about the subjects from their past concern-
ing risk factors that are associated with the disease. Distinctions are then drawn 
between the two groups based on these characteristics.

eXaMpLe 2.1

A study was conducted to determine if women taking oral contraceptives had a 
greater propensity to develop heart disease. A group of 5,000 women currently 
using oral contraceptives and another group of 5,000 women not using oral con-
traceptives were selected for the study. At the beginning of the study, all 10,000 
women were given physicals and were found to have healthy hearts. The women’s 
health was then tracked for a 3-year period. At the end of the study, 15 of the 5,000 
users had developed a heart disease, whereas only 3 of the nonusers had any evi-
dence of heart disease. What type of design was this observational study?

Solution This study is an example of a prospective observational study. All 
women were free of heart disease at the beginning of the study and their exposure 
(oral contraceptive use) measured at that time. The women were then under ob-
servation for 3 years, with the onset of heart disease recorded if it occurred dur-
ing the observation period. A comparison of the frequency of occurrence of the 
 disease was made between the two groups of women, users and nonusers of oral 
 contraceptives. ■

eXaMpLe 2.2

A study was designed to determine if people who use public transportation to travel 
to work are more politically active than people who use their own vehicle to travel 
to work. A sample of 100 people in a large urban city was selected from each 
group, and then all 200 individuals were interviewed concerning their political activi-
ties over the past 2 years. Out of the 100 people who used public transportation, 
18 reported that they had actively assisted a candidate in the past 2 years, whereas 
only 9 of the 100 persons who used their own vehicles stated they had participated 
in a political campaign. What type of design was this study?

cohort studies
case-control studies
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Solution This study is an example of a retrospective observational study. The 
individuals in both groups were interviewed about their past experiences with the 
political process. A comparison of the degree of participation of the individuals 
was made across the two groups. ■

In Example 2.2, many of the problems with using observational studies are present. 
There are many factors that may affect whether or not an individual decides to 
participate in a political campaign. Some of these factors may be confounded with 
ridership on public transportation—for example, awareness of the environmental 
impact of vehicular exhaust on air pollution, income level, and education level. 
These factors need to be taken into account when designing an observational study.

The most widely used observational study is the survey. Information from 
surveys impacts nearly every facet of our daily lives. Government agencies use 
surveys to make decisions about the economy and many social programs. News 
agencies often use opinion polls as a basis of news reports. Ratings of television 
shows, which come from surveys, determine which shows will be continued for the 
next television season.

Who conducts surveys? The various news organizations all use public opinion 
polls: Such surveys include the New York Times/CBS News, Washington Post/ABC 
News, Wall Street Journal/NBC News, Harris, Gallup/Newsweek, and CNN/Time 
polls. However, the vast majority of surveys are conducted for a specific  industrial, 
governmental, administrative, political, or scientific purpose. For example, auto 
manufacturers use surveys to find out how satisfied customers are with their cars. 
Frequently, we are asked to complete a survey as part of the warranty registration 
process following the purchase of a new product. Many important studies involv-
ing health issues use surveys to determine, for example, the amount of fat in a diet, 
exposure to secondhand smoke, condom use and the  prevention of AIDS, and the 
prevalence of adolescent depression.

The U.S. Bureau of the Census is required by the U.S. Constitution to enu-
merate the population every 10 years. With the growing involvement of the govern-
ment in the lives of its citizens, the Census Bureau has expanded its role beyond just 
counting the population. An attempt is made to send a census questionnaire in the 
mail to every household in the United States. Since the 1940 census, in addition to 
the complete count information, further information has been obtained from rep-
resentative samples of the population. In the 2000 census, variable sampling rates 
were employed. For most of the country, approximately five of six households were 
asked to answer the 14 questions on the short version of the form. The  remaining 
households responded to a longer version of the form containing an  additional 45 
questions. Many agencies and individuals use the resulting information for many 
purposes. The federal government uses it to determine allocations of funds to states 
and cities. Businesses use it to forecast sales, to manage personnel, and to establish 
future site locations. Urban and regional planners use it to plan land use, transpor-
tation networks, and energy consumption. Social scientists use it to study economic 
conditions, racial balance, and other aspects of the quality of life.

The U.S. Bureau of Labor Statistics (BLS) routinely conducts more than 
20 surveys. Some of the best known and most widely used are the surveys that 
establish the Consumer Price Index (CPI). The CPI is a measure of price change 
for a fixed market basket of goods and services over time. It is a measure of 
inflation and serves as an economic indicator for government policies. Businesses 
tie wage rates and pension plans to the CPI. Federal health and welfare programs, 
as well as many state and local programs, tie their bases of eligibility to the CPI. 
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Escalator clauses in rents and mortgages are based on the CPI. This one index, 
determined on the basis of sample surveys, plays a fundamental role in our society. 

Many other surveys from the BLS are crucial to society. The monthly Current 
Population Survey establishes basic information on the labor force, employment, 
and unemployment. The Consumer Expenditure Survey collects data on fam-
ily  expenditures for goods and services used in day-to-day living. The Current 
Employment Statistics Survey collects information on employment hours and 
earnings for nonagricultural business establishments. The Occupational Employ-
ment Statistics Survey provides information on future employment opportunities 
for a variety of occupations, projecting to approximately 10 years ahead. Other 
activities of the BLS are addressed in the BLS Handbook of Methods (web version:  
www.bls.gov/opub/hom).

Opinion polls are constantly in the news, and the names of Gallup and  Harris 
have become well known to everyone. These polls, or sample surveys, reflect the atti-
tudes and opinions of citizens on everything from politics and religion to sports and 
entertainment. The Nielsen ratings determine the success or failure of TV shows.

How do you figure out the ratings? Nielsen Media Research (NMR) continu-
ally measures television viewing with a number of different samples all across the 
United States. The first step is to develop representative samples. This must be done 
with a scientifically drawn random selection process. No volunteers can be accepted 
or the statistical accuracy of the sample would be in jeopardy. Nationally, there are 
5,000 television households in which electronic meters (called People  Meters) are 
attached to every TV set, VCR, cable converter box, satellite dish, or other video 
equipment in the home. The meters continually record all set tunings. In addition, 
NMR asks each member of the household to let them know when they are watch-
ing by pressing a pre-assigned button on the People Meter. By matching this button 
activity to the demographic information (age/gender) NMR collected at the time 
the meters were installed, NMR can match the set tuning—what is being watched—
with who is watching. All these data are transmitted to NMR’s computers, where 
they are processed and released to customers each day. In addition to this national 
service, NMR has a slightly different metering system in 55 local markets. In each 
of those markets, NMR gathers just the set-tuning information each day from more 
than 20,000 additional homes. NMR then processes the data and releases what are 
called “household ratings” daily. In this case, the ratings report what channel or 
program is being watched, but they do not have the “who” part of the picture. To 
gather that local demographic information, NMR periodically (at least four times 
per year) asks another group of people to participate in diary surveys. For these 
estimates, NMR contacts approximately 1 million homes each year and asks them 
to keep track of television viewing for 1 week, recording their TV-viewing  activity in 
a diary. This is done for all 210 television markets in the United States in November, 
February, May, and July and is generally referred to as the “sweeps.” For more 
information on the Nielsen ratings, go to the NMR website (www. nielsenmedia.
com) and click on the “What TV Ratings Really Mean” button.

Businesses conduct sample surveys for their internal operations in addition 
to using government surveys for crucial management decisions. Auditors esti-
mate account balances and check on compliance with operating rules by sampling 
 accounts. Quality control of manufacturing processes relies heavily on sampling 
techniques.

Another area of business activity that depends on detailed sampling activities 
is marketing. Decisions on which products to market, where to market them, and 
how to advertise them are often made on the basis of sample survey data. The data 
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may come from surveys conducted by the firm that manufactures the product or 
may be purchased from survey firms that specialize in marketing data.

 2.3 Sampling Designs for Surveys

A crucial element in any survey is the manner in which the sample is selected from 
the population. If the individuals included in the survey are selected based on con-
venience alone, there may be biases in the sample survey, which would prevent the 
survey from accurately reflecting the population as a whole. For example, a mar-
keting graduate student developed a new approach to advertising and, to evaluate 
this new approach, selected the students in a large undergraduate business course 
to assess whether the new approach is an improvement over standard advertise-
ments. Would the opinions of this class of students be representative of the general 
population of people to which the new approach to advertising would be applied? 
The income levels, ethnicities, education levels, and many other socioeconomic 
characteristics of the students may differ greatly from the population of interest. 
Furthermore, the students may be coerced into participating in the study by their 
instructor and hence may not give the most candid answers to questions on a sur-
vey. Thus, the manner in which a sample is selected is of utmost importance to the 
credibility and applicability of the study’s results.

In order to precisely describe the components that are necessary for a sample 
to be effective, the following definitions are required.

Target population: The complete collection of objects whose descrip-
tion is the major goal of the study. Designating the target population 
is a crucial but often difficult part of the first step in an observational 
or experimental study. For example, in a survey to decide if a new 
storm-water drainage tax should be implemented, should the target 
population be all persons over the age of 18 in the county, all regis-
tered voters, or all persons paying property taxes? The selection of 
the target population may have a profound effect on the results of 
the study.

Sample: A subset of the target population.
Sampled population: The complete collection of objects that have the 

 potential of being selected in the sample; the population from which 
the sample is actually selected. In many studies, the sampled popula-
tion and the target population are very different. This may lead to 
very  erroneous conclusions based on the information collected in the 
sample. For example, in a telephone survey of people who are on the 
property tax list (the target population), a subset of this population 
may not  answer their telephone if the caller is unknown, as viewed 
through Caller ID. Thus, the sampled population may be quite differ-
ent from the target population with respect to some important charac-
teristics such as income and opinion on certain issues.

Observation unit: The object about which data are collected. In studies 
in volv ing human populations, the observation unit is a specific indi-
vidual in the sampled population. In ecological studies, the observa-
tion unit may be a sample of water from a stream or an individual 
plant on a plot of land.

Sampling unit: The object that is actually sampled. We may want to 
sample the person who pays the property tax but may only have 

target population

sample
sampled population

observation unit
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a list of telephone numbers. Thus, the households in the sampled 
population serve as the sampled units, and the observation units are 
the individuals residing in the sampled household. In an entomology 
study, we may sample 1-acre plots of land and then count the num-
ber of insects on individual plants residing on the sampled plot. The 
sampled unit is the plot of land; the  observation unit would be the 
individual plant.

Sampling frame: The list of sampling units. For a mailed survey, it may 
be a list of addresses of households in a city. For an ecological study, 
it may be a map of areas downstream from power plants.

In a perfect survey, the target population would be the same as the sampled popu-
lation. This type of survey rarely happens. There are always difficulties in obtaining 
a sampling frame or being able to identify all elements within the target popula-
tion. A particular aspect of this problem is nonresponse. Even if the researcher 
was able to obtain a list of all individuals in the target population, there may be a 
distinct subset of the target population that refuses to fill out the survey or allow 
themselves to be observed. Thus, the sampled population becomes a subset of the 
target population. An attempt at characterizing the nonresponders is very crucial 
in attempting to use a sample to describe a population. The group of nonrespond-
ers may have certain demographics or a particular political leaning that if not iden-
tified could greatly distort the results of the survey. An excellent discussion of this 
topic can be found in the textbook Sampling: Design and Analysis by Sharon L. 
Lohr (1999).

The basic design (simple random sampling) consists of selecting a group of 
n units in such a way that each sample of size n has the same chance of being 
selected. Thus, we can obtain a random sample of eligible voters in a bond-issue 
poll by drawing names from the list of registered voters in such a way that each 
sample of size n has the same probability of selection. The details of simple random 
sampling are discussed in Section 4.11. At this point, we merely state that a sim-
ple random sample will contain as much information on community preference as 
any other sample survey design, provided all voters in the community have similar 
socioeconomic backgrounds.

Suppose, however, that the community consists of people in two distinct 
income brackets, high and low. Voters in the high-income bracket may have opin-
ions on the bond issue that are quite different from the opinions of voters in the 
low-income bracket. Therefore, to obtain accurate information about the popula-
tion, we want to sample voters from each bracket. We can divide the population 
elements into two groups, or strata, according to income and select a simple random 
sample from each group. The resulting sample is called a stratified random sample. 
(See Chapter 5 of Scheaffer et al., 2006.) Note that stratification is accomplished by 
using knowledge of an auxiliary variable, namely, personal income. By stratifying 
on high and low values of income, we increase the accuracy of our estimator. Ratio 
 estimation is a second method for using the information contained in an auxiliary 
variable. Ratio estimators not only use measurements on the response of  interest 
but also incorporate measurements on an auxiliary variable. Ratio  estimation can 
also be used with stratified random sampling. 

Although individual preferences are desired in the survey, a more economi-
cal procedure, especially in urban areas, may be to sample specific families, apart-
ment buildings, or city blocks rather than individual voters. Individual preferences 
can then be obtained from each eligible voter within the unit sampled. This tech-
nique is called cluster sampling. Although we divide the population into groups 
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for both cluster sampling and stratified random sampling, the techniques differ. In 
stratified random sampling, we take a simple random sample within each group, 
whereas in cluster sampling, we take a simple random sample of groups and then 
sample all items within the selected groups (clusters). (See Chapters 8 and 9 of 
Scheaffer et al., 2006, for details.) 

Sometimes the names of persons in the population of interest are available 
in a list, such as a registration list, or on file cards stored in a drawer. For this situa-
tion, an economical technique is to draw the sample by selecting one name near the 
beginning of the list and then selecting every tenth or fifteenth name thereafter. If 
the sampling is conducted in this manner, we obtain a systematic sample. As you 
might expect, systematic sampling offers a convenient means of obtaining sample 
information; however, systematic sampling will be less precise than simple random 
sampling if the sampling frame has a periodicity. (Details are given in Chapter 7 of 
Scheaffer et al., 2006.) 

The following example will illustrate how the goal of the study or the infor-
mation available about the elements of the population determines which type of 
sampling design to use in a particular study. 

eXaMpLe 2.3

Identify the type of sampling design in each of the following situations. 

a. The selection of 200 people to serve as potential jurors in a medi-
cal  malpractice trial is conducted by assigning a number to each of 
140,000 registered voters in the county. A computer software pro-
gram is used to randomly select 200 numbers from the numbers 1 to 
140,000. The people having these 200 numbers are sent a postcard 
notifying them of their  selection for jury duty.

b. Suppose you are selecting microchips from a production line for 
inspection for bent probes. As the chips proceed past the inspection 
point, every 100th chip is selected for inspection. 

c. The Internal Revenue Service wants to estimate the amount of 
personal deductions taxpayers made based on the type of deduc-
tion: home office, state income tax, property taxes, property losses, 
and charitable contributions. The amount claimed in each of these 
categories varies greatly depending on the adjusted gross income of 
the taxpayer. Therefore, a simple random sample would not be an 
efficient design. The IRS decides to divide taxpayers into five groups 
based on their adjusted gross incomes and then takes a simple ran-
dom sample of taxpayers from each of the five groups.

d. The USDA inspects produce for E. coli con tamination. As trucks carrying 
produce cross the border, the truck is stopped for inspection. A random 
sample of five containers is selected for inspection from the hundreds of 
containers on the truck. Every apple in each of the five containers is then 
inspected for E. coli.

Solution

a. A simple random sample is selected using the list of registered voters 
as the sampling frame.

b. This is an example of systematic random sampling. This type of 
inspection should provide a representative sample of chips because 
there is no reason to presume that there exists any cyclic variation 

systematic sample
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in the production of the chips. It would be very difficult in this situa-
tion to perform simple random sampling because no sampling frame 
exists. 

c. This is an example of stratified random sampling with the five levels 
of personal deductions serving as the strata. Overall the personal 
deductions of taxpayers increase with income. This results in the 
stratified random sample having a much smaller total sample size 
than would be required in a simple random sample to achieve the 
same level of precision in its estimators.

d. This is a cluster sampling design with the clusters being the containers and 
the individual apples being the measurement unit. ■

The important point to understand is that there are different kinds of sur-
veys that can be used to collect sample data. For the surveys discussed in this 
text, we will deal with simple random sampling and methods for summarizing 
and analyzing data collected in such a manner. More complicated surveys lead 
to even more complicated problems at the summarization and analysis stages of 
statistics. 

The American Statistical Association (http://www.amstat.org) publishes a 
 booklet: What Is a Survey?. The booklet describes many of the elements crucial 
to obtaining a valid and useful survey. It lists many of the potential sources of 
errors commonly found in surveys with guidelines on how to avoid these pitfalls. A 
discussion of some of the issues raised in the booklet follows.

problems associated with Surveys 
Even when the sample is selected properly, there may be uncertainty about 
whether the survey represents the population from which the sample was 
selected. Two of the major sources of uncertainty are nonresponse, which occurs 
when a portion of the individuals sampled cannot or will not participate in the 
survey, and measurement problems, which occur when the respondents’ answers 
to questions do not provide the type of data that the survey was designed to 
obtain. 

Survey nonresponse may result in a biased survey because the sample is not 
representative of the population. It is stated in Judging the Quality of a Survey that 
in surveys of the general population women are more likely to participate than 
men; that is, the nonresponse rate for males is higher than for females. Thus, a 
political poll may be biased if the percentage of women in the population in favor 
of a particular issue is larger than the percentage of men in the population sup-
porting the issue. The poll would overestimate the percentage of the population in 
favor of the issue because the sample had a larger percentage of women than their 
percentage in the population. In all surveys, a careful examination of the nonre-
sponse group must be conducted to determine whether a particular segment of the 
population may be either under- or overrepresented in the sample. Some of the 
remedies for nonresponse are

1. Offering an inducement for participating in the survey 
2. Sending reminders or making follow-up telephone calls to the indi-

viduals who did not respond to the first contact
3. Using statistical techniques to adjust the survey findings to account 

for the sample profile differing from the population profile

survey nonresponse



30 ChApteR 2 USIng SURveyS And expeRImentAl StUdIeS to gAtheR dAtA

Measurement problems are the result of the respondents not providing the 
information that the survey seeks. These problems often are due to the specific 
wording of questions in a survey, the manner in which the respondent answers the 
survey questions, and the fashion in which an interviewer phrases questions during 
the interview. Examples of specific problems and possible remedies are as follows: 

1. Inability to recall answers to questions: The interviewee is asked 
how many times he or she visited a particular city park during the 
past year. This type of question often results in an underestimate of 
the average number of times a family visits the park during a year 
because people often tend to underestimate the number of occur-
rences of a common event or an event occurring far from the time 
of the interview. A possible remedy is to request respondents to 
use written records or to consult with other family members before 
responding. 

2. Leading questions: The fashion in which an opinion question is posed 
may result in a response that does not truly represent the interview-
ee’s opinion. Thus, the survey results may be biased in the direction 
in which the question is slanted. For example, a question concerning 
whether the state should impose a large fine on a chemical company 
for environ mental  violations is phrased as “Do you support the 
state fining the chemical company, which is the major employer of 
people in our community, considering that this fine may result in 
their moving to another state?” This type of question tends to elicit 
a “no” response and thus produces a distorted representation of the 
community’s opinion on the imposition of the fine. The remedy is to 
write questions carefully in an objective fashion.

3. Unclear wording of questions: An exercise club attempted to deter-
mine the number of times a person exercises per week. The question 
asked of the respondent was “How many times in the last week did 
you exercise?” The word exercise has different meanings to different 
individuals. The  result of allowing different definitions of important 
words or phrases in survey questions is to greatly reduce the accu-
racy of survey results. Several remedies are possible: The questions 
should be tested on a  variety of  individuals prior to conducting the 
survey to determine whether there are any confusing or misleading 
terms in the questions. During the training of the interviewers. all 
interviewers should have the “correct” definitions of all key words 
and be advised to provide these definitions to the respondents.

Many other issues, problems, and remedies are provided in the brochures from 
the ASA. 

The stages in designing, conducting, and analyzing a survey are contained in 
Figure 2.1, which has been reproduced from an earlier version of What Is a Survey? 
in Cryer and Miller’s Statistics for Business: Data Analysis and Modeling (1991). 
This diagram provides a guide for properly conducting a successful survey.

Data Collection techniques 
Having chosen a particular sample survey, how does one actually collect the data? 
The most commonly used methods of data collection in sample surveys are per-
sonal interviews and telephone interviews. These methods, with appropriately 

measurement 
problems
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trained  interviewers and carefully planned callbacks, commonly achieve response 
rates of 60% to 75% and sometimes even higher. A mailed questionnaire sent to a 
specific group of interested persons can sometimes achieve good results, but gener-
ally the response rates for this type of data collection are so low that all reported 
results are suspect. Frequently, objective information can be found from direct 
 observation rather than from an interview or mailed  questionnaire.

Data are frequently obtained by personal interviews. For example, we can 
use personal interviews with eligible voters to obtain a sample of public sentiment 
toward a community bond issue. The procedure usually requires the interviewer 
to ask prepared questions and to record the respondent’s answers. The primary 
advantage of these interviews is that people will usually respond when confronted 
in person. In addition, the interviewer can note specific reactions and eliminate 
misunderstandings about the questions asked. The major limitations of the per-
sonal interview (aside from the cost involved) concern the interviewers. If they are 
not thoroughly trained, they may deviate from the required protocol, thus intro-
ducing a bias into the sample data. Any movement, facial expression, or statement 
by the interviewer can affect the response obtained. For example, a leading ques-
tion such as “Are you also in favor of the bond issue?” may tend to elicit a positive 
response. Finally, errors in recording the responses can lead to erroneous results. 

Information can also be obtained from persons in the sample through 
 telephone interviews. With the competition among telephone service provid-
ers, an interviewer can place any number of calls to specified areas of the coun-
try  relatively inexpensively. Surveys conducted through telephone interviews are 
 frequently less expensive than personal interviews, owing to the elimination of 
travel expenses. The investigator can also monitor the interviews to be certain that 
the specified interview procedure is being followed.

A major problem with telephone surveys is that it is difficult to find a list 
or  directory that closely corresponds to the population. Telephone directories 
have many numbers that do not belong to households, and many households 
have unlisted numbers. A technique that avoids the problem of unlisted numbers 
is random-digit dialing. In this method, a telephone exchange number (the first 
three digits of a seven-digit number) is selected, and then the last four digits are 
dialed randomly until a fixed number of households of a specified type are reached. 
This technique produces samples from the target population, but most random-
digit-dialing samples include only landline numbers. Thus, the increasing number 
of households with cell phones only is excluded. Also, many people screen calls 
before answering a call. These two problems are creating potentially large biases 
in telephone surveys.

personal interviews

telephone interviews
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Telephone interviews generally must be kept shorter than personal inter-
views because responders tend to get impatient more easily when talking over the 
telephone. With appropriately designed questionnaires and trained interviewers, 
telephone interviews can be as successful as personal interviews. 

Another useful method of data collection is the self-administered question-
naire, to be completed by the respondent. These questionnaires usually are mailed 
to the individuals included in the sample, although other distribution methods can 
be used. The questionnaire must be carefully constructed if it is to encourage par-
ticipation by the respondents.

The self-administered questionnaire does not require interviewers, and thus 
its use results in savings in the survey cost. This savings in cost is usually bought at 
the expense of a lower response rate. Nonresponse can be a problem in any form 
of data collection, but since we have the least contact with respondents in a mailed 
questionnaire, we frequently have the lowest rate of response. The low response 
rate can introduce a bias into the sample because the people who answer question-
naires may not be representative of the population of interest. To eliminate some 
of the bias, investigators frequently contact the nonrespondents through  follow-up 
letters, telephone interviews, or personal interviews. 

The fourth method for collecting data is direct observation. If we were 
in terested in estimating the number of trucks that use a particular road during 
the 4–6 p.m. rush hours, we could assign a person to count the number of trucks 
passing a specified point during this period, or electronic counting equipment 
could be used. The disadvantage in using an observer is the possibility of error in 
observation. 

Direct observation is used in many surveys that do not involve measurements 
on people. The USDA measures certain variables on crops in sections of fields in 
order to produce estimates of crop yields. Wildlife  biologists may count animals, 
animal tracks, eggs, or nests to estimate the size of animal populations.

A closely related notion to direct observation is that of getting data from 
 objective sources not affected by the respondents themselves. For example, health 
information can sometimes be obtained from hospital records and income informa-
tion from employer’s records (especially for state and federal government work-
ers). This approach may take more time but can yield large rewards in important 
surveys.

 2.4 experimental Studies

An experimental study may be conducted in many different ways. In some studies, 
the researcher is interested in collecting information from an undisturbed natu-
ral process or setting. An example would be a study of the differences in reading 
scores of second-grade students in public, religious, and private schools. In other 
studies, the scientist is working within a highly controlled laboratory, a completely 
artificial setting for the study. For example, the study of the effect of humidity 
and temperature on the length of the life cycles of ticks would be conducted in a 
laboratory, since it would be impossible to control the humidity or temperature in 
the tick’s natural environment. This control of the factors under study allows the 
entomologist to  obtain results that can then be more easily attributed to differ-
ences in the levels of the temperature and humidity, since nearly all other condi-
tions remain constant throughout the experiment. In a natural setting, many other 
factors are varying, and they may also result in changes in the life cycles of the 
ticks. However, the greater the control in these artificial settings, the less likely 
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the experiment is portraying the true state of nature. A careful balance between 
control of conditions and depiction of a reality must be maintained in order for 
the experiment to be useful. In this section and the next one, we will present some 
standard designs of  experiments. In experimental studies, the researcher controls 
the crucial factors by one of two methods.

Method 1: The subjects in the experiment are randomly assigned to the 
treatments. For example, 10 rats are randomly assigned to each of 
the four dose levels of an experimental drug under investigation.

Method 2: Subjects are randomly selected from different populations 
of interest. For example, 50 male and 50 female dogs are randomly 
selected from animal shelters in large and small cities and tested for 
the presence of heartworms.

In Method 1, the researcher randomly selects experimental units from a homoge-
neous population of experimental units and then has complete control over the 
assignment of the units to the various treatments. In Method 2, the researcher has 
control over the random sampling from the treatment populations but not over the 
assignment of the experimental units to the treatments.

In experimental studies, it is crucial that the scientist follows a systematic plan 
established prior to running the experiment. The plan includes how all randomiza-
tion is conducted, either the assignment of experimental units to treatments or the 
selection of units from the treatment populations. There may be extraneous factors 
present that may affect the experimental units. These factors may be present as 
subtle differences in the experimental units or slight differences in the surrounding 
environment during the conducting of the experiment. The randomization process 
ensures that, on the average, any large differences observed in the responses of the 
experimental units in different treatment groups can be  attributed to the differences 
in the groups and not to factors that were not controlled during the experiment. The 
plan should also include many other aspects of how to conduct the experiment. 
Some of the items that should be included in such a plan are listed here:

1. The research objectives of the experiment
2. The selection of the factors that will be varied (the treatments)
3. The identification of extraneous factors that may be present in the 

experimental units or in the environment of the experimental setting 
(the blocking factors)

4. The characteristics to be measured on the experimental units 
(response variable)

5. The method of randomization, either randomly selecting experimental 
units from treatment populations or randomly assigning experimental 
units to treatments

6. The procedures to be used in recording the responses from the 
experimental units 

7. The selection of the number of experimental units assigned to each 
treatment may require designating the level of significance and 
power of tests or the precision and reliability of confidence intervals

8. A complete listing of available resources and materials

terminology
A designed experiment is an investigation in which a specified framework is 
provided in order to observe, measure, and evaluate groups with respect to a 

designed experiment
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designated response. The researcher controls the elements of the framework dur-
ing the experiment in order to obtain data from which statistical inferences can 
provide valid comparisons of the groups of interest. 

There are two types of variables in a experimental study. Controlled variables 
called factors are selected by the researcher for comparison. Response variables 
are measurements or observations that are recorded but not controlled by the 
researcher. The controlled variables form the comparison groups defined by the 
 research hypothesis.

The treatments in an experimental study are the conditions constructed 
from the factors. The factors are selected by examining the questions raised by the 
research hypothesis. In some experiments, there may only be a single factor, and 
hence the treatments and levels of the factor would be the same. In most cases, we 
will have several factors, and the treatments are formed by combining levels of the 
factors. This type of treatment design is called a factorial treatment design.

We will illustrate these ideas in the following example.

eXaMpLe 2.4

A researcher is studying the conditions under which commercially raised shrimp 
achieve maximum weight gain. Three water temperatures (25°, 30°, 35°) and four 
water salinity levels (10%, 20%, 30%, 40%) were selected for study. Shrimp were 
raised in containers with specified water temperatures and salinity levels. The 
weight gain of the shrimp in each container was recorded after a 6-week study 
 period. There are many other factors that may affect weight gain, such as density 
of shrimp in the containers, variety of shrimp, size of shrimp, type of feeding, and 
so on. The experiment was conducted as follows: 24 containers were available for 
the study. A specific variety and size of shrimp was selected for study. The density 
of shrimp in the container was fixed at a given amount. One of the three water 
temperatures and one of the four salinity levels were randomly assigned to each of 
the 24 containers. All other identifiable conditions were specified to be maintained 
at the same level for all 24 containers for the duration of the study. In reality, there 
will be some variation in the levels of these variables. After 6 weeks in the tanks, 
the shrimp were harvested and weighed. Identify the response variable, factors, 
and treatments in this example. 

Solution The response variable is weight of the shrimp at the end of the 6-week 
study. There are two factors: water temperature at three levels (25°, 30°, and 35°) 
and water salinity at four levels (10%, 20%, 30%, and 40%). We can thus create 
3 ? 4  12 treatments from the combination of levels of the two factors. These factor-
level combinations representing the 12 treatments are shown here:

(25°, 10%) (25°, 20%) (25°, 30%) (25°, 40%)
(30°, 10%) (30°, 20%) (30°, 30%) (30°, 40%)
(35°, 10%) (35°, 20%) (35°, 30%) (35°, 40%)

Following proper experimental procedures, 2 of the 24 containers would be ran-
domly assigned to each of the 12 treatments. ■

In other circumstances, there may be a large number of factors, and hence the 
number of treatments may be so large that only a subset of all possible treatments 
would be examined in the experiment. For example, suppose we were investigat-
ing the effect of the following factors on the yield per acre of soybeans: Factor 1—
Five Varieties of Soybeans, Factor 2—Three Planting Densities, Factor 3—Four 
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Levels of Fertilization, Factor 4—Six Locations Within Texas, and Factor 5—Three 
 Irrigation Rates. From the five factors, we can form 5 ? 3 ? 4 ? 6 ? 3  1,080 distinct 
treatments. This would make for a very large and expensive experiment. In this 
type of situation, a subset of the 1,080 possible treatments would be selected for 
studying the relationship between the five factors and the yield of soybeans. This 
type of experiment has a fractional factorial treatment structure, since only a frac-
tion of the possible treatments are actually used in the experiment. A great deal of 
care must be taken in selecting which treatments should be used in the experiment 
so as to be able to answer as many of the researcher’s questions as possible.

A special treatment is called the control treatment. This treatment is the 
benchmark to which the effectiveness of each remaining treatment is compared. 
There are three situations in which a control treatment is particularly necessary. 
First, the conditions under which the experiments are conducted may prevent gen-
erally effective treatments from demonstrating their effectiveness. In this case, 
the control treatment consisting of no treatment may help to demonstrate that the 
experimental conditions are keeping the treatments from demonstrating the dif-
ferences in their effectiveness. For example, an experiment is conducted to deter-
mine the most effective level of nitrogen in a garden growing tomatoes. If the soil 
used in the study has a high level of fertility prior to adding nitrogen to the soil, all 
levels of nitrogen will appear to be equally effective. However, if a treatment con-
sisting of adding no nitrogen—the control—is used in the study, the high fertility of 
the soil will be revealed, since the control treatment will be just as effective as the 
nitrogen-added treatments.

A second type of control is the standard method treatment to which all other 
treatments are compared. In this situation, several new procedures are proposed 
to replace an already existing well-established procedure. A third type of control 
is the placebo control. In this situation, a response may be obtained from the sub-
ject just by the manipulation of the subject during the experiment. A person may 
demonstrate a temporary reduction in pain level just by visiting with the physician 
and having a treatment prescribed. Thus, in evaluating several different methods 
of reducing pain level in patients, a treatment with no active ingredients, the pla-
cebo, is given to a set of patients without the patients’ knowledge. The treatments 
with active ingredients are then compared to the placebo to determine their true 
effectiveness.

The experimental unit is the physical entity to which the treatment is ran-
domly assigned or the subject that is randomly selected from one of the treatment 
populations. For the shrimp study of Example 2.4, the experimental unit is the 
 container.

Consider another experiment in which a researcher is testing various dose 
levels (treatments) of a new drug on laboratory rats. If the researcher randomly 
assigned a single dose of the drug to each rat, then the experimental unit would be 
the individual rat. Once the treatment is assigned to an experimental unit, a single 
replication of the treatment has occurred. In general, we will randomly assign sev-
eral experimental units to each treatment. We will thus obtain several independent 
observations on any particular treatment and hence will have several replications 
of the treatments. In Example 2.4, we had two replications of each treatment.

Distinct from the experimental unit is the measurement unit. This is the phys-
ical entity upon which a measurement is taken. In many experiments, the experi-
mental and measurement units are identical. In Example 2.4, the measurement 
unit is the container, the same as the experimental unit. However, if the individual 
shrimp were weighed as opposed to obtaining the total weight of all the shrimp in 
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each container, the experimental unit would be the container, but the measure-
ment unit would be the individual shrimp.

eXaMpLe 2.5

Consider the following experiment. Four types of protective coatings for frying 
pans are to be evaluated. Five frying pans are randomly assigned to each of the 
four coatings. The abrasion resistance of the coating is measured at three locations 
on each of the 20 pans. Identify the following items for this study: experimental 
design, treatments, replications, experimental unit, measurement unit, and total 
number of measurements.

Solution

Experimental design: Completely randomized design.
Treatments: Four types of protective coatings.
Replication: There are five frying pans (replications) for each 

treatment.
Experimental unit: Frying pan, because coatings (treatments) are ran-

domly  assigned to the frying pans.
Measurement unit: Particular locations on the frying pan.
Total number of measurements: 4 ? 5 ? 3  60 measurements in this experiment. 

The experimental unit is the frying pan, since the treatment was randomly 
 assigned to a coating. The measurement unit is a location on the frying 
pan. ■

The term experimental error is used to describe the variation in the responses 
among experimental units that are assigned the same treatment and are observed 
under the same experimental conditions. The reasons that the experimental error 
is not zero include (a) the natural differences in the experimental units prior to 
their receiving the treatment, (b) the variation in the devices that record the meas-
urements, (c) the variation in setting the treatment conditions, and (d) the effect 
on the response variable of all extraneous factors other than the treatment factors.

eXaMpLe 2.6 

Refer to the previously discussed laboratory experiment in which the researcher 
randomly assigns a single dose of the drug to each of 10 rats and then measures the 
level of the drug in the rats’ bloodstream after 2 hours. For this experiment, the 
experimental unit and measurement unit are the same: the rat.

Identify the four possible sources of experimental error for this study. (See (a) 
to (d) in the last paragraph before this example.)

Solution We can address these sources as follows: 

a. Natural differences in experimental units prior to receiving the 
treatment. There will be slight physiological differences among rats, 
so two rats receiving the exact same dose level (treatment) will have 
slightly different blood levels 2 hours after receiving the treatment.

b. Variation in the devices used to record the measurements. There 
will be differences in the responses due to the method by which 
the quantity of the drug in the rat is determined by the laboratory 
technician. If several determinations of drug level were made in the 

experimental error
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blood of the same rat, there may be differences in the amount of 
drug found due to equipment variation, technician variation, or con-
ditions in the laboratory.

c. Variation in setting the treatment conditions. If there is more than 
one replication per treatment, the treatment may not be exactly the 
same from one rat to another. Suppose, for example, that we had 10 
replications of each dose (treatment). It is highly unlikely that each 
of the 10 rats would receive exactly the same dose of drug specified 
by the treatment. There could be slightly different amounts of the 
drug in the syringes, and slightly different amounts could be injected 
and enter the bloodstreams.

d. The effect on the response variable (blood level) of all extraneous factors 
other than the treatment factors. Presumably, the rats are all placed in 
cages and given the same amount of food and water prior to determining 
the amount of the drug in their blood. However, the temperature, humid-
ity,  external stimulation, and other conditions may be somewhat different 
in the 10 cages. This may have an effect on the responses of the 10 rats.

Thus, these differences and variation in the external conditions within the labora-
tory during the experiment all contribute to the size of the experimental error in 
the experiment. ■

eXaMpLe 2.7 

Refer to Example 2.4. Suppose that each treatment is assigned to two containers 
and that 40 shrimp are placed in each container. After 6 weeks, the individual 
shrimp are weighed. Identify the experimental units, measurement units, factors, 
treatments, number of replications, and possible sources of experimental error.

Solution This is a factorial treatment design with two factors: temperature and 
salinity level. The treatments are constructed by selecting a temperature and salin-
ity level to be assigned to a particular container. We would have a total of 3 ? 4  12 
possible treatments for this experiment. The 12 treatments are

(25°, 10%) (25°, 20%) (25°, 30%) (25°, 40%)
(30°, 10%) (30°, 20%) (30°, 30%) (30°, 40%)
(35°, 10%) (35°, 20%) (35°, 30%) (35°, 40%)

We next randomly assign two containers to each of the 12 treatments. This  results 
in two replications of each treatment. The experimental unit is the container, since 
the individual containers are randomly assigned to a treatment. Forty shrimp are 
placed in the containers, and after 6 weeks, the weights of the individual shrimp are 
recorded. The measurement unit is the individual shrimp, since this is the physical 
entity upon which an observation is made. Thus, in this experiment the experimen-
tal and measurement units are different. Several possible sources of experimental 
error include the difference in the weights of the shrimp prior to being placed in 
the container, how accurately the temperature and salinity levels are maintained 
over the 6-week study period, how accurately the shrimp are weighed at the conclu-
sion of the study, the consistency of the amount of food fed to the shrimp (whether 
each shrimp was given exactly the same quantity of food over the 6 weeks), and the 
variation in any other conditions that may affect shrimp growth. ■
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 2.5 Designs for experimental Studies

The subject of designs for experimental studies cannot be given much justice at the 
beginning of a statistical methods course—entire courses at the undergraduate and 
graduate levels are needed to get a comprehensive understanding of the methods 
and concepts of experimental design. Even so, we will attempt to give you a brief 
overview of the subject because much of the data requiring summarization and 
analysis arises from experimental studies involving one of a number of designs. We 
will work by way of examples.

A consumer testing agency decides to evaluate the wear characteristics of 
four major brands of tires. For this study, the agency selects four cars of a standard 
car model and four tires of each brand. The tires will be placed on the cars and then 
driven 30,000 miles on a 2-mile racetrack. The decrease in tread thickness over 
the 30,000 miles is the variable of interest in this study. Four different drivers will 
drive the cars, but the drivers are professional drivers with comparable training 
and  experience. The weather conditions, smoothness of the track, and the mainte-
nance of the four cars will be essentially the same for all four brands over the study 
period. All extraneous factors that may affect the tires are nearly the same for all 
four brands. Thus, the testing agency feels confident that if there is a difference in 
wear characteristics between the brands at the end of the study, then this is truly a 
 difference in the four brands and not a difference due to the manner in which the 
study was conducted. The testing agency is interested in recording other factors, 
such as the cost of the tires, the length of warranty offered by the manufacturer, 
whether the tires go out of balance during the study, and the evenness of wear 
across the width of the tires. In this example, we will consider only tread wear. 
There should be a recorded tread wear for each of the 16 tires, 4 tires for each 
brand. The methods presented in Chapters 8 and 15 could be used to summarize 
and analyze the sample tread-wear data in order to make comparisons (inferences) 
among the four tire brands. One possible inference of interest could be the selec-
tion of the brand having minimum tread wear. Can the best-performing tire brand 
in the sample data be expected to provide the best tread wear if the same study is 
repeated? Are the results of the study applicable to the driving habits of the typical 
motorist?

experimental Designs
There are many ways in which the tires can be assigned to the four cars. We will 
consider one running of the experiment in which we have four tires of each of the 
four brands. First, we need to decide how to assign the tires to the cars. We could 
randomly assign a single brand to each car, but this would result in a design having 
as the unit of measurement the total loss of tread for all four tires on the car and 
not the individual tire loss. Thus, we must randomly assign the 16 tires to the four 
cars. In Chapter 15, we will demonstrate how this randomization is conducted. One 
possible arrangement of the tires on the cars is shown in Table 2.2. 

In general, a completely randomized design is used when we are interested 
in comparing t “treatments” (in our case, t  4; the treatments are the tire brands). 
For each of the treatments, we obtain a sample of observations. The sample sizes 
could be different for the individual treatments. For example, we could test 20 tires 
from Brands A, B, and C but only 12 tires from Brand D. The sample of observa-
tions from a treatment is assumed to be the result of a simple random sample of 
observations from the hypothetical population of possible values that could have 

completely 
randomized design
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 resulted from that treatment. In our example, the sample of four tire-wear thick-
nesses from Brand A was considered to be the outcome of a simple random  sample 
of four  observations selected from the hypothetical population of possible tire-
wear thicknesses for standard model cars traveling 30,000 miles using Brand A.

The experimental design could be altered to accommodate the effect of a var-
iable related to how the experiment is conducted. In our example, we assumed that 
the effect of the different cars, weather, drivers, and various other factors was the 
same for all four brands. Now, if the wear on tires imposed by Car 4 was less  severe 
than that of the other three cars, would our design take this effect into  account? 
Because Car 4 had all four tires of Brand D placed on it, the wear observed for 
Brand D may be less than the wear observed for the other three brands because all 
four tires of Brand D were on the “best” car. In some situations, the objects being 
observed have existing differences prior to their assignment to the treatments. For 
example, in an experiment evaluating the effectiveness of several drugs for reduc-
ing blood pressure, the age or physical condition of the participants in the study 
may decrease the effectiveness of the drugs. To avoid masking the effectiveness of 
the drugs, we would want to take these factors into account. Also, the environmen-
tal conditions encountered during the experiment may reduce the effectiveness of 
the treatment.

In our example, we would want to avoid having the comparison of the tire 
brands distorted by the differences in the four cars. The experimental design used 
to accomplish this goal is called a randomized block design because we want to 
“block” out any differences in the four cars to obtain a precise comparison of the 
four brands of tires. In a randomized block design, each treatment appears in every 
block. In the blood pressure example, we would group the patients according to 
the severity of their blood pressure problem and then randomly assign the drugs to 
the patients within each group. Thus, the randomized block design is similar to a 
stratified random sample used in surveys. In the tire-wear example, we would use 
the four cars as the blocks and randomly assign one tire of each brand to each of 
the four cars, as shown in Table 2.3. Now, if there are any differences in the cars 
that may affect tire wear, that effect will be equally applied to all four brands. 

What happens if the position of the tires on the car affects the wear on the 
tire? The positions on the car are right front (RF), left front (LF), right rear (RR), 
and left rear (LR). In Table 2.3, suppose that all four tires from Brand A are placed 
on the RF position, Brand B on RR, Brand C on LF, and Brand D on LR. Now, 

randomized block 
design

TABLE 2.2
Completely randomized 

 design of tire wear

Car 1 Car 2 Car 3 Car 4 

Brand B Brand A Brand A Brand D
Brand B Brand A Brand B Brand D
Brand B Brand C Brand C Brand D
Brand C Brand C Brand A Brand D

TABLE 2.3
Randomized block design  

of tire wear

Car 1 Car 2 Car 3 Car 4

Brand A Brand A Brand A Brand A
Brand B Brand B Brand B Brand B
Brand C Brand C Brand C Brand C
Brand D Brand D Brand D Brand D
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if the greatest wear occurs for tires placed on the RF, then Brand A would be at a 
great disadvantage when compared to the other three brands. In this type of situ-
ation, we would state that the effect of brand and the effect of position on the car 
were confounded; that is, using the data in the study, the effects of two or more fac-
tors cannot be unambiguously attributed to a single factor. If we observed a large 
difference in the average wear among the four brands, is this difference due to 
differences in the brands or differences due to the position of the tires on the car? 
Using the design given in Table 2.3, this question cannot be answered. Thus, we 
now need two blocking variables: the “car” the tire is placed on and the “position” 
on the car. A design having two blocking variables is called a Latin square design. 
A Latin square design for our example is shown in Table 2.4.

Note that with this design, each brand is placed in each of the four positions 
and on each of the four cars. Thus, if position or car has an effect on the wear of the 
tires, the position effect and/or car effect will be equalized across the four brands. 
The observed differences in wear can now be attributed to differences in the brand 
of the tire.

The randomized block and Latin square designs are both extensions of the 
completely randomized design in which the objective is to compare t treatments. 
The analysis of data for a completely randomized design and for block designs and 
the inferences made from such analyses are discussed further in Chapters 14, 15, 
and 17. A special case of the randomized block design is presented in Chapter 6, 
where the number of treatments is t  2 and the analysis of data and the inferences 
from these analyses are discussed.

Factorial treatment Structure in a Completely 
randomized Design 
In this section, we will discuss how treatments are constructed from several factors 
rather than just being t levels of a single factor. These types of experiments are 
involved with examining the effect of two or more independent variables on a 
response variable y. For example, suppose a company has developed a new 
adhesive for use in the home and wants to examine the effects of temperature 
and humidity on the bonding strength of the adhesive. Several treatment design 
questions arise in any study. First, we must consider what factors (independent 
variables) are of greatest interest. Second, the number of levels and the actual set-
tings of these levels must be determined for each factor. Third, having separately 
selected the levels for each factor, we must choose the factor-level combinations 
(treatments) that will be applied to the experimental units.

The ability to choose the factors and the appropriate settings for each of 
the factors depends on the budget, the time to complete the study, and, most 
important, the experimenter’s knowledge of the physical situation under study. In 
many cases, this will involve conducting a detailed literature review to determine 
the current state of knowledge in the area of interest. Then, assuming that the 

Latin square design

factors

TABLE 2.4
Latin square design  

of tire wear

Position Car 1 Car 2 Car 3 Car 4

RF Brand A Brand B Brand C Brand D
RR Brand B Brand C Brand D Brand A
LF Brand C Brand D Brand A Brand B
LR Brand D Brand A Brand B Brand C
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experimenter has chosen the levels of each independent variable, he or she must 
decide which factor-level combinations are of greatest interest and are viable. In 
some situations, certain factor-level combinations will not produce an experimen-
tal setting that can elicit a reasonable response from the experimental unit. Certain 
combinations may not be feasible due to toxicity or practicality issues.

One approach for examining the effects of two or more factors on a response 
is called the one-at-a-time approach. To examine the effect of a single variable, 
an experimenter varies the levels of this variable while holding the levels of the 
other independent variables fixed. This process is continued until the effect of each 
 variable on the response has been examined. 

For example, suppose we want to determine the combination of nitrogen and 
phosphorus that produces the maximum amount of corn per plot. We would select 
a level of phosphorus (say, 20 pounds), vary the levels of nitrogen, and observe 
which combination gives maximum yield in terms of bushels of corn per acre. 
Next, we would use the level of nitrogen producing the maximum yield, vary the 
amount of phosphorus, and observe the combination of nitrogen and phosphorus 
that produces the maximum yield. This combination would be declared the “best” 
treatment. The problem with this approach will be illustrated using the hypotheti-
cal yield values given in Table 2.5. These values would be unknown to the experi-
menter. We will assume that many replications of the treatments are used in the 
experiment so that the experimental results are nearly the same as the true yields. 

Initially, we run experiments with 20 pounds of phosphorus and the levels of 
nitrogen at 40, 50, and 60. We would determine that using 60 pounds of nitrogen 
with 20 pounds of phosphorus produces the maximum production, 160 bushels per 
acre. Next, we set the nitrogen level at 60 pounds and vary the phosphorus levels. 
This would result in the 10 level of phosphorus producing the highest yield, 175 
bushels, when combined with 60 pounds of nitrogen. Thus, we would determine 
that 10 pounds of phosphorus with 60 pounds of nitrogen produces the maximum 
yield. The results of these experiments are summarized in Table 2.6.

Based on the experimental results using the one-factor-at-a-time methodol-
ogy, we would conclude that the 60 pounds of nitrogen and 10 pounds of phospho-
rus is the optimal combination. An examination of the yields in Table 2.5 reveals 
that the true optimal combination was 40 pounds of nitrogen with 30 pounds of 
phosphorus, producing a yield of 190 bushels per acre. Thus, this type of exper-
imentation may produce incorrect results whenever the effect of one factor on 
the response does not remain the same at all levels of the second factor. In this 

one-at-a-time 
approach

TABLE 2.5
Hypothetical population 
yields (bushels per acre)

 Phosphorus

Nitrogen 10 20 30

40 125 145 190
50 155 150 140
60 175 160 125

TABLE 2.6
Yields for the 

experimental results

Phosphorus   20   20   20   10   30
Nitrogen   40   50   60   60   60
Yield 145 150 160 175 125
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situation, the factors are said to interact. Figure 2.2 depicts the interaction between 
 nitrogen and phosphorus in the production of corn. Note that as the amount of 
 nitrogen is increased from 40 to 60, there is an increase in the yield when using 
the 10 level of phosphorus. At the 20 level of phosphorus, increasing the amount 
of  nitrogen also produces an increase in the yield but with smaller increments. At 
the 20 level of phosphorus, the yield increases 15 bushels when the nitrogen level is 
changed from 40 to 60. However, at the 10 level of phosphorus, the yield increases 
50 bushels when the level of nitrogen is increased from 40 to 60. Furthermore, 
at the 30 level of phosphorus, increasing the level of nitrogen actually causes the 
yield to decrease. When there is no interaction between the factors, increasing the 
nitrogen level would have produced identical changes in the yield at all levels of 
phosphorus.

Table 2.7 and Figure 2.3 depict a situation in which the two factors do not 
interact. In this situation, the effect of phosphorus on the corn yield is the same 
for all three levels of nitrogen; that is, as we increase the amount of phosphorus, 
the change in corn yield is exactly the same for all three levels of nitrogen. Note 
that the change in yield is the same at all levels of nitrogen for a given change in 
phosphorus. However, the yields are larger at the higher levels of nitrogen. Thus, 
in the profile plots we have three different lines, but the lines are parallel. When 
interaction exists among the factors, the lines will either cross or diverge.

From Figure 2.3, we can observe that the one-at-a-time approach is appropri-
ate for a situation in which the two factors do not interact. No matter what level 
is selected for the initial level of phosphorus, the one-at-a-time approach will pro-
duce the optimal yield. However, in most situations, prior to running the experi-
ments it is not known whether the two factors will interact. If it is assumed that the 
factors do not interact and the one-at-a-time approach is implemented when in fact 

interact

FIGURE 2.2
Yields from 

nitrogen–phosphorus 
treatments (interaction is 

present)

TABLE 2.7
Hypothetical population 

yields (no interaction)

 Phosphorus

Nitrogen 10 20 30

40 125 145 150
50 145 165 170
60 165 185 190
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the factors do interact, the experiment will produce results that will often fail to 
identify the best treatment. 

Factorial treatment structures are useful for examining the effects of two or 
more factors on a response, whether or not interaction exists. As before, the choice 
of the number of levels of each variable and the actual settings of these variables is 
important. When the factor-level combinations are assigned to experimental units 
at random, we have a completely randomized design with treatments being the 
factor-level combinations. 

Using our previous example, we are interested in examining the effect of 
 nitrogen and phosphorus levels on the yield of a corn crop. The nitrogen levels are 
40, 50, and 60 pounds per plot, and the phosphorus levels are 10, 20, and 30 pounds 
per plot. We could use a completely randomized design where the nine factor-level 
combinations (treatments) of Table 2.8 are assigned at random to the experimental 
units (the plots of land planted with corn).

It is not necessary to have the same number of levels of both factors. For 
example, we could run an experiment with two levels of phosphorus and three 
levels of nitrogen, a 2 3 3 factorial structure. Also, the number of factors can be 
more than two. The corn yield experiment could have involved treatments con-
sisting of four levels of potassium along with the three levels of phosphorus and 
nitrogen, a 4 3 3 3 3 factorial structure. Thus, we would have 4 ? 3 ? 3  36 fac-
tor combinations or treatments. The methodology of randomization, analysis, and 
 inferences for data obtained from factorial treatment structures in various experi-
mental  designs is discussed in Chapters 14, 15, 17, and 18.

More Complicated Designs
Sometimes the objectives of a study are such that we wish to investigate the effects 
of certain factors on a response while blocking out certain other extraneous 

factorial treatment 
structures

FIGURE 2.3
Yields from  

nitrogen–phosphorus  
treatments (no interaction)

TABLE 2.8
Factor-level combinations 

for the 3 3 3 factorial 
treatment structure

Treatment   1   2   3   4   5   6   7   8   9
Phosphorus 10 10 10 20 20 20 30 30 30
Nitrogen 40 50 60 40 50 60 40 50 60
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sources of variability. Such situations require a block design with treatments 
from a factorial treatment structure and can be illustrated with the following 
example.

An investigator wants to examine the effectiveness of two drugs (A and B) 
for controlling heartworms in puppies. Veterinarians have conjectured that the 
 effectiveness of the drugs may depend on a puppy’s diet. Three different diets 
 (Factor 1) are combined with the two drugs (Factor 2), and we have a 3 3 2 
factorial treatment structure consisting of six treatments. Also, the effectiveness 
of the drugs may depend on a transmitted inherent protection against heartworms 
 obtained from the puppy’s mother. Thus, four litters of puppies consisting of six 
puppies each were selected to serve as a blocking factor in the experiment because 
all puppies within a given litter have the same mother. The six factor-level com-
binations (treatments) were randomly assigned to the six puppies within each of 
the four litters. The design is shown in Table 2.9. Note that this design is really a 
randomized block design in which the blocks are litters and the treatments are the 
six factor-level combinations of the 3 3 2 factorial treatment structure. 

Other more complicated combinations of block designs and factorial treat-
ment structures are possible. As with sample surveys, however, we will deal only 
with the simplest experimental designs in this text. The point we want to make is 
that there are many different experimental designs that can be used in scientific 
studies for designating the collection of sample data. Each has certain advan-
tages and disadvantages. We expand our discussion of experimental designs in 
Chapters 14–18, where we concentrate on the analysis of data generated from 
these designs. In those situations that require more complex designs, a professional 
statistician needs to be consulted to obtain the most appropriate design for the 
survey or  experimental setting.

Controlling experimental error
As we observed in Examples 2.4 and 2.5, there are many potential sources of 
experimental error in an experiment. When the variance of experimental errors is 
large, the precision of our inferences will be greatly compromised. Thus, any tech-
niques that can be implemented to reduce experimental error will lead to a much 
improved experiment and more precise inferences. 

The researcher may be able to control many of the potential sources of 
experimental errors. Some of these sources are (1) the procedures under which the 
experiment is conducted, (2) the choice of experimental units and measurement 
units, (3) the procedure by which measurements are taken and recorded, (4) the 
blocking of the experimental units, (5) the type of experimental design, and (6) 

block design

TABLE 2.9
Block design for  

heartworm experiment

 Litter

Puppy 1 2 3 4

1 A-D1 A-D3 B-D3 B-D2
2 A-D3 B-D1 A-D2 A-D2
3 B-D1 A-D1 B-D2 A-D1
4 A-D2 B-D2 B-D1 B-D3
5 B-D3 B-D3 A-D1 A-D3
6 B-D2 A-D2 A-D3 B-D1
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the use of ancillary variables (called covariates). We will now address how each of 
these sources may affect experimental error and how the researcher may minimize 
the effect of these sources on the size of the variance of experimental error.

experimental procedures
When the individual procedures required to conduct an experiment are not followed 
in a careful, precise manner, the result is an increase in the variance of the response 
variable. This involves not only the personnel used to conduct the experiments and 
to measure the response variable but also the equipment used in their procedures. 
Personnel must be trained properly in constructing the treatments and carrying 
out the experiments. The consequences of their performance for the success of 
the experiment should be emphasized. The researcher needs to provide the tech-
nicians with equipment that will produce the most precise measurements within 
budget constraints. It is crucial that equipment be maintained and calibrated at 
frequent intervals throughout the experiment. The conditions under which the 
experiments are run must be as nearly constant as possible during the duration of 
the experiment. Otherwise, differences in the responses may be due to changes in 
the experimental conditions and not due to treatment differences.

When experimental procedures are not of high quality, the variance of the 
response variable may be inflated. Improper techniques used when taking meas-
urements, improper calibration of instruments, or uncontrolled conditions within 
a laboratory may result in extreme observations that are not truly reflective of 
the effect of the treatment on the response variable. Extreme observations may 
also occur due to recording errors by the laboratory technician or the data man-
ager. In either case, the researcher must investigate the circumstances surrounding 
extreme observations and then decide whether to delete the observations from the 
analysis. If an observation is deleted, an explanation of why the data value was not 
included should be given in the appendix of the final report.

When experimental procedures are not uniformly conducted throughout 
the study period, two possible outcomes are an inflation in the variance of the 
response variable and a bias in the estimation of the treatment mean. For exam-
ple, suppose we are measuring the amount of a drug in the blood of rats injected 
with one of four possible doses of the drug. The equipment used to measure the 
precise amount of the drug to be injected is not working properly. For a given 
dosage of the drug, the first rats injected were given a dose that was less than the 
prescribed dose, whereas the last rats injected were given more than the prescribed 
amount. Thus, when the amount of the drug in the blood is measured, there will 
be an increase in the variance in these measurements, but the treatment mean may 
be estimated without bias because the overdose and underdose may cancel each 
other. On the other hand, if all the rats receiving the lowest dose level are given 
too much of the drug and all the rats receiving the highest dose level are not given 
enough of the drug, then the estimation of the treatment means will be biased. 
The treatment mean for the low dose will be overestimated, whereas the high dose 
will have an underestimated treatment mean. Thus, it is crucial to the success of 
the study that experimental procedures are conducted uniformly across all experi-
mental units. The same is true concerning the environmental conditions within a 
laboratory or in a field study. Extraneous factors such as temperature, humidity, 
amount of sunlight, exposure to pollutants in the air, and other uncontrolled fac-
tors when not uniformly applied to the experimental units may result in a study 
with both an inflated variance and a biased estimation of treatment means.

covariates
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Selecting experimental and Measurement Units 
When the experimental units used in an experiment are not similar with respect 
to those characteristics that may affect the response variable, the experimental 
error variance will be inflated. One of the goals of a study is to determine whether 
there is a difference in the mean responses of experimental units receiving differ-
ent treatments. The researcher must determine the population of experimental 
units that are of interest. The experimental units are randomly selected from that 
population and then randomly assigned to the treatments. This is of course the 
idealized situation. In practice, the researcher is somewhat limited in the selec-
tion of experimental units by cost, availability, and ethical considerations. Thus, 
the inferences that can be drawn from the experimental data may be somewhat 
restricted. When examining the pool of potential experimental units, sets of units 
that are more similar in characteristics will yield more precise comparisons of the 
treatment means. However, if the experimental units are overly uniform, then the 
population to which inferences may be properly made will be greatly restricted. 
Consider the following example.

eXaMpLe 2.8

A sales campaign to market children’s products will use television commercials 
as its central marketing technique. A marketing firm hired to determine whether 
the attention span of children is different depending on the type of product being 
advertised decided to examine four types of products: sporting equipment, healthy 
snacks, shoes, and video games. The firm selected 100 fourth-grade students from a 
New York City public school to participate in the study. Twenty-five students were 
randomly assigned to view a commercial for each of the four types of products. 
The attention spans of the 100 children were then recorded. The marketing firm 
thought that by selecting participants of the same grade level and from the same 
school system it would achieve a homogeneous group of subjects. What problems 
exist with this selection procedure? 

Solution The marketing firm was probably correct in assuming that by selecting 
the students from the same grade level and school system it would achieve a more 
homogeneous set of experimental units than by using a more general selection 
procedure. However, this procedure has severely limited the inferences that can 
be made from the study. The results may be relevant only to students in the fourth 
grade and residing in a very large city. A selection procedure involving other grade 
levels and children from smaller cities would provide a more realistic study. ■

reducing experimental error through Blocking
When we are concerned that the pool of available experimental units has large dif-
ferences with respect to important characteristics, the use of blocking may prove to 
be highly effective in reducing the experimental error variance. The experimental 
units are placed into groups based on their similarity with respect to characteristics 
that may affect the response variable. This results in sets or blocks of experimen-
tal units that are homogeneous within the block, but there is a broad coverage of 
important characteristics when considering the entire unit. The treatments are ran-
domly assigned separately within each block. The comparison of the treatments is 
within the groups of homogeneous units and hence yields a comparison of the treat-
ments that is not masked by the large differences in the original set of experimental 
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units. The blocking design will enable us to separate the variability associated with 
the characteristics used to block the units from the experimental error.

There are many criteria used to group experimental units into blocks; they 
include the following:

1. Physical characteristics such as age, weight, sex, health, and education 
of the subjects

2. Units that are related such as twins or animals from the same litter
3. Spatial location of experimental units such as neighboring plots of 

land or position of plants on a laboratory table
4. Time at which experiment is conducted such as the day of the week, 

 because the environmental conditions may change from day to day
5. Person conducting the experiment, because if several operators or 

technicians are involved in the experiment, they may have some dif-
ferences in how they make measurements or manipulate the experi-
mental units

In all of these examples, we are attempting to observe all the treatments at 
each of the levels of the blocking criterion. Thus, if we were studying the number 
of cars with a major defect coming off each of three assembly lines, we might want 
to use day of the week as a blocking variable and be certain to compare each of the 
assembly lines on all 5 days of the work week.

Using Covariates to reduce Variability 
A covariate is a variable that is related to the response variable. Physical char-
acteristics of the experimental units are used to create blocks of homogeneous 
units. For example, in a study to compare the effectiveness of a new diet to that of 
a control diet in reducing the weight of dogs, suppose the pool of dogs available 
for the study varied in age from 1 year to 12 years. We could group the dogs into 
three blocks: B1—under 3 years, B2—3 years to 8 years, B3—over 8 years. A more 
exacting methodology records the age of the dog and then incorporates the age 
directly into the model when attempting to assess the effectiveness of the diet. 
The response variable would be adjusted for the age of the dog prior to compar-
ing the new diet to the control diet. Thus, we have a more exact comparison of the 
diets. Instead of using a range of ages as is done in blocking, we are using the exact 
age of the dog, which reduces the variance of the experimental error.

Candidates for covariates in a given experiment depend on the particular 
experiment. The covariate needs to have a relationship to the response variable, 
it must be measurable, and it cannot be affected by the treatment. In most cases, 
the covariate is measured on the experimental unit before the treatment is given 
to the unit. Examples of covariates are soil fertility, amount of impurity in a raw 
material, weight of an experimental unit, SAT score of a student, cholesterol level 
of a subject, and insect density in a field. The following example will illustrate the 
use of a  covariate.

eXaMpLe 2.9

In this study, the effects of two treatments, supplemental lighting (S) and partial 
shading (P), on the yield of soybean plants were compared with normal lighting 
(C). Normal lighting will serve as a control. Each type of lighting was randomly 
assigned to 15 soybean plants, and the plants were grown in a greenhouse study. 
When setting up the experiment, the researcher recognized that the plants were 
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of differing size and maturity. Consequently, the height of the plant, a measur-
able characteristic of plant vigor, was determined at the start of the experiment 
and will serve as a covariate. This will allow the researcher to adjust the yields of 
the individual soybean plants depending on the initial size of the plant. On each 
plant, we record two variables, (x, y) where x is the height of the plant at the begin-
ning of the study and y is the yield of soybeans at the conclusion of the study. To 
determine whether the covariate has an effect on the response variable, we plot 
the two  variables to assess any possible relationship. If no relationship exists, then 
the covariate need not be used in the analysis. If the two variables are related, 
then we must use the techniques of analysis of covariance to properly adjust the 
response variable prior to comparing the mean yields of the three treatments. An 
initial assessment of the viability of the relationship is simply to plot the response 
variable versus the covariate with a separate plotting characteristic for each treat-
ment.  Figure 2.4 contains this plot for the soybean data.

From Figure 2.4, we observe that there appears to be an increasing relationship 
between the covariate—initial plant height—and the response variable—yield. 
Also, the three treatments appear to have differing yields; some of the variation 
in the response variable is related to the initial height as well as to the difference 
in the amount of lighting the plant received. Thus, we must identify the amount of 
variation associated with initial height prior to testing for differences in the aver-
age yields of the three treatments. We can accomplish this using the techniques 
of analysis of variance. The analysis of covariance procedures will be  discussed in 
detail in Chapter 16. ■

 2.6 reSearCh StUDY: exit polls Versus election results

In the beginning of this chapter, we discussed the apparent “discrepancy” between 
exit polls and the actual voter count during the 2004 presidential election. We will 
now attempt to answer the following question.

analysis of covariance

FIGURE 2.4
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Why were there discrepancies between the exit polls and the election results 
obtained for the 11 “crucial” states? We will not be able to answer this question 
definitely, but we can look at some of the issues that pollsters must address when 
relying on exit polls to accurately predict election results.

First, we need to understand how an exit poll is conducted. We will  examine 
the process as implemented by one such polling company, Edison Media Research 
and Mitofsky International, as reported on its website. The company conducted exit 
polls in each state. The state exit poll was conducted at a random sample of polling 
places among Election Day voters. The polling places are a stratified probability 
sample of a state. Within each polling place, an interviewer approached every nth 
voter as he or she exited the polling place.  Approximately 100 voters completed a 
questionnaire at each polling place. The exact number depends on voter turnout 
and the willingness of selected voters to cooperate.

In addition, absentee and/or early voters were interviewed in pre-election tel-
ephone polls in a number of states. All samples were random-digit dialing (RDD) 
selections except for Oregon, which used both RDD and some follow-up calling. 
Absentee or early voters were asked the same questions as voters at the polling place 
on Election Day. Results from the phone poll were combined with  results from vot-
ers interviewed at the polling places. The combination reflects  approximately the 
correct proportion of absentee/early voters and Election Day voters.

The first step in addressing the discrepancies between the exit poll results 
and actual election tabulation numbers would be to examine the results for all 
states, not just those thought to be crucial in determining the outcome of the elec-
tion. These data are not readily available. Next, we would have to make certain 
that voter fraud was not the cause for the discrepancies. That is the job of the state 
voter commissions. What can go wrong with exit polls? A number of possibilities 
exist, including the following:

1. Nonresponse: How are the results adjusted for sampled voters refus-
ing to complete the survey? How are the RDD results adjusted for 
those screening their calls and refusing to participate?

2. Wording of the questions on the survey: How were the questions 
asked? Were they worded in an unbiased, neutral way without 
leading questions?

3. Timing of the exit poll: Were the polls conducted throughout the day 
at each polling station or just during one time frame?

4. Interviewer bias: Were the interviewers unbiased in the way they 
 approached sampled voters?

5. Influence of election officials: Did the election officials evenly enforce 
election laws at the polling booths? Did the officials have an impact 
on the exit pollsters?

6. Voter validity: Did those voters who agreed to be polled give accurate 
answers to the questions asked?

7. Agreement with similar pre-election surveys: Finally, when the exit 
polls were obtained, did they agree with the most recent pre-election 
surveys? If not, why not?

Raising these issues is not meant to say that exit polls cannot be of use in predicting 
actual election results, but they should be used with discretion and with safeguards 
to mitigate the issues we have addressed as well as other potential problems. But, 
in the end, it is absolutely essential that no exit poll results be made public until the 
polls across the country are closed. Otherwise, there is a significant, serious chance 
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that potential voters may be influenced by the results, thus affecting their vote or, 
worse, causing them to decide not to vote based on the conclusions derived from 
the exit polls.

 2.7 Summary 

The first step in Learning from Data involves defining the problem. This was dis-
cussed in Chapter 1. Next, we discussed intelligent data gathering, which involves 
specifying the objectives of the data-gathering exercise, identifying the variables of 
interest, and choosing an appropriate design for the survey or experimental study. 
In this chapter, we discussed various survey designs and experimental designs for 
scientific studies. Armed with a basic understanding of some design considerations 
for conducting surveys or scientific studies, you can address how to collect data 
on the variables of interest in order to address the stated objectives of the data-
gathering exercise.

We also drew a distinction between observational and experimental stud-
ies in terms of the inferences (conclusions) that can be drawn from the sample 
data. Differences found between treatment groups from an observational study 
are said to be associated with the use of the treatments; on the other hand, dif-
ferences found between treatments in a scientific study are said to be due to the 
treatments. In the next chapter, we will examine the methods for summarizing 
the data we  collect.

 2.8 Exercises

 2.2 Observational Studies 

  2.1  In the following descriptions of a study, confounding is present. Describe the explanatory 
and confounding variable in the study and how the confounding may invalidate the conclusions 
of the study. Furthermore, suggest how you would change the study to eliminate the effect of the 
confounding variable.

 a. A prospective study is conducted to study the relationship between incidence of 
lung cancer and level of alcohol drinking. The drinking status of 5,000 subjects 
is  determined, and the health of the subjects is then followed for 10 years. The 
results are given below.

 Lung Cancer

Drinking Status Yes No Total

Heavy drinker 50 2,150 2,200
Light drinker 30 2,770 2,800

Total 80 4,920 5,000

 b. A study was conducted to examine the possible relationship between coronary 
disease and obesity. The study found that the proportion of obese persons having 
developed coronary disease was much higher than the proportion of nonobese 
persons. A medical researcher states that the population of obese persons 
generally has higher incidences of hypertension and diabetes than the population 
of nonobese persons.
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  2.2  In the following descriptions of a study, confounding is present. Describe the explanatory 
and confounding variable in the study and how the confounding may invalidate the conclusions 
of the study. Furthermore, suggest how you would change the study to eliminate the effect of the 
confounding variable.

 a. A hospital introduces a new screening procedure to identify patients suffering 
from a stroke so that a new blood clot medication can be given to the patient dur-
ing the  crucial period of 12 hours after stroke begins. The procedure appears to be 
very successful because in the first year of its implementation there is a higher rate 
of total  recovery by the patients in comparison to the rate in the previous year for 
patients  admitted to the hospital.

 b. A high school mathematics teacher is convinced that a new software program will 
 improve math scores for students taking the SAT. As a method of evaluating her 
 theory, she offers the students an opportunity to use the software on the school’s 
 computers during a 1-hour period after school. The teacher concludes the soft-
ware is effective because the students using the software had significantly higher 
scores on the SAT than did the students who did not use the software.

  2.3  A news report states that minority children who take advanced mathematics courses in high 
school have a first-year GPA in college that is equivalent to that of white students. The newspaper 
columnist suggested that the lack of advanced mathematics courses in high school curriculums in 
inner-city schools was a major cause of the low college success rate of students from inner-city 
schools. What confounding variables may be present that invalidate the columnist’s conclusion?

  2.4  A study was conducted to determine if the inclusion of a foreign language requirement in 
high schools may have a positive effect on students’ performance on standardized English exams. 
From a sample of 100 high schools, 50 of which had a foreign language requirement and 50 of 
which did not, it was found that the average score on the English proficiency exam was 25% 
higher for the students having a foreign language requirement. What confounding variables may 
be present that would invalidate the conclusion that requiring a foreign language in high school 
 increases English language proficiency?

 2.3 Sampling Designs for Surveys

 Gov. 2.5  The board of directors of a city-owned electric power plant in a large urban city wants to 
assess the increase in electricity demands due to sources such as hybrid cars, big-screen TVs, and 
other entertainment devices in the home. There are a number of different sampling plans that 
can be implemented to survey the residents of the city. What are the relative merits of the follow-
ing sampling units: individual families, dwelling units (single-family homes, apartment buildings, 
etc.), and city blocks?

 h.r. 2.6  A large auto parts supplier with distribution centers throughout the United States wants 
to survey its employees concerning health insurance coverage. Employee insurance plans vary 
greatly from state to state. The company wants to obtain an estimate of the annual health insur-
ance deductible its employees would find acceptable. What sampling plan would you suggest to 
the company to achieve its goal?

 pol. Sci. 2.7  The circuit judges in a rural county are considering a change in how jury pools are selected 
for felony trials. They ask the administrator of the courts to assess the county residents’ reaction 
to changing the requirement for membership in the jury pool from the current requirement of 
all registered voters to a new requirement of all registered voters plus all residents with a current 
driver’s license. The administrator sends questionnaires to a random sample of 1,000 people from 
the list of registered voters in the county and receives responses from 253 people.

 a. What is the population of interest?
 b. What is the sampling frame?
 c. What possible biases could be present in using the information from the survey?

 psy. 2.8  An evaluation of whether people are truthful in their responses to survey questions was 
conducted in the following manner. In the first survey, 1,000 randomly selected persons were told 
during a home visit that the survey was being done to obtain information that would help protect 



52 ChApteR 2 USIng SURveyS And expeRImentAl StUdIeS to gAtheR dAtA

the drinking water supply in their city. After the short introduction, they were asked if they used 
a brand of detergent that was biodegradable. In the second survey, 1,000 randomly selected per-
sons were also given the information about safe drinking water during a home visit and then were 
asked if they used a biodegradable detergent. If they said yes, the interviewer asked to see the box 
of detergent.

 a. What differences do you think will be found in the two estimates of the 
percentage of households using biodegradable detergents?

 b. What types of biases may be introduced into the two types of surveys?

 edu. 2.9  Time magazine, in an article in the late 1950s, stated that “the average Yaleman, class of 
1924, makes $25,111 a year,” which, in today’s dollars, would be over $150,000. Time’s estimate 
was based on replies to a sample survey questionnaire mailed to those members of the Yale class 
of 1924 whose addresses were on file with the Yale administration in the late 1950s.

 a. What is the survey’s population of interest?
 b. Were the techniques used in selecting the sample likely to produce a sample that 

was representative of the population of interest?
 c. What are the possible sources of bias in the procedures used to obtain the  

sample?
 d. Based on the sources of bias, do you believe that Time’s estimate of the salary of 

a 1924 Yale graduate in the late 1950s is too high, too low, or nearly the correct 
value?

  2.10  The New York City school district is planning a survey of 1,000 of its 250,000 parents or 
guardians who have students currently enrolled. They want to assess the parents’ opinion about 
mandatory drug testing of all students participating in any extracurricular activities, not just 
sports. An alphabetical listing of all parents or guardians is available for selecting the sample. In 
each of the following descriptions of the method of selecting the 1,000 participants in the survey, 
identify the type of sampling method used (simple random sampling, stratified sampling, or clus-
ter sampling).

 a. Each name is randomly assigned a number. The names with numbers 1 through 
1,000 are selected for the survey.

 b. The schools are divided into five groups according to grade level taught at the 
school: K–2, 3–5, 6–7, 8–9, 10–12. Five separate sampling frames are constructed, 
one for each group. A simple random sample of 200 parents or guardians is se-
lected from each group.

 c. The school district is also concerned that the parent’s or guardian’s opinion may 
differ depending on the age and sex of the student. Each name is randomly as-
signed a number. The names with numbers 1 through 1,000 are selected for the 
survey. The parent is asked to fill out a separate survey for each of their currently 
enrolled children.

  2.11  A professional society, with a membership of 45,000, is designing a study to evaluate its 
members’ satisfaction with the type of sessions presented at the society’s annual meeting. In 
each of the following descriptions of the method of selecting participants in the survey, iden-
tify the type of sampling method used (simple random sampling, stratified sampling, or  cluster 
sampling).

 a. The society has an alphabetical listing of all its members. It assigns a number to 
each name and then using a computer software program generates 1,250 numbers 
between 1 and 45,000. It selects these 1,250 members for the survey.

 b. The society is interested in regional differences in its members’ opinions. Therefore, 
it divides the United States into nine regions with approximately 5,000 members 
per region. It then randomly selects 450 members from each region for inclusion 
in the survey.

 c. The society is composed of doctors, nurses, and therapists, all working in hos-
pitals. There are a total of 450 distinct hospitals. The society decides to conduct 
onsite in-person interviews, so it randomly selects 20 hospitals and interviews all 
members working at the selected hospital.
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  2.12  For each of the following situations, decide what sampling method you would use. Provide 
an explanation of why you selected a particular method of sampling.

 a. A large automotive company wants to upgrade the software on its notebook 
computers. A survey of 1,500 employees will request information concerning fre-
quently used software applications such as spreadsheets, word processing, e-mail, 
Internet access, statistical data processing, and so on. A list of employees with 
their job categories is available.

 b. A hospital is interested in what types of patients make use of their emergency room 
 facilities. It is decided to sample 10% of all patients arriving at the emergency room 
for the next month and record their demographic information along with type of 
service required, the amount of time the patient waits prior to examination, and the 
amount of time needed for the doctor to assess the patient’s problem.

  2.13  For each of the following situations, decide what sampling method you would use. Provide 
an explanation of why you selected a particular method of sampling.

 a. The major state university in the state is attempting to lobby the state legislature 
for a bill that would allow the university to charge a higher tuition rate than the 
other universities in the state. To provide a justification, the university plans to 
conduct a mail survey of its alumni to collect information concerning their current 
employment status. The  university grants a wide variety of different degrees and 
wants to make sure that  information is obtained about graduates from each of the 
degree types. A 5% sample of alumni is considered sufficient.

 b. The Environmental Protection Agency (EPA) is required to inspect landfills in 
the United States for the presence of certain types of toxic material. The materi-
als were sealed in containers and placed in the landfills. The exact location of the 
containers is no longer known. The EPA wants to inspect a sample of 100 contain-
ers from the 4,000 containers known to be in the landfills to determine if leakage 
from the containers has occurred.

 2.5 Designs for experimental Studies

 Engin. 2.14  The process engineer designed a study to evaluate the quality of plastic irrigation pipes. The 
study involved a total of 48 pipes; 24 pipes were randomly selected from each of the company’s 
two manufacturing plants. The pipes were heat-treated at one one of four temperatures (175, 200, 
225, 250°F). The pipes were chemically treated with one of three types of hardeners (H1 , H2 , H3 ). 
The deviations from the nominal compressive strength were measured at five locations on each of 
the pipes. 

Pipe No. Plant Temperature (°F) Hardener Pipe No. Plant Temperature (°F) Hardener

  1 1 200 H1 15 2 200  H3

  2 1 175  H2 16 2 175  H3

  3 2 200  H1 17 1 200  H2

  4 2 175  H2 18 1 175  H1

  5 1 200  H1 19 2 200  H2

  6 1 175  H2 20 2 175  H1

  7 2 200  H1 21 1 200  H2

  8 2 175  H2 22 1 175  H1

  9 1 200  H3 23 2 200  H2

 10 1 175  H3 24 2 175  H1

 11 2 200  H3 25 1 250 H1

 12 2 175  H3 26 1 225  H2

 13 1 200  H3 27 2 250  H1

 14 1 175  H3 28 2 225  H2
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 29 1 250  H1 39 2 250  H3

 30 1 225  H2 40 2 225  H3

 31 2 250  H1 41 1 250  H1

 32 2 225  H2 42 1 225  H2

 33 1 250  H3 43 2 250  H1

 34 1 225  H3 44 2 225  H2

 35 2 250  H3 45 1 250  H1

 36 2 225  H3 46 1 225  H2

 37 1 250  H3 47 2 250  H1

 38 1 225  H3 48 2 225  H2

Identify each of the following components of the experimental design.
 a. Factors 
 b. Factor levels
 c. Blocks
 d. Experimental unit 
 e. Measurement unit 
 f. Replications 
 g. Covariates
 h. Treatments

In the descriptions of experiments given in Exercises 2.15–2.18, identify the important features of 
each design. Include as many of the components listed in Exercise 2.14 as needed to adequately 
describe the design.

 Ag. 2.15  A horticulturist is measuring the vitamin C concentration in oranges in an orchard on a 
research farm in south Texas. He is interested in the variation in vitamin C concentration across 
the orchard, across the productive months, and within each tree. He divides the orchard into eight 
sections and randomly selects a tree from each section during October–May, the months in which 
the trees are in production. During each month, he selects from each of the eight trees 10 oranges 
near the top of the tree, 10 oranges near the middle of the tree, and 10 oranges near the bottom 
of the tree. The horticulturist wants to monitor the vitamin C concentration across the productive 
season and determine if there is a substantial difference in vitamin C concentration in oranges at 
various locations in the tree.

 Med. 2.16  A medical study is designed to evaluate a new drug, D1, for treating a particular illness. 
There is a widely used treatment, D2, for this disease to which the new drug will be compared. A 
placebo will also be included in the study. The researcher has selected 10 hospitals for the study. 
She does a thorough evaluation of the hospitals and concludes that there may be aspects of the 
hospitals that may result in the elevation of responses at some of the hospitals. Each hospital has 
six wards of patients. She will randomly select six patients in each ward to participate in the study. 
Within each hospital, two wards are randomly assigned to administer D1, two wards to administer 
D2, and two wards administer the placebo. All six patients in each of the wards will be given the 
same treatment. Age, BMI, blood pressure, and a measure of degree of illness are recorded for 
each patient upon entry into the hospital. The response is an assessment of the degree of illness 
after 6 days of treatment.

 Med. 2.17  In place of the design described in Exercise 2.16, make the following change. Within each 
hospital, the three treatments will be randomly assigned to the patients, with two patients in each 
ward receiving D1, two patients receiving D2, and two patients receiving the placebo.

 Edu. 2.18  Researchers in an education department at a large state university have designed a study 
to compare the math abilities of students in junior high. They will also examine the impact of 
three types of schools—public, private nonparochial, and parochial—on the scores the students 
receive in a standardized math test. Two large cities in each of four geographical regions of the 
United States were selected for the study. In each city, one school of each of the three types was 
randomly selected, and a single eighth-grade class was randomly selected within each school.  
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The scores on the test were recorded for each student in the selected classrooms. The researcher 
was concerned about differences in socio-economie status among the 8 cities, so she obtained a 
measure of socioeconomic status for each of the students that participated in the study.

 Bio. 2.19  A research specialist for a large seafood company plans to investigate bacterial growth on 
oysters and mussels subjected to three different storage temperatures. Nine cold-storage units are 
available. She plans to use three storage units for each of the three temperatures. One package of 
 oysters and one package of mussels will be stored in each of the storage units for 2 weeks. At the end 
of the storage period, the packages will be removed and the bacterial count made for two samples 
from each package. The treatment factors of interest are temperature (levels: 0, 5, 10°C) and sea-
food (levels: oysters, mussels). She will also record the bacterial count for each package prior to plac-
ing seafood in the cooler. Identify each of the following components of the experimental design.

 a. Factors 
 b. Factor levels
 c. Blocks 
 d. Experimental unit 
 e. Measurement unit 
  f. Replications 
 g. Treatments 

In Exercises 2.20–2.22, identify whether the design is a completely randomized design, rand-
omized complete block design, or Latin square design. If there is a factorial structure for the 
treatments, specify whether it has a two-factor or three-factor structure. If the measurement units 
are different from the experimental units, identify both.

 Ag. 2.20  The researchers design an experiment to evaluate the effect of applying fertilizer having 
varying levels of nitrogen, potassium, and phosphorus on the yields of orange trees. There were 
three, four, and three different levels of N, P, and K, respectively, yielding 36 distinct combi-
nations. Ten orange groves were randomly selected for the experiment. Each grove was then 
divided into 36 distinct plots, and the 36 fertilizer combinations were randomly assigned to the 
plots within each grove. The yield of five randomly selected trees in each plot is recorded to assess 
the variation within each of the 360 plots.

 Bus. 2.21  A company is planning on purchasing a software program to manage its inventory. Five 
vendors submit bids on supplying the inventory control software. In order to evaluate the effec-
tiveness of the software, the company’s personnel decide to evaluate the software by running 
each of the five software packages at each of the company’s 10 warehouses. The number of errors 
produced by each of the software packages is recorded at each of the warehouses.

 Sci. 2.22  Four different glazes are applied at two different thicknesses to clay pots. The kiln used in 
the glazing can hold eight pots at a time, and it takes 1 day to apply the glazes. The experimenter 
wanted eight replications of the experiment. Since conditions in the kiln vary somewhat from day 
to day, the experiment was conducted over an 8-day period. The experiment is conducted so that 
each combination of a thickness and type of glaze is randomly assigned to one pot in the kiln each 
day.

 Bus. 2.23  A bakery wants to evaluate new recipes for carrot cake. It decides to ask a random sample 
of regular customers to evaluate the recipes by tasting samples of the cakes. After a customer 
tastes a sample of the cake, the customer will provide scores for several characteristics of the 
cake, and these scores are then combined into a single overall score for the recipe. Thus, from 
each customer, a single numeric score is recorded for each recipe. The taste-testing literature 
indicates that in this type of study some consumers tend to give all samples low scores and others 
tend to give all samples high scores.

 a. There are two possible experimental designs. Design A would use a random sam-
ple of 100 customers. From this group, 20 would be randomly assigned to each of 
the five recipes, so that each customer tastes only one recipe. Design B would use 
a random sample of 100 customers with each customer tasting all five recipes, the 
recipes being presented in a random order for each customer. Which design would 
you recommend? Justify your answer.
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 b. The manager of the bakery asked for a progress report on the experiment. The 
person conducting the experiment replied that one recipe tasted so bad that she 
eliminated it from the analysis. Is this a problem for the analysis if Design B was 
used? Why or why not? Would it have been a problem if Design A was used? 
Why or why not?

Supplementary Exercises

 H.R. 2.24  A large healthcare corporation is interested in the number of employees who devote a sub-
stantial amount of time to providing care for elderly relatives. The corporation wants to develop 
a policy with respect to the number of sick days an employee can use to provide care to elderly 
relatives. The corporation has thousands of employees, so it decides to have a sample of employees 
fill out a questionnaire.

 a. How would you define employee? Should only full-time workers be considered? 
 b. How would you select the sample of employees? 
 c. What information should be collected from the workers?

 Bus. 2.25  The school of nursing at a university is developing a long-term plan to determine the num-
ber of faculty members that may be needed in future years. Thus, it needs to determine the future 
 demand for nurses in the areas in which many of the graduates find employment. The school 
 decides to survey medical facilities and private doctors to assist in determining the future nursing 
demand.

 a. How would you obtain a list of private doctors and medical facilities so that a 
sample of doctors could be selected to fill out a questionnaire?

 b. What are some of the questions that should be included on the questionnaire? 
 c. How would you determine the number of nurses who are licensed but not cur-

rently employed? 
 d. What are some possible sources for determining the population growth and health 

risk factors for the areas in which many of the nurses find employment?
 e. How could you sample the population of healthcare facilities and types of private 

doctors so as not to exclude any medical specialties from the survey?

  2.26  Consider the yields given in Table 2.7. In this situation, there is no interaction. Show that 
the one-at-a-time approach would result in the experimenter finding the best combination of 
 nitrogen and phosphorus—that is, the combination producing maximum yield. Your solution 
should include the five combinations you would use in the experiment. 

  2.27  The population values that would result from running a 2 3 3 factorial treatment structure 
are given in the following table. Note that two values are missing. If there is no interaction between 
the two factors, determine the missing values.

 Factor 2

Factor 1 I II III

 A 25 45
 B  30 50

 Vet. 2.28  An experiment is designed to evaluate the effect of different levels of exercise on the 
health of dogs. The two levels are L1—1-mile walk every day and L2—2-mile walk every other 
day. At the end of a 3-month study period, each dog will undergo measurements of respiratory 
and cardio vascular fitness from which a fitness index will be computed. There are 16 dogs avail-
able for the study. They are all in good health and are of the same general size, which is within 
the normal range for their breed. The following table provides information about the sex and age 
of the 16 dogs.
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Dog Sex Age Dog Sex Age

1 F 5   9 F 8
2 F 3 10 F 9
3 M 4 11 F 6
4 M 7 12 M 8
5 M 2 13 F 2
6 M 3 14 F 1
7 F 5 15 M 6
8 M 9 16 M 3

 a. How would you group the dogs prior to assigning the treatments to obtain a study 
 having as small an experimental error as possible? List the dogs in each of your 
groups.

 b. Describe your procedure for assigning the treatments to the individual dogs using 
a random number generator.

 Bus. 2.29  Four cake recipes are to be compared for moistness. The researcher will conduct the 
experiment by preparing and then baking the cake. Each preparation of a recipe makes only one 
cake. All recipes require the same cooking temperature and the same length of cooking time. The 
oven is large enough that four cakes may be baked during any one baking period, in positions P1 
through P4, as shown here.

  

P1   P2

P3   P4

 a. Discuss an appropriate experimental design and randomization procedure if there 
are to be r cakes for each recipe.

 b. Suppose the experimenter is concerned that significant differences could exist due 
to the four baking positions in the oven (front vs. back, left side vs. right side). Is 
your design still appropriate? If not, describe an appropriate design.

 c. For the design or designs described in (b), suggest modifications if there are five 
recipes to be tested but only four cakes may be cooked at any one time.

 Bio. 2.30  A forester wants to estimate the total number of trees on a tree farm that have a diam-
eter exceeding 12 inches. Because the farm contains too many trees to facilitate measuring all of 
them, she uses Google Earth to divide the farm into 250 rectangular plots of approximately the 
same area. An examination of the plots reveals that 27 of the plots have a sizable portion of their 
land under water. The forester excluded the 27 “watery” plots for the study. She then randomly 
selected 42 of the remaining 223 plots and counted all the trees having a diameter exceeding 
12 inches on the 42 selected plots.

 a. What is the sampling frame for this study?
 b. How does the sampling frame differ from the population of interest, if at all?
 c. What biases may exist in the estimate of the number of trees having a diameter 

greater than 12 inches based on the collected data?

 engin. 2.31  A transportation researcher is funded to estimate the proportion of automobile tires with 
an unsafe tread thickness in a small northern state. The researcher randomly selects one month 
during each of the four seasons for taking the measurements. During each of the four selected 
months, the researcher randomly selects 500 cars from the list of registered cars in the state and 
then measures the tread thickness of the four tires on each of the selected cars.

 a. What is the population of interest?
 b. What is the sampling frame?
 c. What biases if any may result from using the data from this study to obtain the 

estimated proportion of cars with an unsafe thread thickness?
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 Gov. 2.32  The department of agriculture in a midwestern state wants to estimate the amount of 
corn produced in the state that is used to make ethanol. There are 50,000 farms in the state that 
produce corn. The farms are classified into four groups depending on the total number of acres 
planted in corn. A random sample of 500 farms is selected from each of the four groups, and the 
amount corn used to generate ethanol is determined for each of the 2,000 selected farms.

 a. What is the population of interest?
 b. What is the sampling frame?
 c. What type of sampling plan is being used in this study?
 d. What biases if any may result from using the data from this study to obtain an es-

timate of the amount of corn used to produce ethanol?

  2.33  Discuss the relative merits of using personal interviews, telephone interviews, and mailed 
questionnaires as data collection methods for each of the following situations:

 a. A television executive wants to estimate the proportion of viewers in the country 
who are watching the network at a certain hour.

 b. A newspaper editor wants to survey the attitudes of the public toward the type of 
news coverage offered by the paper.

 c. A city commissioner is interested in determining how homeowners feel about a 
proposed zoning change.

 d. A county health department wants to estimate the proportion of dogs that have 
had  rabies shots within the last year.

 Soc. 2.34  A Yankelovich, Skelly, and White poll taken in the fall of 1984 showed that one-fifth of the 
2,207 people surveyed admitted to having cheated on their federal income taxes. Do you think 
that this fraction is close to the actual proportion who cheated? Why? (Discuss the difficulties of 
obtaining accurate information on a question of this type.)



 3.1 Introduction and abstract of research Study

In the previous chapter, we discussed how to gather data intelligently for an exper-
iment or survey, Step 2 in Learning from Data. We turn now to Step 3, summariz-
ing the data.

The field of statistics can be divided into two major branches: descriptive 
statistics and inferential statistics. In both branches, we work with a set of meas-
urements. For situations in which data description is our major objective, the set 
of measurements available to us is frequently the entire population. For exam-
ple, suppose that we wish to describe the distribution of annual incomes for all 
families registered in the 2000 census. Because all these data are recorded and 
are available on computer tapes, we do not need to obtain a random sample from 
the population; the complete set of measurements is at our disposal. Our major 
problem is in organizing, summarizing, and describing these data—that is, mak-
ing sense of the data. Similarly, vast amounts of monthly, quarterly, and yearly 
data of medical costs are available for the managed healthcare industry, HMOs. 
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These data are broken down by type of illness, age of patient, inpatient or outpa-
tient care, prescription costs, and out-of-region reimbursements, along with many 
other types of expenses. However, in order to present such data in formats useful 
to HMO managers, congressional staffs, doctors, and the consuming public, it is 
necessary to organize, summarize, and describe the data. Good descriptive statis-
tics enable us to make sense of the data by reducing a large set of measurements 
to a few summary measures that provide a good, rough picture of the original 
measurements.

In situations in which we are unable to observe all units in the population, 
a sample is selected from the population, and the appropriate measurements are 
made. We use the information in the sample to draw conclusions about the popu-
lation from which the sample was drawn. However, in order for these inferences 
about the population to have a valid interpretation, the sample should be a random 
sample of one of the forms discussed in Chapter 2. During the process of making 
inferences, we also need to organize, summarize, and describe the data. 

Following the tragedies that occurred on September 11, 2001, the Transpor-
tation Security Administration (TSA) was created to strengthen the security of the 
nation’s transportation systems. TSA has the responsibility to secure the nation’s 
airports and screens all commercial airline passengers and baggage. Approxi-
mately 1.8 million passengers pass through our nation’s airports every day. TSA 
attempts to provide the highest level of security and customer service to all who 
pass through our screening checkpoints. However, if every passenger was physi-
cally inspected by a TSA officer, the delay in the airports would be unacceptable 
to the traveling public. Thus, TSA focuses its resources at security checkpoints by 
applying new intelligence-driven, risk-based screening procedures and enhancing 
its use of technology. Instead of inspecting every passenger, TSA employs a system 
of randomly selecting passengers for screening together with random and unpre-
dictable security measures throughout the airport. No individual will be guaran-
teed expedited screening in order to retain a certain element of randomness to 
prevent terrorists from gaming the system.

Similarly, in order to monitor changes in the purchasing power of consumers’ 
income, the federal government uses the Consumer Price Index (CPI) to measure 
the average change in prices over time in a market basket of goods and services 
purchased by urban wage earners. The current CPI is based on prices of food, cloth-
ing, shelter, fuels, transportation fares, charges for doctors’ and dentists’ services, 
drugs, and so on, purchased for day-to-day living. Each month the Bureau of Labor 
Statistics (BLS) scientifically samples approximately 80,000 goods and services pur-
chased by consumers. The CPI is estimated from these samples of consumer pur-
chases; it is not a complete measure of price change. Consequently, the index results 
may deviate slightly from those that would be obtained if all consumer transactions 
were recorded. This is called sampling error. These estimation or sampling errors 
are statistical limitations of the index. A different kind of error in the CPI can occur 
when, for example, a respondent provides BLS field representatives with inaccurate 
or incomplete information. This is called nonsampling error.

A third situation involves an experiment in which a drug company wants 
to study the effects of two factors on the level of blood sugar in diabetic patients. 
The factors are the type of drug (a new drug and two drugs currently being used) 
and the method of administering the drug to the diabetic patient (two different 
delivery modes). The experiment involves randomly selecting a method of admin-
istering the drug and randomly selecting a type of drug and then giving the drug to 
the patient. The fasting blood sugar of the patient is then recorded at the time the 
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patient receives the drug and at 6-hour intervals over a 2-day period of time. The six 
unique combinations of type of drug and method of delivery are given to 10 differ-
ent patients. In this experiment, the drug company wants to make inferences from 
the results of the experiment to determine if the new drug is commercially  viable. 
In many experiments of this type, the use of proper graphical displays provides 
valuable insights to the scientists with respect to identifying unusual occurrences 
and making comparisons of the responses to the different treatment combinations.

Whether we are describing an observed population or using sampled data to 
draw an inference from the sample to the population, an insightful description of 
the data is an important step in drawing conclusions from it. No matter what our 
objective, statistical inference or population description, we must first adequately 
describe the set of measurements at our disposal.

The two major methods for describing a set of measurements are graphical 
techniques and numerical descriptive techniques. Section 3.3 deals with graphical 
methods for describing data on a single variable. In Sections 3.4, 3.5, and 3.6, we 
discuss numerical techniques for describing data. The final topics on data descrip-
tion are presented in Section 3.7, in which we consider a few techniques for describ-
ing (summarizing) data on more than one variable. A research study involving the 
evaluation of primary school teachers will be used to illustrate many of the sum-
mary statistics and graphs introduced in this chapter.

abstract of research Study: Controlling for Student 
Background in the assessment of teaching
By way of background, there was a movement to introduce achievement standards 
and school/teacher accountability in the public schools of our nation long before 
the No Child Left Behind bill was passed by the Congress during the first term 
of  President George W. Bush. However, even after an important federal study 
entitled A Nation at Risk (National Commission on Excellence in Education, 1983) 
spelled out the grave trend toward mediocrity in our schools and the risk this poses 
for the future, Presidents Ronald Reagan, George H. W. Bush, and Bill Clinton 
did not venture into this potentially sensitive area to champion meaningful change.

Many politicians, teachers, and educational organizations have criticized the 
No Child Left Behind (NCLB) legislation, which requires rigid testing standards 
in exchange for money to support low-income students. A recent survey conducted 
by the Educational Testing Service (ETS) with bipartisan sponsorship from the 
Congress showed the following:

●● Those surveyed identified the value of our education as the most 
important source of the United States’ success in the world. (Also 
included on the list of alternatives were our military strength, our 
geographical and natural resources, our democratic system of govern-
ment, our entrepreneurial spirit, etc.)

●● 45% of the parents surveyed viewed the NCLB reforms favorably; 
34% viewed them unfavorably.

●● Only 19% of the high school teachers surveyed viewed the NCLB 
 reforms favorably, while 75% viewed them unfavorably.

Given the importance placed on education, the difference or gap between 
the responses of parents and those of educators is troubling. The tone of much of 
the criticism seems to run against the empirical results seen to date with the NCLB 
program. For example, in 2004 the Center on Education Policy, an independent 
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 research organization, reported that 36 of 49 (73.5%) schools surveyed showed 
 improvement in student achievement.

One of the possible sources of criticism coming from the educators is that 
there is a risk of being placed on a “watch list” if the school does not meet the 
performance standards set. This would reflect badly on the teachers, the school, 
and the community. But another important source of the criticism voiced by the 
teachers and reflected in the gap between what parents and teachers favor relates 
to the performance standards themselves. In the previously mentioned ETS sur-
vey, those polled were asked whether the same standard should be used for all stu-
dents of a given grade, regardless of their background, because of the view that it 
is wrong to have lower expectations for students from disadvantaged backgrounds. 
The opposing view is that it is not reasonable to expect teachers to be able to bring 
the achievement for disadvantaged students to the same level as that of students 
from more affluent areas. While more than 50% of the parents favored a single 
standard, only 25% of the teachers suggested this view.

Next, we will examine some data that may offer a way to improve the NCLB 
program while maintaining the important concepts of performance standards and 
accountability.

In an article in the Spring 2004 issue of the Journal of Educational and Behavioral 
Statistics, “An Empirical Comparison of Statistical Models for Value-Added  Assessment 
of School Performance,” by Tekwe et al., data were presented from three elementary 
school grade cohorts (third–fifth grades) in 1999 in a medium-sized Florida school 
district with 22 elementary schools. The data are given in Table 3.1. The minority 

Third Grade

School Math Reading %Minority %Poverty N

1 166.4 165.0 79.2 91.7  48
2 159.6 157 .2 73.8 90.2  61
3 159.1 164.4 75.4 86.0  57
4 155.5 162.4 87 .4 83.9  87
5 164.3 162.5 37 .3 80.4  51
6 169.8 164.9 76.5 76.5  68
7 155.7 162.0 68.0 76.0  75
8 165.2 165.0 53.7 75.8  95
9 175.4 173.7 31.3 75.6  45

10 178.1 171.0 13.9 75.0  36
11 167 .1 169.4 36.7 74.7  79
12 177 .1 172.9 26.5 63.2  68
13 174.2 172.7 28.3 52.9 191
14 175.6 174.9 23.7 48.5  97
15 170.8 174.9 14.5 39.1 110
16 175.1 170.1 25.6 38.4  86
17 182.8 181.4 22.9 34.3  70
18 180.3 180.6 15.8 30.3 165
19 178.8 178.0 14.6 30.3  89
20 181.4 175.9 28.6 29.6  98
21 182.8 181.6 21.4 26.5  98
22 186.1 183.8 12.3 13.8 130

TABLE 3.1
Assessment of elementary 

school performance

(continued)
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Fourth Grade

School Math Reading %Minority %Poverty N

 1 181.1 177 .0 78.9 89.5  38
 2 181.1 173.8 75.9 79.6  54
 3 180.9 175.5 64.1 71.9  64
 4 169.9 166.9 94.4 91.7  72
 5 183.6 178.7 38.6 61.4  57
 6 178.6 170.3 67 .9 83.9  56
 7 182.7 178.8 65.8 63.3  79
 8 186.1 180.9 48.0 64.7 102
 9 187 .2 187 .3 33.3 62.7  51
10 194.5 188.9 11.1 77 .8  36
11 180.3 181.7 47 .4 70.5  78
12 187 .6 186.3 19.4 59.7  72
13 194.0 189.8 21.6 46.2 171
14 193.1 189.4 28.8 36.9 111
15 195.5 188.0 20.2 38.3  94
16 191.3 186.6 39.7 47 .4  78
17 200.1 199.7 23.9 23.9  67
18 196.5 193.5 22.4 32.8 116
19 203.5 204.7 16.0 11.7  94
20 199.6 195.9 31.1 33.3  90
21 203.3 194.9 23.3 25.9 116
22 206.9 202.5 13.1 14.8 122

Fifth Grade

School Math Reading %Minority %Poverty N

 1 197 .1 186.6 81.0 92.9  42
 2 194.9 200.1 83.3 88.1  42
 3 192.9 194.5 56.0 80.0  50
 4 193.3 189.9 92.6 75.9  54
 5 197 .7 199.6 21.7 67 .4  46
 6 193.2 193.6 70.4 76.1  71
 7 198.0 200.9 64.1 67 .9  78
 8 205.2 203.5 45.5 61.0  77
 9 210.2 223.3 34.7 73.5  49
10 204.8 199.0 29.4 55.9  34
11 205.7 202.8 42.3 71.2  52
12 201.2 207 .8 15.8 51.3  76
13 205.2 203.3 19.8 41.2 131
14 212.7 211.4 26.7 41.6 101
15 — — — — —
16 209.6 206.5 22.4 37 .3  67
17 223.5 217 .7 14.3 30.2  63
18 222.8 218.0 16.8 24.8 137
19 — — — — —
20 228.1 222.4 20.6 23.5 102
21 221.0 221.0 10.5 13.2 114
22 — — — — —

TABLE 3.1
Assessment of elementary 

school performance 
(continued)

Source: Tekwe, C., R. Carter, C. Ma, J. Algina, M. Lucas, J. Roth, M. Ariet, T. Fisher, and M. Resnick. (2004), 
“An empirical comparison of statistical models for value-added assessment of school performance.” Journal of 
Educational and Behavioral Statistics 29, 11–36.
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status of a student was defined as black or non-black race. In this school district, 
almost all students are non-Hispanic blacks or whites. Most of the relatively small 
numbers of Hispanic students are white. Most students of other races are Asian but 
are relatively few in number. They were grouped in the minority category because 
of the similarity of their test score profiles. Poverty status was based on whether 
or not the student received a free or reduced lunch subsidy. The math and reading 
scores are from the Iowa Test of Basic Skills. The number of students by class in each 
school is given by N in the table.

The superintendent of the schools presented the school board members with 
the data, and they wanted an assessment of whether poverty and minority status 
had any  effect on the math and reading scores. Just looking at the data in the table 
presented very little insight to answering this question. At the end of this chapter, 
we will present a discussion of what types of graphs and summary statistics would 
be beneficial to the school board in reaching a conclusion about the impact of these 
two variables on student performance.

 3.2 Calculators, Computers, and Software Systems

Electronic calculators can be great aids in performing some of the calculations 
mentioned later in this chapter, especially for small data sets. For larger data sets, 
even hand-held calculators are of little use because of the time required to enter 
data. A computer can help in these situations. Specific programs or more general 
software systems can be used to perform statistical analyses almost instantaneously 
even for very large data sets after the data are entered into the computer. It is not 
necessary to know computer programming to make use of specific programs or 
software systems for planned analyses—most provide pull-down menus that lead 
the user through the analysis of choice.

Many statistical software packages are available. A few of the more com-
monly used are SAS, SPSS, Minitab, R, JMP, and STATA. Because a software 
system is a group of programs that work together, it is possible to obtain plots, 
data descriptions, and complex statistical analyses in a single job. Most people find 
that they can use any particular system easily, although they may be frustrated by 
minor errors committed on the first few tries. The ability of such packages to per-
form complicated analyses on large amounts of data more than repays the initial 
investment of time and irritation.

In general, to use a system you need to learn about only the programs in 
which you are interested. Typical steps in a job involve describing your data to the 
software system, manipulating your data if they are not in the proper format or if 
you want a subset of your original data set, and then invoking the appropriate set 
of programs or commands particular to the software system you are using.

Because this isn’t a text on computer use, we won’t spend additional time 
and space on the mechanics, which are best learned by doing. Our main interest is 
in interpreting the output from these programs. The designers of these programs 
tend to include in the output everything that a user could conceivably want to 
know; as a result, in any particular situation, some of the output is irrelevant. When 
reading computer output, look for the values you want; if you don’t need or don’t 
understand an output statistic, don’t worry. Of course, as you learn more about 
statistics, more of the output will be meaningful. In the meantime, look for what 
you need and disregard the rest.
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There are dangers in using such packages carelessly. A computer is a mind-
less beast and will do anything asked of it, no matter how absurd the result might 
be. For instance, suppose that the data include age, gender (1  female, 2  male), 
political party (1  Democrat, 2  Republican, 3  Green, 4  Libertarian, 5  
Other, 6  None), and monthly income of a group of people. If we asked the com-
puter to calculate averages, we would get  averages for the variables gender and 
political party, as well as for age and monthly income, even though these averages 
are meaningless. For example, suppose a random sample of 100 people identifies 
their political party as follows: 30 respond Democrat  1, 30 respond Republican 
 2, 10 respond Green  3, 10 respond Libertarian  4, 10 respond Other  5, and 
10 respond None  6. The average of the 100 numbers would be 2.7, which would 
be a green republican, that is, it would have absolutely no meaning with respect 
to the “average” political affiliation of the group of 100 people. Used intelligently, 
these packages are convenient, powerful, and useful—but be sure to examine the 
output from any computer run to make certain the results make sense. Did any-
thing go wrong? Was something overlooked? In other words, be skeptical. One 
of the important acronyms of computer technology still holds—namely, GIGO: 
garbage in, garbage out.

Throughout the textbook, we will use computer software systems to do most 
of the more tedious calculations of statistics after we have explained how the cal-
culations can be done. Used in this way, computers (and associated graphical and 
statistical analysis packages) will enable us to spend additional time on interpret-
ing the results of the analyses rather than on doing the analyses.

 3.3 Describing Data on a Single Variable: 
Graphical Methods

After the measurements of interest have been collected, ideally the data are organ-
ized, displayed, and examined by using various graphical techniques. As a gen-
eral rule, the data should be arranged into categories so that each measurement is 
classified into one, and only one, of the categories. This procedure eliminates any 
ambiguity that might otherwise arise when categorizing measurements. For exam-
ple, suppose a sex discrimination lawsuit is filed. The law firm representing the 
plaintiffs needs to summarize the salaries of all employees in a large corporation. 
To examine possible inequities in salaries, the law firm decides to summarize the 
2005 yearly income rounded to the nearest dollar for all female employees into the 
 categories listed in Table 3.2.

The yearly salary of each female employee falls into one, and only one, 
income category. However, if the income categories had been defined as shown in 

TABLE 3.2
Format for summarizing  

salary data

Income Level Salary

1 less than $20,000
2 $20,000 to $39,999
3 $40,000 to $59,999
4 $60,000 to $79,999
5 $80,000 to $99,999
6 $100,000 or more
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Table 3.3, then there would be confusion as to which category should be checked. 
For example, an employee earning $40,000 could be placed in either category 2 or 
category 3. To  reiterate: If the data are organized into categories, it is important to 
define the  categories so that a measurement can be placed into only one category.

When data are organized according to this general rule, there are several 
ways to display the data graphically. The first and simplest graphical procedure for 
data organized in this manner is the pie chart. It is used to display the percentage 
of the total number of measurements falling into each of the categories of the vari-
able by partitioning a circle (similar to slicing a pie).

The data of Table 3.4 represent a summary of a study to determine which 
types of employment may be the most dangerous to their employees. Using data 
from the National Safety Council, it was reported that in 1999, approximately 
3,240,000 workers suffered disabling injuries (an injury that results in death 
or some degree of physical impairment or that renders the employee unable to 
perform regular activities for a full day beyond the day of the injury). Each of the 
3,240,000 disabled workers was classified according to the industry group in which 
he or she was employed.

Although you can scan the data in Table 3.4, the results are more easily inter-
preted by using a pie chart. From Figure 3.1, we can make certain inferences about 
which industries have the highest number of injured employees and thus may 
 require a closer scrutiny of their practices. For example, the services industry had 
nearly one-quarter, 24.3%, of all disabling injuries during 1999, whereas govern-
ment employees constituted only 14.9%. At this point, we must carefully consider 
what is being displayed in both Table 3.4 and Figure 3.1. They show the numbers 
of disabling injuries, but these figures do not take into account the numbers of 
workers employed in the various industry groups. To realistically reflect the risk 
of a disabling injury to the employees in each of the industry groups, we need to 

pie chart

TABLE 3.3
Format for summarizing  

salary data

Income Level Salary

1 less than $20,000
2 $20,000 to $40,000
3 $40,000 to $60,000
4 $60,000 to $80,000
5 $80,000 to $100,000
6 $100,000 or more

TABLE 3.4
Disabling injuries  
by industry group

 Number of Disabling Percent 
Industry Group Injuries (in 1,000s) of Total 

Agriculture 130  3.4
Construction 470 12.1
Manufacturing 630 16.2
Transportation & utilities 300  9.8
Trade 380 19.3
Services 750 24.3
Government 580 14.9

Source: U.S. Census Bureau. (2002), Statistical Abstract of the United States, 
122nd ed. Washington, D.C.: U.S. Government Printing Office 2001.
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take into account the total number of employees in each of the industries. A rate 
of disabling injury could then be computed that would be a more informative index 
of the risk to a worker employed in each of the groups. For example, although the 
services group had the highest percentage of workers with a disabling injury, it also 
had the largest number of workers. Taking into account the number of workers 
employed in each of the industry groups, the services group had the lowest rate 
of disabling injuries in the seven groups. This illustrates the necessity of carefully 
examining  tables of numbers and graphs prior to drawing conclusions.

Another variation of the pie chart is shown in Figure 3.2. It shows the loss of 
market share by PepsiCo as a result of the switch by a major fast-food chain from 
Pepsi to Coca-Cola for its fountain drink sales. In summary, the pie chart can be 
used to display percentages associated with each category of the variable. The fol-
lowing guidelines should help you to obtain clarity of presentation in pie charts.

1. Choose a small number (five or six) of categories for the variable because 
too many make the pie chart difficult to interpret.

2. Whenever possible, construct the pie chart so that percentages are in 
 either ascending or descending order.

Guidelines for 
Constructing Pie 

Charts

FIGURE 3.1
Pie chart for the data 
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A second graphical technique is the bar chart, or bar graph. Figure 3.3 
displays the number of workers employed in the Cincinnati, Ohio, area by major 
foreign investors by country. There are many variations of the bar chart. Some-
times the bars are displayed horizontally, as in Figures 3.4(a) and (b). They can 
also be used to display data across time, as in Figure 3.5. Bar charts are relatively 
easy to construct if you use the following guidelines.

1. Label frequencies on one axis and categories of the variable on the 
other axis.

2. Construct a rectangle at each category of the variable with a height 
equal to the frequency (number of observations) in the category.

3. Leave a space between each category to connote distinct, separate 
 categories and to clarify the presentation.

Guidelines for 
Constructing 

Bar Charts 

The next two graphical techniques that we will discuss are the frequency 
 histogram and the relative frequency histogram. Both of these graphical tech-
niques are applicable only to quantitative (measured) data. As with the pie chart, 
we must organize the data before constructing a graph.

Gulf Coast ticks are significant pests of grazing cattle that require new strate-
gies of population control. Some particular species of ticks not only are the source 
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of considerable economic losses to the cattle industry due to weight loss in the cattle 
but also are recognized vectors for a number of diseases in cattle. An entomologist 
carries out an experiment to investigate whether a new repellant for ticks is effective 
in preventing ticks from attaching to grazing cattle. The researcher determines that 
100 cows will provide sufficient information to validate the results of the experiment 
and convince a commercial enterprise to manufacture and market the repellant. (In 
Chapter 5, we will present techniques for determining the appropriate sample size 
for a study to achieve specified goals.) The scientist then exposes the cows to a speci-
fied number of ticks in a laboratory setting and records the number of attached ticks 
after 1 hour of exposure. The average number of attached ticks on cows using a cur-
rently marketed repellant is 34 ticks. The scientist wants to demonstrate that using 
the new repellant will result in a reduction of the average number of attached ticks. 
The numbers of attached ticks for the 100 cows are presented in Table 3.5.

An initial examination of the tick data reveals that the largest number of 
ticks is 42 and the smallest is 17 . Although we might examine the table very 
closely to determine whether the number of ticks per cow is substantially less 
than 34, it is difficult to describe how the measurements are distributed along the 
interval 17 to 42. One way to facilitate the description is to organize the data in a 
frequency table.

To construct a frequency table, we begin by dividing the range from 17 to 
42 into an arbitrary number of subintervals called class intervals. The number of 
subintervals chosen depends on the number of measurements in the set, but we 
generally recommend using from 5 to 20 class intervals. The more data we have, 
the larger the number of classes we tend to use. The guidelines given here can be 
used for constructing the appropriate class intervals.

frequency table

class intervals

TABLE 3.5
Number of attached ticks 17 18 19 20 20 20 21 21 21 22 22 22 22 23 23

23 24 24 24 24 24 25 25 25 25 25 25 25 26 26
27 27 27 27 27 27 28 28 28 28 28 28 28 28 28
28 28 29 29 29 29 29 29 29 29 29 29 30 30 30
30 30 30 30 30 31 31 31 31 31 31 32 32 32 32
32 32 32 32 33 33 33 34 34 34 34 35 35 35 36
36 36 36 37 37 38 39 40 41 42
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1. Divide the range of the measurements (the difference between the larg-
est and the smallest measurements) by the approximate number of class 
 intervals desired. Generally, we want to have from 5 to 20 class intervals.

2. After dividing the range by the desired number of class intervals, round 
the resulting number to a convenient (easy to work with) unit. This unit 
represents a common width for the class intervals.

3. Choose the first class interval so that it contains the smallest measure-
ment. It is also advisable to choose a starting point for the first interval 
so that no measurement falls on a point of division between two class 
intervals, which eliminates any ambiguity in placing measurements into 
the class intervals. (One way to do this is to choose boundaries to one 
more decimal place than the data.)

Guidelines for 
Constructing Class 

Intervals

For the data in Table 3.5,

range  42 2 17  25

Assume that we want to have approximately 10 subintervals. Dividing the range by 
10 and rounding to a convenient unit, we have 25/10  2.5. Thus, the class interval 
width is 2.5.

It is convenient to choose the first interval to be 16.25–18.75, the second to 
be 18.75–21.25, and so on. Note that the smallest measurement, 17, falls in the first 
 interval and that no measurement falls on the endpoint of a class interval. (See 
 Tables 3.5 and 3.6.)

Having determined the class interval, we construct a frequency table for the 
data. The first column labels the classes by number and the second column indi-
cates the class intervals. We then examine the 100 measurements of Table 3.5, 
keeping a tally of the number of measurements falling in each interval. The num-
ber of measurements falling in a given class interval is called the class frequency. 
These data are recorded in the third column of the frequency table. (See Table 3.6.)

The relative frequency of a class is defined as the frequency of the class 
divided by the total number of measurements in the set (total frequency). Thus, 
if we let fi denote the frequency for class i and let n denote the total number of 

class frequency

relative frequency

TABLE 3.6
Frequency table for 

number of attached ticks

Class Class Interval Frequency fi Relative Frequency fi/n

 1 16.25–18.75  2 .02
 2 18.75–21.25  7 .07
 3 21.25–23.75  7 .07
 4 23.75–26.25 14 .14
 5 26.25–28.75 17 .17
 6 28.75–31.25 24 .24
 7 31.25–33.75 11 .11
 8 33.75–36.25 11 .11
 9 36.25–38.75  3 .03
10 38.75–41.25  3 .03
11 41.25–43.75  1 .01

Totals  n  100 1.00
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mea surements, the relative frequency for class i is fi /n. The relative frequencies for 
all the classes are listed in the fourth column of Table 3.6.

The data of Table 3.5 have been organized into a frequency table, which can 
now be used to construct a frequency histogram or a relative frequency histogram. 
To construct a frequency histogram, draw two axes: a horizontal axis labeled with 
the class intervals and a vertical axis labeled with the frequencies. Then construct 
a rectangle over each class interval with a height equal to the number of measure-
ments falling in a given subinterval. The frequency histogram for the data of Table 
3.6 is shown in Figure 3.6(a).

The relative frequency histogram is constructed in much the same way as a 
frequency histogram. In the relative frequency histogram, however, the vertical 
axis is labeled as relative frequency, and a rectangle is constructed over each class 
interval with a height equal to the class relative frequency (the fourth column of 
Table 3.6). The relative frequency histogram for the data of Table 3.6 is shown 
in Figure 3.6(b). Clearly, the two histograms of Figures 3.6(a) and (b) are of the 
same shape and would be identical if the vertical axes were equivalent. We will 
frequently refer to  either one as simply a histogram. 

There are several comments that should be made concerning histograms. 
First, the distinction between bar charts and histograms is based on the distinction 

histogram

FIGURE 3.6(a)
Frequency histogram for 
the tick data of Table 3.6
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FIGURE 3.6(b)
Relative frequency 

histogram for the tick 
data of Table 3.6
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between qualitative and quantitative variables. Values of qualitative variables vary 
in kind but not degree and hence are not measurements. For example, the variable 
political party affiliation can be categorized as Republican, Democrat, or other, 
and although we could label the categories as one, two, and three, these values are 
only codes and have no quantitative interpretation. In contrast, quantitative vari-
ables have actual units of measure. For example, the variable yield (in bushels) per 
acre of corn can assume specific values. Pie charts and bar charts are used to display 
frequency data from qualitative variables; histograms are appropriate for displaying 
frequency data for quantitative variables.

Second, the histogram is the most important graphical technique we will pre-
sent because of the role it plays in statistical inference, a subject we will discuss in 
later chapters. Third, if we had an extremely large set of measurements, and if we 
constructed a histogram using many class intervals, each with a very narrow width, 
the histogram for the set of measurements would be, for all practical purposes, a 
smooth curve. Fourth, the fraction of the total number of measurements in an inter-
val is equal to the fraction of the total area under the histogram over the interval.

For example, suppose we consider those intervals having cows with fewer 
numbers of ticks than the average under the previously used repellent—that 
is, the intervals containing cows having a number of attached ticks less than 34. 
From Table 3.6, we observe that exactly 82 of the 100 cows had fewer than 34 
attached ticks. Thus, the proportion of the total measurements falling in those 
intervals—82/100  .82—is equal to the proportion of the total area under the his-
togram over those intervals.

Fifth, if a single measurement is selected at random from the set of sample  
measurements, the chance, or probability, that the selected measurement lies in a 
particular interval is equal to the fraction of the total number of sample measure-
ments falling in that interval. This same fraction is used to estimate the probability 
that a measurement selected from the population lies in the interval of interest. 
For example, from the sample data of Table 3.5, the chance or probability of select-
ing a cow with less than 34 attached ticks is .82. The value .82 is an approximation 
of the proportion of all cows treated with the new repellant that would have fewer 
than 34 attached ticks after exposure to a population similar to that used in the 
study. In Chapters 5 and 6, we will introduce the process by which we can make a 
statement of our certainty that the new repellant is a significant improvement over 
the old repellant.

Because of the arbitrariness in the choice of number of intervals, starting 
value, and length of intervals, histograms can be made to take on different shapes 
for the same set of data, especially for small data sets. Histograms are most useful 
for describing data sets when the number of data points is fairly large—say, 50 
or more. In Figures 3.7(a)–(d), a set of histograms for the tick data constructed 
using 5, 9, 13, and 18 class intervals illustrates the problems that can be encoun-
tered in  attempting to construct a histogram. These graphs were obtained using the 
Minitab software program.

When the number of data points is relatively small and the number of inter-
vals is large, the histogram fluctuates too much—that is, responds to a very few 
data values; see Figure 3.7(d). This results in a graph that is not a realistic depic-
tion of the histogram for the whole population. When the number of class inter-
vals is too small, most of the patterns or trends in the data are not displayed; see 
Figure 3.7(a). In the set of graphs in Figure 3.7, the histogram with 13 class inter-
vals appears to be the most appropriate graph.

Finally, because we use proportions rather than frequencies in a relative 
 frequency histogram, we can compare two different samples (or populations) by 

probability
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FIGURE 3.7(b)
Relative frequency 

histogram for tick data 
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Relative frequency 
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 examining their relative frequency histograms even if the samples (populations) are 
of different sizes. When describing relative frequency histograms and comparing the 
plots from a number of samples, we examine the overall shape in the histogram. 
Figure 3.8 depicts many of the common shapes for relative frequency histograms.

A histogram with one major peak is called unimodal; see Figures 3.8(b), (c), 
and (d). When the histogram has two major peaks, such as in Figures 3.8(e) and 
(f), we state that the histogram is bimodal. In many instances, bimodal histograms 
are an indication that the sampled data are in fact from two distinct populations. 
Finally, when every interval has essentially the same number of observations, the 
histogram is called a uniform histogram; see Figure 3.8(a).

A histogram is symmetric in shape if the right and left sides have essentially 
the same shape. Thus, Figures 3.8(a), (b), and (e) have symmetric shapes. When 
the right side of the histogram, containing the larger half of the observations in the 
data, extends a greater distance than the left side, the histogram is referred to as 
skewed to the right; see Figure 3.8(c). The histogram is skewed to the left when 
its left side extends a much larger distance than the right side; see Figure 3.8(d). 
We will see later in the text that knowing the shape of the distribution will help us 
choose the appropriate measures to summarize the data (Sections 3.4–3.7) and the 
methods for analyzing the data (Chapter 5 and beyond).

The next graphical technique presented in this section is a display technique 
taken from an area of statistics called exploratory data analysis (EDA). Professor 
John Tukey (1977) has been the leading proponent of this practical philosophy of 
data analysis aimed at exploring and understanding data.

The stem-and-leaf plot is a clever, simple device for constructing a histo-
gramlike picture of a frequency distribution. It allows us to use the information 
contained in a frequency distribution to show the range of scores, where the scores 
are concentrated, the shape of the distribution, whether there are any specific val-
ues or scores not represented, and whether there are any stray or extreme scores. 
The stem-and-leaf plot does not follow the organization principles stated previ-
ously for histograms. We will use the data shown in Table 3.7 to illustrate how to 
construct a stem-and-leaf plot.

The data in Table 3.7 are the maximum ozone readings (in parts per billion 
(ppb)) taken on 80 summer days in a large city. The readings are either two- or 
three-digit numbers. We will use the first digit of the two-digit numbers and the first 
two digits of the three-digit numbers as the stem number (see Figure 3.9) and the 
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(e) Bimodal distribution
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 remaining digits as the leaf number. For example, one of the readings was 85. Thus, 
8 will be recorded as the stem number and 5 as the leaf number. A second maximum 
ozone reading was 111. Thus, 11 will be recorded as the stem number and 1 as the 
leaf number. If our data had been recorded in different units and resulted in, say, 
six-digit numbers such as 104,328, we might use the first two digits as stem numbers, 
use the second two digits as leaf numbers, and ignore the last two digits. This would 
result in some loss of information but would produce a much more useful graph.

For the data on maximum ozone readings, the smallest reading was 60 and 
the largest was 169. Thus, the stem numbers will be 6, 7, 8, . . . , 15, 16. In the same 
way that a class interval determines where a measurement is placed in a frequency 
table, the leading digits (stem of a measurement) determine the row in which a 
measurement is placed in a stem-and-leaf graph. The trailing digits for a measure-
ment are then written in the appropriate row. In this way, each measurement is 
recorded in the stem-and-leaf plot, as in Figure 3.9 for the ozone data. The stem-
and-leaf plot in Figure 3.9 was obtained using Minitab. Note that each of the stems 
is repeated twice, with leaf digits split into two groups: 0 to 4 and 5 to 9.

We can see that each stem defines a class interval and that the limits of each 
interval are the largest and smallest possible scores for the class. The values rep-
resented by each leaf must be between the lower and upper limits of the interval.

Note that a stem-and-leaf plot is a graph that looks much like a histogram 
turned sideways, as in Figure 3.9. The plot can be made a bit more useful by 
ordering the data (leaves) within a row (stem) from lowest to highest as we did in 

TABLE 3.7
Maximum ozone  

readings (ppb)

 60  61  61  64  64  64  64  66  66  68
 68  68  69  71  71  71  71  71  71  72
 72  73  75  75  80  80  80  80  80  80
 82  82  83  85  86  86  87  87  87  89
 91  92  94  94  98  99  99 100 101 103
103 103 108 111 113 113 114 118 119 119
122 122 124 124 124 125 125 131 133 134
136 141 142 143 146 150 152 155 169 169

FIGURE 3.9
Stem-and-leaf plot for 

maximum ozone readings 
(ppb) of Table 3.7
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Data Display

Trade
 322 317 319 323 327 328 325 326 330 334
 337 341 322 318 320 326 332 334 335 336
 335 338 342 348 330 325 329 337 345 350
 351 354 355 357 362 368 348 345 349 355
 362 367 366 370 371 375 380 385 361 354
 357 367 376 381 381 383 384 387 392 396

Figure 3.9. The  advantage of such a graph over the histogram is that it reflects not 
only the frequencies, concentration(s) of scores, and shapes of the distribution but 
also the actual scores. The disadvantage is that for large data sets, the stem-and-
leaf plot can be more unwieldy than the histogram.

1. Split each score or value into two sets of digits. The first or leading set of 
digits is the stem and the second or trailing set of digits is the leaf.

2. List all possible stem digits from lowest to highest.
3. For each score in the mass of data, write the leaf values on the line 

 labeled by the appropriate stem number.
4. If the display looks too cramped and narrow, stretch the display by 

using two lines per stem so that, for example, leaf digits 0, 1, 2, 3, and 4 
are placed on the first line of the stem and leaf digits 5, 6, 7, 8, and 9 are 
placed on the second line.

5. If too many digits are present, such as in a six- or seven-digit score, drop 
the right-most trailing digit(s) to maximize the clarity of the  display.

6. The rules for developing a stem-and-leaf plot are somewhat different 
from the rules governing the establishment of class intervals for the 
 traditional frequency distribution and for a variety of other procedures 
that we will consider in later sections of the text. Class intervals for 
stem-and-leaf plots are, then, in a sense slightly atypical.

Guidelines for 
Constructing Stem-

and-Leaf Plots 

The following data display and stem-and-leaf plot (Figure 3.10) are obtained 
from Minitab. The data consist of the number of employees in the wholesale and 
 retail trade industries in Wisconsin measured each month for a 5-year period.

Note that most of the stems are repeated twice, with the leaf digits split into two 
groups: 0 to 4 and 5 to 9.

The last graphical technique to be presented in this section deals with how 
certain variables change over time. For macroeconomic data such as disposable 
income and microeconomic data such as weekly sales data of one particular prod-
uct at one particular store, plots of data over time are fundamental to business 
management. Similarly, social researchers are often interested in showing how 
variables change over time. They might be interested in changes with time in atti-
tudes toward various racial and ethnic groups, changes in the rate of savings in the 
United States, or changes in crime rates for various cities. A  pictorial method of 
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presenting changes in a variable over time is called a time  series. Figure 3.11 is a 
time series showing the number of homicides, forcible rapes, robberies, and aggra-
vated assaults included in the Uniform Crime Reports of the FBI.

Usually, the time points are labeled chronologically across the horizontal 
axis (abscissa), and the numerical values (frequencies, percentages, rates, etc.) of 
the variable of interest are labeled along the vertical axis (ordinate). Time can be 
measured in days, months, years, or whichever unit is most appropriate. As a rule 
of thumb, a time series should consist of no fewer than four or five time points; 
typically, these time points are equally spaced. Many more time points than this 
are desirable, though, in order to show a more complete picture of changes in a 
variable over time.

How we display the time axis in a time series frequently depends on the time 
intervals at which data are available. For example, the U.S. Census Bureau reports 
average family income in the United States only on a yearly basis. When informa-
tion about a variable of interest is available in different units of time, we must 
 decide which unit or units are most appropriate for the research. In an election 

time series

FIGURE 3.10
Character stem-and-leaf  

display for trade data

Stem-and-leaf of Trade N 60
Leaf Unit 1.0

31 789
32 0223
32 5666789
33 00244
33 556778
34 12
34 55889
35 0144
35 5577
36 122
36 6778
37 01
37 56
38 01134
38 57
39 2
39 6

FIGURE 3.11
Total violent crimes in the 
United States, 1983–2012

Source: Uniform Crime 
Reports.
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year, a political scientist would most likely examine weekly or monthly changes in 
candidate preferences among registered voters. On the other hand, a manufacturer 
of machine-tool equipment might keep track of sales (in dollars and number of 
units) on a monthly, quarterly, and yearly basis. Figure 3.12 shows the quarterly 
sales (in thousands of units) of a machine-tool product over 3 years. Note that from 
this time series it is clear that the company has experienced a gradual but steady 
growth in the number of units over the 3 years.

Time-series plots are useful for examining general trends and seasonal 
or cyclic patterns. For example, the “Money and Investing” section of the Wall 
Street Journal gives the daily workday values for the Dow Jones Industrials Aver-
ages. Figure 3.13 displays the daily Dow Jones Industrial Average for the period 
from mid-December 2013 through mid-June 2014. Exercise 3.58 provides the 
details on how the Dow Jones Industrial Average is computed. The plot reveals 
a sharp decline in values from mid-January to the beginning of February. This 
decline is followed by a steady increase through mid-June 2014. However, there are 
just enough daily decreases in the Dow values to keep investors nervous. In order 
to detect seasonal or cyclical patterns in a time series, there must be daily values 
recorded over a large number of years.

FIGURE 3.12
Quarterly sales 
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FIGURE 3.13
Time-series plot of the 

Dow Jones Average,  
mid-December 2013  

to Mid-June 2014

Source: Wall Street Journal.
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Sometimes it is important to compare trends over time in a variable for 
two or more groups. Figure 3.14 reports the values of two ratios from 1985 to 
2000: the ratio of the median family income of African Americans to the median 
family income of Anglo-Americans and the ratio of the median family income of 
Hispanics to the median family income of Anglo-Americans.

Median family income represents the income amount that divides family 
incomes into two groups—the top half and the bottom half. For example, in 1987, 
the median family income for African Americans was $18,098, meaning that 50% 
of all African American families had incomes above $18,098 and 50% had incomes 
below $18,098. The median, one of several measures of central tendency, is dis-
cussed more fully later in this chapter.

Figure 3.14 shows that the ratio of African American to Anglo-American fam-
ily income and the ratio of Hispanic to Anglo-American family income  remained 
fairly constant from 1985 to 1991. From 1995 to 2000, there was an  increase in both 
ratios and a narrowing of the difference between the ratio of African American 
family income and the ratio of Hispanic family income. We can interpret this trend 
to mean that the income of African American and  Hispanic families has generally 
increased relative to the income of Anglo-American families.

Sometimes information is not available in equal time intervals. For example, 
polling organizations such as Gallup or the National Opinion Research Center do 
not necessarily ask the American public the same questions about their attitudes 
or behavior on a yearly basis. Sometimes there is a time gap of more than 2 years 
before a question is asked again.

When information is not available in equal time intervals, it is important for 
the interval width between time points (the horizontal axis) to reflect this fact. If, 
for example, a social researcher is plotting values of a variable for 1995, 1996, 1997, 
and 2000, the interval width between 1997 and 2000 on the horizontal axis should 
be three times the width of that between the other years. If these  interval widths 
were spaced evenly, the resulting trend line could be seriously misleading. 

Before leaving graphical methods for describing data, there are several gen-
eral guidelines that can be helpful in developing graphs with an impact. These 
guidelines pay attention to the design and presentation techniques and should help 
you make better, more informative graphs.

FIGURE 3.14
Ratio of African 

American and Hispanic 
median family incomes to 
Anglo-American median 

family income.
Source: U.S. Census Bureau.
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1. Before constructing a graph, set your priorities. What messages should 
the viewer get?

2. Choose the type of graph (pie chart, bar graph, histogram, and so on).
3. Pay attention to the title. One of the most important aspects of a graph is 

its title. The title should immediately inform the viewer of the point of the 
graph and draw the eye toward the most important elements of the graph.

4. Fight the urge to use many type sizes, styles, and colors. The indiscrimi-
nate and excessive use of different type sizes, styles, and  colors will 
confuse the viewer. Generally, we recommend using only two typefaces; 
color changes and italics should be used in only one or two places.

5. Convey the tone of your graph by using colors and patterns.  Intense, 
warm colors (yellows, oranges, reds) are more dramatic than the 
blues and purples and help to stimulate enthusiasm by the viewer. 
On the other hand, pastels (particularly grays) convey a conservative, 
businesslike tone. Similarly, simple patterns convey a conservative tone, 
whereas busier patterns stimulate more excitement.

6. Don’t underestimate the effectiveness of a simple, straightforward graph.

General Guidelines 
for Developing 

Successful Graphics

 3.4 Describing Data on a Single Variable: 
Measures of Central tendency

Numerical descriptive measures are commonly used to convey a mental image of 
pictures, objects, and other phenomena. There are two main reasons for this. First, 
graphical descriptive measures are inappropriate for statistical inference because 
it is difficult to describe the similarity of a sample frequency histogram and the 
 corresponding population frequency histogram. The second reason for using 
numerical descriptive measures is one of expediency—we never seem to carry 
the  appropriate graphs or histograms with us and so must resort to our powers of 
verbal communication to convey the appropriate picture. We seek several num-
bers, called numerical descriptive measures, that will create a mental picture of the 
 frequency distribution for a set of measurements.

The two most common numerical descriptive measures are measures of 
 central tendency and measures of variability; that is, we seek to describe the 
center of the distribution of measurements and also how the measurements vary 
about the center of the distribution. We will draw a distinction between numerical 
descriptive measures for a population, called parameters, and numerical descrip-
tive measures for a sample, called statistics. In problems requiring statistical infer-
ence, we will not be able to calculate values for various parameters, but we will be 
able to compute corresponding statistics from the sample and use these quantities 
to  estimate the corresponding population parameters.

In this section, we will consider various measures of central tendency, fol-
lowed in Section 3.5 by a discussion of measures of variability.

The first measure of central tendency we consider is the mode.

The mode of a set of measurements is defined to be the measurement that 
 occurs most often (with the highest frequency).

DEFINITION 3.1

central tendency
variability 

parameters 
statistics

 
 
 
 

mode 
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We illustrate the use and determination of the mode in an example.

eXaMpLe 3.1

A consumer investigator is interested in the differences in the selling prices of a 
new popular compact automobile at various dealers in a 100-mile radius of Hou-
ston, Texas. She asks for a quote from 25 dealers for this car with exactly the same 
options. The selling prices (in 1,000s) are given here.

26.6 25.3 23.8 24.0 27 .5
21.1 25.9 22.6 23.8 25.1
22.6 27 .5 26.8 23.4 27 .5
20.8 20.4 22.4 27 .5 23.7
22.2 23.8 23.2 28.7 27 .5

Determine the modal selling price.

Solution For these data, the price 23.8 occurred three times in the sample, but the 
price 27 .5 occurred five times. Because no other value occurred more than once, 
we would state the data had a modal selling price of $27,500. ■

Identification of the mode for Example 3.1 was quite easy because we were 
able to count the number of times each measurement occurred. When dealing with 
grouped data—data presented in the form of a frequency table—we can define the 
modal interval to be the class interval with the highest frequency. However, because 
we would not know the actual measurements but only how many measurements 
fall into each interval, the mode is taken as the midpoint of the modal interval; it is 
an approximation to the mode of the actual sample measurements. 

The mode is also commonly used as a measure of popularity that reflects 
central tendency or opinion. For example, we might talk about the most preferred 
stock, the most preferred model of washing machine, or the most popular candi-
date. In each case, we would be referring to the mode of the distribution. In Figure 
3.8 of the previous section, frequency histograms (b), (c), and (d) had a single 
mode, with that mode located at the center of the class having the highest fre-
quency. Thus, the modes would be 2.25 for histogram (b), 3 for histogram (c), and 
17 for histogram (d). It should be noted that some distributions have more than 
one mea surement that occurs with the highest frequency. Thus, we might encoun-
ter distributions that are bimodal, trimodal, and so on. In Figure 3.8, histogram (e) 
is essentially bimodal, with nearly equal peaks at y  0.5 and y  5.5.

The second measure of central tendency we consider is the median.

The median of a set of measurements is defined to be the middle value when 
the measurements are arranged from lowest to highest.

DEFINITION 3.2

The median is most often used to measure the midpoint of a large set of 
measurements. For example, we may read about the median wage increase won by 
union members, the median age of persons receiving Social Security benefits, and 
the median weight of cattle prior to slaughter during a given month. Each of these 
situations involves a large set of measurements, and the median would reflect the 

median
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central value of the data—that is, the value that divides the set of measurements 
into two groups, with an equal number of measurements in each group.

However, we may use the definition of median for small sets of measure-
ments by using the following convention: The median for an even number of 
measurements is the average of the two middle values when the measurements 
are arranged from lowest to highest. When there are an odd number of measure-
ments, the median is still the middle value. Thus, whether there are an even or odd 
number of measurements, there are an equal number of measurements above and 
below the median.

eXaMpLe 3.2

After the third-grade classes in a school district received low overall scores on a 
statewide reading test, a supplemental reading program was implemented in order 
to provide extra help to those students who were below expectations with respect 
to their reading proficiency. Six months after implementing the program, the 10 
third-grade classes in the district were reexamined. For each of the 10 schools, 
the percentage of students reading above the statewide standard was determined. 
These data are shown here.

95 86 78 90 62 73 89 92 84 76

Determine the median percentage of the 10 schools.

Solution First, we must arrange the percentages in order of magnitude.

62 73 76 78 84 86 89 90 92 95

Because there are an even number of measurements, the median is the average of 
the two midpoint scores.

median 
84 1 86

2
 85 ■

eXaMpLe 3.3

An experiment was conducted to measure the effectiveness of a new procedure 
for pruning grapes. Each of 13 workers was assigned the task of pruning an acre 
of grapes. The productivity, measured in worker-hours/acre, was recorded for 
each person.

4.4 4.9 4.2 4.4 4.8 4.9 4.8 4.5 4.3 4.8 4.7 4.4 4.2

Determine the mode and median productivity for the group.

Solution First, arrange the measurements in order of magnitude:

4.2 4.2 4.3 4.4 4.4 4.4 4.5 4.7 4.8 4.8 4.8 4.9 4.9

For these data, we have two measurements appearing three times each. Hence, the 
data are bimodal, with modes of 4.4 and 4.8. The median for the odd number of 
measurements is the middle score, 4.5. ■

The median for grouped data is slightly more difficult to compute. Because the 
actual values of the measurements are unknown, we know that the median occurs 
in a particular class interval, but we do not know where to locate the median within 

grouped data median
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the interval. If we assume that the measurements are spread evenly throughout the 
interval, we get the following result. Let

 L  lower class limit of the interval that contains the median

 n  total frequency

 cfb   the sum of frequencies (cumulative frequency) for all classes be-
fore the median class

 fm  frequency of the class interval containing the median

 w  interval width

Then, for grouped data, 

median  L 1
w
fm

1.5n 2 cfb 2

The next example illustrates how to find the median for grouped data.

eXaMpLe 3.4

Table 3.8 is a repeat of the frequency table (Table 3.6) with some additional col-
umns for the tick data of Table 3.5. Compute the median number of ticks per cow 
for these data.

TABLE 3.8
Frequency table for 

number of attached ticks, 
Table 3.5

Class Class Interval fi Cumulative fi fi /n Cumulative fi /n

 1 16.25–18.75  2   2 .02  .02
 2 18.75–21.25  7   9 .07  .09
 3 21.25–23.75  7  16 .07  .16
 4 23.75–26.25 14  30 .14  .30
 5 26.25–28.75 17  47 .17  .47
 6 28.75–31.25 24  71 .24  .71
 7 31.25–33.75 11  82 .11  .82
 8 33.75–36.25 11  93 .11  .93
 9 36.25–38.75  3  96 .03  .96
10 38.75–41.25  3  99 .03  .99
11 41.25–43.75  1 100 .01 1.00

Solution Let the cumulative relative frequency for class j equal the sum of the 
relative frequencies for class 1 through class j. To determine the interval that con-
tains the median, we must find the first interval for which the cumulative relative 
frequency exceeds .50. This interval is the one containing the median. For these 
data, the interval from 28.75 to 31.25 is the first interval for which the cumulative 
relative frequency exceeds .50, as shown in Table 3.8, Class 6. So this interval con-
tains the median. Then

 L  28.75 fm  24

 n  100 w  2.5

 cfb  47

and

median  L 1
w
fm

 1.5n 2 cfb 2  28.75 1
2.5
24

 150 2 47 2  29.06 ■
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Note that the value of the median from the ungrouped data of Table 3.5 is 29. 
Thus, the approximated value and the value from the ungrouped data are nearly 
equal. The difference between the two values for the sample median decreases as 
the number of class intervals increases. 

The third, and last, measure of central tendency we will discuss in this text is 
the arithmetic mean, known simply as the mean.

The arithmetic mean, or mean, of a set of measurements is defined to be the 
sum of the measurements divided by the total number of measurements.

DEFINITION 3.3

When people talk about an “average,’’ they quite often are referring to the mean. 
It is the balancing point of the data set. Because of the important role that the 
mean will play in statistical inference in later chapters, we give special symbols to 
the population mean and the sample mean. The population mean is denoted by the 
Greek letter m (read “mu’’), and the sample mean is denoted by the symbol y (read 
“y-bar’’). As indicated in Chapter 1, a population of measurements is the com-
plete set of measurements of interest to us; a sample of measurements is a subset 
of measurements selected from the population of interest. If we let y1, y2, . . . , yn 
denote the measurements observed in a sample of size n, then the sample mean y 
can be  written as

y 
g i   

yi

n

where the symbol appearing in the numerator,g i yi, is the notation used to desig-
nate a sum of n measurements, yi :

a
i

yi  y1 1 y2 1 c1 yn

The corresponding population mean is m.
In most situations, we will not know the population mean; the sample will 

be used to make inferences about the corresponding unknown population mean. 
For example, the accounting department of a large department store chain is 
conducting an examination of its overdue accounts. The store has thousands of 
such accounts, which would yield a population of overdue values having a mean 
value, m. The value of m could be determined only by conducting a large-scale audit 
that would take several days to complete. The accounting department monitors 
the overdue accounts on a daily basis by taking a random sample of n overdue 
accounts and computing the sample mean, y. The sample mean, y, is then used as 
an estimate of the mean value, m, of all overdue accounts for that day. The accu-
racy of the estimate and approaches for determining the appropriate sample size 
will be discussed in Chapter 5.

eXaMpLe 3.5

A sample of n  15 overdue accounts in a large department store yields the follow-
ing amounts due:

$55.20 $ 4.88 $271.95
18.06 180.29 365.29
28.16 399.11 807 .80
44.14 97 .47 9.98
61.61 56.89 82.73

mean

m
y
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a. Determine the mean amount due for the 15 accounts sampled.
b. If there are a total of 150 overdue accounts, use the sample mean to 

 predict the total amount overdue for all 150 accounts.

Solution

a. The sample mean is computed as follows:

y 
g i yi

15


55.20 1 18.06 1 c1 82.73
15


2,483.56

15
 $165.57

b. From part (a), we found that the 15 accounts sampled averaged $165.57 
overdue. Using this information, we would predict, or estimate, the total 
amount overdue for the 150 accounts to be 150(165.57)  $24,835.50. ■

The sample mean formula for grouped data is only slightly more compli-
cated than the formula just presented for ungrouped data. In certain situations, the 
original data will be presented in a frequency table or a histogram. Thus, we will 
not know the individual sample measurements, only the interval to which a meas-
urement is  assigned. In this type of situation, the formula for the mean from the 
grouped data will be an approximation to the actual sample mean. Hence, when 
the sample measurements are known, the formula for ungrouped data should be 
used. If there are k class intervals and

yi  midpoint of the ith class interval

fi  frequency associated with the ith class interval

n  total number of measurements
then

y >  
g i  

fi  
yi

n
where > denotes “is approximately equal to.’’

eXaMpLe 3.6

The data of Example 3.4 are reproduced in Table 3.9, along with three additional 
columns: yi, fiyi, fi 1yi 2 y 2 2. These values will be needed in order to compute 
 approximations to the sample mean and the sample standard deviation. Using the 
information in Table 3.9, compute an approximation to the sample mean for this 
set of grouped data.

TABLE 3.9
Class information for 

number of attached ticks

Class Class Interval fi yi fiyi fi(yi 2 y)2

 1 16.25–18.75   2 17 .5  35.0 258.781
 2 18.75–21.25   7 20.0 140.0 551.359
 3 21.25–23.75   7 22.5 157 .5 284.484
 4 23.75–26.25  14 25.0 350.0 210.219
 5 26.25–28.75  17 27 .5 467 .5 32.141
 6 28.75–31.25  24 30.0 720.0 30.375
 7 31.25–33.75  11 32.5 357 .5 144.547
 8 33.75–36.25  11 35.0 385.0 412.672
 9 36.25–38.75   3 37 .5 112.5 223.172
10 38.75–41.25   3 40.0 120.0 371.297
11 41.25–43.75   1 42.5  42.5 185.641

 Totals 100  2,887 .5 2,704.688
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Solution After adding the entries in the fi  
yi column and substituting into the 

formula, we determine that an approximation to the sample mean is

y >
g 11

i1  fi  
yi

100


2,887.5
100

 28.875

Using the 100 values, from Table 3.5, the actual value of the sample mean is

y 
g 100

i1  yi

100


2,881
100

 28.81 ■

Example 3.6 demonstrates that the approximation from the grouped data 
formula can be very close to the actual value. When the number of class intervals 
is relatively large, the approximation from the grouped data formula will be very 
close to the actual sample mean.

The mean is a useful measure of the central value of a set of measurements, 
but it is subject to distortion due to the presence of one or more extreme values 
in the set. In these situations, the extreme values (called outliers) pull the mean in 
the direction of the outliers to find the balancing point, thus distorting the mean as 
a measure of the central value. A variation of the mean, called a trimmed mean, 
drops the highest and lowest extreme values and averages the rest. For  example, a 
5% trimmed mean drops the highest 5% and the lowest 5% of the measurements 
and averages the rest. Similarly, a 10% trimmed mean drops the highest and the 
lowest 10% of the measurements and averages the rest. In Example 3.5, a 10% 
trimmed mean would drop the smallest and largest account, resulting in a mean of

y 
2,483.56 2 4.88 2 807.8

13
 $128.53

By trimming the data, we are able to reduce the impact of very large (or small) 
values on the mean and thus get a more reliable measure of the central value of the 
set. This will be particularly important when the sample mean is used to predict the 
corresponding population central value.

Note that in a limiting sense the median is a 50% trimmed mean. Thus, the 
median is often used in place of the mean when there are extreme values in the 
data set. In Example 3.5, the value $807 .80 is considerably larger than the other 
values in the data set. This results in 10 of the 15 accounts having values less than 
the mean and only 5 having values larger than the mean. The median value for the 
15 accounts is $61.61. There are 7 accounts less than the median and 7 accounts 
greater than the median. Thus, in selecting a typical overdue account, the median 
is a more appropriate value than the mean. However, if we want to estimate the 
total amount overdue in all 150 accounts, we would want to use the mean and not 
the median. When estimating the sum of all measurements in a population, we 
would not want to exclude the extremes in the sample. Suppose a sample contains 
a few extremely large values. If the extremes are trimmed, then the population sum 
will be grossly underestimated using the sample trimmed mean or sample  median 
in place of the sample mean.

In this section, we discussed the mode, median, mean, and trimmed mean. 
How are these measures of central tendency related for a given set of measure-
ments? The answer depends on the skewness of the data. If the distribution is 
mound-shaped and symmetrical about a single peak, the mode (Mo), median (Md), 
mean (m), and trimmed mean (TM) will all be the same. This is shown using a 

outliers

trimmed mean

skewness
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smooth curve and population quantities in Figure 3.15(a). If the distribution is 
skewed, having a long tail in one direction and a single peak, the mean is pulled 
in the direction of the tail; the median falls between the mode and the mean; and 
 depending on the degree of trimming, the trimmed mean usually falls between 
the median and the mean. Figures 3.15(b) and (c) illustrate this for distributions 
skewed to the left and to the right.

The important thing to remember is that we are not restricted to using only 
one measure of central tendency. For some data sets, it will be necessary to use 
more than one of these measures to provide an accurate descriptive summary of 
central tendency for the data.

FIGURE 3.15
Relation among the 

mean m, the trimmed 
mean TM, the median 
Md, and the mode Mo

Mode 

1. It is the most frequent or probable measurement in the data set.
2. There can be more than one mode for a data set.
3. It is not influenced by extreme measurements.
4. Modes of subsets cannot be combined to determine the mode 

of the complete data set.
5. For grouped data, its value can change depending on the  categories 

used.
6. It is applicable for both qualitative and quantitative data.

Median

1. It is the central value; 50% of the measurements lie above it and 
50% fall below it.

2. There is only one median for a data set.

Major Characteristics 
of Each Measure of  

Central Tendency 

Mo

Md

TM

(a) A mound-shaped distribution

MoMd

TM

(b) A distribution skewed to the left

Mo Md

TM

(c) A distribution skewed to the right
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Measures of central tendency do not provide a complete mental picture of 
the frequency distribution for a set of measurements. In addition to determining 
the center of the distribution, we must have some measure of the spread of the 
data. In the next section, we discuss measures of variability, or dispersion.

 3.5 Describing Data on a Single Variable:  
Measures of Variability

It is not sufficient to describe a data set using only measures of central tendency, 
such as the mean or the median. For example, suppose we are monitoring the pro-
duction of plastic sheets that have a nominal thickness of 3 mm. If we randomly 
 select 100 sheets from the daily output of the plant and find that the average thick-
ness of the 100 sheets is 3 mm, does this indicate that all 100 sheets have the desired 
thickness of 3 mm? We may have a situation in which 50 sheets have a thickness of 
1 mm and the remaining 50 sheets have a thickness of 5 mm. This would result in 
an average thickness of 3 mm, but none of the 100 sheets would have a thickness 
close to the specified 3 mm. Thus, we need to determine how  dispersed the sheet 
thicknesses are about the mean of 3 mm.

Graphically, we can observe the need for some measure of variability by exam-
ining the relative frequency histograms of Figure 3.16. All the histograms have the 
same mean, but each has a different spread, or variability, about the mean. For illus-
tration, we have shown the histograms as smooth curves. Suppose the three histo-
grams represent the amount of PCB (ppb) found in a large number of 1-liter samples 
taken from three lakes that are close to chemical plants. The average amount of 
PCB, m, in a 1-liter sample is the same for all three lakes. However, the variabilities 
in the PCB quantities are considerably different. Thus, the lake with the PCB quan-
tities depicted in histogram (a) would have fewer samples containing very small or 
large quantities of PCB as compared to the lake with PCB values depicted in histo-
gram (c). Knowing only the mean PCB quantity in the three lakes would mislead the 
investigator concerning the level of PCB present in all three lakes.

The simplest but least useful measure of data variation is the range, which we 
alluded to in Section 3.2. We now present its definition.

variability

range

3. It is not influenced by extreme measurements.
4. Medians of subsets cannot be combined to determine the median 

of the complete data set.
5. For grouped data, its value is rather stable even when the data are 

organized into different categories.
6. It is applicable to quantitative data only.

Mean

1. It is the arithmetic average of the measurements in a data set.
2. There is only one mean for a data set.
3. Its value is influenced by extreme measurements; trimming can 

help to reduce the degree of influence.
4. Means of subsets can be combined to determine the mean of the 

complete data set.
5. It is applicable to quantitative data only.
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The range of a set of measurements is defined to be the difference between 
the largest and the smallest measurements of the set.

DEFINITION 3.4

eXaMpLe 3.7

Determine the range of the 15 overdue accounts of Example 3.5.

Solution The smallest measurement is $4.88 and the largest is $807 .80. Hence, the 
range is

$807 .80 2 $4.88  $802.92 ■

For grouped data, because we do not know the individual measurements, the range 
is taken to be the difference between the upper limit of the last interval and the 
lower limit of the first interval.

Although the range is easy to compute, it is sensitive to outliers because it 
 depends on the most extreme values. It does not give much information about the 
pattern of variability. Referring to the situation described in Example 3.5, if in the cur-
rent budget period the 15 overdue accounts consisted of 10 accounts having a value of 
$4.88, 3 accounts of $807 .80, and 2 accounts of $5.68, then the mean value would be 
$165.57 and the range would be $802.92. The mean and range would be identical to 
the mean and range calculated for the data of Example 3.5. However, the data in the 
current budget period are more spread out about the mean than the data in the earlier 
budget period. What we seek is a measure of variability that discriminates between 
data sets having different degrees of concentration of the data about the mean.

A second measure of variability involves the use of percentiles.

The pth percentile of a set of n measurements arranged in order of magnitude 
is that value that has at most p% of the measurements below it and at most 
(100 2 p)% above it.

DEFINITION 3.5

grouped data

percentiles

FIGURE 3.16
Relative frequency 

histograms with different 
variabilities but the 

same mean

y

(a) Relative frequency

(c) Relative frequency

(b) Relative frequency

y

y
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For example, Figure 3.17 illustrates the 60th percentile of a set of measurements. 
Percentiles are frequently used to describe the results of achievement test scores 
and the ranking of a person in comparison to the rest of the people taking an 
examination. Specific percentiles of interest are the 25th, 50th, and 75th percen-
tiles, often called the lower quartile, the middle quartile (median), and the upper 
quartile, respectively (see Figure 3.18).

The computation of percentiles is accomplished as follows: Each data value 
corresponds to a percentile for the percentage of the data values that are less than 
or equal to it. Let y(1), y(2), . . . , y(n) denote the ordered observations for a data set; 
that is,

y112 # y122 # c# y1n2

The ith ordered observation, y(i), corresponds to the 100(i 2 .5)/n percentile. We 
use this formula in place of assigning the percentile 100i/n so that we avoid assign-
ing the 100th percentile to y(n), which would imply that the largest possible data 
value in the population was observed in the data set, an unlikely happening. For 
example, a study of serum total cholesterol (mg/l) levels recorded the levels given 
in Table 3.10 for 20 adult patients. Thus, each ordered observation is a data per-
centile corresponding to a multiple of the fraction 100(i 2 .5)/n  100(2i 2 1)/2n  
100(2i 2 1)/40.

The 22.5th percentile is 152 (mg/l). Thus, 22.5% of persons in the study have 
a serum cholesterol less than or equal to 152. Also, the median of the above data 
set, which is the 50th percentile, is halfway between 192 and 201; that is, median  
(192 1 201)/2  196.5. Thus, approximately half of the persons in the study have 
a serum cholesterol level less than 196.5 and half have a level greater than 196.5.

When dealing with large data sets, the percentiles are generalized to quan-
tiles, where a quantile, denoted Q(u), is a number that divides a sample of n data 
values into two groups so that the specified fraction u of the data values is less 
than or equal to the value of the quantile, Q(u). Plots of the quantiles Q(u) versus 
the data fraction u provide a method of obtaining estimated quantiles for the 

FIGURE 3.17
The 60th percentile of a 

set of measurements

y

Relative frequency 60%
below

40% above

60th percentile

FIGURE 3.18
Quartiles of a distribution

y
Median

25%

25% 25%

25%

IQR

Lower quartile    Upper quartile

Relative frequency
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popu lation from which the data were selected. We can obtain a quantile plot using 
the following steps:

1. Place a scale on the horizontal axis of a graph covering the interval 
(0, 1).

2. Place a scale on the vertical axis covering the range of the observed 
data, y1 to yn.

3. Plot y(i) versus ui  (i 2 .5)/n  (2i 2 1)/2n, for i  1, . . . , n.

Using the Minitab software, we obtain the plot shown in Figure 3.19 for the cho-
lesterol data. Note that, with Minitab, the vertical axis is labeled Q(u) rather than 

Observation ( j) Cholesterol (mg/l) Percentile

  1 133   2.5
  2 137   7 .5
  3 148 12.5
  4 149 17 .5
  5 152 22.5
  6 167 27 .5
  7 174 32.5
  8 179 37 .5
  9 189 42.5
10 192 47 .5
11 201 52.5
12 209 57 .5
13 210 62.5
14 211 67 .5
15 218 72.5
16 238 77 .5
17 245 82.5
18 248 87 .5
19 253 92.5
20 257 97 .5

TABLE 3.10
Serum cholesterol levels

FIGURE 3.19
Quantile plot of  
cholesterol data
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y(i). We plot y(i) versus u to obtain a quantile plot. Specific quantiles can be read 
from the plot.

We can obtain the quantile, Q(u), for any value of u as follows. First, place 
a smooth curve through the plotted points in the quantile plot, and then read the 
value off the graph corresponding to the desired value of u.

To illustrate the calculations, suppose we want to determine the 80th per-
centile for the cholesterol data—that is, the cholesterol level such that 80% of the 
persons in the population have a cholesterol level less than this value, Q(.80).

Referring to Figure 3.19, locate the point u  .8 on the horizontal axis and 
draw a perpendicular line up to the quantile plot and then a horizontal line over 
to the vertical axis. The point where this line touches the vertical axis is our esti-
mate of the 80th quantile. (See Figure 3.20.) Roughly 80% of the population has 
a  cholesterol level less than 243. A slightly different definition of the quartiles is 
given in Section 3.6.

When the data are grouped, the following formula can be used to approxi-
mate the percentiles for the original data. Let

 P  percentile of interest
 L   lower limit of the class interval that includes the percentile of 

interest
 n  total frequency
 cfb   cumulative frequency for all class intervals before the percentile 

class
 fp   frequency of the class interval that includes the percentile of 

interest
 w  interval width

Then, for example, the 65th percentile for a set of grouped data would be com-
puted using the formula

P  L 1
w
fp

 1.65n 2 cfb 2

To determine L, fp, and cfb, begin with the lowest interval and find the first interval 
for which the cumulative relative frequency exceeds .65. This interval would 
 con tain the 65th percentile.

FIGURE 3.20
80th quantile of  
cholesterol data
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eXaMpLe 3.8

Refer to the tick data of Table 3.8. Compute the 90th percentile.

Solution Because the eighth interval is the first interval for which the cumulative 
relative frequency exceeds .90, we have

 L  33.75

 n  100

 cfb  82

 f90  11

 w  2.5

Thus, the 90th percentile is

P90  33.75 1
2.5
11

 C .9 1100 2 2 82D  35.57

This means that 90% of the cows have 35 or fewer attached ticks and 10% of the 
cows have 36 or more attached ticks. ■

The second measure of variability, the interquartile range, is now defined.

The interquartile range (IQR) of a set of measurements is defined to be the 
difference between the upper and lower quartiles; that is,

    IQR  75th percentile 2 25th percentile

DEFINITION 3.6

The IQR is displayed in Figure 3.18. The interquartile range, although more 
sensitive to data pileup about the midpoint than is the range, is still not sufficient 
for our purposes. In fact, the IQR can be very misleading when the data set is 
highly concentrated about the median. For example, suppose we have a sample 
consisting of 10 data values:

20, 50, 50, 50, 50, 50, 50, 50, 50, 80

The mean, median, lower quartile, and upper quartile would all equal 50. Thus, IQR 
equals 50 2 50  0. This is very misleading because a measure of variability equal 
to 0 should indicate that the data consist of n identical values, which is not the case 
in our example. The IQR ignores the extremes in the data set completely. In fact, 
the IQR measures only the distance needed to cover the middle 50% of the data 
values and hence totally ignores the spread in the lower and upper 25% of the data. 
In summary, the IQR does not provide a lot of useful information about the vari-
ability of a single set of measurements, but it can be quite useful when  comparing the 
variabilities of two or more data sets. This is especially true when the data sets have 
some skewness. The IQR will be discussed further in connection with the  boxplot 
(Section 3.6).

In most data sets, we would typically need a minimum of five summary values 
to provide a minimal description of the data set: smallest value, y(1); lower quartile, 
Q(.25); median; upper quartile, Q(.75); and largest value, y(n). When the data set 
has a unimodal, bell-shaped, and symmetric relative frequency histogram, just the 

interquartile range
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sample mean and a measure of variability, the sample variance, can represent the 
data set. We will now develop the sample variance.

We seek now a sensitive measure of variability, not only for comparing the 
variabilities of two sets of measurements but also for interpreting the variability of 
a single set of measurements. To do this, we work with the deviation yi 2 y of a 
measurement yi from the mean y of the set of measurements.

To illustrate, suppose we have five sample measurements y1  68, y2  67, 
y3  66, y4  63, and y5  61, which represent the percentages of registered voters 
in five cities who exercised their right to vote at least once during the past year. 
These measurements are shown in the dot diagram of Figure 3.21. Each measure-
ment is  located by a dot above the horizontal axis of the diagram. We use the 
sample mean

y 
g i  

yi

n


325
5

 65

to locate the center of the set, and we construct horizontal lines in Figure 3.21 
to represent the deviations of the sample measurements from their mean. The 
 deviations of the measurements are computed by using the formula yi 2 y. The 
five measurements and their deviations are shown in Figure 3.21.

A data set with very little variability would have most of the measurements 
located near the center of the distribution. Deviations from the mean for a more 
variable set of measurements would be relatively large.

Many different measures of variability can be constructed by using the devia-
tion, yi 2 y. A first thought is to use the mean deviation, but this will always equal 
zero, as it does for our example. A second possibility is to ignore the minus signs 
and compute the average of the absolute values. However, a more easily inter-
preted function of the deviations involves the sum of the squared deviations of the 
measurements from their mean. This measure is called the variance.

The variance of a set of n measurements y1, y2, . . . , yn with mean y is the sum 
of the squared deviations divided by n 2 1:

    
a

i

1yi 2 y 2 2

n 2 1

DEFINITION 3.7

As with the sample and population means, we have special symbols to 
denote the sample and population variances. The symbol s2 represents the sample 
variance, and the corresponding population variance is denoted by the symbol s2.

deviation

variance

s2

s2

FIGURE 3.21
Dot diagram of the  

percentages of registered  
voters in five cities
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The definition for the variance of a set of measurements depends on whether 
the data are regarded as a sample or population of measurements. The definition 
we have given here assumes we are working with the sample because the popula-
tion measurements usually are not available. Many statisticians define the sample 
variance to be the average of the squared deviations, g 1y 2 y 2 2 /n. However, the 
use of (n 2 1) as the denominator of s2 is not arbitrary. This definition of the sam-
ple variance makes it an unbiased estimator of the population variance s2. This 
means roughly that if we were to draw a very large number of samples, each of size 
n, from the population of interest and if we were to compute s2 for each sample, the 
average sample variance would equal the population variance s2. Had we divided 
by n in the definition of the sample variance s2, the average sample variance com-
puted from a large number of samples would be less than the population variance; 
hence, s2 would tend to underestimate s2.

Another useful measure of variability, the standard deviation, involves the 
square root of the variance. One reason for defining the standard deviation is that 
it yields a measure of variability having the same units of measurement as the 
original data, whereas the units for variance are the square of the measurement 
units.

The standard deviation of a set of measurements is defined to be the positive 
square root of the variance.

DEFINITION 3.8

We then have s denoting the sample standard deviation and s denoting the cor-
responding population standard deviation.

eXaMpLe 3.9

The time between an electric light stimulus and a bar press to avoid a shock was 
noted for each of five conditioned rats. Use the given data to compute the sample 
variance and standard deviation.

Shock avoidance times (seconds): 5, 4, 3, 1, 3

Solution The deviations and the squared deviations are shown in Table 3.11. The 
sample mean y is 3.2.

 yi yi 2 y (yi 2 y)2

 5 1.8 3.24
 4 .8 .64
 3 2.2 .04
 1 22.2 4.84
 3 2.2 .04

Totals 16 0 8.80

Using the total of the squared deviations column, we find the sample variance to be

s2 
g i 1yi 2 y 2 2

n 2 1


8.80
4

 2.2 ■

standard deviation

s
s

TABLE 3.11
Shock avoidance data
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We can make a simple modification of our formula for the sample variance 
to approximate the sample variance if only grouped data are available. Recall that 
in approximating the sample mean for grouped data, we let yi and fi denote the 
 midpoint and frequency, respectively, for the ith class interval. With this notation, 
the sample variance for grouped data is s2  g i  

fi 1yi 2 y 2 2 / 1n 2 1 2 . The sample 
standard deviation is Ës2.

eXaMpLe 3.10

Refer to the tick data from Table 3.9 of Example 3.6. Calculate the sample vari-
ance and standard deviation for these data.

Solution From Table 3.9, the sum of the fi 1yi 2 y 2 2 calculations is 2,704.688. Using 
this value, we can approximate s2 and s.

s2 >
1

n 2 1
 g i  

fi 1yi 2 y 2 2 
1
99

12,704.688 2  27.32008

s > Ë27.32008  5.227

If we compute s from the original 100 data values, the value of s (using Minitab) is 
computed to be 5.212. The values of s computed from the original data and from 
the grouped data are very close. However, when the frequency table has a small 
number of classes, the approximation of s from the frequency table values will not 
generally be as close as in this example. ■

A problem arises with using the standard deviation as a measure of spread 
in a data set containing a few extreme values. This occurs because the deviations 
of data values about the mean are squared, resulting in more weight given to the 
extreme data values. Also, the variance uses the sample/population mean as the 
central value about which deviations are measured. If a data set contains outliers, 
a few values that are particularly far away from the mean, either very small or very 
large, the mean and standard deviation can be overly inflated and hence do not 
properly represent the center or the spread in the data set. Previously, the median 
was used in place of the mean to represent the center of the data set when the data 
set contains outliers. In a similar fashion, an alternative to the standard deviation, 
the median absolute deviation (MAD) will be defined.

The median absolute deviation of a set of n measurements y1, y2, . . . , yn with 
median y| is the median of the absolute deviations of the n measurements 
about the median:

MAD  median { 0y1 2 y| 0 , |y2 2 y||, . . . , |yn 2 y||}/.6745}

DEFINITION 3.9

eXaMpLe 3.11

Refer to the time between electric light stimulus and a bar press in Example 3.9, 
and suppose there was a sixth rat in the experiment who had an extremely high 
tolerance to the shock. This rat had a shock avoidance time of 71 seconds. Compute 
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the value of the sample standard deviation and MAD for the shock avoidance 
times for the six values.

Shock avoidance times (seconds): 5, 4, 3, 1, 3, 71

To observe the impact of the extreme value, compare the values of the mean, 
median, standard deviation, and MAD for the five original shock values to their 
corresponding values in the new data set.

Solution The deviations, squared deviations, and absolute deviations are given 
in Table 3.12. The sample mean and median of the six values are, respectively, 
y  87

6  14.5 and y|  3 1 4
2  3.5

 yi yi 2 14.5 (yi 2 14.5)2 yi 2 3.5 | yi 2 3.5|

 5 29.5 90.25 1.5 1.5
 4 210.5 110.25 0.5 0.5
 3 211.5 132.25 20.5 0.5
 1 213.5 182.25 22.5 2.5
 3 211.5 132.25 20.5 0.5
 71 56.5 3,192.25 67 .5 67 .5

Total 87 0 3,839.50 66.0 73.0

The mean of the six shock times is 14.5 seconds, which is larger than all but one of 
the six times. The median shock time is 3.5, yielding three shock times less than the 
median and three shock times greater than the median. Thus, the median is more 
representative of the center of the data set than is the mean when outliers are pre-
sent in the data set. The standard deviation is given by

s  Å
g 6

i1 1yi 2 14.5 2 2

6 2 1
 Å

3,839.5
5

 27.71

MAD is computed as the median of the six absolute deviations about the median 
divided by 0.6745.

First, compute the median of 0.5, 0.5, 0.5, 1.5, 2.5, and 67 .5, which is (0.5 1 1.5)/2  1.0.

Next, divide the median absolute deviation, 1.0, by 0.6745, yielding MAD  1.0 
/.6745  1.48.

The value of the median and MAD from the five shock times in Example 3.9 are 
3 and 1.48 compared to 3.5 and 1.48 for the six shock times in the current data set. 
Thus, the outlier shock time 71 does not have a major impact on the median and 
MAD as measures of center and spread about the center.

However, the single large shock time greatly inflated the mean and standard devia-
tion, raising the mean from 3.2 to 14.5 seconds and the standard deviation from 
1.48 to 27 .71 seconds. ■

You may wonder why the median of the absolute deviations is divided by 
the value 0.6745 in Definition 3.9. In a population having a normal distribution 
with standard deviation s, the expected value of the absolute deviation about 
the median is 0.6745s. By dividing the median absolute deviation by 0.6745, the 

TABLE 3.12
Shock avoidance data

Source: Department of 
Justice, Crime Reports and 

the United States, 2000.
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expected value of MAD in a population having a normal distribution is equal to s.  
Thus, the values computed for MAD and the sample standard deviation are also 
the expected values for data randomly selected from populations that have a 
normal distribution.

We have now discussed several measures of variability, each of which can 
be used to compare the variabilities of two or more sets of measurements. The 
standard deviation is particularly appealing for two reasons: (1) We can compare 
the variabilities of two or more sets of data using the standard deviation, and (2) 
we can also use the results of the rule that follows to interpret the standard devia-
tion of a single set of measurements. This rule applies to data sets with roughly a 
“mound-shaped’’ histogram—that is, a histogram that has a single peak, is sym-
metrical, and tapers off gradually in the tails. Because so many data sets can be 
classified as mound-shaped, the rule has wide applicability. For this reason, it is 
called the Empirical Rule.

Given a set of n measurements possessing a mound-shaped histogram, then

the interval y 6 s contains approximately 68% of the measurements 
the interval y 6 2s contains approximately 95% of the measurements 
the interval y 6 3s contains approximately 99.7% of the measurements.

eMpIrICaL ruLe

eXaMpLe 3.12

The yearly report from a particular stockyard gives the average daily wholesale 
price per pound for steers as $.61, with a standard deviation of $.07 . What conclu-
sions can we reach about the daily steer prices for the stockyard? Because the 
original daily price data are not available, we are not able to provide much further 
information about the daily steer prices. However, from past experience, it is 
known that the daily price measurements have a mound-shaped relative frequency 
histogram. Applying the Empirical Rule, what conclusions can we reach about the 
distribution of daily steer prices?

Solution Applying the Empirical Rule, the interval

.61 6 .07  or  $.54 to $.68

contains approximately 68% of the measurements. The interval

.61 6 .14  or  $.47 to $.75

contains approximately 95% of the measurements. The interval

.61 6 .21  or  $.40 to $.82

contains approximately 99.7% of the measurements. ■

In English, approximately two-thirds of the steers sold for between $.54 and 
$.68 per pound, and 95% sold for between $.47 and $.75 per pound, with minimum 
and maximum prices being approximately $.40 and $.82.

To increase our confidence in the Empirical Rule, let us see how well it 
describes the five frequency distributions of Figure 3.22. We calculated the mean 
and standard deviation for each of the five data sets (not given), and these are 
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shown next to each frequency distribution. Figure 3.22(a) shows the frequency 
distribution for measurements made on a variable that can take values y  0, 1, 
2, . . . , 10. The mean and standard deviation y  5.50 and s  1.49 for this sym-
metric, mound-shaped distribution were used to calculate the interval y 6 2s, 
which is marked below the horizontal axis of the graph. We found 94% of the 
measurements falling in this interval—that is, lying within two standard deviations 
of the mean. Note that this percentage is very close to the 95% specified in the 
Empirical Rule. We also calculated the percentage of measurements lying within 
one standard deviation of the mean. We found this percentage to be 60%, a figure 
that is not too far from the 68% specified by the Empirical Rule. Consequently, 
we think the Empirical Rule provides an adequate description for Figure 3.22(a).

Figure 3.22(b) shows another mound-shaped frequency distribution but one 
that is less peaked than the distribution of Figure 3.22(a). The mean and standard 
deviation for this distribution, shown to the right of the figure, are 5.50 and 2.07, 
respectively. The percentages of measurements lying within one and two stand-
ard deviations of the mean are 64% and 96%, respectively. Once again, these 
percentages agree very well with the Empirical Rule.

FIGURE 3.22  A demonstration of the utility of the Empirical Rule
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Now let us look at three other distributions. The distribution in Figure 3.22(c) 
is perfectly flat, whereas the distributions of Figures 3.22(d) and (e) are nonsym-
metric and skewed to the right. The percentages of measurements that lie within 
two standard deviations of the mean are 100%, 96%, and 95%, respectively, for 
these three distributions. All these percentages are reasonably close to the 95% 
specified by the Empirical Rule. The percentages that lie within one standard devi-
ation of the mean (60%, 75%, and 87%, respectively) show some disagreement 
with the 68% of the Empirical Rule.

To summarize, you can see that the Empirical Rule accurately forecasts the 
percentage of measurements falling within two standard deviations of the mean 
for all five distributions of Figure 3.22, even for the distributions that are flat, as in 
 Figure 3.22(c), or highly skewed to the right, as in Figure 3.22(e). The Empirical 
Rule is less accurate in forecasting the percentage within one standard deviation of 
the mean, but the forecast, 68%, compares reasonably well for the three distribu-
tions that might be called mound-shaped, Figures 3.22(a), (b), and (d).

The results of the Empirical Rule enable us to obtain a quick approximation 
to the sample standard deviation s. The Empirical Rule states that approximately 
95% of the measurements lie in the interval y 6 2s. The length of this interval 
is, therefore, 4s. Because the range of the measurements is approximately 4s, we 
obtain an approximate value for s by dividing the range by 4:

approximate value of s 
range

4

Some people might wonder why we did not equate the range to 6s because 
the interval y 6 3s should contain almost all the measurements. This procedure 
would yield an approximate value for s that is smaller than the one obtained by the 
preceding procedure. If we are going to make an error (as we are bound to do with 
any approximation), it is better to overestimate the sample standard deviation so 
that we are not led to believe there is less variability than may be the case.

eXaMpLe 3.13

The Texas legislature planned on expanding the items on which the state sales tax 
was imposed. In particular, groceries were previously exempt from sales tax. A con-
sumer advocate argued that lower-income families would be impacted because they 
spend a much larger percentage of their income on groceries than do middle- and 
upper-income families. The U.S. Bureau of Labor Statistics publication Consumer 
Expenditures in 2000 reported that an average family in Texas spent approxi mately 
14% of their family income on groceries. The consumer advocate randomly selected 
30 families with income below the poverty level and obtained the following percent-
ages of family incomes allocated to groceries.

26 28 30 37 33 30
29 39 49 31 38 36
33 24 34 40 29 41
40 29 35 44 32 45
35 26 42 36 37 35

For these data, gyi  1,043 and g 1yi 2 y 2 2  1,069.3667. Compute the mean, 
variance, and standard deviation of the percentage of income spent on food. Check 
your calculation of s.

approximating s
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Solution The sample mean is

y 
g iyi

30


1,043
30

 34.77

The corresponding sample variance and standard deviation are

s2 
1

n 2 1
 g 1yi 2 y 2 2

 
1
29

 11,069.3667 2  36.8747

s  Ë36.8747  6.07

We can check our calculation of s by using the range approximation. The largest 
measurement is 49 and the smallest is 24. Hence, an approximate value of s is

s <
range

4


49 2 24
4

 6.25

Note how close the approximation is to our computed value. ■

Although there will not always be the close agreement found in Example 3.13, 
the range approximation provides a useful and quick check on the calculation of s.

The standard deviation can be deceptive when comparing the amount of 
variability of different types of populations. A unit of variation in one population 
might be considered quite small, whereas that same amount of variability in a dif-
ferent population would be considered excessive. For example, suppose we want 
to compare two production processes that fill containers with products. Process 
A is filling fertilizer bags, which have a nominal weight of 80 pounds. The process 
produces bags having a mean weight of 80.6 pounds with a standard deviation of 
1.2 pounds. Process B is filling 24-ounce cornflakes boxes, which have a nomi-
nal weight of 24 ounces. Process B produces boxes having a mean weight of 24.3 
ounces with a standard deviation of 0.4 ounces. Is process A much more variable 
than process B  because 1.2 is three times larger than 0.4? To compare the vari-
ability in two considerably different processes or populations, we need to define 
another measure of  variability. The coefficient of variation measures the variabil-
ity in the values in a population relative to the magnitude of the population mean. 
In a process or  population with mean m and standard deviation s, the coefficient 
of variation is  defined as

CV 
s

0m 0
provided m 2 0. Thus, the coefficient of variation is the standard deviation of the 
population or process expressed in units of m. The two filling processes would have 
equivalent degrees of variability if the two processes had the same CV. For the fer-
tilizer process, the CV  1.2/80  .015. The cornflakes process has CV  0.4/24  
.017 . Hence, the two processes have very similar variability relative to the size of 
their means. The CV is a unit-free number because the standard deviation and 
mean are measured using the same units. Hence, the CV is often used as an index 
of process or population variability. In many applications, the CV is expressed as 
a percentage: CV  100(s/|m|)%. Thus, if a process has a CV of 15%, the standard 
deviation of the output of the process is 15% of the process mean. Using sampled 
data from the population, we estimate CV with 100 1s /|y| 2%.

coefficient of variation
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 3.6 the Boxplot

As mentioned earlier in this chapter, a stem-and-leaf plot provides a graphical 
representation of a set of scores that can be used to examine the shape of the dis-
tribution, the range of scores, and where the scores are concentrated. The boxplot, 
which builds on the information displayed in a stem-and-leaf plot, is more con-
cerned with the symmetry of the distribution and incorporates numerical measures 
of central tendency and location to study the variability of the scores and the con-
centration of scores in the tails of the distribution.

Before we show how to construct and interpret a boxplot, we need to intro-
duce several new terms that are peculiar to the language of exploratory data analy-
sis (EDA).We are familiar with the definitions for the first, second (median), and 
third quartiles of a distribution presented earlier in this chapter. The boxplot uses 
the median and quartiles of a distribution.

We can now illustrate a skeletal boxplot using an example.

eXaMpLe 3.14

A criminologist is studying whether there are wide variations in violent crime rates 
across the United States. Using Department of Justice data from 2000, the crime 
rates in 90 cities selected from across the United States were obtained. Use the data 
given in Table 3.13 to construct a skeletal boxplot to demonstrate the degree of 
variability in crime rates.

boxplot

quartiles

TABLE 3.13
Violent crime rates for 90 

standard metropolitan 
statistical areas selected 
from around the United 

States

South Rate  North Rate West  Rate 

Albany, GA   498 Allentown, PA 285 Abilene, TX 343
Anderson, SC   676 Battle Creek, MI 490 Albuquerque, NM 946
Anniston, AL   344 Benton Harbor, MI 528 Anchorage, AK 584
Athens, GA   368 Bridgeport, CT 427 Bakersfield, CA 494
Augusta, GA   772 Buffalo, NY 413 Brownsville, TX 463
Baton Rouge, LA   497 Canton, OH 220 Denver, CO 357
Charleston, SC   415 Cincinnati, OH 163 Fresno, CA 761
Charlottesville, VA   925 Cleveland, OH 428 Galveston, TX 717
Chattanooga, TN   555 Columbus, OH 625 Houston, TX 1094 
Columbus, GA   260 Dayton, OH 339 Kansas City, MO 637
Dothan, AL   528 Des Moines, IA 211 Lawton, OK 692
Florence, SC   649 Dubuque, IA 451 Lubbock, TX 522
Fort Smith, AR   571 Gary, IN 358 Merced, CA 397
Gadsden, AL   470 Grand Rapids, MI 660 Modesto, CA 521
Greensboro, NC   897 Janesville, WI 330 Oklahoma City, OK 610
Hickery, NC   973 Kalamazoo, MI 145 Reno, NV 477
Knoxville, TN   486 Lima, OH 326 Sacramento, CA 453
Lake Charles, LA   447 Madison, WI 403 St. Louis, MO 798
Little Rock, AR   689 Milwaukee, WI 523 Salinas, CA 646
Macon, GA   754 Minneapolis, MN 312 San Diego, CA 645
Monroe, LA   465 Nassau, NY 576 Santa Ana, CA 549
Nashville, TN   496 New Britain, CT 261 Seattle, WA 568
Norfolk, VA   871 Philadelphia, PA 221 Sioux City, IA 465
Raleigh, NC 1064 Pittsburgh, PA 754 Stockton, CA 350
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Solution The data were summarized using a stem-and-leaf plot as depicted in 
 Figure 3.23. Use this plot to construct a skeletal boxplot.

South Rate  North Rate West  Rate 

Richmond, VA 579 Portland, ME 140 Tacoma, WA 574
Savannah, GA 792 Racine, WI 418 Tucson, AZ 944
Shreveport, LA 367 Reading, PA 657 Victoria, TX 426
Washington, DC 998 Saginaw, MI 564 Waco, TX 477
Wilmington, DE 773 Syracuse, NY 405 Wichita Falls, TX 354
Wilmington, NC 887 Worcester, MA 872 Yakima, WA 264

Note: Rates represent the number of violent crimes (murder, forcible rape, robbery, and aggravated assault) 
per 100,000 inhabitants, rounded to the nearest whole number.
Source: Department of Justice, Crime Reports and the United States, 2000.

FIGURE 3.23
Stem-and-leaf plot  

of crime data
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When the scores are ordered from lowest to highest, the median is computed 
by averaging the 45th and 46th scores. For these data, the 45th score (counting 
from the lowest to the highest in Figure 3.23) is 497 and the 46th is 498; hence, the 
median is

M 
497 1 498

2
 497.5

To find the lower and upper quartiles for this distribution of scores, we need to 
 determine the 25th and 75th percentiles. We can use the method given on page 94 
to compute Q(.25) and Q(.75). A quick method that yields essentially the same 
values for the two quartiles consists of the following steps:

1.  Order the data from smallest to largest value.
2.  Divide the ordered data set into two data sets using the median as 

the  dividing value.
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3. Let the lower quartile be the median of the set of values consisting 
of the smaller values.

4. Let the upper quartile be the median of the set of values consisting 
of the larger values.

In the example, the data set has 90 values. Thus, we create two data sets, one con-
taining the 90 /2  45 smallest values, and the other containing the 45 largest values. 
The lower quartile is the (45 1 1)/2  23rd smallest value, and the upper quartile is 
the 23rd value counting from the largest value in the data set. The 23rd-lowest score 
and 23rd-highest score are 397 and 660.

lower quartile, Q1  397
upper quartile, Q3  660

These three descriptive measures and the smallest and largest values in a data set 
are used to construct a skeletal boxplot (see Figure 3.24). The skeletal boxplot is 
constructed by drawing a box between the lower and upper quartiles with a solid 
line drawn across the box to locate the median. A straight line is then drawn con-
necting the box to the largest value; a second line is drawn from the box to the 
smallest value. These straight lines are sometimes called whiskers, and the entire 
graph is called a skeletal box-and-whiskers plot.

skeletal boxplot

box-and-whiskers plot

FIGURE 3.24
Skeletal boxplot for the 

data of Figure 3.23
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With a quick glance at a skeletal boxplot, it is easy to obtain an impression about 
the following aspects of the data:

1. The lower and upper quartiles, Q1 and Q3

2. The interquartile range (IQR), the distance between the lower and 
upper quartiles

3. The most extreme (lowest and highest) values
4. The symmetry or asymmetry of the distribution of scores

If we were presented with Figure 3.24 without having seen the original data, 
we would have observed that

 Q1 < 400

 Q3 < 675

 IQR < 675 2 400  275

 M < 500
most extreme values: <150 and <1,100
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Also, because the median is closer to the lower quartile than the upper quartile 
and because the upper whisker is a little longer than the lower whisker, the distri-
bution is slightly nonsymmetrical. To see that this conclusion is true, construct a 
frequency histogram for these data.

The skeletal boxplot can be expanded to include more information about 
 extreme values in the tails of the distribution. To do so, we need the following 
 additional quantities:

lower inner fence: Q1 2 1.5(IQR)
upper inner fence: Q3 1 1.5(IQR)
lower outer fence: Q1 2 3(IQR)
upper outer fence: Q3 1 3(IQR)

Any data value beyond an inner fence on either side is called a mild outlier, 
and any data value beyond an outer fence on either side is called an extreme outlier. 
The smallest and largest data values that are not outliers are called the lower 
adjacent value and upper adjacent value, respectively.

eXaMpLe 3.15

Compute the inner and outer fences for the data of Example 3.14. Identify any 
mild and extreme outliers.

Solution For these data, we found the lower and upper quartiles to be 397 and 
660, respectively; IQR  660 2 397  263. Then

lower inner fence  397 2 1.5(263)  2.5
upper inner fence  660 1 1.5(263)  1,054.5
lower outer fence  397 2 3(263)  2392
upper outer fence  660 1 3(263)  1,449

Also, from the stem-and-leaf plot, we can determine that the lower and upper 
adjacent values are 140 and 998. There are two mild outliers, 1,064 and 1,094, 
 because both values fall between the upper inner fence, 1,054.5, and upper outer 
fence, 1,449. ■

We now have all the quantities necessary for constructing a boxplot, sometimes 
refered to as a modified boxplot.

1. As with a skeletal boxplot, mark off a box from the lower quartile to the 
upper quartile.

2. Draw a solid line across the box to locate the median.
3. Draw a line from each quartile to its adjacent value.
4. Mark each mild outlier with an open circle, .
5. Mark each extreme outlier with a closed circle, ●.

Steps in 
Constructing a 

Boxplot

eXaMpLe 3.16

Construct a boxplot for the data of Example 3.13.

Solution The boxplot is shown in Figure 3.25.
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What information can be drawn from a boxplot? First, the center of the dis-
tribution of scores is indicated by the median line (Q2) in the boxplot. Second, 
a mea sure of the variability of the scores is given by the interquartile range, the 
length of the box. Recall that the box is constructed between the lower and upper 
quartiles, so it contains the middle 50% of the scores in the distribution, with 25% 
on either side of the median line inside the box. Third, by examining the relative 
position of the  median line, we can gauge the symmetry of the middle 50% of 
the scores. For example, if the median line is closer to the lower quartile than the 
upper, there is a greater concentration of scores on the lower side of the median 
within the box than on the upper side; a symmetric distribution of scores would 
have the median line located in the center of the box. Fourth, additional informa-
tion about skewness is obtained from the lengths of the whiskers; the longer one 
whisker is relative to the other one, the more skewness there is in the tail with the 
longer whisker. Fifth, a general  assessment can be made about the presence of out-
liers by examining the number of scores classified as mild outliers and the number 
classified as extreme outliers.

Boxplots provide a powerful graphical technique for comparing samples 
from several different treatments or populations. We will illustrate these concepts 
using the following example. Several new filtration systems have been proposed 
for use in small city water systems. The three systems under consideration have 
very similar initial and operating costs, and will be compared on the basis of the 
amount of impurities remaining in the water after it passes through the system. 
After careful assessment, it is determined that monitoring 20 days of operation 
will provide sufficient information to determine any significant differences among 
the three systems. Water samples are collected on a hourly basis. The amount of 
impurities, in ppm, remaining in the water after the water passes through the filter 
is recorded. The average daily values for the three systems are plotted using a side-
by-side boxplot, as presented in Figure 3.26.

An examination of the boxplots in Figure 3.26 reveals the shapes of the rela-
tive frequency histograms for the three types of filters based on their boxplots. 
 Filter A has a symmetric distribution, filter B is skewed to the right, and filter C is 
skewed to the left. Filters A and B have nearly equal medians. However, filter B 
is much more variable than both filters A and C. Filter C has a larger median than 
both filters A and B but smaller variability than A with the exception of the two 
very small values obtained using filter C. The mild outliers obtained by filters B 
and C, identified by *, would be examined to make sure that they are valid mea-
surements. Note that the software package, Minitab, used to produce the graph, 
uses the symbol * in place of the open circle  to designate a mild outlier. These 
measurements could be either recording errors or operational  errors. They must 
be carefully checked because they have such a large influence on the summary 

FIGURE 3.25
Boxplot for the data of 

Example 3.13

■
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statistics. Filter A would produce a more consistent filtration than filter B. Filter A 
generally filters the water more thoroughly than filter C. We will introduce statisti-
cal techniques in Chapter 8 that will provide us with ways to differentiate among 
the three filter types.

 3.7 Summarizing Data from More than One Variable:  
Graphs and Correlation

In the previous sections, we’ve discussed graphical methods and numerical descrip-
tive methods for summarizing data from a single variable. Frequently, more than 
one variable is being studied at the same time, and we might be interested in sum-
marizing the data on each variable separately and also in studying relations among 
the variables. For example, we might be interested in the prime interest rate and 
in the Consumer Price Index, as well as in the relation between the two. In this 
section, we’ll discuss a few techniques for summarizing data from two (or more) 
variables. Material in this section will provide a brief preview of and introduction 
to contingency tables (Chapter 10), analysis of variance (Chapters 8 and 14–18), 
and regression (Chapters 11, 12, and 13).

Consider first the problem of summarizing data from two qualitative vari-
ables. Cross-tabulations can be constructed to form a contingency table. The 
rows of the table identify the categories of one variable, and the columns iden-
tify the categories of the other variable. The entries in the table are the number 
of times each value of one variable occurs with each possible value of the other. 
For example, episodic or “binge” drinking—the consumption of large quantities 
of alcohol at a single session resulting in intoxication—among eighteen- to twenty-
four-year-olds can have a wide range of adverse effects—medical, personal, and 
 social. A survey was conducted on 917 eighteen- to twenty-four-year-olds by the 
 Institute of Alcohol Studies. Each individual surveyed was asked questions about 
his or her  alcohol consumption in the prior 6 months. The criminal background 
of the  indi vi duals was also obtained from a police data base. The results of the 
survey are displayed in Table 3.14. From this table, it is observed that 114 of binge 
drinkers were involved in violent crimes, whereas 27 occasional drinkers and 7 
nondrinkers were involved in violent crimes.

One method for examining the relationships between variables in a contin-
gency table is a percentage comparison based on row totals, column totals, or the 
overall total. If we calculate percentages within each column, we can compare 

contingency table

FIGURE 3.26
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the distribution of criminal activity within each level of drinking. A percentage 
comparison based on column totals is shown in Table 3.15.

For all three types of criminal activities, the binge/regular drinkers had more 
than double the level of activity of the occassional or nondrinkers. For binge/
regular drinkers, 32.1% had committed a violent crime, whereas only 7 .1% of 
occasional drinkers and 3.9% of nondrinkers had committed a violent crime. This 
pattern is repeated across the other two levels of criminal activity. In fact, 85.9% of 
binge/regular drinkers had committed some form of criminal violation. The level 
of criminal activity among occasional drinkers was 28.1% and only 16% for non-
drinkers. In Chapter 10, we will use statistical methods to explore further relations 
between two (or more) qualitative variables.

An extension of the bar graph provides a convenient method for displaying 
data from a pair of qualitative variables. Figure 3.27 is a stacked bar graph, which 
displays the data in Table 3.15.

The graph represents the distribution of criminal activity for three levels of 
alcohol consumption by young adults. This type of information is useful in mak-
ing youths aware of the dangers involved in the consumption of large amounts of 
alcohol. While the heaviest drinkers are at the greatest risk of committing a crimi-
nal offense, the risk of increased criminal behavior is also present for occasional 
drinkers when compared to those youths who are nondrinkers. This type of data 
may lead to programs that advocate prevention policies and assistance from the 
beer/alcohol manufacturers by including messages about appropriate consumption 
in their advertising.

A second extension of the bar graph provides a convenient method for 
displaying the relationship between a single quantitative and a single qualitative 
variable. A food scientist is studying the effects of combining different types of 

stacked bar graph

TABLE 3.15
Comparing the 

distribution of criminal 
activity for each level of 

alcohol consumption

 Level of Drinking

 Binge/Regular Occasional Never 
Criminal Offense Drinker Drinker Drinks

Violent Crime 32.1%  7 .1%  3.9%
Theft/Property Damage 14.9%  7 .1%  3.9%
Other Criminal Offenses 38.9% 13.9%  8.2%
No Criminal Offenses 14.1% 71.9% 84.0%

Total 100% 100% 100%
 (n  355) (n  381) (n  181)

TABLE 3.14
Data from a survey of  

drinking behavior of  
eighteen- to twenty-four-

year-old youths

 Level of Drinking

 Binge/Regular Occasional Never 
Criminal Offense Drinker Drinker Drinks Total

Violent Crime 114  27   7 148
Theft/Property Damage  53  27   7  87
Other Criminal Offenses 138  53  15 206
No Criminal Offenses  50 274 152 476

Total 355 381 181 917

Source: lnstitute of Alcohol Studies.
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fats with different  surfactants on the specific volume of baked bread loaves. The 
experiment is designed with three levels of surfactant and three levels of fat, a 
3 3 3 factorial experiment with varying number of loaves baked from each of the 
nine treatments. She bakes bread from dough mixed from the nine different com-
binations of the types of fat and types of surfactants and then measures the specific 
volume of the bread. The data and summary statistics are displayed in Table 3.16.

In this experiment, the scientist wants to make inferences from the results of 
the experiment for the commercial production process. Figure 3.28 is a cluster bar 
graph from the baking experiment. This type of graph allows the experimenter to 
examine the simultaneous effects of two factors, type of fat and type of surfactant, 
on the specific volume of the bread. Thus, the researcher can examine the differ-
ences in the specific volumes of the nine different ways in which the bread was 
formulated. A quantitative assessment of the effects of fat type and surfactant type 
on the mean specific volume will be addressed in Chapter 15.

We can also construct data plots to summarize the relation between two 
quantitative variables. Consider the following example. A manager of a small 

cluster bar graph

FIGURE 3.27
Chart of cell percentages 

for level of drinking 
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TABLE 3.16
Descriptive statistics with 

the dependent variable, 
specific volume 

Fat Surfactant Mean  Standard Deviation N

1 1 5.567 1.206  3
 2 6.200  .794  3
 3 5.900  .458  3
 Total 5.889  .805  9
2 1 6.800  .794  3
 2 6.200  .849  2
 3 6.000  .606  4
 Total 6.311  .725  9
3 1 6.500  .849  2
 2 7 .200  .668  4
 3 8.300 1.131  2
 Total 7 .300  .975  8

Total 1 6.263 1.023  8
 2 6.644  .832  9
 3 6.478 1.191  9
 Total 6.469  .997 26
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 machine shop examined the starting hourly wage y offered to machinists with x 
years of experience. The data are shown here:

y (dollars)   8.90 8.70 9.10 9.00 9.79 9.45 10.00 10.65 11.10 11.05
x ( years) 1.25 1.50 2.00 2.00 2.75 4.00   5.00   6.00   8.00 12.00

Is there a relationship between hourly wage offered and years of experience? One 
way to summarize these data is to use a scatterplot, as shown in Figure 3.29. Each 
point on the plot represents a machinist with a particular starting wage and years 
of experience. The smooth curve fitted to the data points, called the least squares 
line, represents a summarization of the relationship between y and x. This line 
allows the prediction of hourly starting wages for a machinist having years of expe-
rience not represented in the data set. How this curve is obtained will be discussed 
in Chapters 11 and 12. In general, the fitted curve indicates that, as the years of 
 experience x increase, the hourly starting wage increases to a point and then  levels 

scatterplot
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off. The basic idea of relating several quantitative variables is discussed in the 
chapters on regression (Chapters 11–13).

Using a scatterplot, the general shape and direction of the relationship 
between two quantitative variables can be displayed. In many instances, the rela-
tionship can be summarized by fitting a straight line through the plotted points. 
Thus, the strength of the relationship can be described in the following manner. 
There is a strong relationship if the plotted points are positioned close to the line 
and a weak relationship if the points are widely scattered about the line. It is fairly 
difficult to “eyeball” the strength using a scatterplot. In particular, if we wanted 
to compare two different scatterplots, a numerical measure of the strength of the 
 relationship would be advantagous. The following example will illustrate the dif-
ficulty of using scatterplots to compare the strength of the relationship between 
two quantitative variables.

Several major cities in the United States are now considering allowing gam-
bling casinos to operate under their jurisdiction. A major argument in opposition 
to casino gambling is the perception that there will be a subsequent increase in the 
crime rate. Data were collected over a 10-year period in a major city where casino 
gambling had been legalized. The results are listed in Table 3.17 and plotted in 
 Figure 3.30. The two scatterplots are depicting exactly the same data, but the scales 
of the plots differ considerably. The results appear to show a stronger relationship 
in one scatterplot that in the other.

Because of the difficulty of determining the strength of the relationship 
between two quantitative variables by visually examining a scatterplot, a numerical 
measure of the strength of the relationship will be defined as a supplement to a 

TABLE 3.17
Crime rate as a function 

of number of casino 
employees

 Number of Casino Crime Rate y (number of crimes 
Year Employees x (thousands) per 1,000 population)

1994 20 1.32
1995 23 1.67
1996 29 2.17
1997 27 2.70
1998 30 2.75
1999 34 2.87
2000 35 3.65
2001 37 2.86
2002 40 3.61
2003 43 4.25

FIGURE 3.30
Crime rate as a function 

of number of casino 
employees
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graphical display. The correlation coefficient was first introduced by Francis Galton 
in 1888. He applied the correlation coefficient to study the relationship between the 
forearm length and height of particular groups of people.

The correlation coefficient measures the strength of the linear relationship 
between two quantitative variables. The correlation coefficient is usually 
 denoted as r.

DEFINITION 3.10

Suppose we have data on variables x and y collected from n individuals or  objects, 
with means and standard deviations of the variables given as x and sx for the 
x-variable and y and sy for the y-variable. The correlation r between x and y is 
computed as

r 
1

n 2 1
 a

n

i1
axi 2 x

sx
b ayi 2 y

sy
b 

1
n 2 1

ca
n

i1

1xi 2 x 2 1yi 2 y 2 d @ sx sy

In computing the correlation coefficient, the variables x and y are standard-
ized to be unit-free variables. The standardized x-variable for the ith individual, 
1
xi 2 x

sx
2, measures how many standard deviations xi is above or below the x-mean. 

Thus, the correlation coefficient, r, is a unit-free measure of the strength of the 
linear relationship between the quantitative variables, x and y.

eXaMpLe 3.16

For the data in Table 3.17, compute the value of the correlation coefficient.

Solution The computation of r can be performed by any of the statistical software 
packages or by Excel. The calculations required to obtain the value of r for the data 
in Table 3.17 are given in Table 3.18, with x  31.80 and y  2.785. The first row is 
computed as

x 2 x  20 2 31.8  211.8,       y 2 y  1.32 2 2.785  21.465,

1x 2 x 2 1y 2 y 2  1211.8 2 121.465 2  17.287,

1x 2 x 2 2  1211.8 2 2  139.24,      1y 2 y 2 2  121.465 2 2  2.14623

 x y x 2 x  y 2 y 1x 2 x 2 1y 2 y 2  1x 2 x 2 2 1y 2 y 2 2

 20 1.32 211.8 21.465 17 .287 139.24 2.14623
 23 1.67 28.8 21.115 9.812 77 .44 1.24323
 29 2.17 22.8 20.615 1.722 7 .84 0.37823
 27 2.70 24.8 20.085 0.408 23.04 0.00722
 30 2.75 21.8 20.035 0.063 3.24 0.00123
 34 2.87 2.2 0.085 0.187 4.84 0.00722
 35 3.65 3.2 0.865 2.768 10.24 0.74822
 37 2.86 5.2 0.075 0.390 27 .04 0.00562
 40 3.61 8.2 0.825 6.765 67 .24 0.68062
 43 4.25 11.2 1.465 16.408 125.44 2.14622

Total 318 27 .85 0 0 55.810 485.60 7 .3641
Mean 31.80 2.785

TABLE 3.18
Data and calculations  

for computing r

■
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A form of r that is somewhat more direct in its calculation is given by 

r 
gn

i1 1xi 2 x 2  1yi 2 y 2
Ëgn

i1 1xi 2 x 2 2gn
i1 1yi 2 y 2 2


55.810

Ë 1485.6 2 17.3641 2  .933

The above calculations depict a positive correlation between the number of casino 
employees and the crime rate. However, this result does not prove that an increase 
in the number of casino workers causes an increase in the crime rate. There may be 
many other associated factors involved in the increase of the crime rate.

Generally, the correlation coefficient, r, is a positive number if y tends to 
 increase as x increases; r is negative if y tends to decrease as x increases; and r is 
nearly zero if there is either no relation between changes in x and changes in y or a 
nonlinear relation between x and y such that the patterns of increase and decrease 
in y (as x increases) cancel each other. 

Some properties of r that assist us in the interpretation of the relationship 
between two variables include the following:

1. A positive value for r indicates a positive association between the 
two variables, and a negative value for r indicates a negative associa-
tion  between the two variables.

2. The value of r is a number between 21 and 11. When the value of 
r is very close to 61, the points in the scatterplot will lie close to a 
straight line.

3. Because the two variables are standardized in the calculation of r, 
the value of r does not change if we alter the units of x or y. The 
same value of r will be obtained no matter what units are used for x 
and y. Correlation is a unit-free measure of association.

4. Correlation measures the degree of the straight-line relationship 
between two variables. The correlation coefficient does not describe 
the closeness of the points (x, y) to a curved relationship, no matter 
how strong the  relationship.

What values of r indicate a “strong” relationship between y and x? Figure 3.31 
displays 15 scatterplots obtained by randomly selecting 1,000 pairs (xi, yi) from 15 
populations having bivariate normal distributions with correlations ranging from 
2.99 to .99. We can observe that unless 0r 0  is greater than .6, there is very little 
trend in the scatterplot.

Finally, we can construct data plots for summarizing the relations among 
several quantitative variables. Consider the following example. Thall and Vail 
(1990) described a study to evaluate the effectiveness of the anti-epileptic drug 
progabide as an adjuvant to standard chemotherapy. A group of 59 epileptics was 
selected to be used in the clinical trial. The patients suffering from simple or com-
plex partial seizures were randomly assigned to receive either the anti-epileptic 
drug progabide or a placebo. At each of four successive postrandomization clinic 
visits, the number of seizures occurring over the previous 2 weeks was reported. 
The measured variables were yi (i  1, 2, 3, 4), the seizure counts recorded at the 
four clinic visits; Trt (x1), where 0 is the placebo and 1 is progabide; Base (x2), 
the baseline seizure rate; and Age (x3), the patient’s age in years. The data and 
summary statistics are given in Tables 3.19 and 3.20.

The first plots are side-by-side boxplots that compare the base number of 
seizures and the age of the treated patients to those of the patients assigned to the 
placebo. These plots provide a visual assessment of whether the treated patients 

side-by-side boxplots
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and placebo patients had similar distributions of age and base seizure counts prior 
to the start of the clinical trials. An examination of Figure 3.32(a) reveals that the 
seizure patterns prior to the beginning of the clinical trials are similar for the two 
groups of patients. There is a single patient with a base seizure count greater than 
100 in both groups. The base seizure count for the placebo group is somewhat 
more variable than that for the treated group—its box is wider than the box for 
the treated group. The descriptive statistics table contradicts this  observation. The 
sample standard deviation is 26.10 for the placebo group and 27 .98 for the treated 
group. This seemingly inconsistent result occurs due to the large base count for a 
single patient in the treated group. The median number of base seizures is higher 
for the treated group than for the placebo group. The means are nearly identical 
for the two groups. The means are in greater agreement than are the medians due 

FIGURE 3.31
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TABLE 3.19
Data for epilepsy study: 

successive 2-week seizure 
counts for 59 epileptics; 
covariates are adjuvant 

treatment (0  placebo, 
1  progabide), 8-week 
baseline seizure counts, 

and age (in years)

ID y1 y2 y3 y4 Trt Base Age

104 5 3 3 3 0 11 31
106 3 5 3 3 0 11 30
107 2 4 0 5 0 6 25
114 4 4 1 4 0 8 36
116 7 18 9 21 0 66 22
118 5 2 8 7 0 27 29
123 6 4 0 2 0 12 31
126 40 20 23 12 0 52 42
130 5 6 6 5 0 23 37
135 14 13 6 0 0 10 28
141 26 12 6 22 0 52 36
145 12 6 8 4 0 33 24
201 4 4 6 2 0 18 23
202 7 9 12 14 0 42 36
205 16 24 10 9 0 87 26
206 11 0 0 5 0 50 26
210 0 0 3 3 0 18 28
213 37 29 28 29 0 111 31
215 3 5 2 5 0 18 32
217 3 0 6 7 0 20 21
219 3 4 3 4 0 12 29
220 3 4 3 4 0 9 21
222 2 3 3 5 0 17 32
226 8 12 2 8 0 28 25
227 18 24 76 25 0 55 30
230 2 1 2 1 0 9 40
234 3 1 4 2 0 10 19
238 13 15 13 12 0 47 22
101 11 14 9 8 1 76 18
102 8 7 9 4 1 38 32
103 0 4 3 0 1 19 20
108 3 6 1 3 1 10 30
110 2 6 7 4 1 19 18
111 4 3 1 3 1 24 24
112 22 17 19 16 1 31 30
113 5 4 7 4 1 14 35
117 2 4 0 4 1 11 27
121 3 7 7 7 1 67 20
122 4 18 2 5 1 41 22
124 2 1 1 0 1 7 28
128 0 2 4 0 1 22 23
129 5 4 0 3 1 13 40
137 11 14 25 15 1 46 33
139 10 5 3 8 1 36 21
143 19 7 6 7 1 38 35
147 1 1 2 3 1 7 25
203 6 10 8 8 1 36 26
204 2 1 0 0 1 11 25
207 102 65 72 63 1 151 22
208 4 3 2 4 1 22 32
209 8 6 5 7 1 41 25
211 1 3 1 5 1 32 35
214 18 11 28 13 1 56 21
218 6 3 4 0 1 24 41
221 3 5 4 3 1 16 32
225 1 23 19 8 1 22 26
228 2 3 0 1 1 25 21
232 0 0 0 0 1 13 36
236 1 4 3 2 1 12 37
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TABLE 3.20
Descriptive statistics: 

Minitab output for 
epilepsy example 

(worksheet size: 
100,000 cells)

0=PLACEBO
1=TREATED

Variable TREATMENT N Mean Median Tr Mean StDev SE Mean
Y1 0 28 9.36 5.00 8.54 10.14 1.92
 1 31 8.58 4.00 5.26 18.24 3.28

Y2 0 28 8.29 4.50 7 .81 8.16 1.54
 1 31 8.42 5.00 6.37 11.86 2.13

Y3 0 28 8.79 5.00 6.54 14.67 2.77
 1 31 8.13 4.00 5.63 13.89 2.50

Y4 0 28 7 .96 5.00 7 .46 7 .63 1.44
 1 31 6.71 4.00 4.78 11.26 2.02

BASE 0 28 30.79 19.00 28.65 26.10 4.93
 1 31 31.61 24.00 27 .37 27 .98 5.03

AGE 0 28  29.00 29.00 28.88 6.00 1.13
 1 31 27 .74 26.00 27 .52 6.60 1.19

Variable TREATMENT Min Max Q1 Q3
Y1 0 0.00 40.00 3.00 12.75
 1 0.00 102.00 2.00 8.00

Y2 0 0.00 29.00 3.00 12.75
 1 0.00 65.00 3.00 10.00

Y3 0 0.00 76.00 2.25 8.75
 1 0.00 72.00 1.00 8.00

Y4 0 0.00 29.00 3.00 11.25
 1 0.00 63.00 2.00 8.00

BASE 0 6.00 111.00 11.00 49.25
 1 7 .00 151.00 13.00 38.00

AGE 0 19.00 42.00 24.25 32.00
 1 18.00 41.00 22.00 33.00
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to the skewed-to-the-right distribution of the middle 50% of the data for the pla-
cebo group, whereas the treated group is nearly symmetric for the middle 50% of 
its data. Figure 3.32(b) displays the nearly identical distribution of age for the two 
groups; the only difference is that the treated group has a slightly lower median 
age and is slightly more variable than is the placebo group. Thus, the two groups 
appear to have similar age and baseline-seizure distributions prior to the start of 
the clinical trials.

 3.8 ReseaRch study: controlling for student 
Background in the assessment of teaching

At the beginning of this chapter, we described a situation faced by many school 
administrators having a large minority population in their school and/or a large 
proportion of their students classified as from a low-income family. The implica-
tions of such demographics for teacher evaluations based on the performance of 
their students on standardized reading and math tests generates much controversy 
in the educational community. The task of achieving goals set by the national No 
Child Left Behind mandate is much more difficult for students from disadvantaged 
backgrounds. Requiring teachers and administrators from school districts with a 
high proportion of disadvantaged students to meet the same standards as those 
for schools with a more advantaged student body is inherently unfair. This type of 
policy may prove to be counterproductive. It may lead to the alienation of teach-
ers and administrators and the flight of the most qualified and most productive 
educators from disadvantaged school districts, resulting in a staff with only those 
educators with an overwhelming commitment to students with a disadvantaged 
background and/or educators who lack the qualifications to move to the higher-
rated schools. A policy that mandates that educators should be held accountable 
for the success of their students without taking into account the backgrounds of 
those students is destined for failure. 

The data from a medium-sized Florida school district with 22 elementary 
schools were presented at the beginning of this chapter. The minority status of a 
student was defined as black or non-black race. In this school district, almost all 
students are non-Hispanic blacks or whites. Most of the relatively small numbers 
of Hispanic students are white. Most students of other races are Asian, but they 
are relatively few in number. They were grouped in the minority category because 
of the similarity of their test score profiles. Poverty status was based on whether 
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or not the student received a free or reduced lunch subsidy. The math and reading 
scores are from the Iowa Test of Basic Skills. The number of students by class in 
each school is given by N in Table 3.21.

The superintendent of schools presented the school board members with the 
data, and they wanted an assessment of whether poverty and minority status had 
any effect on the math and reading scores. Just looking at the data presented very 
little insight in reaching an answer to this question. Using a number of the graphs 
and summary statistics introduced in this chapter, we will attempt to assist the 
superintendent in providing insight to the school board concerning the impact of 
poverty and minority status on student performance.

In order to access the degree of variability in the mean math and reading 
scores between the 22 schools, a boxplot of the math and reading scores for each of 
the three grade levels is given in Figure 3.33. There are 22 third- and fourth-grade 
classes and only 19 fifth-grade classes.

TABLE 3.21
Summary statistics for 

reading scores and math 
scores by grade level

Variable Grade N Mean St. Dev Minimum Q1 Median Q3 Maximum

Math 3 22 171.87  9.16 155.50 164.98 174.65 179.18 186.10
 4 22 189.88  9.64 169.90 181.10 189.45 197 .28 206.90
 5 19 206.16 11.14 192.90 197 .10 205.20 212.70 228.10

Reading 3 22 171.10  7 .46 157 .20 164.78 171.85 176.43 183.80
 4 22 185.96 10.20 166.90 178.28 186.95 193.85 204.70
 5 19 205.36 11.04 186.60 199.00 203.30 217 .70 223.30

%Minority 3 22  39.43 25.32  12.30  20.00  28.45  69.45  87 .40
 4 22  40.22 24.19  11.10  21.25  32.20  64.53  94.40
 5 19  40.42 26.37  10.50  19.80  29.40  64.10  92.60

%Poverty 3 22  58.76 24.60  13.80  33.30  68.95  77 .48  91.70
 4 22  54.00 24.20  11.70  33.18  60.55  73.38  91.70
 5 19  56.47 23.48  13.20  37 .30  61.00  75.90  92.90

FIGURE 3.33
Boxplot of math and 

reading  scores for each 
grade
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From these plots, we observe that for each of the three grade levels there is a 
wide variation in mean math and reading scores. However, the level of variability 
within a grade appears to be about the same for math and reading scores but with a 
wide level of variability for fourth and fifth graders in comparison to third graders. 
Furthermore, there is an increase in the median scores from the third to the fifth 
grades. A detailed summary of the data is given in Table 3.21.

For the third-grade classes, the scores for math and reading had similar 
ranges: 155 to 185. The range for the 22 schools increased to 170 to 205 for the 
fourth-grade students in both math and reading. This size of the range for the 
fifth-grade students was similar to that of the fourth graders: 190 to 225 for both 
math and reading. Thus, the level of variability in reading and math scores is 
increasing from third grade to fourth grade to fifth grade. This is confirmed by 
examining the standard deviations for the three grades. Also, the median scores 
for both math and reading are increasing across the three grades. The school 
board then asked the superintendent to identify possible sources of differences 
in the 22 schools that may help explain the differences in the mean math and 
reading scores.

In order to simplify the analysis somewhat, it was proposed to analyze just 
the reading scores because it would appear that the math and reading scores had 
a similar variation between the 22 schools. To help justify this choice in analysis, 
a scatterplot of the 63 pairs of math and reading scores (recall there were only 19 
fifth-grade classes) was generated (see Figure 3.34). From this plot, we can observe 
a strong correlation between the reading and math scores for the 63 grades. In fact, 
the correlation coefficient between math and reading scores is computed to be .97 . 
Thus, there is a very strong relationship between reading and math scores at the 22 
schools. The remainder of the analysis will concern the reading scores.

The next step in the process is to examine whether minority or poverty status 
is associated with the reading scores. Figure 3.35 is a scatterplot of reading versus 
%poverty and reading versus %minority.

Although there appears to be a general downward trend in reading scores as 
the levels of %poverty and %minority in the schools increase, there is a wide scat-
tering of individual scores about the fitted line. The correlation between reading 

FIGURE 3.34
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and %poverty is 2.45, and that between reading and %minority is 2.53. However, 
recall that there is a general upward shift in reading scores from the third grade 
to the fifth grade. Therefore, a more appropriate plot of the data would be to fit a 
separate line for each of the three grades. This plot is given in Figure 3.36.

From these plots, we can observe a much stronger association between 
reading scores and both %poverty and %minority. In fact, if we compute the 
correlation between the variables separately for each grade level, we will note a 
dramatic increase in the value of the correlation coefficient. The values are given 
in Table 3.22.

From Figure 3.36 and the values of the correlation coefficients, we can 
 observe that as the proportion of minority students in the schools increases, there 
is a steady decline in reading scores. The same pattern is observed with respect to 
the proportion of students who are classified as being from a low-income family.

What can we conclude from the information presented above? First, it 
would appear that scores on reading exams tend to decrease as the values of 
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%poverty and %minority increase. Thus, we may be inclined to conclude that 
increasing  values of %poverty and %minority cause a decline in reading scores 
and hence that the teachers in schools with high levels of %poverty and %minor-
ity should have special considerations when teaching evaluations are conducted. 
This type of thinking often leads to very misleading conclusions. There may be 
many other variables involved other than %poverty and %minority that may be 
impacting the reading scores. To conclude that the high levels %poverty and 
%minority in a school will often result in low reading scores cannot be supported 

TABLE 3.22
Correlation between 

reading scores and 
%poverty and %minority

Correlation Between 3rd Grade 4th Grade 5th Grade

Reading Scores and
  %Minority 2.83 2.87 2.75
  %Poverty 2.89 2.92 2.76

FIGURE 3.36
Scatterplot of reading 
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by these data. Much more  information is needed to reach any conclusion having 
this type of certainty.

 3.9 r Instructions

r Commands for Summarizing Data
Suppose we have two data sets:

Data set 1: 2, 6, 8, 12, 219, 30, 0, 25, 7, 16, 23, 38, 229, 35, 1, 228
Data set 2: 9, 2, 24, 42, 9, 23, 23, 26, 5, 22, 214, 51, 65, 3, 216, 23

The following commands will generate plots of the data and summary statistics:

 1. Enter data into R:

x  c(2, 6, 8, 12, 219, 30, 0, 25, 7, 16, 23, 38, 229, 35, 1, 228 )
y  c(9, 2, 24, 42, 9, 23, 23, 26, 5, 22, 214, 51, 65, 3, 216, 23)

2. Mean: mean(x)
3. Median: median(x)
4. Histogram: hist(x)
5. Stem-and-leaf plot: stem(x)
6. Ordered data: sort(x)
7 . Percentiles: quantile(x, seq(0, l, .l))
8. Quantiles at p  .1, .34, .68, .93:

p  c(.1, .34, .68, .93)
quantile (x, p)

9. Interquartile range: IQR(x)
10. Variance: var(x)
  11. Standard deviation: sd(x)
12. MAD: mad(x)
13. Boxplot: boxplot(x)
14. Scatterplot: plot(x, y)
15. Correlation: cor(x, y)
16. Quantile plot:

n  length(x)
i  seq(1 : n)
u  (i 2 .5) / n
s  sort(x)
plot(u, s)

You can obtain more information about any of the R commands—for example, 
plot—by just typing ? plot after the command prompt.

 3.10 Summary and Key Formulas

This chapter was concerned with graphical and numerical description of data. The 
pie chart and bar graph are particularly appropriate for graphically displaying 
data obtained from a qualitative variable. The frequency and relative frequency 
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histograms and stem-and-leaf plots are graphical techniques applicable only to 
quantitative data.

Numerical descriptive measures of data are used to convey a mental image 
of the distribution of measurements. Measures of central tendency include the 
mode, the median, and the arithmetic mean. Measures of variability include the 
range, the interquartile range, the variance, and the standard deviation of a set of 
measurements.

We extended the concept of data description to summarize the relations 
 between two qualitative variables. Here cross-tabulations were used to develop 
percentage comparisons. We examined plots for summarizing the relations 
between quantitative and qualitative variables and between two quantitative vari-
ables.  Material presented here (namely, summarizing relations among variables) 
will be discussed and expanded in later chapters on chi-square methods, on the 
analysis of variance, and on regression.

Key Formulas
Let y1, y2, . . . , yn be a data set of n values with ordered values y(1) # y(2) # . . . # y(n)

1. Sample median ( y|)

If n is odd, y|  yQn 1 1
2 R, middle 

value

If n is even, y|  CyQn
2R 1 yQn

2 11RD , 
average of two middle values

2. Sample median, grouped data

Median < L 1
w
fm

 1.5n 2 cfb 2

3. Sample mean (y)

y 
gn

i1 yi

n

4. Sample mean, grouped data

y <
gk

j1 fj yj

n

5. Sample variance

s2 
1

n 2 1
  a

n

j1
 1yi 2 y 2 2

  6. Sample variance, grouped data

s2 <
1

n 2 1 a
k

j1
 fj 1yj 2 y 2 2

  7 . Sample standard deviation

s  Ës2

  8. Sample coefficient of variation

CV  
s
0y 0

  9. Sample MAD

MAD  median of 1 0y1 2 y| 0 ,
0y2 2 y| 0 , c, 0yn 2 y| 0 2 /.6745

10. Sample correlation coefficient

r 
1

n 2 1gn
i1 1xi 2 x 2 1yi 2 y 2

sx sy

 3.11 exercises

 3.3 Describing Data on a Single Variable: Graphical Methods

 Gov. 3.1  The U.S. government spent more than $3.6 trillion in the 2014 fiscal year. The following 
table provides broad categories that demonstrate the expenditures of the federal government for 
domestic and defense programs.
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 2014 Expenditures 
Federal Program (billions of dollars)

National Defense $612
Social Security $852
Medicare & Medicaid $821
National Debt Interest $253
Major Social-Aid Programs $562
Other $532

 a. Construct a pie chart for these data.
 b. Construct a bar chart for these data.
 c. Construct a pie chart and bar chart using percentages in place of dollars.
 d. Which of the four charts is more informative to the tax-paying public?

 Bus. 3.2  The type of vehicle the U.S public purchases varies depending on many factors. Table 1060 
from the U.S. Census Bureau, Statistical Abstract of the United States: 2012 provides the following 
data. The numbers reported are in thousands of units; that is, 9,300 represents 9,300,000 vehicles 
sold in 1990.

 Year

Type of Vehicle 1990 1995 2000 2005 2006 2007 2008 2009 2010

Passenger Car 9,300 8,500 8,852 7,720 7,821 7,618 6,814 5,456 5,729
SUV/Light Truck 4,560 6,340 8,492 9,228 8,683 8,471 6,382 4,945 5,826

 a. Construct a graph that would display the changes from 1990 to 2010 in the public’s 
choice in vehicle.

 b. Do you observe any trends in the type of vehicle purchased? What factors may be 
influencing these trends?

 Med. 3.3  It has been reported that there has been a change in the type of practice physicians are 
 selecting for their career. In particular, there is concern that there will be a shortage of family 
practice physicians in future years. The following table contains data on the total number of 
 office-based physicians and the number of those physicians declaring themselves to be family 
practice physicians. The numbers in the table are given in thousands of physicians. (Source: U.S. 
Census Bureau, Statistical Abstract of the United States: 2002.)

 Year

 1980 1990 1995 1998 1999 2000 2001

Family Practice  47 .8  57 .6  59.9  64.6  66.2  67 .5  70.0
Total Office-Based Physicians 271.3 359.9 427 .3 468.8 473.2 490.4 514.0

 a.  Use a bar chart to display the increase in the number of family practice physicians 
from 1990 to 2001.

 b.  Calculate the percentage of office-based physicians who are family practice physi-
cians and then display these data in a bar chart.

 c.  Is there a major difference in the trend displayed by the two bar charts?

 env. 3.4  The regulations of the board of health in a particular state specify that the fluoride level 
must not exceed 1.5 parts per million (ppm). The 25 measurements given here represent the 
 fluoride levels for a sample of 25 days. Although fluoride levels are measured more than once per 
day, these data represent the early morning readings for the 25 days sampled.
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.75 .86  .84 .85 .97

.94 .89  .84 .83 .89

.88 .78  .77 .76 .82

.72 .92 1.05 .94 .83

.81 .85 .97 .93 .79

 a. Determine the range of the measurements.
 b.  Dividing the range by 7, the number of subintervals selected, and rounding, we 

have a class interval width of .05. Using .705 as the lower limit of the first interval, 
construct a frequency histogram.

 c.  Compute relative frequencies for each class interval and construct a relative fre-
quency histogram. Note that the frequency and relative frequency histograms for 
these data have the same shape.

 d.  If one of these 25 days were selected at random, what would be the chance (proba-
bility) that the fluoride reading would be greater than .90 ppm? Guess (predict) 
what proportion of days in the coming year will have a fluoride reading greater 
than .90 ppm.

 Gov. 3.5  The National Highway Traffic Safety Administration has studied the use of rear-seat auto-
mobile lap and shoulder seat belts. The number of lives potentially saved with the use of lap and 
shoulder seat belts is shown for various percentages of use.

 Lives Saved Wearing
Percentage
  of Use Lap Belt Only Lap and Shoulder Belt

100 529 678
 80 423 543
 60 318 407
 40 212 271
 20 106 136
 10  85 108

Suggest several different ways to graph these data. Which one seems more appropriate and 
why?

 Soc. 3.6  With the increase in the mobility of the population in the United States and with the increase 
in home-based employment, there is an inclination to assume that the personal income in the 
United States will become fairly uniform across the country. The following table provides the per 
capita personal income for each of the 50 states and the District of Columbia.

 Income
(thousands of dollars) Number of States

 22.0–24.9  5
 25.0–27 .9 13
 28.0–30.9 16
 31.0–33.9  9
 34.0–36.9  4
 37 .0–39.9  2
 40.0–42.9  2
 Total 51
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 a. Construct a relative frequency histogram for the income data.
 b. Describe the shape of the histogram using the standard terminology of 

histograms.
 c.  Would you describe per capita income as being fairly homogenous across the 

United States?

 Med. 3.7  The survival times (in months) for two treatments for patients with severe chronic left- 
ventricular heart failure are given in the following tables.

Standard Therapy New Therapy

 4 15 24 10  1 27 31  5 20 29 15  7 32 36
14  2 16 32  7 13 36 17 15 19 35 10 16 39
29  6 12 18 14 15 18 27 14 10 16 12 13 16
 6 13 21 20  8  3 24  9 18 33 30 29 31 27

 a.  Construct separate relative frequency histograms for the survival times of both 
the therapies.

 b.  Compare the two histograms. Does the new therapy appear to generate a longer 
 survival time? Explain your answer.

  3.8  Combine the data from the separate therapies in Exercise 3.7 into a single data set, and 
construct a relative frequency histogram for this combined data set. Does the plot indicate that 
the data are from two separate populations? Explain your answer.

 Gov. 3.9  Liberal members of Congress have asserted that the U.S. government has been expending 
an increasing portion of the nation's resources on the military and intelligence agencies since 
1960. The following table contains the outlays (in billion of dollars) for the Defense Department 
and associated intelligence agencies since 1960. The data are also given as a percentage of gross 
national product (%GNP).

Year Expenditure %GNP Year Expenditure %GNP

1960 48 9.3 1996 266 3.5
1970 81 8.1 1997 271 3.3
1980 134 4.9 1998 269 3.1
1981 158 5.2 1999 275 3.0
1982 185 5.8 2000 295 3.0
1983 210 6.1 2001 306 3.0
1984 227 6.0 2002 349 3.3
1985 253 6.1 2003 376 3.3
1986 273 6.2 2004 456 3.8
1987 282 6.1 2005 495 3.9
1988 290 5.9 2006 522 3.9
1989 304 5.7 2007 551 3.9
1990 299 5.2 2008 616 4.3
1991 273 4.6 2009 661 4.7
1992 298 4.8 2010 694 4.7
1993 291 4.4 2011 768 5.1
1994 282 4.1 2012 738 4.7
1995 272 3.7   

Source: U.S. Census Bureau, Statistical Abstract of the United States, 2012.
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 a. Plot the defense expenditures time series data and describe any trends across the 
period from 1960 to 2012.

 b. Plot the% GNP time series data and describe any trends across the period from 
1960 to 2012.

 c. Do the two time series have similar trends? Do either of the plots support the 
assertions by the liberal members of Congress?

 d. What factors, domestic or international, do you think may have had an influence 
on your observed trends?

 Soc. 3.10  The following table presents homeownership rates, in percentages, by state for the years 
1985, 1996, and 2002. These values represent the proportion of homes owned by the occupant to 
the total number of occupied homes.

State 1985 1996 2002 State 1985 1996 2002

Alabama 70.4 71.0 73.5 Montana 66.5 68.6 69.3
Alaska 61.2 62.9 67 .3 Nebraska 68.5 66.8 68.4
Arizona 64.7 62.0 65.9 Nevada 57 .0 61.1 65.5
Arkansas 66.6 66.6 70.2 New Hampshire 65.5 65.0 69.5
California 54.2 55.0 58.0 New Jersey 62.3 64.6 67 .2
Colorado 63.6 64.5 69.1 New Mexico 68.2 67 .1 70.3
Connecticut 69.0 69.0 71.6 New York 50.3 52.7 55.0
Delaware 70.3 71.5 75.6 North Carolina 68.0 70.4 70.0
Dist. of Columbia 37 .4 40.4 44.1 North Dakota 69.9 68.2 69.5
Florida 67 .2 67 .1 68.7 Ohio 67 .9 69.2 72.0
Georgia 62.7 69.3 71.7 Oklahoma 70.5 68.4 69.4
Hawaii 51.0 50.6 57 .4 Oregon 61.5 63.1 66.2
Idaho 71.0 71.4 73.0 Pennsylvania 71.6 71.7 74.0
Illinois 60.6 68.2 70.2 Rhode Island 61.4 56.6 59.6
Indiana 67 .6 74.2 75.0 South Carolina 72.0 72.9 77 .3
Iowa 69.9 72.8 73.9 South Dakota 67 .6 67 .8 71.5
Kansas 68.3 67 .5 70.2 Tennessee 67 .6 68.8 70.1
Kentucky 68.5 73.2 73.5 Texas 60.5 61.8 63.8
Louisiana 70.2 64.9 67 .1 Utah 71.5 72.7 72.7
Maine 73.7 76.5 73.9 Vermont 69.5 70.3 70.2
Maryland 65.6 66.9 72.0 Virginia 68.5 68.5 74.3
Massachusetts 60.5 61.7 62.7 Washington 66.8 63.1 67 .0
Michigan 70.7 73.3 76.0 West Virginia 75.9 74.3 77 .0
Minnesota 70.0 75.4 77 .3 Wisconsin 63.8 68.2 72.0
Mississippi 69.6 73.0 74.8 Wyoming 73.2 68.0 72.8
Missouri 69.2 70.2 74.6

Source: U.S. Bureau of the Census, http://www.census.gov/ftp/pub/hhes/www/hvs.html.

 a. Construct relative frequency histogram plots for the homeownership data given in 
the table for the years 1985, 1996, and 2002.

 b. What major differences exist among the plots for the three years?
 c. Why do you think the plots have changed over these 17 years?
 d. How could Congress use the information in these plots for writing tax laws that 

allow major tax deductions for homeownership?

  3.11  Construct a stem-and-leaf plot for the data of Exercise 3.10.

  3.12  Describe the shape of the stem-and-leaf plot and histogram for the homeownership 
data in Exercises 3.10 and 3.11, using the terms modality, skewness, and symmetry in your 
 description.

 Bus. 3.13  A supplier of high-quality audio equipment for automobiles accumulates monthly sales 
data on speakers and receiver–amplifier units for 5 years. The data (in thousands of units per 
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month) are shown in the following table. Plot the sales data. Do you see any overall trend in the 
data? Do there seem to be any cyclic or seasonal effects?

Year J F M A M J J A S O N D

1 101.9  93.0  93.5  93.9 104.9  94.6 105.9 116.7 128.4 118.2 107 .3 108.6
2 109.0  98.4  99.1 110.7 100.2 112.1 123.8 135.8 124.8 114.1 114.9 112.9
3 115.5 104.5 105.1 105.4 117 .5 106.4 118.6 130.9 143.7 132.2 120.8 121.3
4 122.0 110.4 110.8 111.2 124.4 112.4 124.9 138.0 151.5 139.5 127 .7 128.0
5 128.1 115.8 116.0 117 .2 130.7 117 .5 131.8 145.5 159.3 146.5 134.0 134.2

 3.4  Describing Data on a Single Variable: 
Measures of Central tendency

 Basic 3.14  Compute the mean, median, and mode for the following data:

155 25 30 52 142 35 51 26 2 23
270 74 29 29 29 29 51 83 9 69

 Basic 3.15  Compute the mean, median, and mode for the following data:

35 81 96 45 109 126 71 15 8 79 56
73 58 17 82 29 58 68 24 5 24

 Basic 3.16  Refer to the data in Exercise 3.15 with the measurements 109 and 126 replaced by 378 and 
517 . Recompute the mean, median, and mode. Discuss the impact of these extreme measure-
ments on the three measures of central tendency.

 Basic 3.17  Compute a 10% trimmed mean for the data sets in Exercises 3.15 and 3.16. Do the extreme 
values in Exercise 3.16 affect the 10% trimmed mean? Would a 5% trimmed mean be as affected 
by the two extreme values as the 10% trimmed mean?

 Basic 3.18  A data set of 75 values is summarized in the following frequency table. Estimate the mean, 
median, and mode for the 75 data values using the summarized data.

Class Interval Frequency

 2.0–4.9  9
 5.0–7 .9 19
 8.0–10.9 27
 11.0–13.9 10
 14.0–16.9  5
 17 .0–19.9  3
 20.0–22.9  2

 engin. 3.19  A study of the reliability of buses [“Large Sample Simultaneous Confidence Intervals 
for the Multinominal Probabilities on Transformations of the Cell Frequencies,” Technometrics 
(1980) 22:588] examined the reliability of 191 buses. The distance traveled (in 1,000s of miles) 
prior to the first major motor failure was classified into intervals. A modified form of the table 
follows.
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 Distance Traveled
 (1,000s of miles) Frequency

   0–20.0  6
 20.1–40.0 11
 40.1–60.0 16
 60.1–100.0 59
100.1–120.0 46
120.1–140.0 33
140.1–160.0 16
160.1–200.0  4

 a. Sketch the relative frequency histogram for the distance data and describe its 
shape.

 b. Estimate the mode, median, and mean for the distance traveled by the 191 buses.
 c. What does the relationship among the three measures of center indicate about the 

shape of the histogram for these data?
 d. Which of the three measures would you recommend as the most appropriate rep-

resentative of the distance traveled by one of the 191 buses? Explain your answer.

 Med. 3.20  In a study of 1,329 American men reported in American Statistician [(1974) 28:115–122], 
the men were classified by serum cholesterol and blood pressure. The group of 408 men who 
had blood pressure readings less than 127 mm Hg were then classified according to their serum 
 cholesterol level.

Serum Cholesterol
(mg/100cc) Frequency

 0.0–199.9 119
200.0–219.9  88
220.0–259.9 127

greater than 259  74

 a. Estimate the mode, median, and mean for the serum cholesterol readings 
(if possible).

 b. Which of the three summary statistics is most informative concerning a typical 
serum cholesterol level for the group of men? Explain your answer.

 Env. 3.21  The ratio of DDE (related to DDT) to PCB concentrations in bird eggs has been shown 
to have a number of biological implications. The ratio is used as an indication of the movement 
of contamination through the food chain. The paper “The Ratio of DDE to PCB Concentrations in 
Great Lakes Herring Gull Eggs and Its Use in Interpreting Contaminants Data’’ [Journal of Great Lakes 
Research (1998) 24(1):12–31] reports the following ratios for eggs collected at 13 study sites from 
the five Great Lakes. The eggs were collected from both terrestrial- and aquatic-feeding birds.

 DDE to PCB Ratio

Terrestrial Feeders 76.50 6.03 3.51 9.96 4.24 7 .74 9.54 41.70 1.84 2.50 1.54
Aquatic Feeders   0.27 0.61 0.54 0.14 0.63 0.23 0.56  0.48 0.16 0.18

 a. Compute the mean and median for the 21 ratios, ignoring the type of feeder.
 b. Compute the mean and median separately for each type of feeder.
 c. Using your results from parts (a) and (b), comment on the relative sensitivity of 

the mean and median to extreme values in a data set.
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 d. Which measure, mean or median, would you recommend as the more appropriate 
measure of the DDE to PCB level for both types of feeders? Explain your answer.

 Med. 3.22  A study of the survival times, in days, of skin grafts on burn patients was examined by 
Woolson and Lachenbruch [Biometrika (1980) 67:597–606]. Two of the patients left the study 
prior to the failure of their grafts. The survival time for these individuals is some number greater 
than the reported value.

Survival time (days): 37, 19, 57*, 93, 16, 22, 20, 18, 63, 29, 60*

(The “*’’ indicates that the patient left the study prior to failure of the graft; values given are for 
the day the patient left the study.)

 a. Calculate the measures of center (if possible) for the 11 patients.
 b. If the survival times of the two patients who left the study were obtained, how 

would these new values change the values of the summary statistics calculated 
in (a)?

 engin. 3.23  A study of the reliability of diesel engines was conducted on 14 engines. The engines were 
run in a test laboratory. The time (in days) until the engine failed is given here. The study was termi-
nated after 300 days. For those engines that did not fail during the study period, an asterisk is placed 
by the number 300. Thus, for these engines, the time to failure is some value greater than 300.

Failure time (days): 130, 67, 300*, 234, 90, 256, 87, 120, 201, 178, 300*, 106, 289, 74

 a. Calculate the measures of center for the 14 engines.
 b. What are the implications of computing the measures of center when some of the 

exact failure times are not known?

 Gov. 3.24  Effective tax rates (per $100) on residential property for three groups of large cities, 
ranked by residential property tax rate, are shown in the following table.

Group 1 Rate Group 2 Rate Group 3 Rate

Detroit, MI 4.10 Burlington, VT 1.76 Little Rock, AR 1.02
Milwaukee, WI 3.69 Manchester, NH 1.71 Albuquerque, NM 1.01
Newark, NJ 3.20 Fargo, ND 1.62 Denver, CO  .94
Portland, OR 3.10 Portland ME 1.57 Las Vegas, NV  .88
Des Moines, IA 2.97 Indianapolis, IN 1.57 Oklahoma City, OK  .81
Baltimore, MD 2.64 Wilmington, DE 1.56 Casper, WY  .70
Sioux Falls, IA 2.47 Bridgeport, CT 1.55 Birmingham, AL  .70
Providence, RI 2.39 Chicago, IL 1.55 Phoenix, AZ  .68
Philadelphia, PA 2.38 Houston, TX 1.53 Los Angeles, CA  .64
Omaha, NE 2.29 Atlanta, GA 1.50 Honolulu, HI  .59

Source: Government of the District of Columbia, Department of Finance and Revenue, Tax Rates and Tax 
Burdens in the District of Columbia: A Nationwide Comparison (annual).

 a. Compute the mean, median, and mode separately for the three groups.
 b. Compute the mean, median, and mode for the complete set of 30 measurements.
 c. What measure or measures best summarize the center of these distributions? 

Explain.

  3.25  Refer to Exercise 3.24. Average the three group means, the three group medians, and the 
three group modes, and compare your results to those of part (b). Comment on your findings.

 3.5 Describing Data on a Single Variable: Measures of Variability

 engin. 3.26  Pushing economy and wheelchair-propulsion technique were examined for eight  wheelchair 
racers on a motorized treadmill in a paper by Goosey and Campbell [Adapted Physical  Activity 
Quarterly (1998) 15:36–50]. The eight racers had the following years of  racing experience:



3.11 exercises    133

Racing experience (years): 6, 3, 10, 4, 4, 2, 4, 7

 a. Verify that the mean years of experience is 5 years. Does this value appear to 
adequately represent the center of the data set?

 b. Verify that g i 1y 2 y 2 2  g i 1y 2 5 2 2  46.
 c. Calculate the sample variance and standard deviation for the experience data. 

How would you interpret the value of the standard deviation relative to the  
sample mean?

  3.27  In the study described in Exercise 3.26, the researchers also recorded the ages of the eight 
racers.

Age (years): 39, 38, 31, 26, 18, 36, 20, 31

 a. Calculate the sample standard deviation of the eight racers’ ages.
 b. Why would you expect the standard deviation of the racers’ ages to be larger than 

the standard deviation of their years of experience?

 engin. 3.28  For the data in Exercises 3.26 and 3.27,
 a. Calculate the coefficient of variation (CV) for both the racers’ ages and their 

years of experience. Are the two CVs relatively the same? Compare their relative 
sizes to the relative sizes of their standard deviations.

 b. Estimate the standard deviations for both the racers’ ages and their years of 
experience by dividing the ranges by 4. How close are these estimates to the 
standard deviations calculated in Exercises 3.26 and 3.27?

 Med. 3.29  The treatment times (in minutes) for patients at a health clinic are as follows:

21 20 31 24 15 21 24 18 33  8
26 17 27 29 24 14 29 41 15 11
13 28 22 16 12 15 11 16 18 17
29 16 24 21 19  7 16 12 45 24
21 12 10 13 20 35 32 22 12 10

Construct the quantile plot for the treatment times for the patients at the health clinic.
 a. Find the 25th percentile for the treatment times and interpret this value.
 b. The health clinic advertises that 90% of all its patients have a treatment time of 

40 minutes or less. Do the data support this claim?

 env. 3.30  To assist in estimating the amount of lumber in a tract of timber, an owner decided to 
count the number of trees with diameters exceeding 12 inches in randomly selected 50 3 50-foot 
squares. Seventy 50 3 50 squares were randomly selected from the tract and  the number of trees 
(with diameters in excess of 12 inches) was counted for each. The data are as follows:

 7 8  6  4  9 11 9 9  9 10
 9 8 11  5  8  5 8 8  7  8
 3 5  8  7 10  7 8 9  8 11
10 8  9  8  9  9 7 8 13  8
 9 6  7  9  9  7 9 5  6  5
 6 9  8  8  4  4 7 7  8  9
10 2  7 10  8 10 6 7  7  8

 a. Construct a relative frequency histogram to describe these data.
 b. Calculate the sample mean y as an estimate of m, the mean number of timber 

trees with diameter exceeding 12 inches for all 50 3 50 squares in the tract.
 c. Calculate s for the data. Construct the intervals 1y 6 s 2 , 1y 6 2s 2 , and 1y 6 3s 2 . 

Count the percentages of squares falling in each of the three intervals, and 
compare these percentages with the corresponding percentages given by the 
Empirical Rule.
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 Bus. 3.31  Consumer Reports in its June 1998 issue reports on the typical daily room rate at six luxury 
and nine budget hotels. The room rates are given in the following table.

Luxury Hotel $175 $180 $120 $150 $120 $125
Budget Hotel  $50  $50  $49  $45  $36  $45 $50 $50 $40

 a. Compute the mean and standard deviation of the room rates for both luxury and 
budget hotels.

 b. Verify that luxury hotels have a more variable room rate than budget hotels.
 c. Give a practical reason why the luxury hotels are more variable than the budget 

hotels.
 d. Might another measure of variability be better to compare luxury and budget 

hotel rates? Explain.

 Env. 3.32  Many marine phanerogam species are highly sensitive to changes in environmental con
ditions. In the article “Posidonia oceanica: A Biological Indicator of Past and Present Mercury 
Contamination in the Mediterranean Sea’’ [Marine Environmental Research, March 1998 
45:101–111], the  researchers report the mercury concentrations over a period of about 20 years 
at several locations in the Mediterranean Sea. Samples of Posidonia oceanica were collected by 
scuba diving at a depth of 10 meters. For each site, 45 orthotropic shoots were sampled and the 
mercury concentration was determined. The average mercury concentration is recorded in the 
following table for each of the sampled years.

Mercury Concentration (ng/g dry weight)

 Site 1 Site 2 
Year Calvi Marseilles-Coriou

1992 14.8  70.2
1991 12.9 160.5
1990 18.0 102.8
1989 8.7 100.3
1988 18.3 103.1
1987 10.3 129.0
1986 19.3 156.2
1985 12.7 117 .6
1984 15.2 170.6
1983 24.6 139.6
1982 21.5 147 .8
1981 18.2 197 .7
1980 25.8 262.1
1979 11.0 123.3
1978 16.5 363.9
1977 28.1 329.4
1976 50.5 542.6
1975 60.1 369.9
1974 96.7 705.1
1973 100.4 462.0
1972 * 556.1
1971 * 461.4
1970 * 628.8
1969 * 489.2
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 a. Generate a time-series plot of the mercury concentrations and place lines for both 
sites on the same graph. Comment on any trends in the lines across the years of 
data. Are the trends similar for both sites?

 b. Select the most appropriate measure of center for the mercury concentrations. 
Compare the centers for the two sites.

 c. Compare the variabilities of the mercury concentrations at the two sites. Use the 
CV in your comparison, and explain why it is more appropriate than using the 
standard  deviations.

 d. When comparing the centers and variabilities of the two sites, should the years 
1969–1972 be used for site 2?

 3.6 the Boxplot

 Med. 3.33  Construct a boxplot for the following measurements:

33, 31, 19, 25, 23, 27, 11, 9, 29, 3, 17, 9, 2, 5, 8, 2, 9, 1, 3

 Med. 3.34  The following data are the resting pulse rates for 30 randomly selected individuals who 
were participants at a 10K race.

49 40 59 56 55 70 49 59 55 49 58 54 55 72 51
54 56 55 65 57 61 41 52 60 49 57 46 55 63 55

 a. Construct a stem-and-leaf plot of the pulse rates.
 b. Construct a boxplot of the pulse rates.
 c. Describe the shape of the distribution of the pulse rates.
 d. The boxplot provides information about the distribution of pulse rates for what 

population?

 Bus. 3.35  Consumer Reports in its May 1998 issue provides cost per daily feeding for 28 brands of dry 
dog food and 23 brands of canned dog food. Using the Minitab computer program, the following 
side-by-side boxplot for these data was created.

  

*

*

*

DRYCAN

0

.5

2.5

3.5

TYPE

C
O
S
T

3.0

2.0

1.5

1.0

DOG FOOD COSTS BY TYPE OF FOOD

 a. From these graphs, determine the median, lower quartile, and upper quartile for 
the daily costs of both dry and canned dog food.

 b. Comment on the similarities and differences in the distributions of daily costs for 
the two types of dog food.

 3.7  Summarizing Data from More than One Variable: 
Graphs and Correlation

 Soc. 3.36  For the homeownership rates given in Exercise 3.10, construct separate boxplots for the 
years 1985, 1996, and 2002.
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 a. Describe the distributions of homeownership rates for each of the 3 years.
 b. Compare the descriptions given in part (a) to the descriptions given in  

Exercise 3.10.

 Soc. 3.37  Compute the mean, median, and standard deviation for the homeownership rates given in 
Exercise 3.10.

 a. Compare the mean and median for the 3 years of data. Which value, mean or 
median, is more appropriate for these data sets? Explain your answers.

 b. Compare the degrees of variability in homeownership rates over the 3 years.

 Soc. 3.38  For the boxplots constructed for the homeownership rates given in Exercise 3.36, place the 
three boxplots on the same set of axes.

 a. Use this side-by-side boxplot to discuss changes in the median homeownership 
rate over the 3 years.

 b. Use this side-by-side boxplot to discuss changes in the variation in these rates over 
the 3 years.

 c. Are there any states that have extremely low homeownership rates?
 d. Are there any states that have extremely high homeownership rates?

 Soc. 3.39  In the paper “Demographic Implications of Socioeconomic Transition Among the Tribal Popu-
lations of Manipur, India’’ [ Human Biology (1998) 70(3):597–619], the authors describe the tre-
mendous changes that have taken place in all the tribal populations of Manipur, India, since the 
beginning of the twentieth century. The tribal populations of Manipur are in the process of socio-
economic transition from a traditional subsistence economy to a market-oriented economy. The 
following table displays the relation between literacy level and subsistence group for a sample of 
614 married men and women in Manipur, India.

Literacy Level

   At Least  
Subsistence Group Illiterate Primary Schooling Middle School

Shifting Cultivators 114 10  45
Settled Agriculturists  76  2  53
Town Dwellers  93 13 208

 a. Graphically depict the data in the table using a stacked bar graph.
 b. Do a percentage comparison based on the row and column totals. What conclu-

sions do you reach with respect to the relation between literacy and subsistence 
group?

 engin. 3.40  In the manufacture of soft contact lenses, the power (the strength) of the lens needs to be 
very close to the target value. In the paper “An ANOM-Type Test for Variances from Normal Pop-
ulations’’ [Technometrics (1997) 39:274–283], a comparison of several suppliers is made  relative 
to the consistency of the power of the lens. The following table contains the deviations from the 
target power value of lenses produced using materials from three different suppliers:

Supplier Deviations from Target Power Value

1 189.9 191.9 190.9 183.8 185.5 190.9 192.8 188.4 189.0
2 156.6 158.4 157 .7 154.1 152.3 161.5 158.1 150.9 156.9
3 218.6 208.4 187 .1 199.5 202.0 211.1 197 .6 204.4 206.8

 a. Compute the mean and standard deviation for the deviations of each supplier.
 b. Plot the sample deviation data.
 c. Describe the deviation from specified power for the three suppliers.
 d. Which supplier appears to provide material that produces lenses having power 

closest to the target value?
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 Bus. 3.41  The federal government keeps a close watch on money growth versus targets that have 
been set for that growth. We list two measures of the money supply in the United States, M2 
(private checking deposits, cash, and some savings) and M3 (M2 plus some investments), which 
are given here for 20 consecutive months.

 Money Supply Money Supply
 (in trillions (in trillions 
 of dollars) of dollars)

Month M2 M3 Month M2 M3

 1 2.25 2.81 11 2.43 3.05
 2 2.27 2.84 12 2.42 3.05
 3 2.28 2.86 13 2.44 3.08
 4 2.29 2.88 14 2.47 3.10
 5 2.31 2.90 15 2.49 3.10
 6 2.32 2.92 16 2.51 3.13
 7 2.35 2.96 17 2.53 3.17
 8 2.37 2.99 18 2.53 3.18
 9 2.40 3.02 19 2.54 3.19
10 2.42 3.04 20 2.55 3.20

 a. Would a scatterplot describe the relation between M2 and M3?
 b. Construct a scatterplot. Is there an obvious relation?

  3.42  Refer to Exercise 3.41. What other data plot might be used to describe and summarize 
these data? Make the plot and interpret your results.

Supplementary Exercises

 Env. 3.43  To control the risk of severe core damage during a commercial nuclear power station 
blackout accident, the reliability of the emergency diesel generators in starting on demand must 
be maintained at a high level. The paper “Empirical Bayes Estimation of the Reliability of Nuclear-
Power Emergency Diesel Generators” [ Technometrics (1996) 38:11–23] contains data on the 
failure history of seven nuclear power plants. The following data are the number of successful 
demands between failures for the diesel generators at one of these plants from 1982 to 1988.

28 50 193 55 4 7 147 76 10 0 10 84 0 9 1 0 62
26 15 226 54 46 128 4 105 40 4 273 164 7 55 41 26 6

(Note: The failure of the diesel generator does not necessarily result in damage to the nuclear 
core because all nuclear power plants have several emergency diesel generators.)

 a. Calculate the mean and median of the successful demands between failures.
 b. Which measure appears to best represent the center of the data?
 c. Calculate the range and standard deviation, s.
 d. Use the range approximation to estimate s. How close is the approximation to the 

true value?
 e. Construct the intervals

y 6 s          y 6 2s          y 6 3s

  Count the number of demands between failures falling in each of the three inter-
vals. Convert these numbers to percentages and compare your results to the 
Empirical Rule.

 f. Why do you think the Empirical Rule and your percentages do not match well?

 Edu. 3.44  The College of Dentistry at the University of Florida has made a commitment to develop 
its entire curriculum around the use of self-paced instructional materials such as videotapes, slide 
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tapes, and syllabi. It is hoped that each student will proceed at a pace commensurate with his 
or her ability and that the instructional staff will have more free time for personal consultation 
in student–faculty interaction. One such instructional module was developed and tested on the 
first 50 students proceeding through the curriculum. The following measurements represent the 
number of hours it took these students to complete the required modular material.

16  8 33 21 34 17 12 14 27  6
33 25 16  7 15 18 25 29 19 27
 5 12 29 22 14 25 21 17  9  4
12 15 13 11  6  9 26  5 16  5
 9 11  5  4  5 23 21 10 17 15

 a. Calculate the mode, the median, and the mean for these recorded completion 
times.

 b. Guess the value of s.
 c. Compute s by using the shortcut formula and compare your answer to that of 

part (b).
 d. Would you expect the Empirical Rule to describe adequately the variability of 

these data? Explain.

 Bus. 3.45  The February 1998 issue of Consumer Reports provides data on the price of 24 brands of 
paper towels. The prices are given in both cost per roll and cost per sheet because the brands had 
varying numbers of sheets per roll.

Brand Price per Roll Number of Sheets per Roll Cost per Sheet

 1 1.59  50 .0318
 2 0.89  55 .0162
 3 0.97  64 .0152
 4 1.49  96 .0155
 5 1.56  90 .0173
 6 0.84  60 .0140
 7 0.79  52 .0152
 8 0.75  72 .0104
 9 0.72  80 .0090
10 0.53  52 .0102
11 0.59  85 .0069
12 0.89  80 .0111
13 0.67  85 .0079
14 0.66  80 .0083
15 0.59  80 .0074
16 0.76  80 .0095
17 0.85  85 .0100
18 0.59  85 .0069
19 0.57  78 .0073
20 1.78 180 .0099
21 1.98 180 .0100
22 0.67 100 .0067
23 0.79 100 .0079
24 0.55  90 .0061

 a. Compute the standard deviation for both the price per roll and the price per 
sheet.

 b. Which is more variable, price per roll or price per sheet?
 c. In your comparison in part (b), should you use s or CV? Justify your answer.
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  3.46  Refer to Exercise 3.45. Use a scatterplot to plot the price per roll and number of sheets  
per roll.

 a. Do the 24 points appear to fall on a straight line?
 b. If not, is there any other relation between the two prices?
 c. What factors may explain why the ratio of price per roll to number of sheets is not 

a constant?

  3.47  Refer to Exercise 3.45. Construct boxplots for both price per roll and number of sheets per 
roll. Are there any “unusual” brands in the data?

 Env. 3.48  The paper “Conditional Simulation of Waste-Site Performance” [ Technometrics (1994) 36: 
129–161] discusses the evaluation of a pilot facility for demonstrating the safe management, stor-
age, and disposal of defense-generated, radioactive, transuranic waste. Researchers have deter-
mined that one potential pathway for release of radionuclides is through contaminant transport 
in groundwater. Recent focus has been on the analysis of transmissivity, a function of the proper-
ties and the thickness of an aquifer that reflects the rate at which water is transmitted through 
the aquifer. The following table contains 41 measurements of transmissivity, T, made at the pilot 
facility.

9.354 6.302 24.609 10.093 0.939 354.81 15399.27 88.17 1253.43 0.75 312.10
  1.94 3.28 1.32 7 .68 2.31 16.69 2772.68 0.92 10.75 0.000753
  1.08 741.99 3.23 6.45 2.69 3.98 2876.07 12201.13 4273.66 207 .06
  2.50 2.80 5.05 3.01 462.38 5515.69 118.28 10752.27 956.97 20.43

 a. Draw a relative frequency histogram for the 41 values of T.
 b. Describe the shape of the histogram.
 c. When the relative frequency histogram is highly skewed to the right, the 

Empirical Rule may not yield very accurate results. Verify this statement for the 
data given.

 d. Data analysts often find it easier to work with mound-shaped relative frequency 
histograms. A transformation of the data will sometimes achieve this shape. 
Replace the given 41 T values with the logarithm base 10 of the values and recon-
struct the relative frequency histogram. Is the shape more mound-shaped than the 
original data? Apply the Empirical Rule to the transformed data, and verify that 
it yields more accurate  results than it did with the original data.

 Soc. 3.49  A random sample of 90 standard metropolitan statistical areas (SMSAs) was studied to 
obtain information on murder rates. The murder rates (number of murders per 100,000 people) 
were recorded, and these data are summarized in the following frequency table.

Class Interval fi Class Interval fi

 2.5–1.5  2 13.5–15.5 9
  1.5–3.5 18 15.5–17 .5 4
  3.5–5.5 15 17 .5–19.5 2
  5.5–7 .5 13 19.5–21.5 1
   7 .5–9.5  9 21.5–23.5 1
  9.5–11.5  8 23.5–25.5 1
 11.5–13.5  7

Construct a relative frequency histogram for these data.

  3.50  Refer to the data of Exercise 3.49.
 a. Estimate the sample mean, sample median, and sample mode.
 b. Which measure of center would you recommend using as a measure of the center 

of the distribution for the murder rates?
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  3.51  Refer to the data of Exercise 3.49.
 a. Estimate the interquartile range and the sample standard deviation.
 b. Which measure of variation would you recommend using as a measure of the vari-

ation in the murder rates?
 c. Identify the population to which the measures of center and variation would be 

reasonable estimators.

 Gov. 3.52  Refer to the homeownership data in Exercise 3.10.
 a. Construct a quantile plot for each of the 3 years of data. Place these plots on the 

same set of axes.
 b. Congress wants to develop special programs for those states having low 

homeownership percentages. Which states fell into the lower 10th percentile of 
homeownership during 2002?

 c. Was there a change in the states falling into the 10th percentile during the 3 years, 
1985, 1996, and 2002?

 Gov. 3.53  Refer to the homeownership data in Exercise 3.10.
 a. Compute mean and median homeownership percentages during the 3 years.
 b. Which measure best represents the average homeownership percentage during 

each of the 3 years?
 c. Compute standard deviation and MAD homeownership percentage during the 

3 years.
 d. Which measure best represents the variation in homeownership percentages 

across the U.S during each of the 3 years?
 e. Describe the change in the percentage of homes owned by the occupant over the 

3 years.

 engin. 3.54  The Insurance Institute for Highway Safety published data on the total damage suffered 
by compact automobiles in a series of controlled, low-speed collisions. The data, in dollars, with 
brand names removed are as follows:

361 393 430 543 566 610 763 851
886 887 976 1,039 1,124 1,267 1,328 1,415

1,425 1,444 1,476 1,542 1,544 2,048 2,197

 a. Draw a histogram of the data using six or seven categories.
 b. On the basis of the histogram, what would you guess the mean to be?
 c. Calculate the median and mean.
 d. What does the relation between the mean and median indicate about the shape of 

the data?

 Soc. 3.55  Data are collected on the weekly expenditures of a sample of urban households on food 
(including restaurant expenditures). The data, obtained from diaries kept by each household, are 
grouped by number of members of the household. The expenditures are as follows:

1 member: 67 62 168 128 131 118  80 53 99 68
 76 55 84 77 70 140 84 65 67 183
2 members: 129 116 122 70 141 102 120 75 114 81 106 95
 94 98 85 81 67 69 119 105 94 94 92
3 members: 79 99 171 145 86 100 116 125
 82 142 82 94 85 191 100 116
4 members: 139 251 93 155 158 114 108
 111 106 99 132 62 129 91
51 members: 121 128 129 140 206 111 104 109 135 136

 a. Compute the mean expenditure separately for each of the five groups.
 b. Combine the five data sets into a single data set and then compute the mean 

expenditure.
 c. Describe a method by which the mean for the combined data set could be obtained 

from the five individual means.
 e. Describe the relation (if any) among the mean expenditures for the five groups.
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  3.56  Refer to the data of Exercise 3.55.
 a. Compute the standard deviation in the expenditures separately for each of the 

five groups.
 b. Combine the five data sets into a single data set and then compute the standard 

deviation in expenditures.
 c. Describe a method by which the standard deviation for the combined data set 

could be obtained from the five individual standard deviations.
 d. Which group appears to have the largest variability in expenditures?

 Gov. 3.57  Federal authorities have destroyed considerable amounts of wild and cultivated marijuana 
plants. The following table shows the number of plants destroyed and the number of arrests for a 
12-month period for 15 states.

State Plants Arrests

 1 110,010 280
 2 256,000 460
 3 665 6
 4 367,000 66
 5 4,700,000 15
 6 4,500 8
 7 247,000 36
 8 300,200 300
 9 3,100 9
10 1,250 4
11 3,900,200 14
12 68,100 185
13 450 5
14 2,600 4
15 205,844 33

 a. Discuss the appropriateness of using the sample mean to describe these two 
variables.

 b. Compute the sample mean, 10% trimmed mean, and 20% trimmed mean. Which 
trimmed mean seems more appropriate for each variable? Why?

 c. Does there appear to be a relation between the number of plants destroyed 
and the number of arrests? How might you examine this question? What other 
variable(s) might be related to the number of plants destroyed?

 Bus. 3.58  The most widely reported index of the performance of the New York Stock Exchange 
(NYSE) is the Dow Jones Industrial Average (DJIA). This index is computed from the stock 
prices of 30 companies. When the DJIA was invented in 1896, the index was the average price 
of 12 stocks. The index was modified over the years as new companies were added and dropped 
from the index and was also altered to reflect when a company splits its stock. The closing New 
York Stock Exchange (NYSE) prices for the 30 components (as of June 19, 2014) of the DJIA are 
given in the following table.

 a. Compute the average price of the 30 stock prices in the DJIA.
 b. The DJIA is no longer an average; the name includes the word “average” only for 

historical reasons. The index is computed by summing the stock prices and divid-
ing by a constant, which is changed when stocks are added or removed from the 
index and when stocks split.

DJIA 
g30

i1 yi

C
  where yi is the closing price for stock i and C  0.155625. Using the stock prices 

given, compute the DJIA for June 19, 2014.
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 c. The DJIA is a summary of data. Does the DJIA provide information about a popula-
tion using sampled data? If so, to what population? Is the sample a random sample?

 Components of DJIA

Company Stock Price (Noon 6/19/2014)

3M Co 144.41
American Express Co 94.72
AT&T Inc 35.31
Boeing Co 132.41
Caterpillar Inc 107 .28
Chevron Corp 130.73
Cisco Systems Inc 24.63
E.I. Dupont de Nemours and Co 67 .55
Exxon Mobil Corp 101.85
General Electric Co 26.90
Goldman Sachs Group Inc 169.52
Home Depot Inc 80.10
Intel Corp 29.99
IBM 182.95
Johnson & Johnson 103.41
JP Morgan Chase and Co 57 .36
McDonald’s Corp l01.60
Merck & Co Inc 58.27
Microsoft Corp 41.45
Nike Inc 75.43
Pfizer 29.55
Procter & Gamble Co 80.28
The Coca-Cola Co 41.76
Travelers Companies Inc 95.51
United Technologies Corp 117 .09
United Health Group lnc 79.88
Verizon Communications Inc 49.47
Visa Inc 208.30
Wal-Mart Stores Inc 76.25
Walt Disney Co 83.69

 h.r. 3.59  As one part of a review of middle-manager selection procedures, a study was made of 
the relation between the hiring source (promoted from within, hired from related business, 
hired from unrelated business) and the 3-year job history (additional promotion, same position, 
resigned, dismissed). The data for 120 middle managers follow.

 Source

Job History Within Firm Related Business Unrelated Business Total

Promoted 13  4 10  27
Same Position 32  8 18  58
Resigned  9  6 10  25
Dismissed  3  3  4  10

Total 57 21 42 120
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 a. Compute the job-history percentages within each of the three sources.
 b. Describe the relation between job history and source.
 c. Use an appropriate graph to display the relation between job history and  

source.

 env. 3.60  In order to assess the U.S. public's opinion about national energy policy, random samples 
were taken of 150 residents of major coal-producing states, 200 residents of major natural gas/
oil-producing states, and 450 residents of the remaining states. Each resident was asked to select 
his or her most preferred national energy policy. The results are shown in the following table.

Type of State

Energy Policy Coal Oil & Gas Other Total

Coal Based 62 25 53 140
Oil & Gas Based 19 79 102 200
Nuclear Based 8 6 22 36
Solar & Wind Based 58 78 247 383
Fusion Based 3 12 26 41

Total 150 200 450 800

 a. Replace the number of responses in the table with the five percentages for each of 
the three groups of respondents.

 b. Based on the percentages, does there appear to be a strong dependence between 
the type of state and the energy policy?

 c. Provide a graphical display of the dependency.
 d. Which energy policy has the strongest support amongst the 800 surveyed  

people?
 e. Do the opinions displayed in the above table represent the U.S. public’s opinion 

in general?

 Bus. 3.61  A municipal workers’ union that represents sanitation workers in many small midwestern 
cities studied the contracts that were signed in the previous years. The contracts were subdivided 
into those settled by negotiation without a strike, those settled by arbitration without a strike, 
and those settled after a strike. For each contract, the first-year percentage wage increase was 
determined. Summary figures follow.

Contract Type Negotation Arbitration Poststrike

Mean Percentage Wage Increase 8.20 9.42 8.40
Variance 0.87 1.04 1.47
Standard Deviation 0.93 1.02 1.21
Sample Size 38 16 6

Does there appear to be a relationship between contract type and mean percentage wage 
 increase? If you were management rather than union affiliated, which posture would you take 
in future  contract negotiations?

 Med. 3.62  Refer to the epilepsy study data in Table 3.19. Examine the scatterplots of Y1, Y2, Y3, and  
Y4 versus baseline count and age given here.

 a. Does there appear to be a difference in the relationship between the seizure count 
(Y1 2 Y4) and either the baseline count or age when considering the two groups 
(treatment and placebo)?

 b. Describe the type of apparent differences, if any, that you found in part (a).
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 Med. 3.63  The correlations computed for the six variables in the epilepsy study are given here. Do 
the sizes of the correlation coefficients reflect the relationships displayed in the graphs given in 
Exercise 3.62? Explain your answer.

 Placebo Group

 Y1 Y2 Y3 Y4     Base

Y2 .782   
Y3 .507 .661  
Y4 .675 .780 .676 
Base .744 .831 .493 .818
Age .326 .108 .113 .117 .033

 Treatment Group

 Y1 Y2 Y3 Y4     Base

Y2 .907   
Y3 .912 .925  
Y4 .971 .947 .952 
Base .854 .845 .834 .876
Age 2.141 2.243 2.194 2.197 2.343

 Med. 3.64  An examination of the scatterplots in Exercise 3.62 reveals one patient with a very large 
value for baseline count and all subsequent counts. The patient has ID 207 .

 a. Predict the effect of removing the patient with ID 207 from the data set on the 
size of the correlations in the treatment group.

 b. Using a computer program, compute the correlations with patient ID 207 
removed from the data. Do the values confirm your predictions?

 Med. 3.65  Refer to the research study concerning the effect of social factors on reading and math 
scores in Section 3.8. We justified studying just the reading scores because there was a strong cor-
relation between reading and math scores. Construct the same plots for the math scores as were 
constructed for the reading scores.
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 a. Is there support for the same conclusions for the math scores as obtained for the 
reading scores?

 b. If the conclusions are different, why do you suppose this has happened?

 Med. 3.66  In the research study concerning the effect of social factors on reading and math scores, 
we found a strong negative correlation between %minority and %poverty and reading scores in 
Section 3.8.

 a. Why is it not possible to conclude that large relative values for %minority and 
%poverty in a school result in lower reading scores for children in these social 
classes?

 b.  List several variables related to the teachers and students in the schools that may 
be important in explaining why low reading scores were strongly associated with 
schools having large values of %minority and %poverty.

 Soc. 3.67  In the January 2004  issue of Consumer Reports, an article titled “Cut the Fat” described 
some of the possible problems in the diets of the U.S. public. The following table gives data on 
the increase in daily calories in the food supply per person. Construct a time-series plot to display 
the increase in calorie intake.

Year 1970 1975 1980 1985 1990 1995 2000
Calories 3,300 3,200 3,300 3,500 3,600 3,700 3,900

 a. Describe the trend in calorie intake over the 30 years.
 b. What would you predict the calorie intake was in 2005? Justify your answer by 

 explaining any assumptions you are making about calorie intake.

 Soc. 3.68  In the January 2004 issue of Consumer Reports, an article titled “Cut the Fat” described 
some of the possible problems in the diets of the U.S. public. The following table gives data on the 
increase in pounds of added sugar produced per person. Construct a time-series plot to display 
the increase in sugar production.

Year 1970 1975 1980 1985 1990 1995 2000
Pounds of Sugar   119   114   120   128   132   144   149

 a. Describe the trend in sugar production over the 30 years.
 b. Compute the correlation coefficient between calorie intake (using the data in 

Exercise 3.67) and sugar production. Is there strong evidence that the increase in 
sugar production is causing the increased calorie intake by the U.S. public?

 Med. 3.69  Certain types of diseases tend to occur in clusters. In particular, persons affected with 
AIDS, syphilis, and tuberculosis may have some common characteristics and associations that 
increase their chances of contracting these diseases. The following table lists the number of 
reported cases by state in 2001.

State AIDS Syphilis Tuber. State AIDS Syphilis Tuber.

AL 438 720 265 MT 15 0 20
AK 18 9 54 NE 74 16 40
AZ 540 1,147 289 NV 252 62 96
AR 199 239 162 NH 40 20 20
CA 4,315 3,050 3,332 NJ 1,756 1,040 530
CO 288 149 138 NM 143 73 54
CT 584 165 121 NY 7,476 3,604 1,676
DE 248 79 33 NC 942 1,422 398

(continued)
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State AIDS Syphilis Tuber. State AIDS Syphilis Tuber.

DC 870 459 74 ND 3 2 6
FL 5,138 2,914 1,145 OH 581 297 306
GA 1,745 1,985 575 OK 243 288 194
HI 124 41 151 OR 259 48 123
ID 19 11 9 PA 1,840 726 350
IL 1,323 1,541 707 RI 103 39 60
IN 378 529 115 SC 729 913 263
IA 90 44 43 SD 25 1 13
KS 98 88 63 TN 602 1,478 313
KY 333 191 152 TX 2,892 3,660 1,643
LA 861 793 294 UT 124 25 35
ME 48 16 20 VT 25 8 7
MD 1,860 937 262 VA 951 524 306
MA 765 446 270 WA 532 174 261
MI 548 1,147 330 WV 100 7 32
MN 157 132 239 WI 193 131 86
MS 418 653 154 WY 5 4 3
MO 445 174 157 All States 41,868 32,221 15,989

 a. Construct a scatterplot of the number of AIDS cases versus the number of syphilis 
cases.

 b. Compute the correlation between the number of AIDS cases and the number of 
syphilis cases.

 c. Does the value of the correlation coefficient reflect the degree of association 
shown in the scatterplot?

 d. Why do you think there may be a correlation between these two diseases?

 Med. 3.70  Refer to the data in Exercise 3.69.
 a. Construct a scatterplot of the number of AIDS cases versus the number of tuber-

culosis cases.
 b. Compute the correlation between the number of AIDS cases and the number of 

 tuberculosis cases.
 c. Why do you think there may be a correlation between these two diseases?

 Med. 3.71  Refer to the data in Exercise 3.69.
 a. Construct a scatterplot of the number of syphilis cases versus the number of 

 tuberculosis cases.
 b. Compute the correlation between the number of syphilis cases and the number of 

 tuberculosis cases.
 c. Why do you think there may be a correlation between these two diseases?

 Med. 3.72  Refer to the data in Exercise 3.69.
 a. Construct a quantile plot of the number of syphilis cases.
 b. From the quantile plot, determine the 90th percentile for the number of syphilis 

cases.
 c. Identify the states in which the number of syphilis cases is above the 90th 

percentile.

 Med. 3.73  Refer to the data in Exercise 3.69.
 a. Construct a quantile plot of the number of tuberculosis cases.
 b. From the quantile plot, determine the 90th percentile for the number of tubercu-

losis cases.
 c. Identify the states in which the number of tuberculosis cases is above the 90th 

percentile.
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 Med. 3.74  Refer to the data in Exercise 3.69.
 a. Construct a quantile plot of the number of AIDS cases.
 b. From the quantile plot, determine the 90th percentile for the number of AIDS 

cases.
 c. Identify the states in which the number of AIDS cases is above the 90th 

percentile.

 Med. 3.75  Refer to the results from Exercises 3.72–3.74.
 a. How many states had numbers of AIDS, tuberculosis, and syphilis cases that were 

all above the 90th percentiles?
 b. Identify these states and comment on any common elements among the  

states.
 c. How could the U.S. government apply the results from Exercises 3.69–3.75 in 

making public health policy?

 Med. 3.76  The article “Viral Load and Heterosexual Transmission of Human Immunodeficiency Virus 
Type 1” [ New England Journal of Medicine (2000) 342:921–929], reports a study that addressed 
the question of whether people with high levels of HIV-1 are significantly more likely to transmit 
HIV to their uninfected partners. Measurements follow of the HIV-1 RNA levels in the group 
whose partners were initially uninfected but became HIV positive during the course of the study: 
values are given in units of RNA copies/mL.

79725, 12862, 18022, 76712, 256440, 14013, 46083, 6808, 85781, 1251, 

6081, 50397, 11020, 13633 1064, 496433, 25308, 6616, 11210, 13900

 a. Determine the mean, median, and standard deviation.
 b. Find the 25th, 50th, and 75th percentiles.
 c. Plot the data in a boxplot and histogram.
 d. Describe the shape of the distribution.

 Med. 3.77  In many statistical procedures, it is often advantageous to have a symmetric distribution. 
When the data have a histogram that is highly right-skewed, it is often possible to obtain a sym-
metric distribution by taking a transformation of the data. For the data in Exercise 3.76, take the 
natural logarithm of the data and answer the following questions.

 a. Determine the mean, median, and standard deviation.
 b. Find the 25th, 50th, and 75th percentiles.
 c. Plot the data in a boxplot and histogram.
 d. Did the logarithm transformation result in a somewhat symmetric distribution?

 env. 3.78  PCBs are a class of chemicals often found near the disposal of electrical devices. PCBs tend 
to concentrate in human fat and have been associated with numerous health problems. In the 
article “Some Other Persistent Organochlorines in Japanese Human Adipose Tissue” [ Environ-
mental Health Perspective (April, 2000) 108:599—603], researchers examined the concentra-
tions of PCB (ng/g) in the fat of a group of adults. They detected the following concentrations:

1800, 1800, 2600, 1300, 520, 3200, 1700, 2500, 560, 930, 2300, 2300, 1700, 720

 a. Determine the mean, median, and standard deviation.
 b. Find the 25th, 50th, and 75th percentiles.
 c. Plot the data in a boxplot.
 d. Would it be appropriate to apply the Empirical Rule to these data? Why or 

why not?

 ag. 3.79  The focal point of an agricultural research study was the relationship between the time a 
crop is planted and the amount of crop harvested. If a crop is planted too early or too late, farm-
ers may fail to obtain optimal yield and hence not make a profit. An ideal date for planting is 
set by the  researchers, and the farmers then record the number of days either before or after the 
designated date. In the following data set, D is the number of days from the ideal planting date 
and Y is the yield (in bushels per acre) of a wheat crop:
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D 219 218 215 212 29 26 24 23 21 0
Y 30.7 29.7 44.8 41.4 48.1 42.8 49.9 46.9 46.4 53.5

D 1 3 6 8 12 15 17 19 21 24
Y 55.0 46.9 44.1 50.2 41.0 42.8 36.5 35.8 32.2 23.3

 a. Plot the data in a scatterplot.
 b. Describe the relationship between the number of days from the optimal planting 

date and the wheat yield.
 c. Calculate the correlation coefficient between days from optimal planting and 

yield.
 d. Explain why the correlation coefficient is relatively small for this data set.

 Con. 3.80  Although an exhaust fan is present in nearly every bathroom, it often is not used due to the 
high noise level. This is an unfortunate practice because regular use of the fan results in a reduc-
tion of indoor moisture. Excessive indoor moisture often results in the development of mold, 
which may have adverse health consequences. Consumer Reports in its January 2004 issue  reports 
on a wide variety of bathroom fans. The following table displays the price (P) in dollars of the fans 
and the quality of the fan measured in airflow (AF), cubic feet per minute (cfm).

P 95 115 110 15 20 20 75 150 60 60
AF 60  60  60 55 55 55 85 80 80 75

P 160 125 125 110 130 125 30  60 110 85
AF  90  90 100 110  90  90 90 110 110 60

 a. Plot the data in a scatterplot and comment on the relationship between price and 
 airflow.

 b. Compute the correlation coefficient for this data set. Is there a strong or weak 
relationship between price and airflow of the fans?

 c. Is your conclusion in part (b) consistent with your answer in part (a)?
 d. Based on your answers in parts (a) and (b), would it be reasonable to conclude 

that higher-priced fans generate greater airflow?
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 4.1 Introduction and Abstract of Research Study  

We stated in Chapter 1 that a scientist uses inferential statistics to make state-
ments about a population based on information contained in a sample of units 
selected from that population. Graphical and numerical descriptive techniques 
were presented in Chapter 3 as a means to summarize and describe a sample. 
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However, a sample is not identical to the population from which it was selected. 
We need to assess the degree of accuracy to which the sample mean, sample 
standard deviation, or sample proportion represents the corresponding popula-
tion values.

Most management decisions must be made in the presence of uncertainty. 
Prices and designs for new automobiles must be selected on the basis of shaky 
forecasts of consumer preference, national economic trends, and competitive 
actions. The size and allocation of a hospital staff must be decided with limited 
information on patient load. The inventory of a product must be set in the face of 
uncertainty about demand. Probability is the language of uncertainty. Now let us 
examine probability, the mechanism for making inferences. This idea is probably 
best illustrated by an example. 

Newsweek, in its June 20, 1998, issue, asks the question “Who Needs Doc-
tors? The Boom in Home Testing.” The article discusses the dramatic increase 
in medical screening tests for home use. The home-testing market has expanded 
beyond the two most frequently used tests, pregnancy and diabetes glucose mon-
itoring, to a variety of diagnostic tests that were previously used only by doctors 
and certified laboratories. There is a DNA test to determine whether twins are 
fraternal or identical, a test to check cholesterol level, a screening test for colon 
cancer, and tests to determine whether your teenager is a drug user. However, 
the major question that needs to be addressed is, How reliable are the testing 
kits? When a test indicates that a woman is not pregnant, what is the chance that 
the test is incorrect and the woman is truly pregnant? This type of incorrect result 
from a home test could translate into a woman not seeking the proper prenatal 
care in the early stages of her pregnancy.

Suppose a company states in its promotional materials that its pregnancy 
test provides correct results in 75% of its applications by pregnant women. We 
want to evaluate the claim, so we select 20 women who have been determined by 
their physicians, using the best possible testing procedures, to be pregnant. The 
test is taken by each of the 20 women, and for all 20 women, the test result is nega-
tive, indicating that none of the 20 is pregnant. What do you conclude about the 
company’s claim about the reliability of its test? Suppose you are further assured 
that each of the 20 women was in fact pregnant, as was determined several months 
after the test was taken.

If the company’s claim of 75% reliability was correct, we would have 
 expected somewhere near 75% of the tests in the sample to be positive. How-
ever, none of the test results was positive. Thus, we would conclude that the com-
pany’s claim is probably false. Why did we fail to state with certainty that the 
company’s claim was false? Consider the possible setting. Suppose we have a 
large population consisting of millions of units and 75% of the units are Ps for 
positives and 25% of the units are Ns for negatives. We randomly select 20 units 
from the population and count the number of units in the sample that are Ps. Is 
it possible to obtain a sample consisting of 0 Ps and 20 Ns? Yes, it is possible, but 
it is highly  improbable. Later in this chapter, we will compute the probability of 
such a sample occurrence.

To obtain a better view of the role that probability plays in making inferences 
from sample results that are then used to draw conclusions about populations, 
suppose 14 of the 20 tests are positive—that is, a 70% correct response rate. 
Would you consider this result highly improbable and reject the company’s claim 
of a 75% correct response rate? How about 12 positives and 8 negatives, or 16 
positives and 4 negatives? At what point do we decide that the result of the 
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observed sample is so improbable, assuming the company’s claim is correct, that 
we disagree with its claim? To answer this question, we must know how to find 
the probability of obtaining a particular sample outcome. Knowing this prob-
ability, we can then determine whether we agree or disagree with the company’s 
claim. Probability is the tool that enables us to make an inference. Later in this 
chapter, we will discuss in detail how the FDA and private companies determine 
the reliability of screening tests.

Because probability is the tool for making inferences, we need to define 
probability. In the preceding discussion, we used the term probability in its every-
day sense. Let us examine this idea more closely.

Observations of phenomena can result in many different outcomes, some 
of which are more likely than others. Numerous attempts have been made to 
give a precise definition for the probability of an outcome. We will cite three of 
these.

The first interpretation of probability, called the classical interpretation of 
probability, arose from games of chance. Typical probability statements of this 
type are, for example, “the probability that a flip of a balanced coin will show 
‘heads’ is 1/2” and “the probability of drawing an ace when a single card is drawn 
from a standard deck of 52 cards is 4/52.” The numerical values for these probabili-
ties arise from the nature of the games. A coin flip has two possible outcomes (a 
head or a tail); the probability of a head should then be 1/2 (1 out of 2). Similarly, 
there are 4 aces in a standard deck of 52 cards, so the probability of drawing an ace 
in a single draw is 4/52, or 4 out of 52.

In the classical interpretation of probability, each possible distinct result is 
called an outcome; an event is identified as a collection of outcomes. The prob-
ability of an event E under the classical interpretation of probability is computed 
by taking the ratio of the number of outcomes, Ne, favorable to event E to the total 
number of possible outcomes, N:

P 1event E 2 
Ne

N

The applicability of this interpretation depends on the assumption that all out-
comes are equally likely. If this assumption does not hold, the probabilities indi-
cated by the classical interpretation of probability will be in error. 

A second interpretation of probability is called the relative frequency  concept 
of probability; this is an empirical approach to probability. If an experiment is 
repeated a large number of times and event E occurs 30% of the time, then .30 
should be a very good approximation to the probability of event E. Symbolically, 
if an experiment is conducted n different times and if event E occurs on ne of these 
trials, then the probability of event E is approximately

P 1event E 2 >
ne

n
We say “approximately” because we think of the actual probability P(event E) as 
the relative frequency of the occurrence of event E over a very large number of 
observations or repetitions of the phenomenon. The fact that we can check prob-
abilities that have a relative frequency interpretation (by simulating many repeti-
tions of the experiment) makes this interpretation very appealing and practical.

The third interpretation of probability can be used for problems in which it is 
difficult to imagine a repetition of an experiment. These are “one-shot” situations. 
For example, the director of a state welfare agency who estimates the probability 
that a proposed revision in eligibility rules will be passed by the state legislature 

classical interpretation 
of probability

outcome 
event

relative frequency 
interpretation
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would not be thinking in terms of a long series of trials. Rather, the director would 
use a personal or subjective probability to make a one-shot statement of belief 
regarding the likelihood of passage of the proposed legislative revision. The prob-
lem with subjective probabilities is that they can vary from person to person and 
they cannot be checked.

Of the three interpretations presented, the relative frequency concept seems 
to be the most reasonable one because it provides a practical interpretation of the 
probability for most events of interest. Even though we will never run the neces-
sary repetitions of the experiment to determine the exact probability of an event, 
the fact that we can check the probability of an event gives meaning to the relative 
frequency concept. Throughout the remainder of this text, we will lean heavily on 
this interpretation of probability.

Abstract of Research Study: Inferences About Performance-
Enhancing Drugs Among Athletes 
The Associated Press reported the following in an April 28, 2005, article: 

CHICAGO—The NBA and its players union are discussing expanded testing 
for performance-enhancing drugs, and commissioner David Stern said Wednes-
day he is optimistic it will be part of the new labor agreement. The league already 
tests for recreational drugs and more than a dozen types of steroids. But with 
steroid use by professional athletes and the impact they have on children under 
increasing scrutiny, Stern said he believes the NBA should do more.

An article in USA Today (April 27, 2005) by Dick Patrick reports:

Just before the House Committee on Government Reform hearing on steroids 
and the NFL ended Wednesday, ranking  minority member Henry Waxman, D-
Calif.,  expressed his ambiguity about the effectiveness of the NFL testing system. 
He spoke to a witness panel that included NFL Commissioner Paul Tagliabue and 
NFL Players Association executive director Gene Upshaw, both of whom had 
praised the NFL  system and indicated there was no performance-enhancing drug 
problem in the league. “There’s still one thing that puzzles me,” Waxman said, 
“and that’s the fact that there are a lot of people who are very credible in sports 
who tell me privately that there’s a high amount of steroid use in football. When I 
look at the testing results, it doesn’t appear that’s the case. It’s still nagging at me.”

Finally, we have a report from ABC News (April 27, 2005) in which the drug issue in 
major league sports is discussed:

A law setting uniform drug-testing rules for major U.S. sports would be a mis-
take,  National Football League Commissioner Paul Tagliabue said Wednesday 
under questioning from House lawmakers skeptical that professional leagues 
are doing enough. “We don’t feel that there is rampant cheating in our sport,” 
Tagliabue told the House Government Reform Committee. Committee mem-
bers were far less  adversarial than they were last month, when Mark McGwire, 
Jose Canseco and other current and  former baseball stars were compelled to 
appear and faced tough questions about steroid use. Baseball commissioner 
Bud Selig, who also appeared at that hearing, was roundly criticized for the 
punishments in his sport’s  policy, which lawmakers said was too lenient.

One of the major reasons the leaders of professional sports athletes’ unions 
are so concerned about drug testing is that failing a drug test can devastate an 
athlete’s career. The controversy over performance-enhancing drugs has seriously 
brought into question the reliability of the tests for these drugs. Some banned sub-
stances, such as stimulants like cocaine and artificial steroids, are relatively easy to 

personal /subjective  
interpretation of 

probability
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deal with because they are not found naturally in the body. If these are detected 
at all, the athlete is banned. Nandrolone, a close chemical cousin of testosterone, 
was thought to be in this category until recently. But a study has since shown that 
normal people can have a small but significant level in their bodies—0.6 nanograms 
per milliliter of urine. The International Olympic Committee has set a limit of 2 
nanograms per milliliter. But expert Mike Wheeler, a doctor at St Thomas’ Hospi-
tal, states that this is “awfully close” to the level at which an unacceptable number 
(usually more than .01%) of innocent athletes might produce positive tests.

In an article titled “Inferences About Testosterone Abuse Among Athletes,” 
in a 2004 issue of Chance (17:5–8), the authors discuss some of the issues involved 
with the drug testing of athletes. In particular, they discuss the issues involved in 
determining the reliability of drug tests. They report: 

The diagnostic accuracy of any laboratory test is defined as the ability to dis-
criminate between two types of  individuals—in this case, users and nonusers. 
Specificity and sensitivity characterize diagnostic tests. . . . Estimating these pro-
portions requires collecting and tabulating data from the two reference samples, 
users and nonusers, . . . Bayes’ rule is a necessary tool for relating experimental 
evidence to conclusions, such as whether someone has a disease or has used a par-
ticular substance. Applying Bayes’ rule  requires determining the test’s sensitivity 
and specificity. It also requires a pre-test (or prior) probability that the athlete 
has used a banned substance.

Any drug test can result in a false positive due to the variability in the testing 
procedure, biologic variability, or inadequate handling of the material to be tested. 
Even if a test is highly reliable and produces only 1% false positives but the test is 
widely used, with 80,000 tests  run annually, the result would be that 800 athletes 
would be falsely identified as using a banned substance. The result is that innocent 
people will be punished. The trade-off between determining that an athlete is a 
drug user and convincing the public that the sport is being conducted fairly is not 
obvious. The authors state, “Drug testing of athletes has two purposes: to prevent 
artificial performance enhancement (known as doping) and to discourage the use 
of potentially harmful substances.” Thus, there is a need to be able to assess the 
 reliability of any testing procedure. 

In this chapter, we will explicitly define the terms specificity, sensitivity, and 
prior probability. We will then formulate Bayes’ rule (which we will designate as 
Bayes’ Formula). At the end of the chapter, we will return to this article and dis-
cuss the issues of false positives and false negatives in drug testing and how they are 
computed from our knowledge of the specificity and sensitivity of a drug test along 
with the prior probability that a person is a user.

 4.2 Finding the Probability of an Event

In the preceding section, we discussed three different interpretations of probability. 
In this section, we will use the classical interpretation and the relative frequency 
concept to illustrate the computation of the probability of an outcome or event. 
Consider an experiment that consists of tossing two coins, a penny and then a dime, 
and observing the upturned faces. There are four possible outcomes:

 TT: tails for both coins
 TH: a tail for the penny, a head for the dime
 HT: a head for the penny, a tail for the dime
 HH: heads for both coins



154 Chapter 4 probability and probability distributions  

What is the probability of observing the event exactly one head from the two 
coins?

This probability can be obtained easily if we can assume that all four out-
comes are equally likely. In this case, that seems quite reasonable. There are N  4 
possible outcomes, and Ne  2 of these are favorable for the event of interest, 
 observing exactly one head. Hence, by the classical interpretation of probability, 

P 1exactly 1 head 2 
2
4


1
2

Because the event of interest has a relative frequency interpretation, we 
could also obtain this same result empirically, using the relative frequency con-
cept. To demonstrate how relative frequency can be used to obtain the prob-
ability of an event, we will use the ideas of simulation. Simulation is a technique 
that produces outcomes having the same probability of occurrence as the real 
situation events. The computer is a convenient tool for generating these out-
comes. Suppose we wanted to simulate 500 tosses of two fair coins. We can use a 
computer program R to simulate the tosses. R is a software program that you can 
obtain free of charge by visiting the website cran.r-product.org or just by typing 
CRAN into Google. The following R code will be used to generate 500 two-digit 
numbers. Even digits will be designated as H and odd digits designated as T. 
The 500 numbers have now been transformed into pairs of Ts and Hs. Because 
there are five even and five odd single-digit numbers, the probability of obtain-
ing an even number is 5/10  .5, which is the same probability of obtaining an 
odd number. This set of 500 pairs of single-digit numbers represents 500 tosses 
of two fair coins; that is, coins in which the probabilities of H and T are both .5. 
The first digit represents the outcome of tossing the first coin and, the second 
digit represents the toss of the second coin. For example, the number 36 would 
represent a T for the toss of the first coin and an H for the toss of the second coin. 
The following lines of code in R will generate 500 pairs of randomly selected 
single-digit numbers.

 1. y  c(0:9)
 2. x1  sample( y, 500, replace  T)
 3. x2  sample( y, 500, replace  T)
 4. x  cbind(x1, x2)
 5. x

Most computer packages contain a random-number generator that can be used to 
produce similar results. Table 4.1(a) contains the results of the simulation of the 
500 pairs of tosses. The 500 pairs of single-digit numbers are then summarized in 
Table 4.1(b).

Note that this approach yields simulated probabilities that are nearly in 
agreement with our intuition; that is, intuitively we might expect these outcomes to 
be equally likely. Thus, each of the four outcomes should occur with a probability 
equal to 1/4, or .25. This assumption was made for the classical interpretation. We 
will show in Chapter 10 that in order to be 95% certain that the simulated prob-
abilities are within .01 of the true probabilities, the number of tosses should be at 
least 7,500 and not 500 as we used previously.

If we wish to find the probability of tossing two coins and observing exactly 
one head, we have, from Table 4.1(b),

P 1exactly 1 head 2 >
117 1 125

500
 .484
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This is very close to the theoretical probability, which we have shown to be .5.
Note that we could easily modify our example to accommodate the tossing 

of an unfair coin. Suppose we are tossing a penny that is weighted so that the 
probability of a head occurring in a toss is .70 and the probability of a tail is .30. 
We could designate an H outcome whenever one of the random digits 0, 1, 2, 3, 
4, 5, or 6 occurs and a T outcome whenever one of the digits 7, 8, or 9 occurs. The 
same simulation program can be run as before, but we would interpret the output 
differently.

 4.3 Basic Event Relations and Probability Laws

The probability of an event—say, event A—will always satisfy the property

0 # P 1A 2 # 1

that is, the probability of an event lies anywhere in the interval from 0 (the occur-
rence of the event is impossible) to 1 (the occurrence of the event is a “sure thing”).

Suppose A and B represent two experimental events and you are interested 
in a new event, the event that either A or B occurs. For example, suppose that we 
toss a pair of dice and define the following events:

 A: A total of 7 shows
 B: A total of 11 shows

either A or B occurs

25 32 70 15 96 87 80 43 15 77 89 51 08 36 29 55 42 86 45 93 68 72 49 99 37
82 81 58 50 85 27 99 41 10 31 42 35 50 02 68 33 50 93 73 62 15 15 90 97 24
46 86 89 82 20 23 63 59 50 40 32 72 59 62 58 53 01 85 49 27 31 48 53 07 78
15 81 39 83 79 21 88 57 35 33 49 37 85 42 28 38 50 43 82 47 01 55 42 02 52
66 44 15 40 29 73 11 06 79 81 49 64 32 06 07 31 07 78 73 07 26 36 39 20 14
48 20 27 73 53 21 44 16 00 33 43 95 21 08 19 60 68 30 99 27 22 74 65 22 05
26 79 54 64 94 01 21 47 86 94 24 41 06 81 16 07 30 34 99 54 68 37 38 71 79
86 12 83 09 27 60 49 54 21 92 64 57 07 39 04 66 73 76 74 93 50 56 23 41 23
18 87 21 48 75 63 09 97 96 86 85 68 65 35 92 40 57 87 82 71 04 16 01 03 45
52 79 14 12 94 51 39 40 42 17 32 94 42 34 68 17 39 32 38 03 75 56 79 79 57
07 40 96 46 22 04 12 90 80 71 46 11 18 81 54 95 47 72 06 07 66 05 59 34 81
66 79 83 82 62 20 75 71 73 79 48 86 83 74 04 13 36 87 96 11 39 81 59 41 70
21 47 34 02 05 73 71 57 64 58 05 16 57 27 66 92 97 68 18 52 09 45 34 80 57
87 22 18 65 66 18 84 31 09 38 05 67 10 45 03 48 52 48 33 36 00 49 39 55 35
70 84 50 37 58 41 08 62 42 64 02 29 33 68 87 58 52 39 98 78 72 13 13 15 96
57 32 98 05 83 39 13 39 37 08 17 01 35 13 98 66 89 40 29 47 37 65 86 73 42
85 65 78 05 24 65 24 92 03 46 67 48 90 60 02 61 21 12 80 70 35 15 40 52 76
29 11 45 22 38 33 32 52 17 20 03 26 34 18 85 46 52 66 63 30 84 53 76 47 21
42 97 56 38 41 87 14 43 30 35 99 06 76 67 00 47 83 32 52 42 48 51 69 15 18
08 30 37 89 17 89 23 58 13 93 17 44 09 08 61 05 35 44 91 89 35 15 06 39 27

TABLE 4.1(a) Simulation of tossing a penny and a dime 500 times

Event Outcome of Simulation Frequency Relative Frequency

TT (Odd, Odd) 129 129/500  .258
TH (Odd, Even) 117 117/500  .234
HT (Even, Odd) 125 125/500  .250
HH (Even, Even) 129 129/500  .258

TABLE 4.1(b)
Summary of the simulation
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Then the event “either A or B occurs” is the event that you toss a total of either 7 
or 11 with the pair of dice.

Note that, for this example, the events A and B are mutually exclusive; that 
is, if you observe event A (a total of 7), you could not at the same time observe 
event B (a total of 11). Thus, if A occurs, B cannot occur (and vice versa).

mutually exclusive

Two events A and B are said to be mutually exclusive if (when the experiment 
is performed a single time) the occurrence of one of the events excludes the 
possibility of the occurrence of the other event.

DEFINITION 4.1

If two events, A and B, are mutually exclusive, the probability that either 
event occurs is P(either A or B)  P(A) 1 P(B).

DEFINITION 4.2

The concept of mutually exclusive events is used to specify a second property 
that the probabilities of events must satisfy. When two events are mutually exclu-
sive, then the probability that either one of the events will occur is the sum of the 
event probabilities.

Definition 4.2 is a special case of the union of two events, which we will soon  define.
The definition of additivity of probabilities for mutually exclusive events can 

be extended beyond two events. For example, when we toss a pair of dice, the sum 
S of the numbers appearing on the dice can assume any one of the values S  2, 3, 
4, . . . , 11, 12. On a single toss of the dice, we can observe only one of these values. 
Therefore, the values 2, 3, . . . , 12 represent mutually exclusive events. If we want to 
find the probability of tossing a sum less than or equal to 4, this probability is

P 1S # 4 2  P 12 2 1 P 13 2 1 P 14 2
For this particular experiment, the dice can fall in 36 different equally likely 

ways. We can observe a 1 on die 1 and a 1 on die 2, denoted by the symbol (1, 1). 
We can observe a 1 on die 1 and a 2 on die 2, denoted by (1, 2). In other words, for 
this experiment, the possible outcomes are

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)
(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)
(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)
(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)
(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

As you can see, only one of these events, (1, 1), will result in a sum equal to 2. There-
fore, we would expect a 2 to occur with a relative frequency of 1/36 in a long series 
of repetitions of the experiment, and we let P(2)  1/36. The sum S  3 will occur 
if we observe an outcome of either (1, 2) or (2, 1). Therefore, P(3)  2/36  1/18. 
Similarly, we find P(4)  3/36  1/12. It follows that

P 1S # 4 2  P 12 2 1 P 13 2 1 P 14 2 
1
36

1
1
18

1
1
12


1
6
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A third property of event probabilities concerns an event and its complement.complement

The complement of an event A is the event that A does not occur. The com-
plement of A is denoted by the symbol A.

DEFINITION 4.3

Thus, if we define the complement of an event A as a new event—namely, “A does 
not occur”—it follows that

P 1A 2 1 P 1A 2  1

For an example, refer again to the two-coin-toss experiment. If, in many repe-
titions of the experiment, the proportion of times you observe event A, “two 
heads show,” is 1/4, then it follows that the proportion of times you observe 
the event A, “two heads do not show,” is 3/4. Thus, P(A) and P(A) will always 
sum to 1.

We can summarize the three properties that the probabilities of events must 
satisfy as follows:

If A and B are any two mutually exclusive events associated with an experi-
ment, then P(A) and P(B) must satisfy the following properties:

 1. 0 # P 1A 2 # 1 and 0 # P 1B 2 # 1
 2. P 1either A or B 2  P 1A 2 1 P 1B 2
 3. P 1A 2 1 P 1A 2  1 and P 1B 2 1 P 1B 2  1

Properties of  
Probabilities

We can now define two additional event relations: the union and the intersection 
of two events.

union 
intersection 

The union of two events A and B is the set of all outcomes that are included 
in either A or B (or both). The union is denoted as A<B.

DEFINITION 4.4

The intersection of two events A and B is the set of all outcomes that are 
 included in both A and B. The intersection is denoted as A>B.

DEFINITION 4.5

These definitions along with the definition of the complement of an event formal-
ize some simple concepts. The event A occurs when A does not; A<B occurs when 
either A or B occurs; A>B occurs when A and B occur.

The additivity of probabilities for mutually exclusive events, called the addition 
law for mutually exclusive events, can be extended to give the general addition law.

Consider two events A and B; the probability of the union of A and B is

  P(A<B)  P(A) 1 P(B) 2 P(A>B)

DEFINITION 4.6
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EXAMPLE 4.1

Events and event probabilities are shown in the Venn diagram in Figure 4.1. Use 
this diagram to determine the following probabilities:

 a. P 1A 2 , P 1A 2
 b. P 1B 2 , P 1B 2
 c. P(A>B)
 d. P(A<B)

FIGURE 4.1
Probabilities for events  

A and B
A B

.05
.45 .15

Solution From the Venn diagram, we are able to determine the following prob-
abilities:
 a. P 1A 2  .5; therefore P 1A 2  1 2 .5  .5
 b. P 1B 2  .2; therefore P 1B 2  1 2 .2  .8
 c. P 1A d B 2  .05
 d. P(A < B)  P(A) 1 P(B) 2 P(A > B)  .5 1 .2 2 .05  .65 ■

 4.4 Conditional Probability and Independence

Consider the following situation: The examination of a large number of insurance 
claims, categorized according to type of insurance and whether the claim was 
fraudulent, produced the results shown in Table 4.2. Suppose you are responsible 
for checking insurance claims—in particular, for detecting fraudulent claims—
and you examine the next claim that is processed. What is the probability of 
the event F, “the claim is fraudulent”? To answer the question, you examine 
Table 4.2 and note that 10% of all claims are fraudulent. Thus, assuming that the 
percentages given in the table are reasonable approximations to the true proba-
bilities of receiving specific types of claims, it follows that P(F)  .10. Would you 
say that the risk that you face a fraudulent claim has probability .10? We think 
not, because you have additional information that may affect the assessment of 
P(F). This additional information concerns the type of policy you are examining 
(fire, auto, or other).

TABLE 4.2
Categorization of  
insurance claims

 Type of Policy (%)

Category Fire Auto Other Total %

Fraudulent  6  1  3  10
Nonfraudulent 14 29 47  90
Total 20 30 50 100
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Suppose that you have the additional information that the claim was associ-
ated with a fire policy. Checking Table 4.2, we see that 20% (or .20) of all claims 
are associated with a fire policy and that 6% (or .06) of all claims are fraudulent 
fire policy claims. Therefore, it follows that the probability that the claim is fraudu-
lent, given that you know the policy is a fire policy, is

 P 1F 0 fire policy 2 
proportion of claims that are fraudulent fire policy claims

proportion of claims that are against fire policies

 
.06
.20

 .30

This probability, P(F |fire policy), is called a conditional probability of the event 
F—that is, the probability of event F given the fact that the event “fire policy” has 
already occurred. This tells you that 30% of all fire policy claims are fraudulent. 
The vertical bar in the expression P(F |fire policy) represents the phrase “given 
that,” or simply “given.” Thus, the expression is read, “the probability of the event 
F given the event fire policy.”

The probability P(F)  .10, called the unconditional or marginal probability 
of the event F, gives the proportion of times a claim is fraudulent—that is, the 
proportion of times event F occurs in a very large (infinitely large) number of rep-
etitions of the experiment (receiving an insurance claim and determining whether 
the claim is fraudulent). In contrast, the conditional probability of F, given that the 
claim is for a fire policy, P(F |fire policy), gives the proportion of fire policy claims 
that are fraudulent. Clearly, the conditional probabilities of F, given the types of 
policies, will be of much greater assistance in measuring the risk of fraud than the 
unconditional probability of F.

conditional  
probability

unconditional / 
marginal probability 

Consider two events A and B with nonzero probabilities, P(A) and P(B). The 
conditional probability of event A, given event B, is

    P 1A 0B 2 
P 1A d B 2

P 1B 2
The conditional probability of event B, given event A, is

    P 1B 0A 2 
P 1A d B 2

P 1A 2

DEFINITION 4.7

The probability of the intersection of two events A and B is

     P 1A d B 2  P 1A 2P 1B 0A 2
       P 1B 2P 1A 0B 2

DEFINITION 4.8

This definition for conditional probabilities gives rise to what is referred to as the 
multiplication law.

The only difference between Definitions 4.7 and 4.8, both of which involve conditional 
probabilities, relates to what probabilities are known and what needs to be calcu-
lated. When we know the intersection probability P 1A d B 2  and the individual 
probability P(A), we can compute P 1B 0A 2 . When we know P(A) and P 1B 0A 2 , we 
can compute P 1A d B 2 .
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EXAMPLE 4.2

A corporation is proposing to select 2 of its current regional managers as vice presi-
dents. In the history of the company, there has never been a female vice president. 
The corporation has 6 male regional managers and 4 female regional managers. 
Make the assumption that the 10 regional managers are equally qualified and hence 
all possible groups of 2 managers should have the same chance of being selected as 
the vice presidents. Now find the probability that both vice presidents are male.

Solution Let A be the event that the first vice president selected is male, and let 
B be the event that the second vice president selected is also male. The event that 
represents both selected vice presidents are male is the event (A and B)—that 
is, the event A d B. Therefore, we want to calculate P 1A d  B 2  P 1B 0A 2P 1A 2 , 
using Definition 4.8.

For this example,

P 1A 2  P 1first selection is male 2 
# of male managers

# of managers


6
10

and

 P 1B 0A 2  P 1second selection is male, given first selection was male 2

 
# of male managers after one male manager was selected

# of managers after one male manager was selected


5
9

Thus,

P 1A d  B 2  P 1A 2P 1B 0A 2 
6
10

 a5
9
b 

30
90


1
3

Thus, the probability that both vice presidents are male is 1/3 under the condition 
that all candidates are equally qualified and that each group of two managers has 
the same chance of being selected. Thus, there is a relatively large probability of 
 selecting two males as the vice presidents under the condition that all candidates 
are equally likely to be selected. ■

Suppose that the probability of event A is the same whether event B has or 
has not occurred; that is, suppose

P 1A 0B 2  P 1A 0B 2  P 1A 2
Then we say that the occurrence of event A is not dependent on the occurrence of 
event B, or simply that A and B are independent events. When P 1A 0B 2≠P 1A 2 , 
the occurrence of A depends on the occurrence of B, and events A and B are said 
to be dependent events.

independent events

dependent events

Two events A and B are independent events if

    P 1A 0B 2  P 1A 2   or  P 1B 0A 2  P 1B 2
(Note: You can show that if P 1A 0B 2  P 1A 2 , then P 1B 0A 2  P 1B 2 , and vice 
versa.)

DEFINITION 4.9

Definition 4.9 leads to a special case of P 1A d  B 2 . When events A and B are 
independent, it follows that

P 1A d  B 2  P 1A 2P 1B|A 2  P 1A 2P 1B 2
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The concept of independence is of particular importance in sampling. Later 
in the text, we will discuss drawing samples from two (or more) populations to 
compare the means, variances, or other population parameters. For most of these 
applications, we will select samples in such a way that the observed values in one 
sample are independent of the values that appear in another sample. We call these 
independent samples.

 4.5 Bayes’ Formula

In this section, we will show how Bayes’ Formula can be used to update condi-
tional probabilities by using sample data when available. These “updated” con-
ditional probabilities are useful in decision making. A particular application 
of these techniques involves the evaluation of diagnostic tests. Suppose a meat 
inspector must decide whether a randomly selected meat sample contains E. coli 
bacteria. The  inspector conducts a diagnostic test. Ideally, a positive result (Pos) 
would mean that the meat sample actually has E. coli, and a negative result (Neg) 
would imply that the meat sample is free of E. coli. However, the diagnostic test 
is occasionally in error. The result of the test may be a false positive, for which 
the test’s indication of E. coli presence is incorrect, or a false negative, for which 
the test’s conclusion of E. coli absence is incorrect. Large-scale screening tests 
are conducted to evaluate the accuracy of a given diagnostic test. For example, 
E. coli (E) is placed in 10,000 meat samples, and the diagnostic test yields a posi-
tive result for 9,500 samples and a  negative result for 500 samples; that is, there 
are 500 false negatives out of the 10,000 tests. Another 10,000 samples have all 
traces of E. coli removed (indicated as NE), and the diagnostic test yields a posi-
tive result for 100 samples and a negative result for 9,900 samples. There are 100 
false positives out of the 10,000 tests. We can summarize the results in Table 4.3.
 Evaluation of test results is as follows:

True positive rate  P 1Pos 0E 2 
9,500
10,000

 .95

False positive rate  P 1Pos 0NE 2 
100

10,000
 .01

True negative rate  P 1Neg 0NE 2 
9,900
10,000

 .99

False negative rate  P 1Neg 0E 2 
500

10,000
 .05

independent samples

false positive
false negative

 Meat Sample Status
Diagnostic  
Test Result E NE

Positive 9,500 100
Negative 500 9,900

Total  10,000 10,000

TABLE 4.3
E. coli test data

The sensitivity of the diagnostic test is the true positive rate—that is, P(test is 
 positive|disease is present). The specificity of the diagnostic test is the true negative 
rate—that is, P(test is negative|disease is not present).

sensitivity
specificity 
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The primary task facing the inspector is to evaluate the probability of E. 
coli being present in the meat sample when the test yields a positive result—that is, 
the inspector needs to know P(E|Pos). Bayes’ Formula provides us with a method 
to obtain this probability.

The above formula was developed by Thomas Bayes in a book published in 1763 
(Barnard, 1958). We will illustrate the application of Bayes’ Formula by returning 
to the meat inspection example. We can use Bayes’ Formula to compute P(E|Pos) 
for the meat inspection example. To make this calculation, we need to know the 
rate of E. coli in the type of meat being inspected. For this example, suppose 
that E. coli is present in 4.5% of all meat samples; that is, E. coli has prevalence 
P(E)  .045. We can then compute P(E|Pos) as follows:

 P 1E 0Pos 2 
P 1Pos 0E 2P 1E 2

P 1Pos 0E 2P 1E 2 1 P 1Pos 0NE 2P 1NE 2

 
1.95 2 1.045 2

1.95 2 1.045 2 1 1.01 2 11 2 .045 2  .817

Thus, E. coli is truly present in 81.7% of the tested samples in which a positive test 
result occurs. Also, we can conclude that 18.3% of the tested samples indicated E. 
coli was present when in fact there was no E. coli in the meat sample.

EXAMPLE 4.3

A book club classifies members as heavy, medium, or light purchasers, and separate 
mailings are prepared for each of these groups. Overall, 20% of the members are 
heavy purchasers, 30% medium, and 50% light. A member is not classified into a 
group until 18 months after joining the club, but a test is made of the feasibility of 
using the first 3 months’ purchases to classify members. The following percentages 
are obtained from existing records of individuals classified as heavy, medium, or 
light purchasers (Table 4.4):

If A and B are any events whose probabilities are not 0 or 1, then

    P 1A 0B 2 
P 1B 0A 2P 1A 2

P 1B 0A 2P 1A 2 1 P 1B 0A 2P 1A 2

Bayes’ Formula

TABLE 4.4
Book club membership  

classifications

 Group (%)
First 3 Months’

Purchases Heavy Medium Light

0  5 15 60
1 10 30 20
2 30 40  15
31 55 15 5

If a member purchases no books in the first 3 months, what is the probability that 
the member is a light purchaser? (Note: This table contains “conditional” percent-
ages for each column.)
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Solution Using the conditional probabilities in the table, the underlying purchase 
probabilities, and Bayes’ Formula, we can compute this conditional  probability.

P 1light 00 2


P 10 0 light 2P 1light 2

P 10 0 light 2P 1light 2 1 P 10 0medium 2P 1medium 2 1 P 10 0heavy 2P 1heavy 2


1.60 2 1.50 2

1.60 2 1.50 2 1 1.15 2 1.30 2 1 1.05 2 1.20 2
 .845 ■

These examples indicate the basic idea of Bayes’ Formula. There is some 
number k of possible, mutually exclusive, underlying events A1, . . . , Ak, which 
are sometimes called the states of nature. Unconditional probabilities P(A1), . . . , 
P(Ak), often called prior probabilities, are specified. There are m possible, mutu-
ally exclusive, observable events B1, . . . , Bm. The conditional probabilities of each 
observable event given each state of nature, P(Bi|Ai), are also specified, and these 
probabilities are called likelihoods. The problem is to find the posterior probabili-
ties P(Ai|Bi). Prior and posterior refer to probabilities before and after observing 
an event Bi.

states of nature
prior probabilities
observable events

likelihoods
posterior  

probabilities

If A1, . . . , Ak are mutually exclusive states of nature, and if B1, . . . , Bm are m 
possible, mutually exclusive, observable events, then

     P 1Ai 0Bj 2 
P 1Bj 0Ai 2P 1Ai 2

P 1Bj 0A1 2P 1A1 2 1 P 1Bj|A2 2P 1A2 2 1 c1 P 1Bj|Ak 2P 1Ak 2

    
 

P 1Bj 0Ai 2P 1Ai 2
g i P 1Bj 0Ai 2P 1Ai 2

Bayes’ Formula

EXAMPLE 4.4

In the manufacture of circuit boards, there are three major types of defective 
boards. The types of defects, along with the percentage of all circuit boards hav-
ing these defects, are (1) improper electrode coverage (D1), 2.8%; (2) plating 
separation (D2), 1.2%; and (3) etching problems (D3), 3.2%. A circuit board will 
contain at most one of the three defects. Defects can be detected with certainty 
using  destructive testing of the finished circuit boards; however, this is not a 
very practical method for inspecting a large percentage of the circuit boards. A 
nondestructive inspection procedure has been developed that has the following 
outcomes: A1, which indicates the board has only defect D1; A2, which indicates 
the board has only defect D2; A3, which indicates the board has only defect D3; 
and A4, which indicates the board has no defects. The respective likelihoods for 
the four outcomes of the nondestructive test determined by evaluating a large 
number of boards known to have exactly one of the three types of defects are 
given in Table 4.5.
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If a circuit board is tested using the nondestructive test and the outcome indicates 
no defects (A4), what are the probabilities that the board has no defect or a D1, D2, 
or D3 type of defect?

Let D4 represent the situation in which the circuit board has no defects.

 P 1D1 0A4 2 
P 1A4 0D1 2P 1D1 2

P 1A4 0D1 2P 1D1 2 1 P 1A4 0D2 2P 1D2 2 1 P 1A4 0D3 2P 1D3 2 1 P 1A4 0D4 2P 1D4 2

 
1.02 2 1.028 2

1.02 2 1.028 2 1 1.09 2 1.012 2 1 1.10 2 1.032 2 1 1.95 2 1.928 2 
.00056
.88644

 .00063

 P 1D2 0A4 2 
P 1A4 0D2 2P 1D2 2

P 1A4 0D1 2P 1D1 2 1 P 1A4 0D2 2P 1D2 2 1 P 1A4 0D3 2P 1D3 2 1 P 1A4 0D4 2P 1D4 2

 
1.09 2 1.012 2

1.02 2 1.028 2 1 1.09 2 1.012 2 1 1.10 2 1.032 2 1 1.95 2 1.928 2 
.00108
.88644

 .00122

 P 1D3 0A4 2 
P 1A4 0D3 2P 1D3 2

P 1A4 0D1 2P 1D1 2 1 P 1A4 0D2 2P 1D2 2 1 P 1A4 0D3 2P 1D3 2 1 P 1A4 0D4 2P 1D4 2

 
1.10 2 1.032 2

1.02 2 1.028 2 1 1.09 2 1.012 2 1 1.10 2 1.032 2 1 1.95 2 1.928 2 
.0032
.88644

 .0036

 P 1D4 0A4 2 
P 1A4 0D4 2P 1D4 2

P 1A4 0D1 2P 1D1 2 1 P 1A4 0D2 2P 1D2 2 1 P 1A4 0D3 2P 1D3 2 1 P 1A4 0D4 2P 1D4 2

 
1.95 2 1.928 2

1.02 2 1.028 2 1 1.09 2 1.012 2 1 1.10 2 1.032 2 1 1.95 2 1.928 2 
.8816
.88644

 .9945

Thus, if the new test indicates that none of the three types of defects is present in 
the circuit board, there is a very high probability, .9945, that the circuit board in fact 
is free of defects. In Exercise 4.31, we will ask you to assess the sensitivity of the test 
for determining the three types of defects. ■

 4.6 Variables: Discrete and Continuous

The basic language of probability developed in this chapter deals with many different 
kinds of events. We are interested in calculating the probabilities associated with both 
quantitative and qualitative events. For example, we developed techniques that could 
be used to determine the probability that a machinist selected at random from the 
workers in a large automotive plant would suffer an accident during an 8-hour shift. 
These same techniques are also applicable to finding the probability that a machinist 
selected at random would work more than 80 hours without suffering an accident.

These qualitative and quantitative events can be classified as events (or 
outcomes) associated with qualitative and quantitative variables. For example, in the 
automotive plant accident study, the randomly selected machinist’s accident report 
would consist of checking one of the following: No Accident, Minor Accident, or 

TABLE 4.5
Circuit board defect data Test

 Type of Defect

Outcome D1 D2 D3 None

A1 .90 .06 .02 .02
A2 .05 .80 .06 .01
A3 .03 .05 .82 .02
A4 (no defects) .02 .09 .10 .95 
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Major Accident. Thus, the data on 100 machinists in the study would be observations 
on a qualitative variable because the possible responses are the different categories 
of accident and are not different in any measurable, numerical amount. Because we 
cannot predict with certainty what type of accident a particular machinist will suffer, 
the variable is classified as a qualitative random variable. Other examples of quali-
tative random variables that are commonly measured are political party affiliation, 
socioeconomic status, the species of insect discovered on an apple leaf, and the brand 
preferences of customers. There are a finite (and typically quite small) number of 
possible outcomes associated with any qualitative variable. Using the methods of 
this chapter, it is possible to calculate the probabilities associated with these events.

Many times the events of interest in an experiment are quantitative outcomes 
associated with a quantitative random variable, since the possible responses vary 
in numerical magnitude. For example, in the automotive plant accident study, the 
number of consecutive 8-hour shifts between accidents for a randomly selected 
machinist is an observation on a quantitative random variable. Events of interest, 
such as the number of 8-hour shifts between accidents for a randomly selected 
machinist, are observations on a quantitative random variable. Other examples 
of quantitative random variables are the change in earnings per share of a stock 
over the next quarter, the length of time a patient is in remission after a cancer 
treatment, the yield per acre of a new variety of wheat, and the number of persons 
voting for the incumbent in an upcoming election. The methods of this chapter can 
be applied to calculate the probability associated with any particular event. 

There are major advantages to dealing with quantitative random variables. 
The numerical yardstick underlying a quantitative variable makes the mean and 
standard deviation (for instance) sensible. With qualitative random variables, the 
methods of this chapter can be used to calculate the probabilities of various events, 
and that’s about all. With quantitative random variables, we can do much more: 
We can average the resulting quantities, find standard deviations, and assess prob-
able errors, among other things. Hereafter, we use the term random variable to 
mean quantitative random variable.

Most events of interest result in numerical observations or measurements. If 
a quantitative variable measured (or observed) in an experiment is denoted by the 
symbol y, we are interested in the values that y can assume. These values are called 
numerical outcomes. The number of different plant species per acre in a coal strip 
mine after a reclamation project is a numerical outcome. The percentage of regis-
tered voters who cast ballots in a given election is also a numerical outcome. The 
quantitative variable y is called a random variable because the value that y assumes 
in a given experiment is a chance or random outcome.

qualitative random 
variable

quantitative random 
variable

random variable

When observations on a quantitative random variable can assume only a 
countable number of values, the variable is called a discrete random variable.

DEFINITION 4.10

Examples of discrete variables are these:

 1. Number of bushels of apples per tree of a genetically altered apple 
 variety

 2. Change in the number of accidents per month at an intersection 
after a new signaling device has been installed

 3. Number of “dead persons” voting in the last mayoral election in a 
major midwestern city
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Note that it is possible to count the number of values that each of these random 
variables can assume.

For example, the daily maximum temperature in Rochester, New York, can 
assume any of the infinitely many values on a line interval. It can be 89.6, 89.799, 
or 89.7611114. Typical continuous random variables are temperature, pressure, 
height, weight, and distance.

The distinction between discrete and continuous random variables is 
pertinent when we are seeking the probabilities associated with specific values of 
a random variable. The need for the distinction will be apparent when probability 
distributions are discussed in later sections of this chapter.

 4.7 Probability Distributions for Discrete  
Random Variables

As previously stated, we need to know the probability of observing a particular 
sample outcome in order to make an inference about the population from which 
the sample was drawn. To do this, we need to know the probability associated with 
each value of the variable y. Viewed as relative frequencies, these probabilities 
generate a distribution of theoretical relative frequencies called the probability 
distribution of y. Probability distributions differ for discrete and continuous ran-
dom variables. For discrete random variables, we will compute the probability of 
specific individual values occurring. For continuous random variables, the prob-
ability of an interval of values is the event of interest.

The probability distribution for a discrete random variable displays the proba-
bility P( y) associated with each value of y. This display can be presented as a table, 
a graph, or a formula. To illustrate, consider the tossing of two coins in  Section 4.2, 
and let y be the number of heads observed. Then y can take the values 0, 1, or 2. 
From the data of Table 4.1, we can determine the approximate proba bility for 
each value of y, as given in Table 4.6. We point out that the relative frequencies 
in the table are very close to the theoretical relative frequencies (probabilities), 
which can be shown to be .25, .50, and .25 using the classical interpretation of prob-
ability. If we had employed 2,000,000 tosses of the coins instead of 500, the rela-
tive frequencies for y  0, 1, and 2 would be indistinguishable from the theoretical 
probabilities.

The probability distribution for y, the number of heads in the toss of two 
coins, is shown in Table 4.7 and is presented graphically in Figure 4.2.

discrete and 
continuous variables

probability  
distribution

When observations on a quantitative random variable can assume any one of 
the uncountable number of values in a line interval, the variable is called a 
continuous random variable.

DEFINITION 4.11

TABLE 4.6
Empirical sampling 

results  for y: the number 
of heads in 500 tosses  

of two coins

  Relative 
y Frequency Frequency

0 129 .258
1 242 .484
2 129 .258

TABLE 4.7
Probability distribution for  
the number of heads when  

two coins are tossed

y P(y)

0 .25
1 .50
2 .25
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The probability distribution for this simple discrete random variable illus-
trates three important properties of discrete random variables.

FIGURE 4.2
Probability distribution 

for the number of heads 
when two coins are tossed
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 1. The probability associated with every value of y lies between 0 and 1.
 2. The sum of the probabilities for all values of y is equal to 1.
 3. The probabilities for a discrete random variable are additive. Hence, the 

probability that y  1 or 2 is equal to P(1) 1 P(2).

Properties of Discrete 
Random Variables 

The relevance of the probability distribution to statistical inference will be 
emphasized when we discuss the probability distribution for the binomial random 
variable.

 4.8 Two Discrete Random Variables:  
The Binomial and the Poisson

Many populations of interest to business persons and scientists can be viewed as 
large sets of 0s and 1s. For example, consider the set of responses of all adults in the 
United States to the question “Do you favor the development of nuclear energy?” 
If we  disallow “no opinion,” the responses will constitute a set of “yes” responses 
and “no” responses. If we assign a 1 to each yes and a 0 to each no, the population 
will consist of a set of 0s and 1s, and the sum of the 1s will equal the total number of 
persons  favoring the development. The sum of the 1s divided by the number of adults 
in the United States will equal the proportion of people who favor the  development.

Gallup and Harris polls are examples of the sampling of 0, 1 populations. Peo-
ple are surveyed, and their opinions are recorded. Based on the sample responses, 
Gallup and Harris estimate the proportions of people in the population who favor 
some particular issue or possess some particular characteristic.

Similar surveys are conducted in the biological sciences, engineering, and 
business, but they may be called experiments rather than polls. For example, experi-
ments are conducted to determine the effect of new drugs on small animals, such as 
rats or mice, before progressing to larger animals and, eventually, to human par-
ticipants. Many of these experiments bear a marked resemblance to a poll in that 
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the experimenter records only whether the drug was effective. Thus, if 300 rats are 
injected with a drug and 230 show a favorable response, the experimenter has con-
ducted a “poll”—a poll of rat reaction to the drug, 230 “in favor” and 70 “opposed.” 

Similar “polls” are conducted by most manufacturers to determine the frac-
tion of a product that is of good quality. Samples of industrial products are collected 
before shipment, and each item in the sample is judged “defective” or “acceptable” 
according to criteria established by the company’s quality control department. 
Based on the number of defectives in the sample, the company can decide whether 
the product is suitable for shipment. Note that this example, as well as those pre-
ceding, has the practical objective of making an inference about a population based 
on information contained in a sample.

The public opinion poll, the consumer preference poll, the drug-testing 
experiment, and the industrial sampling for defectives are all examples of a 
common, frequently conducted sampling situation known as a binomial experi-
ment. The  binomial experiment is conducted in all areas of science and business and 
 differs from one situation to another only in the nature of objects being sampled 
(people, rats, electric lightbulbs, oranges). Thus, it is useful to define its character-
istics. We can then apply our knowledge of this one kind of experiment to a variety 
of sampling experiments.

For all practical purposes, the binomial experiment is identical to the coin-
tossing example of previous sections. Here n different coins are tossed (or a single 
coin is tossed n times), and we are interested in the number of heads observed. We 
assume that the probability of tossing a head on a single trial is p (p may equal .50, 
as it would for a balanced coin, but in many practical situations, p will take some 
other value between 0 and 1). We also assume that the outcome for any one toss 
is unaffected by the results of any preceding tosses. These characteristics can be 
summarized as shown here.

A binomial experiment is one that has the following properties:

 1. The experiment consists of n identical trials.
 2. Each trial results in one of two outcomes. We will label one  outcome a 

success and the other a failure.
 3. The probability of success on a single trial is equal to p, and p  remains 

the same from trial to trial.*
 4. The trials are independent; that is, the outcome of one trial does not 

influence the outcome of any other trial.
 5. The random variable y is the number of successes observed  during  

the n trials.

DEFINITION 4.12

*Some textbooks and computer programs use the letter p rather than p. We have chosen p to 
avoid confusion with p-values, discussed in Chapter 5.

EXAMPLE 4.5

An article in the March 5, 1998, issue of The New England Journal of Medicine 
(338:633–639) discussed a large outbreak of tuberculosis. One person, called the 
index patient, was diagnosed with tuberculosis in 1995. The 232 co-workers of the 
index patient were given a tuberculin screening test. The number of co-workers 
recording a positive reading on the test was the random variable of interest. Did 
this study satisfy the properties of a binomial experiment?
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Solution To answer the question, we check each of the five characteristics of the 
binomial experiment to determine whether they were satisfied.

 1. Were there n identical trials? Yes. There were n  232 workers who 
had approximately equal contact with the index patient.

 2. Did each trial result in one of two outcomes? Yes. Each co-worker 
recorded either a positive or a negative reading on the test.

 3. Was the probability of success the same from trial to trial? Yes, if 
the co-workers had equivalent risk factors and equal exposures to 
the index patient.

 4. Were the trials independent? Yes. The outcome of one screening 
test was unaffected by the outcomes of the other screening tests.

 5. Was the random variable of interest to the experimenter the number 
of successes y in the 232 screening tests? Yes. The number of co-
workers who obtained a positive reading on the screening test was 
the variable of interest.

All five characteristics were satisfied, so the tuberculin screening test represented 
a binomial experiment. ■

EXAMPLE 4.6

A large power utility company uses gas turbines to generate electricity. The engi-
neers employed at the company monitor the reliability of each turbine—that is, 
the probability that the turbine will perform properly under standard operating 
conditions over a specified period of time. The engineers wanted to estimate 
the probability a turbine will operate successfully for 30 days after being put 
into service. The engineers randomly selected 75 of the 100 turbines currently in 
use and examined the maintenance records. They recorded the number of tur-
bines that did not need repairs during the 30-day time period. Is this a binomial 
experiment? 

Solution Check this experiment against the five characteristics of a binomial 
 experiment.

 1. Are there identical trials? The 75 trials could be assumed identical 
only if the 100 turbines are the same type of turbine, are the same 
age, and are operated under the same conditions. 

 2. Does each trial result in one of two outcomes? Yes. Each turbine 
either does or does not need repairs in the 30-day time period. 

 3. Is the probability of success the same from trial to trial? No. If we let 
success denote a turbine “did not need repairs,” then the probability 
of success can change considerably from trial to trial. For example, 
suppose that 15 of the 100 turbines needed repairs during the 30-day 
inspection period. Then p, the probability of success for the first 
turbine examined, would be 85/100  .85. If the first trial is a failure 
(turbine needed repairs), the probability that the second turbine 
examined did not need repairs is 85/99  .859. Suppose that after 60 
turbines have been examined, 50 did not need repairs and 10 needed 
repairs. The probability of success of the next (61st) turbine would be 
35/40  .875.

 4. Were the trials independent? Yes, provided that the failure of 
one turbine does not affect the performance of any other turbine. 
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However, the trials may be dependent in certain situations. For 
example, suppose that a major storm occurs that results in several 
turbines being damaged. Then the common event, a storm, may 
result in a common result, the simultaneous failure of several 
turbines.

 5. Was the random variable of interest to the engineers the number 
of successes in the 75 trials? Yes. The number of turbines not 
needing  repairs during the 30-day period was the random variable 
of interest.

This example shows how the probability of success can change substan-
tially from trial to trial in situations in which the sample size is a relatively 
large portion of the total population size. This experiment does not satisfy the 
properties of a  binomial experiment. ■

Note that very few real-life situations satisfy perfectly the requirements 
stated in Definition 4.12, but for many, the lack of agreement is so small that the 
 binomial experiment still provides a very good model for reality.

Having defined the binomial experiment and suggested several practical 
applications, we now examine the probability distribution for the binomial random 
variable y, the number of successes observed in n trials. Although it is possible to 
approximate P(y), the probability associated with a value of y in a binomial experi-
ment, by using a relative frequency approach, it is easier to use a general formula 
for binomial probabilities.

The probability of observing y successes in n trials of a binomial experiment is

    P 1 y 2 
n!

y! 1n 2 y 2 ! p 
y 11 2 p 2n2y

where
 n  number of trials
 p  probability of success on a single trial
 1 2 p  probability of failure on a single trial
 y  number of successes in n trials
 n!  n(n 2 1)(n 2 2) . . . (3)(2)(1)

Formula for  
Computing P(y) in a 

Binomial Experiment 

As indicated in the box, the notation n! (referred to as n factorial) is used for 
the product

n!  n 1n 2 1 2 1n 2 2 2 c 13 2 12 2 11 2
For n  3,

n!  3!  13 2 13 2 1 2 13 2 2 2  13 2 12 2 11 2  6

Similarly, for n  4,

4!  14 2 13 2 12 2 11 2  24

We also note that 0! is defined to be equal to 1.
To see how the formula for binomial probabilities can be used to calculate 

the probability for a specific value of y, consider the following examples.
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EXAMPLE 4.7

A new variety of turf grass has been developed for use on golf courses, with the 
goal of obtaining a germination rate of 85%. To evaluate the grass, 20 seeds are 
planted in a greenhouse so that each seed will be exposed to identical conditions. If 
the 85% germination rate is correct, what is the probability that 18 or more of the 
20 seeds will germinate?

P 1 y 2 
n!

y! 1n 2 y 2 ! py 11 2 p 2n2y

and substituting for n  20, p  .85, y  18, 19, and 20, we obtain

P 1y  18 2 
20!

18! 120 2 18 2 ! 1.85 2 18 11 2 .85 2 20218  190 1.85 2 18 1.15 2 2  .229

P 1y  19 2 
20!

19! 120 2 19 2 ! 1.85 2 19 11 2 .85 2 20219  20 1.85 2 19 1.15 2 1  .137

P 1y  20 2 
20!

20! 120 2 20 2 ! 1.85 2 20 11 2 .85 2 20220  1.85 2 20  .0388

P 1y $ 18 2  P 1y  18 2 1 P 1y  19 2 1 P 1y  20 2  .405 ■

The calculations in Example 4.7 entail a considerable amount of effort even though 
n was only 20. For those situations involving a large value of n, we can use com-
puter software to make the exact calculations. The following commands in R will 
compute the binomial probabilities:

 1. To calculate P(X  18), use the command dbinom(18, 20, .85)
 2. To calculate P(X # 17), use the command pbinom (17, 20, .85)
 3. To calculate P(X $ 18), use the command 1 2 pbinom(17, 20, .85)

Later in this chapter, the normal approximation to the binomial will be discussed. This 
approximation yields fairly accurate results and does not require the use of a computer.

EXAMPLE 4.8

Suppose that a sample of households is randomly selected from all the households 
in the city in order to estimate the percentage in which the head of the household 
is unemployed. To illustrate the computation of a binomial probability, suppose 
that the unknown percentage is actually 10% and that a sample of n  5 (we select a 
small sample to make the calculation manageable) is selected from the population. 
What is the probability that all five heads of households are employed?

Solution We must carefully define which outcome we wish to call a success. For 
this example, we define a success as being employed. Then the probability of suc-
cess when one person is selected from the population is p  .9 (because the pro-
portion unemployed is .1). We wish to find the probability that y  5 (all five are 
employed) in five trials.

 P 1 y  5 2 
5!

5! 15 2 5 2 ! 1.9 2 5 11 2 .9 2 525

 
5!

5!0!
 1.9 2 5 1.1 2 0

 
15 2 14 2 13 2 12 2 11 2

15 2 14 2 13 2 12 2 11 2 11 2  1.9 2
5 1.1 2 0

  1.9 2 5  .590
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The binomial probability distribution for n  5, p  .9 is shown in Figure 4.3. 
The probability of observing five employed in a sample of five is shown to be 0.59 
in Figure 4.3.

FIGURE 4.3
The binomial probability 

 distribution for  
n  5, p  .9
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EXAMPLE 4.9

Refer to Example 4.8 and calculate the probability that exactly one person in the 
sample of five households is unemployed. What is the probability of one or fewer 
being unemployed?

Solution Since y is the number of employed in the sample of five, one unem-
ployed person would correspond to four employed (y  4). Then

 P 14 2 
5!

4! 15 2 4 2 ! 1.9 2 4 1.1 2 1

 
15 2 14 2 13 2 12 2 11 2
14 2 13 2 12 2 11 2 11 2  1.9 2

4 1.1 2

  5 1.9 2 4 1.1 2
  .328

Thus, the probability of selecting four employed heads of households in a sample 
of five is .328, or roughly one chance in three.

The outcome “one or fewer unemployed” is the same as the outcome “4 or 5 
employed.” Since y represents the number employed, we seek the probability that 
y  4 or 5. Because the values associated with a random variable represent mutu-
ally exclusive events, the probabilities for discrete random variables are additive. 
Thus, we have

 P 1y  4 or 5 2  P 14 2 1 P 15 2
  .328 1 .590
  .918

Thus, the probability that a random sample of five households will yield either four 
or five employed heads of households is .918. This high probability is consistent 
with our intuition: We would expect the number of employed in the sample to be 
large if 90% of all heads of households in the city are employed. ■

 ■
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Like any relative frequency histogram, a binomial probability distribution 
possesses a mean, m, and a standard deviation, s. Although we omit the derivations, 
we give the formulas for these parameters.

  m  np  and  s  Ënp 11 2 p 2
where p is the probability of success in a given trial and n is the number of 
trials in the binomial experiment.

Mean and Standard 
Deviation of the 

Binomial Probability 
Distribution  

If we know p and the sample size, n, we can calculate m and s to locate 
the average value and describe the variability for a particular binomial probability 
distribution. Thus, we can quickly determine those values of y that are probable 
and those that are improbable.

EXAMPLE 4.10

We will consider the turf grass seed example to illustrate the calculation of the 
mean and standard deviation. Suppose the company producing the turf grass takes 
a sample of 20 seeds on a regular basis to monitor the quality of the seeds. If the 
germination rate of the seeds stays constant at 85%, then the average number of 
seeds that will germinate in the sample of 20 seeds is

m  np  20 1.85 2  17

with a standard deviation of

s  Ënp 11 2 p 2  Ë20 1.85 2 11 2 .85 2  1.60

Suppose we examine the germination records of a large number of samples of 
20 seeds each. If the germination rate has remained constant at 85%, then the 
 average number of seeds that germinate should be close to 17 per sample. If in a 
particular sample of 20 seeds we determine that only 12 had germinated, would 
the germi nation rate of 85% seem consistent with our results? Using a computer 
software program, we can generate the probability distribution for the number 
of seeds that germinate in the sample of 20 seeds, as shown in Figures 4.4(a) 
and 4.4(b).

FIGURE 4.4(a)
The binomial distribution 

for n  20 and p  .85
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A software program was used to generate Figure 4.4(a). Many such packages 
place rectangles centered at each of the possible integer values of the binomial 
random variable, as shown in Figure 4.4(a), even though there is zero probability 
for any value but the integers to occur. This results in a distorted representation of 
the binomial distribution. A more appropriate display of the distribution is given 
in Figure 4.4(b).

Although the distribution is tending toward left skewness (see Figure 4.4(b)), 
the Empirical Rule should work well for this relatively mound-shaped distribution. 
Thus, y  12 seeds is more than three standard deviations less than the mean num-
ber of seeds, m  17; it is highly improbable that in 20 seeds we would obtain only 
12 germinated seeds if p really is equal to .85. The germination rate is most likely a 
value considerably less than .85. ■

EXAMPLE 4.11

A cable TV company is investigating the feasibility of offering a new service in a 
large midwestern city. In order for the proposed new service to be economically 
 viable, it is necessary that at least 50% of its current subscribers add the new ser-
vice. A survey of 1,218 customers reveals that 516 would add the new service. Do you 
think the company should expend the capital to offer the new service in this city?

Solution In order to be economically viable, the company needs at least 50% of 
its current customers to subscribe to the new service. Is y  516 out of 1,218 too 
small a value of y to imply a value of p (the proportion of current customers who 
would add new service) equal to .50 or larger? If p  .5,

m  np  1,218 1.5 2  609

s  Ënp 11 2 p 2  Ë1,218 1.5 2 11 2 .5 2  17.45

and 3s  52.35.
You can see from Figure 4.5 that y  516 is more than 3s, or 52.35, less than 

m  609, the value of m if p really equalled .5. Thus, the observed number of 
 customers in the sample who would add the new service is much too small if the 

FIGURE 4.4(b)
The binomial distribution 

for n  20 and p  .85
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number of current customers who would not add the service in fact is 50% or 
more of all customers. Consequently, the company concluded that offering the new 
service was not a good idea. ■

The purpose of this section is to present the binomial probability distribution 
so you can see how binomial probabilities are calculated and so you can calculate 
them for small values of n, if you wish. In practice, n is usually large (in national 
surveys, sample sizes as large as 1,500 are common), and the computation of the 
binomial probabilities is tedious. Later in this chapter, we will present a simple pro-
cedure for obtaining approximate values of the probabilities we need in making 
inferences. In order to obtain very accurate calculations when n is large, we 
recommend using a computer software program. (See Section 4.16.)

In 1837, S. D. Poisson developed a discrete probability distribution, suitably 
called the Poisson distribution, which has as one of its important applications the 
modeling of events of a particular time over a unit of time or space—for example, the 
number of automobiles arriving at a toll booth during a given 5-minute period of time. 
The event of interest would be an arriving automobile, and the unit of time would be 
5 minutes. A second example would be the situation in which an environmentalist 
measures the number of PCB particles discovered in a liter of water sampled from a 
stream contaminated by an electronics production plant. The event would be a PCB 
particle is discovered. The unit of space would be 1 liter of sampled water.

Let y be the number of events occurring during a fixed time interval of length 
t or a fixed region R of area or volume m(R). Then the probability distribution of 
y is Poisson, provided certain conditions are satisfied: 

 1. Events occur one at a time; two or more events do not occur 
precisely at the same time or in the same space.

 2. The occurrence of an event in a given period of time or region of 
space is independent of the occurrence of the event in a nonover-
lapping time period or region of space; that is, the occurrence (or 
nonoccurrence) of an event during one period or in one region does 
not affect the probability of an event occurring at some other time 
or in some other region. 

 3. The expected number of events during one period or in one region, m, 
is the same as the expected number of events in any other period or 
region. 

Although these assumptions seem somewhat restrictive, many situations 
 appear to satisfy these conditions. For example, the number of arrivals of cus-
tomers at a checkout counter, parking lot toll booth, inspection station, or garage 
repair shop during a specified time interval can often be modeled by a Poisson dis-
tribution. Similarly, the number of clumps of algae of a particular species observed 
in a unit volume of lake water could be approximated by a Poisson probability 
distribution.

Assuming that the above conditions hold, the Poisson probability of observing 
y events in a unit of time or space is given by the formula 

P 1 y 2 
mye2m

y!
where e is a naturally occurring constant approximately equal to 2.71828 (in fact, 
e  2 1 1

2! 1 1
3! 1 1

4! 1 c2 , y!  y 1y 2 1 2 1y 2 2 2  c 11 2 , and m is the average 
value of y. Table 14 in the Appendix gives Poisson probabilities for various values 
of the parameter m.

Poisson distribution
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EXAMPLE 4.12

A large industrial plant is being planned in a rural area. As a part of the environ-
mental impact statement, a team of wildlife scientists is surveying the number and 
types of small mammals in the region. Let y denote the number of field mice cap-
tured in a trap over a 24-hour period. Suppose that y has a Poisson distribution with 
m  2.3; that is, the average number of field mice captured per trap is 2.3. What is the 
probability of finding exactly four field mice in a randomly selected trap? What is 
the probability of finding at most four field mice in a randomly  selected trap? What 
is the probability of finding more than four field mice in a  randomly selected trap? 

Solution The probability that a trap contains exactly four field mice is computed 
to be

P 1 y  4 2 
e22.3 12.3 2 4

4!


1.1002588 2 127.9841 2
24

 .1169

Alternatively, we could use Table 14 in the Appendix. We read from the table with 
m  2.3 and y  4 that P(y  4)  .1169.

The probability of finding at most four field mice in a randomly selected trap 
is, using the values from Table 14, with m  2.3

 P 1y # 4 2  P 1y  0 2 1 P 1y  1 2 1 P 1y  2 2 1 P 1y  3 2 1 P 1y  4 2
  .1003 1 .2306 1 .2652 1 .2033 1 .1169  .9163.

The probability of finding more than four field mice in a randomly selected trap, 
using the idea of complementary events, is 

P 1y . 4 2  1 2 P 1y # 4 2  1 2 .9163  .0837

Thus, it is a very unlikely event to find five or more field mice in a trap.
The Poisson probabilities can be computed using the following R commands.

P(y  4)  dpois(4, 2.3)  .1169022
P(y # 3)  ppois(3, 2.3)  .7993471
P(y . 4)  1 2 P(y # 4)  1 2 ppois(4, 2.3)  .08375072

When n is large and p is small in a binomial experiment, n $ 100, p # .01, 
and np # 20, the Poisson distribution provides an reasonable approximation to 
the binomial distribution. In applying the Poisson approximation to the binomial 
distribution, use m  np. ■

EXAMPLE 4.13

In observing patients administered a new drug product in a properly conducted 
clinical trial, the number of persons experiencing a particular side effect might be 
quite small. Suppose p (the probability a person experiences a side effect to the 
drug) is .001 and 1,000 patients in the clinical trial received the drug. Compute 
the probability that none of a random sample of n  1,000 patients administered 
the drug experiences a particular side effect (such as damage to a heart valve) 
when p  .001.

Solution The number of patients, y, experiencing the side effect would have 
a  binomial distribution with n  1,000 and p  .001. The mean of the binomial 
 distribution is m  np  1,000 1.001 2  1. Applying the Poisson probability distri-
bution with m  1, we have 
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 P 1y  0 2 
11 2 0e21

0!
 e21 

1
2.71828

 .367879

(Note also from Table 14 in the Appendix that the entry corresponding to y  0 
and m  1 is .3679.) ■

For the calculation in Example 4.13, it is easy to compute the exact binomial 
probability and then compare the results to the Poisson approximation. With 
n  1,000 and p  .001, we obtain the following.

 P 1y  0 2 
1,000!

0! 11,000 2 0 2 ! 1.001 2 0 11 2 .001 2 1,000  1.999 2 1,000  .367695

The Poisson approximation was accurate to the third decimal place.

EXAMPLE 4.14

Suppose that after a clinical trial of a new medication involving 1,000 patients, no 
patient experienced a side effect to the drug. Would it be reasonable to infer that 
less than .1% of the entire population would experience this side effect while taking 
the drug?

Solution Certainly not. We computed the probability of observing y  0 in 
n  1,000 trials, assuming p  .001 (i.e., assuming .1% of the population would 
 experience the side effect), to be .368. Because this probability is quite large, it 
would not be wise to infer that p , .001. Rather, we would conclude that there is 
not sufficient evidence to contradict the assumption that p is .001 or larger. ■

 4.9 Probability Distributions for Continuous  
Random Variables

Discrete random variables (such as the binomial) have possible values that are 
distinct and separate, such as 0 or 1 or 2 or 3. Other random variables are most 
usefully considered to be continuous: Their possible values form a whole interval 
(or range, or continuum). For instance, the 1-year return per dollar invested in a 
common stock could range from 0 to some quite large value. In practice, virtually 
all random variables assume a discrete set of values; the return per dollar of a 
million-dollar common-stock investment could be $1.06219423 or $1.06219424 or 
$1.06219425 or . . . . However, when there are many possible values for a random 
variable, it is sometimes mathematically useful to treat the random variable as 
continuous.

Theoretically, then, a continuous random variable is one that can assume 
values associated with infinitely many points in a line interval. We state, without 
elaboration, that it is impossible to assign a small amount of probability to each 
value of y (as was done for a discrete random variable) and retain the property that 
the probabilities sum to 1.

To overcome this difficulty, we revert to the concept of the relative fre-
quency histogram of Chapter 3, where we talked about the probability of y falling 
in a given interval. Recall that the relative frequency histogram for a population 
containing a large number of measurements will almost be a smooth curve because 
the number of class intervals can be made large and the width of the intervals 
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can be decreased to a very small value. Thus, we envision a smooth curve that 
provides a model for the population relative frequency distribution generated by 
repeated observation of a continuous random variable. This will be similar to the 
curve shown in Figure 4.6.

Recall that the histogram relative frequencies are proportional to areas over 
the class intervals and that these areas possess a probabilistic interpretation. Thus, 
if a measurement is randomly selected from the set, the probability that it will fall 
in an interval is proportional to the histogram area above the interval. Since a 
population is the whole (100%, or 1), we want the total area under the probability 
curve to equal 1. If we let the total area under the curve equal 1, then areas over 
intervals are exactly equal to the corresponding probabilities.

The graph for the probability distribution for a continuous random variable 
is shown in Figure 4.7. The ordinate (height of the curve) for a given value of y is 
denoted by the symbol f(y). Many people are tempted to say that f(y), like P(y) 
for the binomial random variable, designates the probability associated with the 
continuous random variable y. However, as we mentioned before, it is impossible 
to assign a probability to each of the infinitely many possible values of a continu-
ous random variable. Thus, all we can say is that f(y) represents the height of the 
probability distribution for a given value of y.

The probability that a continuous random variable falls in an interval—say, 
 between two points a and b—follows directly from the probabilistic interpretation 

FIGURE 4.6
Probability distribution 

for a continuous random 
variable

f(y)

Area = 1

(a) Total area under the curve
y

f(y)

P(a < y < b)

a b
y

(b) Probability

FIGURE 4.7
Hypothetical probability  

distribution for student  
examination scores

f(y)
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given to the area over an interval for the relative frequency histogram (Section 3.3) 
and is equal to the area under the curve over the interval a to b, as shown in Figure 4.6. 
This probability is written P 1a , y , b 2 .

There are curves of many shapes that can be used to represent the popu-
lation relative frequency distribution for measurements associated with a con-
tinuous random variable. Fortunately, the areas for many of these curves have 
been tabulated and are ready for use. Thus, if we know that student examination 
scores possess a particular probability distribution, as in Figure 4.7, and if areas 
under the curve have been tabulated, we can find the probability that a particular 
student will score more than 80 by looking up the tabulated area, which is shaded 
in Figure 4.7.

Figure 4.8 depicts four important probability distributions that will be 
used extensively in the following chapters. Which probability distribution we 
use in a particular situation is very important because probability statements 
are determined by the area under the curve. As can be seen in Figure 4.8, we 
would obtain very different answers depending on which distribution is selected. 
For example, the probability the random variable takes on a value less than 
5.0 is essentially 1.0 for the probability distributions in Figures 4.8(a) and (b) 
but is .584 and .947 for the probability distributions in Figures 4.8(c) and (d), 
respectively. In some situations, we will not know exactly the distribution for 
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the random variable in a particular study. In these situations, we can use the 
observed values for the random variable to construct a relative frequency histo-
gram, which is a sample estimate of the true probability frequency distribution. 
As far as statistical inferences are concerned, the selection of the exact shape 
of the probability distribution for a continuous random variable is not crucial 
in many cases because most of our inference procedures are insensitive to the 
exact specification of the shape.

We will find that data collected on continuous variables often possess a nearly 
bell-shaped frequency distribution, such as depicted in Figure 4.8(a). A continuous 
variable (the normal) and its probability distribution (bell-shaped curve) provide a 
good model for these types of data. The normally distributed variable is also very 
important in statistical inference. We will study the normal distribution in detail in 
the next section.

 4.10 A Continuous Probability Distribution:  
The Normal Distribution

Many variables of interest, including several statistics to be discussed in later 
sections and chapters, have mound-shaped frequency distributions that can be 
approximated by using a normal curve. For example, the distribution of total 
scores on the Brief Psychiatric Rating Scale for outpatients having a current his-
tory of repeated aggressive acts is mound-shaped. Other practical examples of 
mound-shaped distributions are social perceptiveness scores of preschool chil-
dren selected from a particular socioeconomic background, psychomotor retar-
dation scores for patients with circular-type manic-depressive illness, milk yields 
for cattle of a particular breed, and perceived anxiety scores for residents of a 
community. Each of these mound-shaped distributions can be approximated with 
a normal curve.

Since the normal distribution has been well tabulated, areas under a nor-
mal curve—which correspond to probabilities—can be used to approximate prob-
abilities associated with the variables of interest in our experimentation. Thus, the 
normal random variable and its associated distribution play an important role in 
statistical inference.

The relative frequency histogram for the normal random variable, called the 
normal curve or normal probability distribution, is a smooth, bell-shaped curve. 
 Figure 4.9(a) shows a normal curve. If we let y represent the normal random vari-
able, then the height of the probability distribution for a specific value of y is rep-
resented by f(y).* The probabilities associated with a normal curve form the basis 
for the Empirical Rule.

As we see from Figure 4.9(a), the normal probability distribution is bell-
shaped and symmetrical about the mean m. Although the normal random variable y 
may theoretically assume values from 2` to 1` , we know from the Empirical Rule 
that approximately all the measurements are within 3 standard deviations (3s) of m. 
From the Empirical Rule, we also know that if we select a measurement at random 
from a population of measurements that possesses a mound-shaped distribution, 
the probability is approximately .68 that the measurement will lie within 1 standard 

normal curve

*For the normal distribution, f 1 y 2  1
s!2p

 e21
 
y2m22/ 2s 

2

, where m and s are the mean and standard 
deviation, respectively, of the population of y-values.
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deviation of its mean (see Figure 4.9(b)). Similarly, we know that the probability 
is approximately .954 that a value will lie in the interval m 6 2s and .997 in the 
 interval m 6 3s (see Figures 4.9(c) and (d)). What we do not know, however, is 
the probability that the measurement will be within 1.65 standard deviations of its 
mean, or within 2.58 standard deviations of its mean. The procedure we are going 
to discuss in this section will enable us to calculate the probability that a measure-
ment falls within any distance of the mean m for a normal curve.

Because there are many different normal curves (depending on the param-
eters m and s), it might seem to be an impossible task to tabulate areas (prob-
abilities) for all normal curves, especially if each curve requires a separate table. 
Fortunately, this is not the case. By specifying the probability that a variable y lies 
within a certain number of standard deviations of its mean (just as we did in using 
the Empirical Rule), we need only one table of probabilities.

Table 1 in the Appendix gives the area under a normal curve to the left of a 
value y that is z standard deviations (zs) away from the mean (see Figure 4.10). 
The area shown by the shading in Figure 4.10 is the probability listed in Table 1 
in the Appendix. Values of z to the nearest tenth are listed along the left-hand 
column of the table, with z to the nearest hundredth along the top of the table. To 
find the probability that a normal random variable will lie to the left of a point 1.65 
standard deviations above the mean, we look up the table entry corresponding to 
z  1.65. This probability is .9505 (see Figure 4.11).
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To determine the probability that a measurement will be less than some 
value y, we first calculate the number of standard deviations that y lies away from 
the mean by using the formula

z 
y 2 m

s

The value of z computed using this formula is sometimes referred to as the 
z-score associated with the y-value. Using the computed value of z, we determine 
the appropriate probability by using Table 1 in the Appendix. Note that we are 
merely coding the value y by subtracting m and dividing by s. (In other words, 
y  zs 1 m.) Figure 4.12 illustrates the values of z corresponding to specific 
values of y. Thus, a value of y that is 2 standard deviations below (to the left of)  
m corresponds to z  22.

z-score

FIGURE 4.10
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EXAMPLE 4.15

Consider a normal distribution with m  20 and s  2. Determine the probability 
that a measurement will be less than 23.

Solution When first working problems of this type, it might be a good idea to 
draw a picture so that you can see the area in question, as we have in Figure 4.13. 

FIGURE 4.13
Area less than y  23 
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with m  20, s  2
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To determine the area under the curve to the left of the value y  23, we first 
calculate the number of standard deviations y  23 lies away from the mean.

z 
y 2 m

s


23 2 20
2

 1.5

Thus, y  23 lies 1.5 standard deviations above m  20. Referring to Table 1 in the 
Appendix, we find the area corresponding to z  1.5 to be .9332. This is the prob-
ability that a measurement is less than 23. ■

EXAMPLE 4.16

For the normal distribution of Example 4.15 with m  20 and s  2, find the prob-
ability that y will be less than 16.

Solution In determining the area to the left of 16, we use

z 
y 2 m

s


16 2 20
2

 22

We find the appropriate area from Table 1 to be .0228; thus, .0228 is the probability 
that a measurement is less than 16. The area is shown in Figure 4.14.

FIGURE 4.14
Area less than y  16 
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EXAMPLE 4.17

A high accumulation of ozone gas in the lower atmosphere at ground level is air 
pollution and can be harmful to people, animals, crops, and various materials. 
Elevated levels above the national standard may cause lung and respiratory dis-
orders. Nitrogen oxides and hydrocarbons are known as the chief “precursors” of 
ozone. These compounds react in the presence of sunlight to produce ozone. The 
sources of these precursor pollutants include cars, trucks, power plants, and fac-
tories. Large industrial areas and cities with heavy summer traffic are the main 
contributors to ozone formation. The United States Environmental Protection 
Agency (EPA) has developed procedures for measuring vehicle emission levels of 
nitrogen oxide. Let P  denote the amount of this pollutant in a randomly selected 
automobile in Houston, Texas. Suppose the distribution of P can be adequately 
modeled by a normal distribution with a mean level of m  70 ppb (parts per 
billion) and a standard deviation of s  13 ppb.

 a. What is the probability that a randomly selected vehicle will have an 
emission level less than 60 ppb?

 b. What is the probability that a randomly selected vehicle will have an 
emission level greater than 90 ppb?

 c. What is the probability that a randomly selected vehicle will have an 
emission level between 60 and 90 ppb?

Solution We begin by drawing pictures of the areas that we are looking for  
(Figures 4.15(a)–(c)). To answer part (a), we must compute the z-value corre-
sponding to the y-value of 60. The value y  60 corresponds to a z-score of

z 
y 2 m

s


60 2 70
13

 2.77

From Table 1, the area to the left of 60 is .2206 (see Figure 4.15(a)). 
Alternatively, we could use the R command pnorm (2 .77).

FIGURE 4.15(a)
Area less than y  60 
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To answer part (b), the value y  90 corresponds to a z-score of

z 
y 2 m

s


90 2 70
13

 1.54

so from Table 1 we obtain .9382, the tabulated area less than 90. Thus, the area 
greater than 90 must be 1 2 .9382  .0618, since the total area under the curve is  
1 (see Figure 4.15(b)).  Alternatively, 1 2 pnorm(1.54)  .0618.
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To answer part (c), we can use our results from (a) and (b). The area between 
two values y1 and y2 is determined by finding the difference between the areas to 
the left of the two values, (see Figure 4.15(c)). We found that the area less than 60 
is .2206 and the area less than 90 is .9382. Hence, the area between 60 and 90 is 
.9382 2 .2206  .7176. We can thus conclude that 22.06% of inspected vehicles will 
have nitrogen oxide levels less than 60 ppb, 6.18% of inspected vehicles will have 
nitrogen oxide levels greater than 90 ppb, and 71.76% of inspected vehicles will 
have nitrogen oxide levels between 60 ppb and 90 ppb. 
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FIGURE 4.15(c)
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An important aspect of the normal distribution is that we can easily find the 
percentiles of the distribution. The 100pth percentile of a distribution is that value, 
yp, such that 100p% of the population values fall below yp and 100(1 2 p)% are 
above yp. For example, the median of a population is the 50th percentile, y.50, and 
the quartiles are the 25th and 75th percentiles. The normal distribution is symmet-
ric, so the median and the mean are the same value, y.50  m (see Figure 4.16(a)).

To find the percentiles of the standard normal distribution, we reverse our 
use of Table 1. To find the 100pth percentile, zp, we find the probability p in Table 
1 and then read out its corresponding number, zp, along the margins of the table. 
For example, to find the 80th percentile, z.80, we locate the probability p  .8000 in 
Table 1. The value nearest to .8000 is .7995, which corresponds to a z-value of 0.84. 
Thus, z.80  0.84 (see Figure 4.16(b)). Now, to find the 100pth percentile, yp, of a 
normal distribution with mean m and standard deviation s, we need to apply the 
reverse of our standardization formula,

yp  m 1 zps

100pth percentile

 ■
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Suppose we wanted to determine the 80th percentile of a population having a normal 
distribution with m  55 and s  3. We have determined that z.80  0.84; thus, the 
80th percentile for the population would be y.80  55 1 (.84)(3)  57.52. Alterna-
tively, we could use the R command qnorm(.8, 55, 3).

EXAMPLE 4.18

A State of Texas environmental agency, using the vehicle inspection process 
described in Example 4.17, is going to offer a reduced vehicle license fee to those 
 vehicles having very low emission levels. As a preliminary pilot project, it will offer 
this incentive to the group of vehicle owners having the best 10% of emission 
levels. What emission level should the agency use in order to identify the best 10% 
of all emission levels?

Solution The best 10% of all emission levels would be the 10% having the lowest 
emission levels, as depicted in Figure 4.17.

To find the 10th percentile (see Figure 4.17), we first find z.10 in Table 1. Since 
.1003 is the value nearest .1000 and its corresponding z-value is 21.28, we take 
z.10  21.28. We then compute

y.10  m 1 z.10s  70 1 121.28 2 113 2  70 2 16.64  53.36

Thus, 10% of the vehicles have emissions less than 53.36 ppb. Alternatively,  
y.10  qnorm(.1, 70, 13). 

 ■
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FIGURE 4.16 Mean, median, 80th percentile of normal distribution
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EXAMPLE 4.19

An analysis of income tax returns from the previous year indicates that for a given 
income classification, the amount of money owed to the government over and above 
the amount paid in the estimated tax vouchers for the first three payments is approxi-
mately normally distributed with a mean of $530 and a standard deviation of $205. 
Find the 75th percentile for this distribution of measurements. The government 
wants to target that group of returns having the largest 25% of amounts owed.

Solution We need to determine the 75th percentile, y.75 (Figure 4.18). From Table 1, 
we find z.75  .67 because the probability nearest .7500 is .7486, which corresponds 
to a z-score of .67. We then compute

y.75  m 1 z.75s  530 1 1.67 2 1205 2  667.35

FIGURE 4.18
The 75th percentile for a  

normal curve, with 
m  530, s  205

Thus, 25% of the tax returns in this classification exceed $667.35 in the amount 
owed the government. ■

 4.11 Random Sampling

Thus far in the text, we have discussed random samples and introduced various sam-
pling schemes in Chapter 2. What is the importance of random sampling? We must 
know how the sample was selected so we can determine probabilities associated 
with various sample outcomes. The probabilities of samples selected in a random 
manner can be determined, and we can use these probabilities to make inferences 
about the population from which the sample were drawn.

Sample data selected in a nonrandom fashion are frequently distorted by a 
selection bias. A selection bias exists whenever there is a systematic tendency to 
overrepresent or underrepresent some part of the population. For example, a sur-
vey of households conducted during the week entirely between the hours of 9 a.m. 
and 5 p.m. would be severely biased toward households with at least one member at 
home. Hence, any inferences made from the sample data would be biased toward 
the attributes or opinions of those families with at least one member at home and 
may not be truly representative of the population of households in the region.

Now we turn to a definition of a random sample of n measurements selected 
from a population containing N measurements 1N . n 2 . (Note: This is a simple 
random sample, as discussed in Chapter 2. Since most of the random samples dis-
cussed in this text will be simple random samples, we’ll drop the adjective unless 
needed for clarification.)

random sample
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EXAMPLE 4.20

A study of crimes related to handguns is being planned for the 10 largest cities in 
the United States. The study will randomly select 2 of the 10 largest cities for an 
in-depth study following the preliminary findings. The population of interest is the 
10 largest cities (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10). List all possible different 
samples consisting of 2 cities that could be selected from the population of 10 cities. 
Give the probability associated with each sample in a random sample of n  2 
cities selected from the population.

Solution All possible samples are listed in Table 4.8.

A sample of n measurements selected from a population is said to be a 
 random sample if every different sample of size n from the population has an 
equal probability of being selected.

DEFINITION 4.13

TABLE 4.8
Samples of size 2 Sample Cities Sample Cities Sample Cities

 1 C1, C2 16 C2, C9 31 C5, C6

 2 C1, C3 17 C2, C10 32 C5, C7

 3 C1, C4 18 C3, C4 33 C5, C8

 4 C1, C5 19 C3, C5 34 C5, C9

 5 C1, C6 20 C3, C6 35 C5, C10

 6 C1, C7 21 C3, C7 36 C6, C7

 7 C1, C8 22 C3, C8 37 C6, C8

 8 C1, C9 23 C3, C9 38 C6, C9

 9 C1, C10 24 C3, C10 39 C6, C10

10 C2, C3 25 C4, C5 40 C7, C8

11 C2, C4 26 C4, C6 41 C7, C9

12 C2, C5 27 C4, C7 42 C7, C10

13 C2, C6 28 C4, C8 43 C8, C9

14 C2, C7 29 C4, C9 44 C8, C10

15 C2, C8 30 C4, C10 45 C9, C10

Now let us suppose that we select a random sample of n  2 cities from the 
45 possible samples. The sample selected is called a random sample if every sample 
has an equal probability, 1/45, of being selected. ■

One of the simplest and most reliable ways to select a random sample of n 
measurements from a population is to use a table of random numbers (see Table 
13 in the Appendix). Random number tables are constructed in such a way that, 
no matter where you start in the table and no matter in which direction you move, 
the digits occur randomly and with equal probability. Thus, if we wished to choose 
a random sample of n  10 measurements from a population containing 100 mea-
surements, we could label the measurements in the population from 0 to 99 (or 1 to 
100). Then by referring to Table 13 in the Appendix and choosing a random starting 
point, the next 10 two-digit numbers going across the page would indicate the  labels 
of the particular measurements to be included in the random sample. Similarly, by 
moving up or down the page, we would also obtain a random sample.

This listing of all possible samples is feasible only when both the sample size 
n and the population size N are small. We can determine the number, M, of distinct 

random number table
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samples of size n that can be selected from a population of N measurements using 
the following formula:

M 
N!

n! 1N 2 n 2 !
In Example 4.20, we had N  10 and n  2. Thus,

M 
10!

2! 110 2 2 2 ! 
10!
2!8!

 45

The value of M becomes very large even when N is fairly small. For example, if 
N  50 and n  5, then M  2,118,760. Thus, it would be very impractical to list all 
2,118,760 possible samples consisting of n  5 measurements from a population of 
N  50 measurements and then randomly select one of the samples. In practice, 
we construct a list of elements in the population by assigning a number from 1 to 
N to each element in the population, called the sampling frame. We then randomly 
select n integers from the integers (1, 2, . . . , N) by using a table of random numbers 
(see Table 13 in the Appendix) or by using a computer program. Most statisti-
cal software programs contain routines for randomly selecting n integers from the 
integers (1, 2, . . . , N), where N . n. For example, the R command sample (seq(l:N), 
n, replace 5 False) would produce a random sample of n integers from the collec-
tion of integers 1, 2, . . . , N.

EXAMPLE 4.21

The school board in a large school district has decided to test for illegal drug use 
among those high school students participating in extracurricular activities. Because 
these tests are very expensive, they have decided to institute a random testing pro-
cedure. Every week 20 students will be randomly selected from the 850 high school 
students participating in extracurricular activities, and drug tests will be performed. 
Refer to Table 13 in the Appendix or use a computer software program to determine 
which students should be tested.

Solution Using the list of all 850 students participating in extracurricular activi-
ties, we label the students from 0 to 849 (or, equivalently, from 1 to 850). Then, 
referring to Table 13 in the Appendix, we select a starting point (close your eyes 
and pick a point in the table). Suppose we selected line 1, column 3. Going down 
the page in Table 13, we select the first 20 three-digit numbers between 000 and 849. 
We would obtain the following 20 numbers:

015 110 482 333
255 564 526 463
225 054 710 337
062 636 518 224
818 533 524 055

These 20 numbers identify the 20 students that are to be included in the first 
week of drug testing. We would repeat the process in subsequent weeks using a 
new starting point. The R command sample(seq(1:850), 20, replace 5 False) would 
produce a random sample of 20 integers from the integers 1 to 850. ■

A telephone directory is often used in selecting people to participate in surveys 
or pools, especially in surveys related to economics or politics. In the 1936 presi-
dential campaign, Franklin Roosevelt was running as the Democratic candidate 
against the Republican candidate, Governor Alfred Landon of Kansas. This was 
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a difficult time for the nation; the country had not yet recovered from the Great 
 Depression of the early 1930s, and there were still 9 million people unemployed.

The Literary Digest set out to sample the voting public and predict the win-
ner of the election. Using names and addresses taken from telephone books and 
club memberships, the Literary Digest sent out 10 million questionnaires and got 
2.4 million back. Based on the responses to the questionnaire, the Digest predicted 
a Landon victory by 57% to 43%.

At this time, George Gallup was starting his survey business. He conducted 
two surveys. The first one, based on 3,000 people, predicted what the results of the 
Digest survey would be long before the Digest results were published; the second 
survey, based on 50,000, was used to forecast correctly the Roosevelt victory.

How did Gallup correctly predict what the Literary Digest survey would pre-
dict and then, with another survey, correctly predict the outcome of the election? 
Where did the Literary Digest go wrong? The first problem was a severe selection 
bias. By taking the names and addresses from telephone directories and club mem-
berships, its survey systematically excluded the poor. Unfortunately for the Digest, 
the vote was split along economic lines; the poor gave Roosevelt a large majority, 
whereas the rich tended to vote for Landon. A second reason for the error could 
be due to a nonresponse bias. Because only 20% of the 10 million people returned 
their surveys and approximately half of those responding favored Landon, one 
might suspect that maybe the nonrespondents had different preferences than did 
the respondents. This was in fact true.

How then does one achieve a random sample? Careful planning and a certain 
amount of ingenuity are required to have even a decent chance to approximate 
random sampling. This is especially true when the universe of interest involves 
people. People can be difficult to work with; they have a tendency to discard mail 
questionnaires and refuse to participate in personal interviews. Unless we are very 
careful, the data we obtain may be full of biases having unknown effects on the 
 inferences we are attempting to make.

We do not have sufficient time to explore the topic of random sampling fur-
ther in this text; entire courses at the undergraduate and graduate levels can be 
devoted to sample-survey research methodology. The important point to remem-
ber is that data from a random sample will provide the foundation for making 
statistical inferences in later chapters. Random samples are not easy to obtain, 
but with care, we can avoid many potential biases that could affect the inferences 
we make. References providing detailed discussions on how to properly conduct a 
survey were given in Chapter 2.

 4.12 Sampling Distributions
We discussed several different measures of central tendency and variability in 
Chapter 3 and distinguished between numerical descriptive measures of a popu-
lation (parameters) and numerical descriptive measures of a sample (statistics). 
Thus, m and s are parameters, whereas y and s are statistics.

The numerical value of a sample statistic cannot be predicted exactly in 
advance. Even if we knew that a population mean m was $216.37 and that the popu-
lation standard deviation s was $32.90—even if we knew the complete population 
distribution—we could not say that the sample mean y would be exactly equal to 
$216.37. A sample statistic is a random variable; it is subject to random variation 
because it is based on a random sample of measurements selected from the pop-
ulation of interest. Also, like any other random variable, a sample statistic has a 
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probability distribution. We call the probability distribution of a sample statistic the 
sampling distribution of that statistic. Stated differently, the sampling distribution of 
a statistic is the population of all possible values for that statistic.

The actual mathematical derivation of sampling distributions is one of the 
basic problems of mathematical statistics. We will illustrate how the sampling 
 distribution for y can be obtained for a simplified population. Later in the chapter, 
we will present several general results.

EXAMPLE 4.22

The sample y is to be calculated from a random sample of size 2 taken from a 
population consisting of 10 values (2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Find the sampling dis-
tribution of y, based on a random sample of size 2.

Solution One way to find the sampling distribution is by counting. There are 45 
possible samples of 2 items selected from the 10 items. These are shown in Table 4.9.

y P( y) y P( y)

2.5 1/45 7 4/45
3 1/45 7 .5 4/45
3.5 2/45  8 3/45
4 2/45  8.5 3/45
4.5 3/45  9 2/45
5 3/45  9.5 2/45
5.5 4/45 10 1/45
6 4/45 10.5 1/45
6.5 5/45

TABLE 4.10
Sampling distribution 

for y

TABLE 4.9
List of values for the  

sample mean, y 

Sample Value of  y Sample Value of y Sample Value of y

2, 3 2.5 3, 10 6.5 6, 7 6.5
2, 4 3 3, 11 7 6, 8 7
2, 5 3.5 4, 5 4.5 6, 9 7 .5
2, 6 4 4, 6 5 6, 10 8
2, 7 4.5 4, 7 5.5 6, 11 8.5
2, 8 5 4, 8 6 7, 8 7 .5
2, 9 5.5 4, 9 6.5 7, 9 8
2, 10 6 4, 10 7 7, 10 8.5
2, 11 6.5 4, 11 7 .5 7, 11 9
3, 4 3.5 5, 6 5.5 8, 9 8.5
3, 5 4 5, 7 6 8, 10 9
3, 6 4.5 5, 8 6.5 8, 11 9.5
3, 7 5 5, 9 7 9, 10 9.5
3, 8 5.5 5, 10 7 .5 9, 11 10
3, 9 6 5, 11 8 10, 11 10.5

Assuming each sample of size 2 is equally likely, it follows that the sampling distri-
bution for y based on n  2 observations selected from the population {2, 3, 4, 5, 6, 
7, 8, 9, 10, 11} is as indicated in Table 4.10.

The sampling distribution is shown as a graph in Figure 4.19. Note that the distribu-
tion is symmetric, with a mean of 6.5 and a standard deviation of approximately 2.0 
(the range divided by 4).



192 Chapter 4 probability and probability distributions  

Example 4.22 illustrates for a very small population that we could in fact 
enumerate every possible sample of size 2 selected from the population and then 
compute all possible values of the sample mean. The next example will illustrate 
the properties of the sample mean, y, when sampling from a larger population. 
This example will illustrate that the behavior of y as an estimator of m depends on 
the sample size, n. Later in this chapter, we will illustrate the effect of the shape of 
the population distribution on the sampling distribution of y.

FIGURE 4.19
Sampling distribution for y

EXAMPLE 4.23

In this example, the population values are known, and, hence, we can compute 
the exact values of the population mean, m, and population standard deviation, 
s. We will then examine the behavior of y based on samples of size n  5, 10, 
and 25  selected from the population. The population consists of 500 pennies from 
which we compute the age of each penny: Age  2015 2 Date on penny. The his-
togram of the 500 ages is displayed in Figure 4.20(a). The shape is skewed to the 
right with a very long right tail. The mean and standard deviation are computed 
to be m  13.468 years and s  11.164 years. In order to generate the sampling 
distribution of y for n  5, we would need to generate all possible samples of size 
n  5 and then compute the y from each of these samples. This would be an enor-
mous task, since there are 255,244,687,600 possible samples of size 5 that could be 
selected from a population of 500 elements. The number of possible samples of 
size 10 or 25 is so large it makes even the national debt look small. Thus, we will 
use a computer program to select 25,000 samples of size 5 from the population of 
500 pennies. For example, the first sample consists of pennies with ages 4, 12, 26, 16, 
and 9. The sample mean y  (4 1 12 1 26 1 16 1 9)/5  13.4. We repeat 25,000 
times the process of selecting 5 pennies; recording their ages, y1, y2, y3, y4, y5; and 
then computing y  (y1 1 y2 1 y3 1 y4 1 y5)/5. The 25,000 values for y are then 
plotted in a frequency histogram, called the sampling distribution of y for n  5. A 
similar procedure is followed for samples of size n  10 and n  25. The sampling 
distributions obtained are displayed in Figures 4.20(b)–(d).

Note that all three sampling distributions have nearly the same central value, 
approximately 13.5. (See Table 4.11.) The mean values of y for the three samples 
are nearly the same as the population mean, m  13.468. In fact, if we had gener-
ated all possible samples for all three values of n, the mean of the possible values 
of y would agree exactly with m.

The next characteristic to notice about the three histograms is their shape. All 
three are somewhat symmetric in shape, achieving a nearly normal distribution 

 ■
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(b) Sampling distribution of y for n 5
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(c) Sampling distribution of y for n 10
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(d) Sampling distribution of y for n 25

FIGURE 4.20 Sampling distribution of y for n  1, 5, 10, 25
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shape when n  25. However, the histogram for y based on samples of size n  5 is 
more spread out than the histogram based on n  10, which, in turn, is more spread 
out than the histogram based on n  25. When n is small, we are much more likely 
to obtain a value of y far from m than when n is large. What causes this increased 
dispersion in the values of y? A single extreme y, either large or small relative to 
m, in the sample has a greater influence on the size of y when n is small than when 
n is large. Thus, sample means based on small n are less accurate in their estimation 
of m than are their large-sample counterparts.

Table 4.11 contains summary statistics for the sampling distribution of y. 
The sampling distribution of y has mean m

 y and standard deviation s
 y, which 

are  related to the population mean, m, and standard deviation, s, by the following 
 relationships:

m
 y  m    s

 y 
s

Ën

From Table 4.11, we note that the three sampling deviations have means that are 
approximately equal to the population mean. Also, the three sampling deviations 
have standard deviations that are approximately equal to s/!n. If we had gener-
ated all possible values of y, then the standard deviation of y would equal s/!n 
exactly. This quantity, sy  s/!n, is called the standard error of y. ■

Quite a few of the more common sample statistics, such as the sample 
median and the sample standard deviation, have sampling distributions that are 
nearly normal for moderately sized values of n. We can observe this behavior by 
computing the sample median and sample standard deviation from each of the 
three sets of 25,000 samples (n  5, 10, 25) selected from the population of 500 
pennies. The resulting sampling distributions are displayed in Figures 4.21(b)–(d), 
for the  sample median, and Figures 4.22(b)–(d), for the sample standard devia-
tion. The  sampling distributions of both the median and the standard deviation 
are more highly skewed in comparison to the sampling distribution of the sample 
mean. In fact, the value of n at which the sampling distributions of the sample 
median and standard deviation have a nearly normal shape is much larger than 
the value required for the sample mean. A series of theorems in mathematical 
statistics called the Central Limit Theorems provide theoretical justification for 
our approximating the true sampling distribution of many sample statistics with 
the normal distribution. We will discuss one such theorem for the sample mean. 
Similar theorems exist for the sample median, sample standard deviation, and 
sample proportion.

Figure 4.20 illustrates the Central Limit Theorem. Figure 4.20(a) displays the 
distribution of the measurements y in the population from which the samples are to 
be drawn. No specific shape was required for these measurements for the Central 
Limit Theorem to be validated. Figures 4.20(b)–(d) illustrate the sampling distri-
bution for the sample mean y when n is 5, 10, and 25, respectively. We note that 

standard error of y

Central Limit  
Theorems

TABLE 4.11
Means and standard 

deviations for  
the sampling 

distributions of y

Sample Size Mean of y Standard Deviation of y 11.1638/Ën

  1 (Population) 13.468 (m) 11.1638 (s) 11.1638
  5 13.485 4.9608 4.9926
10 13.438 3.4926 3.5303
25 13.473 2.1766 2.2328
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(b) Sampling distribution of median for n 5
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(c) Sampling distribution of median for n 10
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(d) Sampling distribution of median for n 25

FIGURE 4.21 Sampling distribution of median for n  5, 10, 25
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FIGURE 4.22 Sampling distribution of standard deviation for n  5, 10, 25
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(b) Sampling distribution of standard deviation for n 5
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even for a very small sample size, n  10, the shape of the sampling distribution of 
y is very similar to that of a normal distribution. This is not true in general. If the 
population distribution had many extreme values or several modes, the sampling 
distribution of y would require n to be considerably larger in order to achieve a 
symmetric bell shape.

We have seen that the sample size n has an effect on the shape of the sam-
pling distribution of y. The shape of the distribution of the population measure-
ments also will affect the shape of the sampling distribution of y. Figures 4.23 and 
4.24  illustrate the effect of the population shape on the shape of the sampling dis-
tribution of y. In Figure 4.23, the population measurements have a normal distri-
bution. The sampling distribution of y is exactly a normal distribution for all values 
of n, as is illustrated for n  5, 10, and 25 in Figure 4.23. When the population 
distribution is nonnormal, as depicted in Figure 4.24, the sampling distribution of 
y will not have a normal shape for small n (see Figure 4.24 with n  5). However, 
for n  10 and 25, the sampling distributions are nearly normal in shape, as can be 
seen in Figure 4.24.

It is very unlikely that the exact shape of the population distribution will be 
known. Thus, the exact shape of the sampling distribution of y will not be known 
either. The important point to remember is that the sampling distribution of y will 

Central Limit Theorem for y
Let y denote the sample mean computed from a random sample of n mea-
surements from a population having a mean m and finite standard deviation 
s. Let my and sy denote the mean and standard deviation of the sampling 
distribution of y, respectively. Based on repeated random samples of size n 
from the population, we can conclude the following:

 1. my  m
 2. sy  s/!n
 3.  When n is large, the sampling distribution of y will be approxi-

mately normal (with the approximation becoming more precise as 
n increases).

 4. When the population distribution is normal, the sampling distribu-
tion of y is exactly normal for any sample size n.

THEOREM 4.1
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be approximately normally distributed with a mean my  m, the population mean, 
and a standard deviation sy  s/!n. The approximation will be more precise as 
n, the sample size for each sample, increases and as the shape of the population 
distribution becomes more like the shape of a normal distribution.

An obvious question is, How large should the sample size be for the Central 
Limit Theorem to hold? Numerous simulation studies have been conducted over 
the years, and the results of these studies suggest that, in general, the Central Limit 
Theorem holds for n . 30. However, one should not apply this rule blindly. If the 
population is heavily skewed, the sampling distribution for y will still be skewed 
even for n . 30. On the other hand, if the population is symmetric, the Central 
Limit Theorem holds for n , 30.

Therefore, take a look at the data. If the sample histogram is clearly skewed, 
then the population will also probably be skewed. Consequently, a value of n much 
higher than 30 may be required to have the sampling distribution of y be approxi-
mately normal. Any inference based on the normality of y for n # 30 under this 
condition should be examined carefully.

EXAMPLE 4.24

A person visits her doctor with concerns about her blood pressure. If the sys-
tolic blood pressure exceeds 150, the patient is considered to have high blood 
pressure and medication may be prescribed. A patient’s blood pressure readings 
often have a considerable variation during a given day. Suppose a patient’s systolic 
blood pressure readings during a given day have a normal distribution with a mean 
m  160 mm mercury and a standard deviation s  20 mm.

 a. What is the probability that a single blood pressure measurement 
will fail to detect that the patient has high blood pressure? 

 b. If five blood pressure measurements are taken at various times 
during the day, what is the probability that the average of the five 
measurements will be less than 150 and hence fail to indicate that 
the patient has high blood pressure?

 c. How many measurements would be required in a given day so that 
there is at most a 1% probability of failing to detect that the patient 
has high blood pressure?

Solution Let y be the blood pressure measurement of the patient. y has a normal 
distribution with m  160 and s  20.
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 a. P(measurement fails to detect high pressure)  P 1y # 150 2   
P 1z # 150 2 160

20 2  P 1z # 20.5 2  .3085. Thus, there is over a 30%  
chance of failing to detect that the patient has high blood pressure if 
only a single measurement is taken.

 b. Let y be the average blood pressure of the five measurements. Then 
y has a normal distribution with m  160 and s  20 /Ë5  8.944.

P 1 y # 150 2  Paz #
150 2 160

8.944
b  P 1z # 21.12 2  .1314

  Therefore, by using the average of five measurements, the chance of 
failing to detect the patient has high blood pressure has been reduced 
from over 30% to about 13%.

 c. We need to determine the sample size n such that P 1y , 150 2 # .01. 
  Now P 1y , 150 2  P Az # 150 2 160

20 /!n
B . From the normal tables, we 

  have P 1z # 22.326 2  .01; therefore, 150 2 160
20 /Ën

 22.326. Solving 

  for n yields !n 
122.326 2 120 2

210 , n  21.64. It would require at least 22 
measurements in order to achieve the goal of at most a 1% chance 
of failing to detect high blood pressure. ■

As demonstrated in Figures 4.21 and 4.22, the Central Limit Theorem can 
be extended to many different sample statistics. The form of the Central Limit 
Theorem for the sample median and sample standard deviation is considerably 
more complex than for the sample mean. Many of the statistics that we will encoun-
ter in later chapters will be either averages or sums of variables. The Central Limit 
Theorem for sums can be easily obtained from the Central Limit Theorem for the 
sample mean. Suppose we have a random sample of n measurements, y1, . . . , yn, 
from a population and we let gy  y1 1 . . . 1 yn.

Central Limit Theorem for Σ y
Let gy denote the sum of a random sample of n measurements from a 
population having a mean m and finite standard deviation s. Let may and say 
denote the mean and standard deviation of the sampling distribution of gy, 
respectively. Based on repeated random samples of size n from the popula-
tion, we can conclude the following:

 1. may  nm

 2. sgy  !ns

 3. When n is large, the sampling distribution of gy will be approxi-
mately normal (with the approximation becoming more precise 
as n increases).

 4. When the population distribution is normal, the sampling distribu-
tion of gy is exactly normal for any sample size n.

THEOREM 4.2

Usually, a sample statistic is used as an estimate of a population parameter. 
For example, a sample mean y can be used to estimate the population mean m from 
which the sample was selected. Similarly, a sample median and sample standard 
 deviation estimate the corresponding population median and standard deviation. 
The sampling distribution of a sample statistic is then used to determine how  accurate 
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the estimate is likely to be. In Example 4.22, the population mean m is known to be 
6.5. Obviously, we do not know m in any practical study or experiment. However, we 
can use the sampling distribution of y to determine the probability that the value of y 
for a random sample of n  2 measurements from the population will be more than 
three units from m. Using the data in Example 4.22, this probability is

P 12.5 2 1 P 13 2 1 P 110 2 1 P 110.5 2 
4
45

In general, we would use the normal approximation from the Central Limit Theorem 
in making this calculation because the sampling distribution of a sample statistic is 
seldom known. This type of calculation will be developed in Chapter 5. Since a sam-
ple statistic is used to make inferences about a population parameter, the sampling 
distribution of the statistic is crucial in determining the accuracy of the inference.

Sampling distributions can be interpreted in at least two ways. One way uses 
the long-run relative frequency approach. Imagine taking repeated samples of a 
fixed size from a given population and calculating the value of the sample statistic 
for each sample. In the long run, the relative frequencies for the possible values of 
the sample statistic will approach the corresponding sampling distribution prob-
abilities. For example, if one took a large number of samples from the population 
distribution corresponding to the probabilities of Example 4.22 and, for each sam-
ple, computed the sample mean, approximately 9% would have y  5.5.

The other way to interpret a sampling distribution makes use of the classi-
cal interpretation of probability. Imagine listing all possible samples that could be 
drawn from a given population. The probability that a sample statistic will have a 
particular value (say, y  5.5) is then the proportion of all possible samples that 
yield that value. In Example 4.22, P 1  y  5.5 2  4 /45 corresponds to the fact that 
4 of the 45 samples have a sample mean equal to 5.5. Both the repeated-sampling 
and the classical method approaches to finding probabilities for a sample statistic 
are legitimate.

In practice, though, a sample is taken only once, and only one value of the 
sample statistic is calculated. A sampling distribution is not something you can see 
in practice; it is not an empirically observed distribution. Rather, it is a theoretical 
concept, a set of probabilities derived from assumptions about the population and 
about the sampling method.

There’s an unfortunate similarity between the phrase “sampling distribution,” 
meaning the theoretically derived probability distribution of a statistic, and the 
phrase “sample distribution,” which refers to the histogram of individual values 
actually observed in a particular sample. The two phrases mean very different 
things. To avoid confusion, we will refer to the distribution of sample values as the 
sample histogram rather than as the sample distribution.

 4.13 Normal Approximation to the Binomial

A binomial random variable y was defined earlier to be the number of successes 
observed in n independent trials of a random experiment in which each trial 
resulted in either a success (S) or a failure (F) and P(S)  p for all n trials. We will 
now demonstrate how the Central Limit Theorem for sums enables us to calculate 
probabilities for a binomial random variable by using an appropriate normal curve 
as an approximation to the binomial distribution. We said in Section 4.8 that prob-
abilities associated with values of y can be computed for a binomial experiment for 
any values of n or p, but the task becomes more difficult when n gets large. For 
 example, suppose a sample of 1,000 voters is polled to determine sentiment toward 

interpretations of a 
sampling distribution

sample histogram
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the consolidation of city and county government. What would be the probability of 
observing 460 or fewer favoring consolidation if we assume that 50% of the entire 
population favors the change? Here we have a binomial experiment with n  1,000 
and p, the probability of selecting a person favoring consolidation, equal to .5. To 
determine the probability of observing 460 or fewer favoring consolidation in the 
random sample of 1,000 voters, we could compute P(y) using the binomial formula 
for y  460, 459, . . . , 0. The desired probability would then be

P 1y  460 2 1 P 1y  459 2 1 c1 P 1y  0 2
There would be 461 probabilities to calculate, with each one being somewhat 
difficult because of the factorials. For example, the probability of observing 460 
favoring consolidation is

P 1y  460 2 
1,000!

460!540!
 1.5 2 460 1.5 2 540

A similar calculation would be needed for all other values of y.
To justify the use of the Central Limit Theorem, we need to define n random 

variables, I1, . . . . , In, by

Ii  e1 if the ith trial results in a success
0 if the ith trial results in a failure

The binomial random variable y is the number of successes in the n trials. Now, 
consider the sum of the random variables I1, . . . , In: gn

i1 Ii. A 1 is placed in the 
sum for each S that occurs and a 0 for each F that occurs. Thus,gn

i1 Ii is the num-
ber of Ss that occurred during the n trials. Hence, we conclude that y  gn

i1Ii. 
Because the binomial random variable y is the sum of independent random varia-
bles, each having the same distribution, we can apply the Central Limit Theorem for 
sums to y. Thus, the normal distribution can be used to approximate the binomial 
distribution when n is of an appropriate size. The normal distribution that will be 
used has a mean and standard deviation given by the following formulas:

m  np,    s  Ënp 11 2 p 2
These are the mean and standard deviation of the binomial random variable y.

EXAMPLE 4.25

Use the normal approximation to the binomial to compute the probability of 
observing 460 or fewer favoring consolidation in a sample of 1,000 if we assume 
that 50% of the entire population favors the change.

Solution The normal distribution used to approximate the binomial distribution 
will have

 m  np  1,000 1.5 2  500

 s  Ënp 11 2 p 2  Ë1,000 1.5 2 1.5 2  15.8

The desired probability is represented by the shaded area shown in Figure 4.25. We 
calculate the desired area by first computing

z 
y 2 m

s


460 2 500
15.8

 22.53
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Referring to Table 1 in the Appendix, we find that the area under the normal curve 
to the left of 460 (for z  22.53) is .0057. Thus, the probability of observing 460 
or fewer favoring consolidation is approximately .0057. Using R, the exact value is 
pbinom(460, 1000, .5)  .0062. ■

f(
y)

y
460 500

FIGURE 4.25
Approximating normal  

distribution for the  
binomial distribution, 
m  500 and s  15.8

The normal approximation to the binomial distribution can be unsatisfactory 
if np , 5 or n 11 2 p 2 , 5. If p, the probability of success, is small and n, the sample 
size, is modest, the actual binomial distribution is seriously skewed to the right. In 
such a case, the symmetric normal curve will give an unsatisfactory approxi mation. 
If p is near 1, so n(1 2 p) , 5, the actual binomial will be skewed to the left, and, 
again, the normal approximation will not be very accurate. The normal approxi-
mation, as described, is quite good when np and n(1 2 p) exceed about 20. In the 
middle zone, np or n(1 2 p) between 5 and 20, a modification called a continuity 
correction makes a substantial contribution to the quality of the approximation.

The point of the continuity correction is that we are using the continuous 
normal curve to approximate a discrete binomial distribution. A picture of the 
 situation is shown in Figure 4.26.

The binomial probability that y # 5 is the sum of the areas of the rectangles 
above 5, 4, 3, 2, 1, and 0. This probability (area) is approximated by the area under the 
superimposed normal curve to the left of 5. Thus, the normal approximation ignores 
half of the rectangle above 5. The continuity correction simply includes the area 
 between y  5 and y  5.5. For the binomial distribution with n  20 and p  .30 
(pictured in Figure 4.26), the correction is to take P(y # 5) as P(y # 5.5). Instead of

P 1y # 5 2  P 3z # 15 2 20 1.3 2 2 /Ë20 1.3 2 1.7 2 4  P 1z # 2.49 2  .3121

use

P 1y # 5.5 2  P 3z # 15.5 2 20 1.3 2 2 /Ë20 1.3 2 1.7 2 4  P 1z # 2.24 2  .4052

The actual binomial probability is pbinom(5, 20, .3)  .4164. The general idea of 
the continuity correction is to add or subtract .5 from a binomial value before using 
normal probabilities. The best way to determine whether to add or subtract is to 
draw a picture like Figure 4.26.

continuity correction

1 2 3 4 5 6
.05 1.5 2.5 3.5 4.5 5.5 6.5

n = 20
 = .30

FIGURE 4.26
Normal approximation  

to the binomial
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EXAMPLE 4.26

A large drug company has 100 potential new prescription drugs under clinical test. 
About 20% of all drugs that reach this stage are eventually licensed for sale. What 
is the probability that at least 15 of the 100 drugs are eventually licensed? Assume 
that the binomial assumptions are satisfied, and use a normal approximation with 
continuity correction.

Solution Let y be the number of approved drugs. We are assuming y has a bi-
nomial distribution with n  100 and p  .2. The mean of y is m  100(.2)  20, 
and the standard deviation is !100(.2)(.8)  4. Because np  100(.2)  20 . 5 
and n(1 2 p)  100(.8)  80 . 5, the normal approximation can safely be used to 
approximate the probability that 15 or more drugs are approved; that is, P(y $ 15). 
Because y  15 is included, the continuity correction is to take the event as y 
greater than or equal to 14.5.

 P 1 y $ 15 2 < Paz $
14.5 2 20

4
b  P 1z $ 21.375 2  1 2 P 1z , 21.375 2

  1 2 .0846  .9154

Using the R command for computing binomial probabilities, the exact probability 
is P(y $ 15)  1 2 P(y # 14)  1 2 pbinom (14, 100, .2) .9196. Comparing the 
approximate probability, .9154, to the exact probability, .9196, we can conclude that 
the approximation was accurate to two decimal places.

If the continuity correction was not used, the probability would be approxi-
mated to be

 P 1 y $ 15 2 < Paz $
15 2 20

4
b  P 1z $ 21.25 2  1 2 P 1z , 21.25 2

  1 2 .1056  .8944

Thus, the continuity correction is crucial in obtaining an accurate approximation. ■

 4.14 Evaluating Whether or Not a Population  
Distribution Is Normal

In many scientific experiments or business studies, the researcher wishes to deter-
mine if a normal distribution would provide an adequate fit to the population dis-
tribution. This would allow the researcher to make probability calculations and 
draw inferences about the population based on a random sample of observations 
from that population. Knowledge that the population distribution is not normal 
also may provide the researcher insight concerning the population under study. 
This may indicate that the physical mechanism generating the data has been 
altered or is of a form different from previous specifications. Many of the statistical 

For large n and p not too near 0 or 1, the distribution of a binomial random 
variable y may be approximated by a normal distribution with m  np  and 
s  !np (1 2 p). This approximation should be used only if np $ 5 and 
n(1 2 p) $ 5. A continuity correction will improve the quality of the approxi-
mation in cases in which n is not overwhelmingly large.

Normal 
Approximation to the 
Binomial Probability 

Distribution 
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procedures that will be discussed in subsequent chapters of this book require that 
the population distribution have a normal distribution or at least be adequately 
approximated by a normal distribution. In this section, we will provide a graphical 
procedure and a quantitative assessment of how well a normal distribution models 
the population distribution. 

The graphical procedure that will be constructed to assess whether a random 
sample yl, y2, . . . , yn was selected from a normal distribution is referred to as a normal 
probability plot of the data values. This plot is a variation on the quantile plot that 
was introduced in Chapter 3. In the normal probability plot, we compare the quan-
tiles from the data observed from the population to the corresponding quantiles from 
the standard normal distribution. Recall that the quantiles from the data are just 
the data ordered from smallest to largest: y(1), y(2), . . . , y(n), where y(1) is the smallest 
value in the data y1, y2, . . . , yn; y(2) is the second smallest value; and so on until reaching 
y(n), which is the largest value in the data. Sample quantiles separate the sample in the 
same fashion as the population percentiles, which were defined in Section 4.10. Thus, 
the sample quantile Q(u) has at least 100u% of the data values less than Q(u) and has 
at least 100(1 2 u)% of the data values greater than Q(u). For example, Q(.1) has at 
least 10% of the data values less than Q(.1) and has at least 90% of the data values 
greater than Q(.1). Q(.5) has at least 50% of the data values less than Q(.5) and has 
at least 50% of the data values greater than Q(.5). Finally, Q(.75) has at least 75% of 
the data values less than Q(.75) and has at least 25% of the data values greater than 
Q(.75). This motivates the following definition for the sample quantiles.

normal probability 
plot

Let y(1), y(2), . . . , y(n) be the ordered values from a data set. The [(i 2 .5)/n]th  
sample quantile, Q((i 2 .5)/n), is y(i). That is, y(1)  Q((.5)/n) is the [(.5)/n]th 
sample quantile, y(2)  Q((1.5)/n) is the [(1.5)/n]th sample quantile, . . . , and, 
lastly, y(n)  Q((n 2 .5)/n) is the [(n 2 .5)/n]th sample quantile.

DEFINITION 4.14

Suppose we had a sample of n  20 observations: y1, y2, . . . , y20. Then

y(1)  Q((.5)/20)  Q(.025) is the .025th sample quantile,
y(2)  Q((1.5)/20)  Q(.075) is the .075th sample quantile,
y(3)  Q((2.5)/20)  Q(.125) is the .125th sample quantile, . . . , and 
y(20)  Q((19.5)/20)  Q(.975) is the .975th sample quantile.

In order to evaluate whether a population distribution is normal, a random sample 
of n observations is obtained, the sample quantiles are computed, and these n quan-
tiles are compared to the corresponding quantiles computed using the conjectured 
population distribution. If the conjectured distribution is the normal  distribution, 
then we would use the normal tables to obtain the quantiles z(i2.5)/n for i  1, 2, . . . , 
n. The normal quantiles are obtained from the standard normal tables, Table 1 in 
the Appendix, for the n values .5/n, 1.5/n, . . . , (n 2 .5)/n. For example, if we had 
n  20 data values, then we would obtain the normal quantiles for .5/20  .025, 
1.5/20  .075, 2.5/20  .125, . . . , (20 2 .5)/20  .975. From Table 1, we find that 
these quantiles are given by z.025  21.960, z.075  21.440, z.125  21.150, . . . , 
z.975  1.960. The normal quantile plot is obtained by plotting the n pairs of points: 

1z.5/n, y112 2 ;   1z1.5/n, y122 2 ;   1z2.5/n, y132 2 ; c; 1z1n2 .52/n, y1n2 2
If the population from which the sample of n values was randomly selected 

has a normal distribution, then the plotted points should fall close to a straight line. 
The following example will illustrate these ideas.
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EXAMPLE 4.27

It is generally assumed that cholesterol readings in large populations have a normal 
distribution. In order to evaluate this conjecture, the cholesterol readings of n  20 
patients were obtained. These are given in Table 4.12, along with the correspond-
ing normal quantile values. It is important to note that the cholesterol readings are 
given in an ordered fashion from smallest to largest. The smallest cholesterol read-
ing is matched with the smallest normal quantile, the second-smallest cholesterol 
reading with the second-smallest quantile, and so on. Obtain the normal quantile 
plot for the cholesterol data, and assess whether the data were selected from a 
population having a normal distribution.

Solution

TABLE 4.12
Sample and normal 

quantiles for cholesterol 
readings

Patient Cholesterol Reading (i 2 .5)/20 Normal Quantile

1 133 .025 21.960
2 137 .075 21.440
3 148 .125 21.150 
4 149 .175 2.935
5 152 .225 2.755
6 167 .275 2.598
7 174 .325 2.454
8 179 .375 2.319
9 189 .425 2.189

10 192 .475 2.063
11 201 .525 .063
12 209 .575 .189
13 210 .625 .319 
14 211 .675 .454
15 218 .725 .598
16 238 .775 .755
17 245 .825 .935
18 248 .875 1.150
19 253 .925 1.440
20 257 .975 1.960

A plot of the sample quantiles versus the corresponding normal quantiles is dis-
played in Figure 4.27. The plotted points generally follow a straight-line  pattern.
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Using the R code in Section 4.16, we can obtain a plot with a fitted line that 
assists us in assessing how close the plotted points fall relative to a straight line. 
This plot is displayed in Figure 4.28. The 20 points appear to be relatively close to 
the fitted line, and, thus, the normal quantile plot would appear to suggest that the 
normality of the population distribution is plausible.

Using a graphical procedure, there is a high degree of subjectivity in making 
an assessment of how well the plotted points fit a straight line. The scales of the axes 
on the plot can be increased or decreased, resulting in a change in our assessment 
of fit. Therefore, a quantitative assessment of the degree to which the plotted points 
fall near a straight line will be introduced.

In Chapter 3, we introduced the sample correlation coefficient r to measure 
the degree to which two variables satisfied a linear relationship. We will now dis-
cuss how this coefficient can be used to assess our certainty that the sample data 
were selected from a population having a normal distribution. First, we must alter 
which normal quantiles are associated with the ordered data values. In the above 
discussion, we used the normal quantiles corresponding to (i 2 .5)/n. In calculat-
ing the correlation between the ordered data values and the normal quantiles, a 
more precise measure is obtained if we associate the (i 2 .375)/(n 1 .25) normal 
quantiles for i  1, . . . , n with the n data values y(1), . . . , y(n). We then calculate 
the value of the correlation coefficient, r, from the n pairs of values. To provide 
a more definitive assessment of our level of certainty that the data were sampled 
from a normal distribution, we then obtain a value from Table 15 in the Appen-
dix. This value, called a p-value, can then be used along with the following criterion 
(Table 4.13) to rate the degree of fit of the data to a normal distribution.

FIGURE 4.28
Normal quantile plot for 

cholesterol reading
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TABLE 4.13
Criteria for assessing fit  

of normal distribution

p-value Assessment of Normality

p , .01 Very poor fit
.01 # p , .05 Poor fit
.05 # p , .10 Acceptable fit
.10 # p , .50 Good fit
p $ .50 Excellent fit
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It is very important that the normal quantile plot accompany the calculation 
of the correlation because large sample sizes may result in an assessment of a poor 
fit when the graph would indicate otherwise. The following example will illustrate 
the calculations involved in obtaining the correlation.

EXAMPLE 4.28

Consider the cholesterol data in Example 4.27. Calculate the correlation coefficient, 
and make a determination of the degree of fit of the data to a normal distribution.

Solution The data are summarized in Table 4.14 along with their corresponding 
normal quantiles.

TABLE 4.14
Normal quantiles data Patient Cholesterol Reading (i 2 .375)/(20 1 .25) Normal Quantile

i yi  xi

1 133 .031 21.868
2 137 .080 21.403
3 148 .130 21.128
4 149 .179 2.919
5 152 .228 2.744
6 167 .278 2.589
7 174 .327 2.448
8 179 .377 2.315
9 189 .426 2.187

10 192 .475 2.062
11 201 .525 .062
12 209 .574 .187
13 210 .623 .315
14 211 .673 .448
15 218 .722 .589
16 238 .772 .744
17 245 .821 .919
18 248 .870 1.128
19 253 .920 1.403
20 257 .969 1.868

The calculation of the correlation between cholesterol reading (y) and normal 
quantile (x) will be done in Table 4.15. First, we compute y  195.5 and x  0.  Then 
the calculation of the correlation will proceed as in our calculations from Chapter 3.

The correlation is then computed as

r 
gn

i1 1xi 2 x 2  1yi 2 y 2
Ë 1gn

i1 1xi 2 x 2 2 2 1gn
i1 1yi 2 y 2 2 2 

720.18

Ë 117.634 2 130511 2  .982

From Table 15 in the Appendix with n  20 and r  .982, we obtain p-value < .50. 
This value is obtained by locating the number in the row for n  20 that is closest to 
r  .982. The a-value heading this column is the p-value. Thus, we would appear to 
have an excellent fit between the sample data and the normal distribution. This is 
consistent with the fit that is displayed in Figure 4.28, where the 20 plotted points 
are very near to the straight line. The R command cor( y, x) yields the value .9818, 
where y and x are the values in Table 4.14. 
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 4.15 ReseaRch study: Inferences about Performance-
enhancing drugs among athletes

As was discussed in the abstract to the research study given at the beginning of 
this chapter, the use of performance-enhancing substances has two major conse-
quences: the artificial enhancement of performance (known as doping) and the 
use of po tentially harmful substances that may have significant health effects 
for the athlete. However, failing a drug test can devastate an athlete’s career. 
The controversy over performance-enhancing drugs has seriously brought into 
question the reliability of the tests for these drugs. The article in Chance discussed 
at the beginning of this chapter examines the case of Olympic runner Mary Decker 
Slaney. Ms. Slaney was a world-class distance runner during the 1970s and 1980s. 
After a series of illnesses and injuries, she was forced to stop competitive run-
ning. However, at the age of 37, Slaney made a comeback in long-distance running. 
Slaney submitted to a mandatory test of her urine at the 1996 U.S. Olympic Trials. 
The results indicated that she had elevated levels of testosterone and hence may 
have used a banned performance-enhancing drug. Her attempt at a comeback was 
halted by her subsequent suspension by USA Track and Field (USATF). Slaney 
maintained her innocence throughout a series of hearings before USATF and was 
exonerated in September 1997 by a Doping Hearing Board of the USATF. How-
ever, the U.S. Olympic Committee (USOC) overruled the USATF decision and 
stated that Slaney was guilty of a doping offense. Although Slaney continued to 
maintain that she had never used the drug, her career as a competitive runner 
was terminated. Anti-doping  officials regard a positive test result as irrefutable 
evidence that an illegal drug was used, to the exclusion of any other explanation. 
We will now address how the use of Bayes’ Formula, the sensitivity and specificity 

TABLE 4.15
Calculation of correlation  

coefficient 

(xi 2  x) (yi 2  y) (xi 2 x)(yi 2 y) (yi 2 y)2 (xi 2 x)2

(xi 2 0) (yi 2 195.5) (xi – 0)(yi 2 195.5) (yi 2 195.5)2 (xi 2 0)2

 21.868 262.5 116.765 3,906.25 3.49033
 21.403 258.5 82.100 3,422.25 1.96957
 21.128 247 .5 53.587 2,256.25 1.27271
 2.919 246.5 42.740 2,162.25 .84481
 2.744 243.5 32.370 1,892.25 .55375
 2.589 228.5 16.799 812.25 .34746
 2.448 221.5 9.627 462.25 .20050
 2.315 216.5 5.190 272.25 .09896
 2.187 26.5 1.214 42.25 .03488
 2.062 23.5 .217 12.25 .00384
 .062 5.5 .341 30.25 .00384
 .187 13.5 2.521 182.25 .03488
 .315 14.5 4.561 210.25 .09896
 .448 15.5 6.940 240.25 .20050
 .589 22.5 13.263 506.25 .34746
 .744 42.5 31.626 1,806.25 .55375
 .919 49.5 45.497 2,450.25 .84481
 1.128 52.5 59.228 2,756.25 1.27271
 1.403 57 .5 80.696 3,306.25 1.96957
 1.868 61.5 114.897 3,782.25 3.49033

    0 0 720.18 30,511 17 .634

 ■
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of a test, and the prior probability of drug use can be used to explain to anti-doping 
officials that drug tests can be wrong.

We will use tests for detecting artificial increases in testosterone concentra-
tions to illustrate the various concepts involved in determining the reliability of a 
testing procedure. The article states, “Scientists have attempted to detect artifi-
cial increases in testosterone concentrations through the establishment of a ‘nor-
mal urinary range’ for the T/E ratio.” Despite the many limitations in setting this 
limit,  scientists set the threshold for positive testosterone doping at a T/E ratio 
greater than 6:1. The problem is to determine the probabilities associated with 
various tests for the T/E ratio. In particular, what is the probability that an athlete 
is a banned-drug user given she tests positive for the drug (positive predictive 
value, or PPV)?

We will use the example given in the article. Suppose in a population of 1,000 
athletes there are 20 users. That is, prior to testing a randomly selected athlete 
for the drug, there is a 20/1,000  2% chance that the athlete is a user (the prior 
probability of randomly selecting a user is .02  2%). Suppose the testing pro-
cedure has a sensitivity of 80% and a specificity of 99%. Thus, 16 of the 20 users 
would test positive, 20(.8)  16, and about 10 of the nonusers would test positive, 
980(1 2 .99)  9.8. If an athlete tests positive, what is the probability she is a user? 
We now have to make use of Bayes’ Formula to compute PPV. 

PPV 
sens * prior

sens * prior 1 11 2 spec 2  * 11 2 prior 2
where “sens” is the sensitivity of the test, “spec” is the specificity of the test, and 
“prior” is the prior probability that an athlete is a banned-drug user. For our exam-
ple with a population of 1,000 athletes,

PPV 
1.8 2  * 120 /1,000 2

1.8 2  * 120 /1,000 2 1 11 2 .99 2  * 11 2 20 /1,000 2  .62

Therefore, if an athlete tests positive, there is only a 62% chance that she has used 
the drug. Even if the sensitivity of the test is increased to 100%, the PPV is still 
 relatively small: 

PPV 
11 2  * 120 /1,000 2

11 2  * 120 /1,000 2 1 11 2 .99 2  * 11 2 20 /1,000 2  .67

There is a 33% chance that the athlete is a nonuser even though the test result was 
positive. Thus, if the prior probability is small, there will always be a high  degree 
of uncertainty with the test result even when the test has values of sensitivity and 
specificity near 1.

However, if the prior probability is fairly large, then the PPV will be much 
closer to 1. For example, if the population consists of 900 users and only 100 
nonusers and if the testing procedure has sensitivity  .9 and specificity  .99, 
then the PPV would be .9988:

PPV 
1.9 2  * 1900 /1,000 2

1.9 2  * 1900 /1,000 2 1 11 2 .99 2  * 11 2 900 /1,000 2  .9988

That is, the chance that the tested athlete is a user given she produced a positive 
test would be 99.88%, a very small chance of a false positive.

From this, we conclude that an essential factor in Bayes’ Formula is the prior 
probability of an athlete being a banned-drug user. Making matters even worse in 
this situation is the fact that the prevalence (prior probability) of substance abuse 
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is very difficult to determine. Hence, there will inevitably be a subjective  aspect to 
assigning a prior probability. The authors of the article comment on the selection 
of the prior probability, suggesting that in their particular sport, a hearing board 
consisting of athletes participating in the same sport as the athlete being tested 
would be especially appropriate for making decisions about prior probabilities. 
For example, assuming the board knows nothing about the athlete beyond what is 
presented at the hearing, it might regard drug abuse as rare, and, hence, the PPV 
would be at most moderately large. On the other hand, if the board knew that 
drug abuse is widespread, then the probability of abuse would be larger, based on 
a positive test result.

To investigate further the relationship among PPV, prior probability, and 
sensitivity for a fixed specificity of 99%, consider Figure 4.29. The calculations of 
PPV are obtained by using Bayes’ Formula for a selection of prior and sensitivity, 
and with specificity  .99.

We can thus observe that if the sensitivity of the test is relatively low—say, 
less than 50%—then unless the prior is above 20%, we will not be able to achieve a 
PPV greater than 90%. The article describes how the above figure allows for using 
Bayes’ Formula in reverse. For example, a hearing board may make the decision 
that it would not rule against an athlete unless his or her probability of being a user 
was at least 95%. Suppose we have a test having both sensitivity and specificity of 
99%. Then the prior probability must be at least 50% in order to achieve a PPV 
of 95%. This would allow the board to use its knowledge about the prevalence of 
drug abuse in the population of athletes to determine if a prevalence of 50% or 
larger is realistic.

The authors conclude with the following comments:

Conclusions about the likelihood of testosterone doping require consideration 
of three components: specificity and sensitivity of the testing procedure, and the 
prior probability of use. As regards the T/E ratio, anti-doping officials consider 
only specificity. The result is a flawed process of inference. Bayes’ rule shows 
that it is impossible to draw conclusions about guilt on the basis of specificity 
alone. Policy-makers in the athletic federations should follow the lead of med-
ical scientists who use sensitivity, specificity, and Bayes’ rule in interpreting 
diagnostic evidence.
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 4.16 R Instructions

Generating Random Numbers
To generate 1,000 random numbers from the integers [0, 1, . . . , 9]:

 1. y  c(0:9)
 2. x  sample(y, 1000, replaceT)
 3. x

Calculating Binomial Probabilities
To calculate binomial probabilities when X has a binomial distribution with n  10 
and p  0.6:

 1. To calculate P(X  3), use the command dbinom(3, 10, .6)
 2. To calculate P(X # 3), use the command pbinom(3, 10, .6)
 3. To calculate P(X  k) for k  0, 1, . . . , 10, use the commands  

k  c(0 : 10) and dbinom(k, 10, .6)

Calculating Poisson Probabilities
To calculate Poisson probabilities when Y has a binomial distribution with l  10 
and p  0.6:

 1. To calculate P(X  3), use the command dbinom(3, 10, .6)
 2. To calculate P(X # 3), use the command pbinom(3, 10, .6)
 3. To calculate P(X  k) for k  0, 1, . . . , 10, use the commands  

k  c(0 : 10) and dbinom(k, 10, .6)

Calculating Normal Probabilities
To calculate probabilities when X has a normal distribution with m  23 and s  5:

 1. To calculate P(X # 18), use the command pnorm(18, 23, 5)
 2. To calculate P(X . 18), use the command 1 2 pnorm(18, 23, 5)
 3. To find 85th percentile, use q(.85, 23, 5)

Generating Sampling Distribution of y
The following R commands will simulate the sampling distribution of y. We will 
generate 10,000 values of y, with each of the 10,000 values of y computed from 
a unique random sample of 16 observations, from a population having a normal 
distribution with m  43 and s  7.

 1. r  10,000
 2. y  rep(0, 16)
 3. ybar16  rep(0, r)
 4. for (i in 1:r){
 5. y  r norm(16, 43, 7)
 6. ybar16[i]  mean(y) }

The above commands will produce 10,000 values for y, where y is the average of 16 
data values from a population having a normal distribution with m  43 and s  7. 
To display the 10,000 values, type “ybar16”.
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The following three commands will generate a histogram, mean, and standard 
deviation for the 10,000 values:

 1. hist(ybar16)
 2. mean(ybar16)
 3. sd(ybar16)

The histogram should be bell-shaped with its center near 43. The mean of the 
10,000 values should be close to 43, and the standard deviation should be close to 
7 /!16  1.75.

Commands to Generate the Plot in Figure 4.28
The following R commands will generate the normal reference plot in Figure 4.28 
and the correlation coefficient.

 1. y  c(133, 137, 148, 149, 152, 167, 174, 179, 189, 192, 201, 209, 210, 
211, 218, 238, 245, 248, 253, 257)

 2. y  sort(y)
 3. n  length(y)
 4. i  1 : n
 5. u  (i 2 .375)/(n 1 .25)
 6. x  qnorm(u)
 7. plot(x, y, xlab  “Normal quantiles”, ylab  “Cholesterol readings”, 

lab  c(7, 8, 7), ylim  c(100, 280), main  “Normal Reference 
Distribution Plot\n Cholesterol readings”, cex  .95)

 8. abline(lm(y ~ x))
 9. cor(x, y)

 4.17 Summary and Key Formulas

In this chapter, we presented an introduction to probability, probability distri-
butions, and sampling distributions. Knowledge of the probabilities of sample 
outcomes is vital to a statistical inference. Three different interpretations of the 
probability of an outcome were given: the classical, relative frequency, and subjec-
tive interpretations. Although each has a place in statistics, the relative frequency 
 approach has the most intuitive appeal because it can be checked.

Quantitative random variables are classified as either discrete or continuous 
random variables. The probability distribution for a discrete random variable y is 
a display of the probability P(y) associated with each value of y. This display may 
be presented in the form of a histogram, table, or formula.

The binomial is a very important and useful discrete random variable. Many 
experiments that scientists conduct are similar to a coin-tossing experiment where 
dichotomous (yes–no) types of data are accumulated. The binomial experiment 
frequently provides an excellent model for computing probabilities of various 
sample outcomes.

Probabilities associated with a continuous random variable correspond to 
areas under the probability distribution. Computations of such probabilities were 
illustrated for areas under the normal curve. The importance of this exercise is 
borne out by the Central Limit Theorem: Any random variable that is expressed 
as a sum or average of a random sample from a population having a finite stand-
ard deviation will have a normal distribution for a sufficiently large sample size. 



Direct application of the Central Limit Theorem gives the sampling distribution 
for the sample mean. Because many sample statistics are either sums or averages 
of random variables, application of the Central Limit Theorem provides us with 
information about probabilities of sample outcomes. These probabilities are vital 
for the statistical inferences we wish to make.

Key Formulas

1. Bayes’ Formula

 If A1, A2, . . . , Ak are mutually exclusive events and B is any event, then

P 1Ai 0B 2 
P 1B 0Ai 2P 1Ai 2

P 1B 0A1 2P 1A1 2 1 P 1B 0A2 2P 1A2 2 1 c1 P 1B 0Ak 2P 1Ak 2
2. Binomial probability

P 1 y  k 2 
n!

k! 1n 2 k 2  pk 11 2 p 2n2k  dbinom(k, n, p) using R function

P 1 y # k 2  gk
i0 P 1y  i 2  pbinom(k, n, p) using R function

3. Poisson probability

P 1 y  k 2 
e2mmk

k!
 dpois(k, m) using R function

P 1 y # k 2  gk
i0 P 1y  i 2  ppois(k, m) using R function

4. Normal probability
 Let y have a normal distribution with mean m and standard deviation s, and let 

z have a standard normal distribution with mean m  0 and standard deviation 
s  1.

P 1 y # w 2  Paz #
w 2 m

s
b  pnormaw 2 m

s
b  using R code

5. Sampling distribution for sample mean y when random sample is from popu-
lation having mean m and standard deviation s

 Mean: m
 Standard deviation: s/!n
  For a large sample size n, the distribution of y will be approximately a normal 

distribution. 

6. Normal approximation to binomial distribution

m  np,    s  !np 11 2 p 2
Provided both np $ 5 and n(1 2 p) $ 5,

P 1 y # k 2 < Paz #
k 1 .5 2 m

s
b  pnormak 1 .5 2 m

s
b

P 1 y $ k 2 < Paz $
k 2 .5 2 m

s
b  1 2 pnormak 2 .5 2 m

s
b

Compare the above to the exact values:

P(y # k)  pbinorm(k, n, p)

P(y $ k)  1 2 P(y # k 2 1)  1 2 pbinorm(k 2 1, n, p)
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 4.18 Exercises

 4.1 Introduction and Abstract of Research Study
 Basic 4.1 Indicate which interpretation of the probability statement seems most appropriate.
 a. A casino in New Jersey posts a probability of .02 that the Dallas Cowboys will win 

Super Bowl L.
 b. A purchaser of a single ticket in the Texas Powerball has a probability of 

1/175,223,510 of winning the big payout.
 c. The quality control engineer of a large pharmaceutical firm conducts an intensive 

process reliability study. Based on the findings of the study, the engineer claims 
that the probability that a bottle of a newly produced drug will have a shelf life 
greater than 2 years is .952.

 d. The probability that the control computer on a nuclear power plant and its backup 
will both fail is .00001.

 e. The state meteorologist of Michigan reports that there is a 70/30 chance that the 
rainfall during the months of June through August in 2014 will be below normal; 
that is, there is a .70 probability of the rainfall being below normal and a .30 prob-
ability of the rainfall being above normal.

 f. A miniature tablet that is small enough to be worn as a watch is in beta testing. 
In a preliminary report, the company states that more than 55% the 500 testers 
found the device to be easier to use than a full-sized tablet. The probability of 
this happening is .011 provided there is no difference in ease of use of the two 
devices.

 Med. 4.2 If you are having a stroke, it is critical that you get medical attention right away. Immedi-
ate treatment may minimize the long-term effects of a stroke and even prevent death. A major 
U.S. city reported that there was a 1 in 250 chance of the patient not having long-term memory 
problems after suffering a stroke. That is, for a person suffering a stroke in the city, P(no memory 
problems)  1/250  .004. This very high chance of memory problems was attributed to many 
factors associated with large cities that affected response times, such as heavy traffic, the misiden-
tification of addresses, and the use of cell phones, which results in emergency personnel not being 
able to obtain an address. The study documented the 1/250 probability based on a study of 15,000 
requests for assistance by stroke victims.

 a. Provide a relative frequency interpretation of the .004 probability.
 b. The value .004 was based on the records of 15,000 requests for assistance from 

stroke victims. How many of the 15,000 victims in the study had long-term mem-
ory problems? Explain your answer.

 Gov. 4.3 In reporting highway safety, the National Highway Traffic Safety Administration (NHTSA) 
reports the number of deaths in automobile accidents each year. If there is a decrease in the 
number of traffic deaths from the previous year, NHTSA claims that the chance of a death on the 
highways has decreased. Explain the flaw in NHTSA’s claim.

 Bus. 4.4 In a cable TV program concerning the risk of travel accidents, it was stated that the chance 
of a fatal airplane crash was 1 in 11 million. An explanation of this risk was that you could fly daily 
for the next 11 million days (30,137 years) before you would experience a fatal crash. Provide an 
explanation why this statement is misleading.

 Game 4.5 The gaming commission in its annual examination of the casinos in the state reported that 
all roulette wheels were fair. Explain the meaning of the term fair with respect to the roulette 
wheel?

 4.2 Finding the Probability of an Event
 Edu. 4.6 Suppose an economics examination has 25 true-or-false questions and a passing grade is 

obtained with 17 or more correct answers. A student answers the 25 questions by flipping a fair 
coin and answering true if the coin shows a head and false if it shows a tail.
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 a. Using the classical interpretation of probability, what is the chance the student will 
pass the exam?

 b. Using a simulation approach, approximate the chance the student will pass the 
exam. (Hint: Generate at least 10,000 sets of 25 single-digit numbers. Each num-
ber represents the answer to one of the questions, with even numbers recorded as 
a true answer and odd numbers recorded as a false answer. Determine the relative 
frequency of 17 or more correct answers in the 25 questions.)

 Bus. 4.7 The R&D department of a company has developed a new home screening test for diabe-
tes. A demonstration of the type of results that may occur was mandated by upper management. 
Simulate the probability of obtaining at least 24 positive results and 6 negative results in a set of 
30 results. The researchers state that the probability of obtaining a positive result is 80%.

 a. Let a two-digit number represent the outcome of running the screening test. 
Which numbers should represent a positive result?

 b. Approximate the probability of obtaining at least 24 positive results and 6 
negative results in a set of 30 results by generating 10,000 sets of 30 two-digit 
numbers.

 Gov. 4.8 The state vehicle inspection bureau provided the following information on the percentage 
of cars that fail an annual vehicle inspection due to having faulty lights: 15% of all cars have one 
faulty light, 10% have two faulty lights, and 5% have three or more faulty lights.

 a. What is the probability that a randomly selected car will have no faulty lights?
 b. What is the probability that a randomly selected car will have at most one faulty light?
 c. What is the probability that a randomly selected car will fail an inspection due to a 

faulty light?

 Gov. 4.9 The Texas Lottery has a game, Daily 4, in which a player pays $1 to select four single-digit  
numbers. Each week the Lottery commission places a set of 10 balls numbered 0–9 in each of 
four containers. After the balls are thoroughly mixed, one ball is selected from each of the four 
containers. The winner is the player who matches all four numbers.

 a. What is the probability of being the winning player if you purchase a single set of 
four numbers?

 b. Which of the probability approaches (subjective, classical, or relative frequency) 
did you employ in obtaining your answer in part (a)?

 4.3 Basic Event Relations and Probability Laws
 Basic 4.10 A die is rolled two times. Provide a list of the possible outcomes of the two rolls in this 

form: the result from the first roll and the result from the second roll.
 Basic 4.11 Refer to Exercise 4.10. Assume that the die is a fair die, that is, each of the outcomes has 

a probability of 1/36. What is the probability of observing 
 a. Event A: Exactly one dot appears on each of the two upturned faces?
 b. Event B: The sum of the dots on the two upturned faces is exactly 4?
 c. Event C: The sum of the dots on the two upturned faces is at most 4?

 Basic 4.12 Refer to Exercise 4.11.
 a. Describe the event that is the complement of event A.
 b. Compute the complement of event A.

 Basic 4.13 Refer to Exercise 4.11.
 a. Are events A and B mutually exclusive?
 b. Are events A and C mutually exclusive?
 c. Are events B and C mutually exclusive?

 Bus. 4.14 A credit union takes a sample of four mortgages each month to survey the homeowners’ 
satisfaction with the credit union’s servicing of their mortgage. Each mortgage is classified as a 
fixed rate (F) or variable rate (V).

 a. What are the 16 possible combinations of the four mortgages? Hint: One such 
possibility would be F1V2V3F4.

 b. List the combinations in event A: At least three of the mortgages are variable rate.
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 c. List the combinations in event B: All four mortgages are the same type.
 d. List the combinations in event C: The union of events A and B.
 e. List the combinations in event D: The intersection of events A and B.

 Engin. 4.15 A nuclear power plant has double redundancy on the feedwater pumps used to remove 
heat from the reactor core. A safely operating plant requires only one of the three pumps to be 
functional. Define the events A, B, and C as follows:

  A: Pump 1 works properly
  B: Pump 2 works properly
  C: Pump 3 works properly

  Describe in words the following events:
 a. The intersection of A, B, and C
 b. The union of A, B, and C
 c. The complement of the intersection of A, B, and C
 d. The complement of the union of A, B, and C

  4.16 The population distribution in the United States based on race/ethnicity and blood type 
as reported by the American Red Cross is given here.

 Blood Type

Race/Ethnicity O A B AB

White 36% 32.2% 8.8% 3.2%
Black  7% 2.9% 2.5% .5%
Asian 1.7% 1.2% 1% .3%
All others 1.5% .8% .3% .1%

 a. A volunteer blood donor walks into a Red Cross blood donation center. What is 
the probability she will be Asian and have Type O blood?

 b. What is the probability that a white donor will not have Type A blood?
 c. What is the probability that an Asian donor will have either Type A or Type B 

blood?
 d. What is the probability that a donor will have neither Type A nor Type AB blood?

  4.17 The makers of the candy M&Ms report that their plain M&Ms are composed of 15% 
yellow, 10% red, 20% orange, 25% blue, 15% green, and 15% brown. If you randomly select an 
M&M, what is the probability of the following?

 a. It is brown.
 b. It is red or green.
 c. It is not blue.
 d. It is both red and brown.

 4.4 Conditional Probability and Independence
 Bus. 4.18 Refer to Exercise 4.11. Compute the following probabilities:
 a. P(A|B)
 b. P(A|C)
 c. P(B|C)
 Basic 4.19 Refer to Exercise 4.11.
 a. Are the events A and B independent? Why or why not?
 b. Are the events A and C independent? Why or why not?
 c. Are the events B and C independent? Why or why not?
 Basic 4.20 Refer to Exercise 4.14.
 a. Are the events A and B independent? Justify your answer.
 b. Are the events A and C independent? Justify your answer.
 c. Are the events A and D independent? Justify your answer.
 d. Which pair(s) of the events are mutually exclusive: (A, B), (B, C,), and/or (A, C)? 

Justify your answer.
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  4.21 Refer to Exercise 4.16. Let W be the event that the donor is white, B be the event that the 
donor is black, and A be the event that the donor is Asian. Also, let T1 be the event that the donor 
has blood type O, T2 be the event that the donor has blood type A, T3 be the event that the donor 
has blood type B, and T4 be the event that the donor has blood type AB.

 a. Describe in words the event T1|W.
 b. Compute the probability of the occurrence of the event T1|W, P(T1|W).
 c. Are the events W and T1 independent? Justify your answer.
 d. Are the events W and T1 mutually exclusive? Explain your answer.

  4.22 Is it possible for events A and B to be both mutually exclusive and independent? Justify 
your answer.

 H.R. 4.23 A survey of 1,000 U.S. government employees who have an advanced college degree 
produced the following responses to the offering of a promotion to a higher grade position that 
would involve moving to a new location.

 Married

Promotion Both Spouses One Spouse
 Professional  Professional  Unmarried  Total

Rejected 184 56 17 257
Accepted 276 314 153 743

Total 460 370 170 1,000

  Use the results of the survey to estimate the following probabilities.
 a. What is the probability that a randomly selected government employee having an 

advanced college degree would accept a promotion?
 b. What is the probability that a randomly selected government employee having an 

advanced college degree would not accept a promotion?
 c. What is the probability that a randomly selected government employee having an 

advanced college degree has a spouse with a professional position?
 H.R. 4.24 Refer to Exercise 4.23. Define the following events.

Event A: A randomly selected government employee having an advanced college 
degree would accept a promotion

Event B: A randomly selected government employee having an advanced college degree 
has a spouse in a professional career

Event C: A randomly selected government employee having an advanced college 
degree has a spouse without a professional position

Event D: A randomly selected government employee having an advanced college degree 
is unmarried

  Use the results of the survey in Exercise 4.23 to compute the following probabilities:
 a. P(A)
 b. P(B)
 c. P(A|C)
 d. P(A|D)

 H.R. 4.25 Refer to Exercise 4.23.
 a. Are the events A and C independent? Justify your answer.
 b. Are the events A and D independent? Justify your answer.
 c. Compute 1 2 P(A|B) and P 1A 0B 2 . Are they equal?
 d. Compute 1 2 P(A|B) and P 1A 0B 2 . Are they equal?

 H.R. 4.26 A large corporation has spent considerable time developing employee performance rat-
ing scales to evaluate an employee’s job performance on a regular basis so major adjustments can 
be made when needed and employees who should be considered for a “fast track” can be isolated. 
Keys to this latter determination are ratings on the ability of an employee to perform to his or her 
capabilities and on his or her formal training for the job.
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 Formal Training

Workload Capacity None Little Some Extensive

Low .01 .02 .02 .04
Medium .05 .06 .07 .10
High .10 .15 .16 .22

  The probabilities for being placed on a fast track are as indicated for the 12 categories of work-
load capacity and formal training. The following three events (A, B, and C) are defined:

A: An employee works at the high-capacity level
B: An employee falls into the highest (extensive) formal training category
C: An employee has little or no formal training and works below high capacity 

 a. Find P(A), P(B), and P(C).
 b. Find P 1A|B 2 , P 1B|B 2 , and P 1B|C 2 .
 c. Find P(A h B), P(A x C), and P(B x C ).

 Bus. 4.27 The utility company in a large metropolitan area finds that 70% of its customers pay a 
given monthly bill in full.

 a. Suppose two customers are chosen at random from the list of all customers. What 
is the probability that both customers will pay their monthly bill in full?

 b. What is the probability that at least one of them will pay in full?

  4.28 Refer to Exercise 4.27. A more detailed examination of the company records indicates that 
95% of the customers who pay one monthly bill in full will also pay the next monthly bill in full; 
only 10% of those who pay less than the full amount one month will pay in full the next month.

 a. Find the probability that a customer selected at random will pay two consecutive 
months in full.

 b. Find the probability that a customer selected at random will pay neither of two  
con secutive months in full.

 c. Find the probability that a customer chosen at random will pay exactly one month 
in full.

 4.5 Bayes’ Formula
 Bus. 4.29 Of a finance company’s loans, 1% are defaulted (not completely repaid). The company 

routinely runs credit checks on all loan applicants. It finds that 30% of defaulted loans went to 
poor risks, 40% to fair risks, and 30% to good risks. Of the nondefaulted loans, 10% went to poor 
risks, 40% to fair risks, and 50% to good risks. Use Bayes’ Formula to calculate the probability 
that a poor-risk loan will be defaulted.

  4.30 Refer to Exercise 4.29. Show that the posterior probability of default, given a fair risk, 
equals the prior probability of default. Explain why this is a reasonable result.

  4.31 In Example 4.4, we described a new test for determining defects in circuit boards. Com-
pute the probability that the test correctly identifies the defects D1, D2, and D3; that is, compute 
P 1D1|A1 2 , P 1D2|A2 2 , and P 1D3|A3 2 .

  4.32 In Example 4.4, compute the probability that the test incorrectly identifies the defects D1, 
D2, and D3; that is, compute P 1D1| A1 2 , P 1D2| A2 2 , and P 1D3| A3 2 .

 Bus. 4.33 An underwriter of home insurance policies studies the problem of home fires resulting 
from wood-burning furnaces. Of all homes having such furnaces, 30% own a type 1 furnace, 25% 
a type 2 furnace, 15% a type 3, and 30% other types. Over 3 years, 5% of type 1 furnaces, 3% of 
type 2, 2% of type 3, and 4% of other types have resulted in fires. If a fire occurs in a particular 
home, what is the probability that a type 1 furnace is in the home?

 Med. 4.34 In a January 15, 1998, article, the New England Journal of Medicine (338:141–146) reported 
on the utility of using computerized tomography (CT) as a diagnostic test for patients with clini-
cally  suspected appendicitis. In at least 20% of patients with appendicitis, the correct diagnosis 
was not made. On the other hand, the appendix was normal in 15% to 40% of patients who under-
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 Presence of Appendicitis

Radiologic Determination Confirmed (C) Ruled Out (RO)

Definitely appendicitis (DA) 50  1
Equivocally appendicitis (EA)  2  2
Definitely not appendicitis (DNA)  1 44

  The 1996 rate of occurrence of appendicitis was approximately P(C)  .00108.
 a. Find the sensitivity and specificity of the radiological determination of 

appendicitis.
 b. Find the probability that a patient truly had appendicitis given that the radiologi-

cal  determination was definitely appendicitis (DA).
 c. Find the probability that a patient truly did not have appendicitis given that the 

radiological determination was definitely appendicitis (DA).
 d. Find the probability that a patient truly did not have appendicitis given that the 

radiological determination was definitely not appendicitis (DNA).

 Med. 4.35 Conditional probabilities can be useful in diagnosing disease. Suppose that three differ-
ent, closely related diseases (A1, A2, and A3) occur in 25%, 15%, and 12% of the population. In 
addition, suppose that any one of three mutually exclusive symptom states (B1, B2, and B3) may 
be  associated with each of these diseases. Experience shows that the likelihood P 1Bj|Ai 2  of hav-
ing a given symptom state when the disease is present is as shown in the following table. Find the 
probability of disease A2 given symptoms B1, B2, B3, and B4, respectively.

 Disease State Ai
Symptom
State Bj A1 A2 A3

B1 .08 .17 .10
B2 .18 .12 .14
B3 .06 .07 .08
B4 (no symptoms) .68 .64 .68

 4.6 Variables: Discrete and Continuous
 Basic 4.36 Classify each of the following random variables as either continuous or discrete:
 a. The survival time of a cancer patient after receiving a new treatment for cancer
 b. The number of ticks found on a cow entering an inspection station
 c. The average rainfall during August in College Station, Texas
 d. The daily dose level of medication prescribed to a patient having an iron deficiency
 e. The number of touchdowns thrown during an NFL game
 f. The number of monthly shutdowns of the sewage treatment plant in a large 

midwestern city
 Basic 4.37 The U.S. Consumer Product Safey Commission investigates bicycle helmet hazards. 

The inspectors studied incidents in which deaths resulted from improper uses of helmets. The 
inspectors recorded the incidents in which children were strangled by the straps on the helmet. 
Is the number of deaths by helmet strangulation during a randomly selected month a discrete or 
continuous random variable. Explain your answer.

went emergency appendectomy. A study was designed to determine the prospective effectiveness 
of using CT as a diagnostic test to improve the treatment of these patients. The study examined 
100 consecutive patients suspected of having acute appendicitis who presented to the emergency 
department or were referred there from a physician’s office. The 100 patients underwent a CT 
scan, and the surgeon made an assessment of the presence of appendicitis for each of the patients. 
The final clinical outcomes were determined at surgery and by pathological  examination of the 
appendix after appendectomy or by clinical follow-up at least 2 months after CT scanning.
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 Basic 4.38 Texting while driving is a very dangerous practice. An electronic monitoring device is 
installed on rental cars at a randomly selected rental franchise.

 a. Is the number of times a randomly selected driver sends a text message during the 
first hour after leaving the rental company’s parking lot a discrete or continuous 
random variable?

 b. Is the length of time the driver spends typing a text message while driving a discrete 
or continuous random variable?

 c. Is the brand of cell phone from which the text message is sent a discrete or 
continuous random variable?

 Basic 4.39 A car dealership uses a questionnaire to evaluate customer interactions with the dealer-
ship’s salespersons. One of the items on the questionnaire was “Overall, the interaction with the 
salesperson was positive.” The possible responses are Strongly agree, Agree, No opionion, Disa-
gree, and Strongly disagree.

 a. Is the number of customers responding Strongly agree a continuous or discrete 
random variable?

 b. Is the proportion of customers responding Strongly agree a continuous or discrete 
random variable?

 4.7 Probability Distributions for Discrete Random Variables
 Gov. 4.40 The numbers of cars failing an emissions test on randomly selected days at a state inspec-

tion station are given in the following table.

y 0 1 2 3 4 5 6 7 8 9 10

P (y) .100 .130 .250 .160 .095 .075 .063 .047 .041 .024 .015

 a. Construct a graph of P( y).
 b. Compute P(y # 2).
 c. Compute P( y . 7).
 d. Compute P(2 , y # 7).

 Bus. 4.41 A traditional call center has a simple mission: Agents have to answer customer calls fast 
and end them as quickly as possible to move on to the next call. The quality of service rendered 
by the call center was evaluated by recording the number of times a customer called the center 
back within a week of his or her initial call to the center.

y  number of recalls 0 1 2 3 4 5 6

P (y) .151 .232 .354 .161 .067 .021 .014

 a. What is the probability that a customer will recall the center more than three times?
 b. What is the probability that a customer will recall the center at least two times but 

less than five times?
 c. Suppose a call center must notify a supervisor if a customer recalls the center 

more than four times within a week of his or her initial call. What proportion of 
customers who contact the call center will require a supervisor to be contacted?

 4.8 Two Discrete Random Variables: The Binomial and the Poisson
 Bio. 4.42 A biologist randomly selects 10 portions of water, each equal to .1 cm3 in volume, from 

the local reservoir and counts the number of bacteria present in each portion. The biologist then 
totals the number of bacteria for the 10 portions to obtain an estimate of the number of bacteria 
per cubic centimeter present in the reservoir water. Is this a binomial experiment?

 Pol. Sci. 4.43 Examine the accompanying newspaper clipping. Does this sampling appear to satisfy the 
characteristics of a binomial experiment?
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 Env. 4.44 A survey is conducted to estimate the percentage of pine trees in a forest that are infected 
by the pine shoot moth. A grid is placed over a map of the forest, dividing the area into 25-foot 
by 25-foot square sections. One hundred of the squares are randomly selected, and the number of 
infected trees is recorded for each square. Is this a binomial experiment?

 Gov. 4.45 In an attempt to decrease drunk driving, police set up vehicle checkpoints during the 
July 4 evening. The police randomly select vehicles to be stopped for “informational” checks. On 
a particular roadway, assume that 20% of all drivers have a blood alcohol level above the legal 
limit. For a random sample of 15 vehicles, compute the following probabilities:

 a. All 15 drivers will have a blood alcohol level exceeding the legal limit.
 b. Exactly 6 of the 15 drivers will exceed the legal limit.
 c. Of the 15 drivers, 6 or more will exceed the legal limit.
 d. All 15 drivers will have a blood alcohol level within the legal limit.

 Bus. 4.46 The quality control department examines all the products returned to a store by custom-
ers. An examination of the returned products yields the following assessment: 5% are defec-
tive and not repairable, 45% are defective but repairable, 35% have small surface scratches but 
are functioning properly, and 15% have no problems. Compute the following probabilities for a 
random sample of 20 returned products:

 a. All of the 20 returned products have some type of problem.
 b. Exactly 6 of the 20 returned products are defective and not repairable.
 c. Of the 20 returned products, 6 or more are defective and not functioning properly.
 d. None of the 20 returned products has any sort of defect.

 Med. 4.47 Knee replacements have emerged as a mainstream surgery. According to the Knee 
Replacement Statistics Agency of Research and Quality (AHRQ), over 600,000 procedures were per-
formed in 2009, and the number is expected to grow into the millions by the year 2030. According 
to the American Academy of Orthopedic Surgeons (AAOS), serious complications occur in less than 
2% of cases. If AAOS is correct that only 2% of knee replacement patients have serious com-
plications, would the next 10 patients at a major teaching hospital receiving a knee replacement 
constitute a binomial experiment with n  10 and p  .02? Justify your answer.

 Bus. 4.48 The CFO of a hospital is concerned about the risk of patients contracting an infection 
after a one-week or longer stay in the hospital. A long-term study estimates that the chance of 
contracting an infection after a one-week or longer stay in a hospital is 10%. A random sample of 
50 patients who have been in the hospital at least 1 week is selected.

 a. If the 10% infection rate is correct, what is the probability that at least 5 patients 
out of the 50 will have an infection?

 b. What assumptions are you making in computing the probability in part (a)?

 Basic 4.49 Suppose the random variable y has a Poisson distribution. Compute the following 
probabilities:

 a. P(y  4) given m  2
 b. P(y  4) given m  3.5

Poll Finds Opposition to Phone Taps

New York—People surveyed in a recent poll 
indicated they are 81% to 13% against having 
their phones tapped without a court order.

The people in the survey, by 68% to 27%, 
were opposed to letting the government use a 
wiretap on citizens suspected of crimes, except 
with a court order.

The survey was conducted for 1,495  
house holds and also found the following results:

—The people surveyed are 80% to 12% 

against the use of any kind of electronic spying 
device without a court order.

—Citizens are 77% to 14% against allow-
ing the government to open their mail without 
court orders.

—They oppose, by 80% to 12%, letting the 
telephone company disclose records of long-
distance phone calls, except by court order.

For each of the questions, a few of those in 
the survey had no responses.
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 c. P(y . 4) given m  2
 d. P(1 # y , 4) given m  2

 Bus. 4.50 Customers arrive at a grocery store checkout at a rate of six per 30 minutes during the 
hours of 5 p.m. and 7 p.m. during the workweek. Let C be the number of customers arriving at the 
checkout during any 30-minute period of time. The management of the store wants to determine 
the frequency of the following events. Compute the probabilities of these events:

 a. No customers arrive.
 b. More than six customers arrive.
 c. At most three customers arrive.

 Bus. 4.51 A firm is considering using the Internet to supplement its traditional sales methods. Using 
data from an industry association, the firm estimates that 1 of every 1,000 Internet hits results in 
a sale. Suppose the firm has 2,500 hits per day.

 a. What is the probability that the firm will have more than five sales in a randomly 
selected day?

 b. What conditions must be satisfied in order for you to make the calculation in 
part (a)?

 c. Use the Poisson approximation to compute the probability that the firm will have 
more than five sales in a randomly selected day.

 d. Is the Poisson approximation accurate?

  4.52 A certain birth defect occurs in 1 of every 10,000 births. In the next 5,000 births at a major 
hospital, what is the probability that at least 1 baby will have the defect? What assumptions are 
required to calculate this probability?

 4.10 A Continuous Probability Distribution: The Normal Distribution
 Basic 4.53 Find the area under the standard normal curve between these values:
 a. z  0 and z  1.3
 b. z = 0 and z  2.7

 Basic 4.54 Find the area under the standard normal curve between these values:
 a. z  .5 and z  1.3
 b. z  21.3 and z  0

 Basic 4.55 Find the area under the standard normal curve between these values:
 a. z  22.5 and z  21.2
 b. z  21.3 and z  2.7

 Basic 4.56 Find the area under the standard normal curve between these values:
 a. z  21.5 and z  0.2
 b. z  21.2 and z  0.7

 In Exercises 4.57 through 4.63, let z be a random variable with a standard normal distribution.

 Basic 4.57 Find the probability that z is less than 1.23.

 Basic 4.58 Find the probability that z is greater than 0.35.

 Basic 4.59 Find the value of z, denoted z0, such that P(z , z0)  .5.

 Basic 4.60 Find the value of z, denoted z0, such that P(z . z0)  .025.

 Basic 4.61  Find the value of z, denoted z0, such that P(z . z0)  .0091.

 Basic 4.62 Find the value of z, denoted z0, such that P(2z0 , z # z0)  .975.

 Basic 4.63 Find the value of z, denoted z0, such that P(2z0 , z # z0)  .90.

 Basic 4.64 Let y be a random variable having a normal distribution with a mean equal to 50 and a 
standard deviation equal to 8. Find the following probabilities:

 a. P(y . 50)
 b. P(y . 53)
 c. P(y , 58)
 d. P(38 , y , 62)
 e. P(38 # y # 62)
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 Basic 4.65 Let y be a random variable having a normal distribution with a mean equal to 250 and a 
standard deviation equal to 50. Find the following probabilities:

 a. P(y . 250)
 b. P(y . 150)
 c. P(150 , y , 350)
 d. Find k such that P(250 2 k , y , 250 1 k)  .60

 Basic 4.66 Suppose that y is a random variable having a normal distribution with a mean equal to 
250 and a standard deviation equal to 10.

 a. Show that the event y , 260 has the same probability as z , 1.
 b. Convert the event y . 230 to the z-score equivalent.
 c. Find P(y , 260) and P(y . 230).
 d. Find P(y . 265), P(y , 242), and P(242 , y , 265).

 Basic 4.67 Suppose that z is a random variable having a standard normal distribution.
 a. Find a value z0, such that P(z . z0)  .01.
 b. Find a value z0, such that P(z , z0)  .025.
 c. Find a value z0, such that P(2z0 , z , z0)  .95.
 Basic 4.68 Let y be a random variable having a normal distribution with mean equal to 250 and 

standard deviation equal to 50.
 a. Find a value y0, such that P(y . y0)  .01.
 b. Find a value y0, such that P(y , y0)  .025.
 c. Find two values y1 and y2, such that (y1 1 y2)/2  250 and P(y1 , y , y2)  .95.

 Gov. 4.69 Records maintained by the office of budget in a particular state indicate that the amount of 
time elapsed between the submission of travel vouchers and the final reimbursement of funds has 
approximately a normal distribution with a mean of 36 days and a standard deviation of 3 days.

 a.  What is the probability that the elapsed time between submission and reimburse-
ment will exceed 30 days?

 b.  If you had a travel voucher submitted more than 55 days ago, what might you 
 conclude?

 Edu. 4.70 The College Boards, which are administered each year to many thousands of high school 
students, are scored so as to yield a mean of 513 and a standard deviation of 130. These scores are 
close to being normally distributed. What percentage of the scores can be expected to satisfy each 
of the following conditions?

 a. Greater than 600 
 b. Greater than 700
 c. Less than 450
 d. Between 450 and 600

 Bus. 4.71 Monthly sales figures for a particular food industry tend to be normally distributed with a 
mean of 155 (thousand dollars) and a standard deviation of 45 (thousand dollars). Compute the 
following probabilities:

 a. P(y , 200)
 b. P(y . 100)
 c. P(100 , y , 200)

  4.72 Refer to Exercise 4.70. An honor society wishes to invite those scoring in the top 5% on 
the College Boards to join their society. 

 a. What score is required to be invited to join the society?
 b. What score separates the top 75% of the population from the bottom 25%? What 

do we call this value?

 4.11 Random Sampling
 Soc. 4.73 City officials want to sample the opinions of the homeowners in a community regard-

ing the desirability of increasing local taxes to improve the quality of the public schools. If a 
random number table is used to identify the homes to be sampled and a home is discarded if the 
homeowner is not home when visited by the interviewer, is it likely this process will approximate 
 random sampling? Explain.
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 Pol. Sci. 4.74 A local TV network wants to run an informal survey of individuals who exit from a local 
voting station to ascertain early results on a proposal to raise funds to move the city-owned histori-
cal museum to a new location. How might the network sample voters to approximate random sam-
pling?

 Psy. 4.75 A psychologist is interested in studying women who are in the process of obtaining a di-
vorce to determine whether the women experienced significant attitudinal changes after the di-
vorce has been finalized. Existing records from the geographic area in question show that 798 
couples have recently filed for divorce. Assume that a sample of 25 women is needed for the 
study, and use Table 12 in the Appendix to determine which women should be asked to partici-
pate in the study. (Hint: Begin in column 2, row 1, and proceed down.)

 Pol. Sci. 4.76 Suppose you have been asked to run a public opinion poll related to an upcoming election. 
There are 230 precincts in the city, and you need to randomly select 50 registered voters from 
each precinct. Suppose that each precinct has 1,000 registered voters and it is possible to obtain a 
list of these persons. You assign the numbers 1 to 1,000 to the 1,000 people on each list, with 1 to 
the first person on the list and 1,000 to the last person. You need to next obtain a random sample 
of 50 numbers from the numbers 1 to 1,000. The names on the sampling frame corresponding to 
these 50 numbers will be the 50 persons selected for the poll. Note that you would need to obtain 
a new random sample for each of the 230 precincts.

 a. Using either a random number table or a computer program, generate a random 
sample of 50 numbers from the numbers 1 to 1,000.

 b. Give several reasons why you need to generate a different set of random numbers for 
each of the precincts. Why not use the same set of 50 numbers for all 230 precincts?

 4.12 Sampling Distributions
  4.77 A random sample of 16 measurements is drawn from a population with a mean of 60 and 

a standard deviation of 5. Describe the sampling distribution of y, the sample mean. Within what 
interval would you expect y to lie approximately 95% of the time?

  4.78 Refer to Exercise 4.77. Describe the sampling distribution for the sample sum gyi. Is it 
unlikely (improbable) that gyi would be more than 70 units away from 960? Explain.

 Psy. 4.79 Psychomotor retardation scores for a particular group of manic-depressive patients have 
approximately a normal distribution with a mean of 930 and a standard deviation of 130. A ran-
dom sample of 20 patients from the group was selected, and their mean psychomotor retardation 
score was obtained.

 a. What is the probability that their mean score was between 900 and 960?
 b. What is the probability that their mean score was greater than 960?
 c. What is the 90th percentile of their mean scores?

 Soc. 4.80 Federal resources have been tentatively approved for the construction of an outpatient 
clinic. In order to design a facility that will handle patient load requirements and stay within a 
limited budget, the designers studied patient demand. From studying a similar facility in the area, 
they found that the distribution of the number of patients requiring hospitalization during a week 
could be approximated by a normal distribution with a mean of 125 and a standard deviation of 32.

 a. Use the Empirical Rule to describe the distribution of y, the number of patients 
 requesting service in a week.

 b. If the facility was built with a 160-patient capacity, what fraction of the weeks 
might the clinic be unable to handle the demand?

  4.81 Refer to Exercise 4.80. What size facility should be built so the probability of the patient 
load’s exceeding the clinic capacity is .10? .30?

 Soc. 4.82 Based on the 1990 census, the number of hours per day adults spend watching television is 
approximately normally distributed with a mean of 5 hours and a standard deviation of 1.3 hours.

 a. What proportion of the population spends more than 7 hours per day watching  
television?

 b. In a 1998 study of television viewing, a random sample of 500 adults reported that 
the average number of hours spent viewing television was greater than 5.5 hours 
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per day. Do the results of this survey appear to be consistent with the 1990 census? 
(Hint: If the census results are still correct, what is the probability that the average 
viewing time would exceed 5.5 hours?)

 Env. 4.83 The level of a particular pollutant, nitrogen oxide, in the exhaust of a hypothetical model 
of car, the Polluter, when driven in city traffic has approximately a normal distribution with a 
mean level of 2.1 grams per mile (g/m) and a standard deviation of 0.3 g/m.

 a. If the EPA mandates that a nitrogen oxide level of 2.7 g/m cannot be exceeded, 
what proportion of Polluters would be in violation of the mandate?

 b. At most, 25% of Polluters exceed what nitrogen oxide level value (that is, find the 
75th percentile)?

 c. The company producing the Polluter must reduce the nitrogen oxide level so that 
at most 5% of its cars exceed the EPA level of 2.7 g/m. If the standard deviation 
 remains 0.3 g/m, to what value must the mean level be reduced so that at most 
5% of Polluters would exceed 2.7 g/m?

  4.84 Refer to Exercise 4.83. A company has a fleet of 150 Polluters used by its sales staff. 
 Describe the distribution of the total amount, in g/m, of nitrogen oxide produced in the exhaust 
of this fleet. What are the mean and standard deviation of the total amount, in g/m, of nitrogen 
oxide in the exhaust for the fleet? (Hint: The total amount of nitrogen oxide can be represented as 
g150

i1 Wi, where Wi is the amount of nitrogen oxide in the exhaust of the ith car. Thus, the Central 
Limit Theorem for sums is applicable.)

 Soc. 4.85 The baggage limit for an airplane is set at 100 pounds per passenger. Thus, for an airplane 
with 200 passenger seats, there would be a limit of 20,000 pounds. The weight of the baggage of 
an individual passenger is a random variable with a mean of 95 pounds and a standard deviation 
of 35 pounds. If all 200 seats are sold for a particular flight, what is the probability that the total 
weight of the passengers’ baggage will exceed the 20,000-pound limit?

 Med. 4.86 A patient visits her doctor with concerns about her blood pressure. If the systolic blood 
pressure exceeds 150, the patient is considered to have high blood pressure, and medication may 
be prescribed. The problem is that there is a considerable variation in a patient’s systolic blood 
pressure readings during a given day. 

 a. If a patient’s systolic readings during a given day have a normal distribution with 
a mean of 160 mm mercury and a standard deviation of 20 mm, what is the prob-
ability that a single measurement will fail to detect that the patient has high blood 
pressure?

 b. If five measurements are taken at various times during the day, what is the proba-
bility that the average blood pressure reading will be less than 150 and hence fail 
to indicate that the patient has a high blood pressure problem?

 c. How many measurements would be required so that the probability of failing to 
detect that the patient has high blood pressure is at most 1%.

 4.13 Normal Approximation to the Binomial
 Bus. 4.87 Critical key-entry errors in the data processing operation of a large district bank occur 

 approximately .1% of the time. If a random sample of 10,000 entries is examined, determine the 
following:

 a. The expected number of errors 
 b. The probability of observing fewer than four errors
 c. The probability of observing more than two errors
  4.88 Use the binomial distribution with n  20 and p  .5 to compare the accuracy of the normal 

 approximation to the binomial.
 a. Compute the exact probabilities and corresponding normal approximations for 

y , 5.
 b. The normal approximation can be improved slightly by taking P(y # 4.5). Why 

should this help? Compare your results.
 c. Compute the exact probabilities and corresponding normal approximations with 

the continuity correction for P(8 , y , 14).
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  4.89 Let y be a binomial random variable with n  10 and p  .5.
 a. Calculate P(4 # y # 6).
 b. Use a normal approximation without the continuity correction to calculate the  

same probability. Compare your results. How well did the normal approximation 
work?

  4.90 Refer to Exercise 4.89. Use the continuity correction to compute the probability 
P(4 # y # 6). Does the continuity correction help?

 Bus. 4.91 A marketing research firm advises a new client that approximately 15% of all persons sent 
a sweepstakes offer will return the mailing. Suppose the client sends out 10,000 sweepstakes offers.

 a. What is the probability that fewer than 1,430 of the mailings will be returned?
 b. What is the probability that more than 1,600 of the mailings will be returned?

 4.14 Evaluating Whether or Not a Population Distribution Is Normal
  4.92 In Figure 4.19, we visually inspected the relative frequency histogram for sample means 

based on two measurements and noted its bell shape. Another way to determine whether a set 
of measurements is bell-shaped (normal) is to construct a normal probability plot of the sample 
data. If the plotted points are nearly a straight line, we say the measurements were selected from 
a normal population. A normal probability plot was obtained using Minitab software. If the plot-
ted points fall within the curved dotted lines, we consider the data to be a random sample from a 
normal distribution.
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 a. Do the 45 data values appear to be a random sample from a normal distribution?
 b. Using the values of y in Table 4.9, compute the correlation coefficient and p-value 

for the normal quantile plot to assess whether the data appear to be sampled from 
a normal distribution.

 c. Do the results in part (b) confirm your conclusion from part (a)?

  4.93 Suppose a population consists of the 10 measurements (2, 3, 6, 8, 9, 12, 25, 29, 39, 50). 
 Generate the 45 possible values for the sample mean based on a sample of n  2 observations per 
sample.

 a. Use the 45 sample means to determine whether the sampling distribution of the 
 sample mean is approximately normally distributed by constructing a boxplot, 
 relative frequency histogram, and normal quantile plot of the 45 sample means.
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 b. Compute the correlation coefficient and p-value to assess whether the 45 means 
 appear to be sampled from a normal distribution.

 c. Do the results in part (b) confirm your conclusion from part (a)?

  4.94 The fracture toughness in concrete specimens is a measure of how likely it is that blocks 
used in new home construction may fail. A construction investigator obtains a random sample of 
15 concrete blocks and determines the following toughness values:

 .47, .58, .67, .70, .77, .79, .81, .82, .84, .86, .91, .95, .98, 1.01, 1.04

 a. Use a normal quantile plot to assess whether the data appear to fit a normal 
 distribution.

 b. Compute the correlation coefficient and p-value for the normal quantile plot. 
 Comment on the degree of fit of the data to a normal distribution.

Supplementary Exercises
 Bus. 4.95 One way to audit expense accounts for a large consulting firm is to sample all reports dated 

the last day of each month. Comment on whether such a sample constitutes a random sample.
 Engin. 4.96 The breaking strengths for 1-foot-square samples of a particular synthetic fabric are 

 approximately normally distributed with a mean of 2,250 pounds per square inch (psi) and a 
 standard deviation of 10.2 psi. Find the probability of selecting a  1-foot-square sample of material 
at random that on testing would have a breaking strength in excess of 2,265 psi.

  4.97 Refer to Exercise 4.96. Suppose that a new synthetic fabric has been developed that may 
have a different mean breaking strength. A random sample of 15  1-foot sections is obtained, and 
each section is tested for breaking strength. If we assume that the population standard deviation 
for the new fabric is identical to that for the old fabric, describe the sampling distribution for y 
based on random samples of 15  1-foot  sections of new fabric.

  4.98 Refer to Exercise 4.97. Suppose that the mean breaking strength for the sample of 15  
1-foot sections of the new synthetic fabric is 2,268 psi. What is the probability of observing a value 
of y equal to or greater than 2,268, assuming that the mean breaking strength for the new fabric 
is 2,250, the same as that for the old?

  4.99 Based on your answer in Exercise 4.98, do you believe the new fabric has the same mean 
breaking strength as the old? (Assume s  10.2.)

 Gov. 4.100 Suppose that you are a regional director of an IRS office and that you are charged with 
sampling 1% of the returns with gross income levels above $15,000. How might you go about 
this? Would you use random sampling? How?

 Med. 4.101 Experts consider high serum cholesterol levels to be associated with an increased incidence 
of coronary heart disease. Suppose that the natural logarithm of cholesterol levels for males in 
a given age bracket is normally distributed with a mean of 5.35 and a standard deviation of .12.

 a. What percentage of the males in this age bracket could be expected to have a 
serum cholesterol level greater than 250 mg/ml, the upper limit of the clinical 
normal range?

 b. What percentage of the males could be expected to have serum cholesterol levels 
within the clinical normal range of 150–250 mg/ml?

 c. What percentage of the adult males in this age bracket could be expected to 
have a very risky cholesterol level—that is, above 300 mg/ml?

 Bus. 4.102 Marketing analysts have determined that a particular advertising campaign should 
make at least 20% of the adult population aware of the advertised product. After a recent 
campaign, 60 of 400 adults sampled indicated that they had seen the ad and were aware of the 
new product.

 a. Find the approximate probability of observing y # 60 given that 20% of the popu-
lation is aware of the product through the campaign. 

 b. Based on your answer to part (a), does it appear the ad was successful? Explain. 
 Med. 4.103 One or more specific, minor birth defects occur with probability .0001 (that is, 1 in 10,000 

births). If 20,000 babies are born in a given geographic area in a given year, can we calculate the 
probability of observing at least one of the minor defects using the binomial or normal approxi-
mation to the binomial? Explain.
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 Basic 4.104 The sample mean to be calculated from a random sample of size n  4 from a popu-
lation that consists of eight measurements (2, 6, 9, 12, 25, 29, 39, 50). Find the sampling distri-
bution of y. (Hint: There are 70 samples of size 4 when sampling from a population of eight 
measurements.)

 Basic 4.105 Plot the sampling distribution of y from Exercise 4.104.
 a. Does the sampling distribution appear to be approximately normal?
 b. Verify that the mean of the sampling distribution of y  equals the mean of the 

eight population values.
 Basic 4.106 Refer to Exercise 4.104. Use the same population to find the sampling distribution for 

the sample median based on samples of size n  4.
 Basic 4.107 Refer to Exercise 4.106. Plot the sampling distribution of the sample median of 

Exercise 4.106.
 a. Does the sampling distribution appear to be approximately normal?
 b. Compute the mean of the sampling distribution of the sample median, and 

compare this value to the population median.
 Basic 4.108 Random samples of size 5, 20, and 80 are drawn from a population with a mean of 

m  100 and a standard deviation of s  15.
 a. Give the mean of the sampling distribution of y  for each of the three sample sizes.
 b. Give the standard deviation of the sampling distribution of y  for each of the three 

sample sizes.
 c. Based on the results obtained in parts (a) and (b), what do you conclude about  

the accuracy of using the sample mean y  as an estimate of population mean m?

 Basic 4.109 Refer to Exercise 4.108. To evaluate how accurately the sample mean y estimates the 
population mean m, we need to know the chance of obtaining a value of y that is far from m. 
Suppose it is important that the sample mean y is within five units of the population mean m. 
Find the following probabilities for each of the three sample sizes, and comment on the accuracy 
of using y to estimate m.

 a. P 1y $ 105 2
 b. P 1y # 95 2
 c. P 195 # y # 105 2
 Geol. 4.110 Suppose the probability that a major earthquake occurs on a given day in Fresno, 

 California, is 1 in 10,000.
 a. In the next 1,000 days, what is the expected number of major earthquakes in 

Fresno?
 b. If the occurrence of major earthquakes can be modeled by the Poisson distribu-

tion, calculate the probability that there will be at least one major earthquake in 
Fresno during the next 1,000 days.

 Bio. 4.111 A wildlife biologist is studying turtles that have been exposed to oil spills in the Gulf of 
Mexico. Previous studies have determined that a particular blood disorder occurs in turtles ex-
posed for a length of time to oil at a rate of 1 in every 8 exposed turtles. The biologist examines 
12 turtles exposed for a considerable period of time to oil. If the rate of occurrence of the blood 
disorder has not changed, what is the probability of each of the following events? 

She finds the disorder in
 a. None of the 12 turtles.
 b. At least 2 of the 12 turtles.
 c. No more than 4 turtles.

 Bus. 4.112 Airlines overbook (sell more tickets than there are seats) flights, based on past records 
that indicate that approximately 5% of all passengers fail to arrive on time for their flight. Sup-
pose a plane will hold 250 passengers, but the airline books 260 seats. What is the probability that 
at least 1 passenger will be bumped from the flight?

 Geol. 4.113 For the last 300 years, extensive records have been kept on volcanic activity in Japan. In 
2002, there were five eruptions or instances of major seismic activity. From historical records, the 
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mean number of eruptions or instances of major seismic activity is 2.4 per year. A researcher is 
 interested in modeling the number of eruptions or major seismic activities over the 5-year period 
of 2005–2010.

 a. What probability model might be appropriate?
 b. What is the expected number of eruptions or instances of major seismic activity 

 during 2005–2010?
 c. What is the probability of no eruptions or instances of major seismic activity 

 during 2005–2010?
 d. What is the probability of at least two eruptions or instances of major seismic  

activity during 2005–2010?

 Ecol. 4.114 As part of a study to determine factors that may explain differences in animal species 
relative to their size, the following body masses (in grams) of 50 different bird species were re-
ported in the paper “Temperature and the Northern Distributions of Wintering Birds,” by Richard 
Repasky (1991). 

 7 .7 10.1 21.6 8.6 12.0 11.4 16.6 9.4
 11.5 9.0 8.2 20.2 48.5 21.6 26.1 6.2
 19.1 21.0 28.1 10.6 31.6 6.7 5.0 68.8
 23.9 19.8 20.1 6.0 99.6 19.8 16.5 9.0
448.0 21.3 17 .4 36.9 34.0 41.0 15.9 12.5
 10.2 31.0 21.5 11.9 32.5 9.8 93.9 10.9
 19.6 14.5

 a. Does the distribution of the body masses appear to follow a normal distribution? 
Provide both a graphical and a quantitative assessment.

 b. Repeat part (a), with the outlier 448.0 removed.
 c. Determine the sample mean and median with and without the value 448.0 in the 

data set.
 d. Determine the sample standard deviation and MAD with and without the value 

448.0 in the data set.



 5.1 Introduction and Abstract of Research Study

Inference—specifically, decision making and prediction—is centuries old and 
plays a very important role in our lives. Each of us faces daily personal decisions 
and situations that require predictions concerning the future. The U.S. govern-
ment is  concerned with the balance of trade with countries in Europe and Asia. An 
investment advisor wants to know whether inflation will be increasing in the next 6 
months. A metallurgist would like to use the results of an experiment to determine 
whether a new lightweight alloy possesses the strength characteristics necessary for 
use in automobile manufacturing. A veterinarian investigates the effectiveness of a 
new chemical for treating heartworm in dogs. The inferences that these individuals 
make should be based on relevant facts, which we call observations, or data.

In many practical situations, the relevant facts are abundant, seemingly 
inconsistent, and, in many respects, overwhelming. As a result, a careful decision 
or  prediction is often little better than an outright guess. You need only refer to 
the “Market Views’’ section of the Wall Street Journal or to one of the financial 
news shows on cable TV to observe the diversity of expert opinion concerning 
future stock  market behavior. Similarly, a visual analysis of data by scientists and 
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engineers often yields conflicting opinions regarding conclusions to be drawn from 
an experiment.

Many individuals tend to feel that their own built-in inference-making equip-
ment is quite good. However, experience suggests that most people are incapable 
of utilizing large amounts of data, mentally weighing each bit of relevant informa-
tion, and arriving at a good inference. (You may test your own inference-making 
ability by using the exercises in Chapters 5 through 10. Scan the data and make an 
inference before you use the appropriate statistical procedure. Then compare the 
results.) The statistician, rather than relying upon his or her own intuition, uses 
statistical results to aid in making inferences. Although we touched on some of 
the notions involved in statistical inference in preceding chapters, we will now col-
lect our ideas in a presentation of some of the basic ideas involved in statistical 
inference.

The objective of statistics is to make inferences about a population based 
on information contained in a sample. Populations are characterized by numeri-
cal descriptive measures called parameters. Typical population parameters are 
the mean m, the median M, the standard deviation s, and a proportion p. Most 
inferential problems can be formulated as an inference about one or more param-
eters of a population. For example, a study is conducted by the Wisconsin Educa-
tion Department to assess the reading ability of children in the primary grades. 
The population consists of the scores on a standard reading test of all children in 
the primary grades in Wisconsin. We are interested in estimating the value of the 
population mean score m and the proportion p of scores below a standard, which 
indicates that a student needs remedial assistance.

Methods for making inferences about parameters fall into one of two catego-
ries. Either we will estimate the value of the population parameter of interest or 
we will test a hypothesis about the value of the parameter. These two methods of 
statistical inference—estimation and hypothesis testing—involve different proce-
dures, and, more important, they answer two different questions about the param-
eter. In estimating a population parameter, we are answering the question “What 
is the value of the population parameter?” In testing a hypothesis, we are seeking 
an answer to the question “Does the population parameter satisfy a specified con-
dition—for example, ‘m . 20’ or ‘p , .3’?”

Consider a study in which an investigator wishes to examine the effectiveness 
of a drug product in reducing anxiety levels of anxious patients. The investigator uses 
a screening procedure to identify a group of anxious patients. After the patients are 
admitted into the study, each one’s anxiety level is measured on a rating scale immedi-
ately before he or she receives the first dose of the drug and then at the end of 1 week 
of drug therapy. These sample data can be used to make inferences about the popula-
tion from which the sample was drawn either by estimation or by a statistical test:

Estimation:  Information from the sample can be used to estimate the 
mean decrease in anxiety ratings for the set of all anxious 
patients who may conceivably be treated with the drug.

Statistical test:  Information from the sample can be used to determine whether 
the population mean decrease in anxiety ratings is greater 
than zero.

Notice that the inference related to estimation is aimed at answering the question 
“What is the mean decrease in anxiety ratings for the population?” In contrast, 
the statistical test attempts to answer the question “Is the mean drop in anxiety 
ratings greater than zero?”

estimation 
hypothesis testing
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abstract of research Study: percentage of Calories from Fat

There has been an increased recognition of the potential relationship between 
diet and certain diseases. Substantial differences in the rate of incidence of breast 
cancer across international boundaries and changes in incidence rates as people 
migrate from low-incidence to high-incidence areas indicates that environmental 
factors, such as diet, may play a role in the occurrence of certain types of diseases. 
For example, the percentage of calories from fat in the diet may be related to the 
incidence of certain types of cancer and heart disease. Recommendations by federal 
health agencies to reduce fat intake to approximately 30% of total calories are 
partially based on studies that forecast a reduced incidence of heart disease and 
breast cancer. The cover and lead article in the August 23, 2004, issue of Newsweek 
were titled “What You Don’t Know About Fat.”  The article details the mechanisms 
by which fat cells swell to as much as six times their normal size and begin to multiply, 
from 40 billion in an average adult to 100 billion, when calorie intake greatly exceeds 
expenditures of calories through exercise. Fat cells require enormous amounts of 
blood (in comparison to an equal weight of lean muscle), which places a strain on 
the cardiovascular system. Obesity results in increased wear on the joints, leading to 
osteoarthritis. Fat cells also secrete estrogen, which has been linked to breast cancer 
in postmenopausal women. Type 2 (adult-onset) diabetes has as one of its major risk 
factors obesity. Researchers suspect that the origin of diabetes lies at least partially 
in the biochemistry of fat. The article states that the evidence that obesity is bad for 
you is statistical and unassailable. The problem is that some leading companies in 
the food industry contest some of the claims made linking obesity to health problems 
based on the fact that it is statistical evidence. Thus, research in laboratories and 
retrospective studies of people’s diet continue in order to provide needed evidence 
to convince governmental agencies and the public that a major change in people’s 
diet is a necessity. 

The assessment and quantification of a person’s usual diet is crucial in evaluating 
the degree of relationship between diet and diseases. This is a very difficult task, but 
it is important in an effort to monitor dietary behavior among individuals. Rosner, 
Willett, and Spiegelman, in “Correction of Logistic Regression Relative Risk Estimates 
and Confidence Intervals for Systematic Within-Person Measurement Error” [Statistics 
in Medicine (1989) 8:1051–1070], describe a nurses’ health study in which the diet of 
a large sample of women was examined. Nurses receive information about effects of 
dietary fat on health in nutrition courses taken as a part of their training. One of the 
objectives of the study was to determine the percentage of calories from fat in the 
diet of a population of nurses and compare this value with the recommended value of 
30%. This would assist nursing instructors in determining the impact of the material 
learned in nutritionally related courses on the nurses’ personal dietary decisions. 
There are many dietary assessment methodologies. The most commonly used method 
in large nutritional epidemiology studies is the food frequency questionnaire (FFQ). 
This questionnaire uses a carefully designed series of questions to determine the 
dietary intakes of participants in the study. In the nurses’ health study, a sample of 
nurses completed a single FFQ. These women  represented a random sample from 
a population of nurses. From the information gathered from the questionnaire, the 
percentage of calories from fat (PCF) was computed. The parameters of interest were 
the average PCF value, m for the population of nurses, the standard deviation s of 
PCF for the population of nurses, and the proportion p of nurses having PCF greater 
than 50%, as well as other parameters. The number of subjects needed in the study 
was determined by specifying the  necessary degree of accuracy in the estimation of 
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the parameters m, s, and p. We will discuss in later sections in this chapter several 
methods for determining the proper sample sizes. For this study, it was decided that a 
sample of 168 participants would be adequate. The data is given in Section 5.10. The 
researchers were interested in estimating the parameters associated with PCF along 
with providing an assessment of how accurately the sample  estimators represented 
the parameters for the whole population. An important question of interest to the 
researchers was whether the average PCF for the population exceeded the current 
recommended value of 30%. If the average value is 32% for the sample of nurses, what 
can we conclude about the average value for the population of nurses? At the end of 
this chapter, we will provide an answer to this question, along with other results and 
conclusions reached in this research study.

 5.2 estimation of m

The first step in statistical inference is point estimation, in which we compute a sin-
gle value (statistic) from the sample data to estimate a population parameter. Sup-
pose that we are interested in estimating a population mean and that we are willing 
to assume the underlying population is normal. One natural statistic that could be 
used to estimate the population mean is the sample mean, but we also could use 
the median and the trimmed mean. Which sample statistic should we use? 

A whole branch of mathematical statistics deals with problems related to 
developing point estimators (the formulas for calculating specific point estimates 
from sample data) of parameters from various underlying populations and deter-
mining whether a particular point estimator has certain desirable properties. Fortu-
nately, we will not have to derive these point estimators—they’ll be given to us for 
each parameter. When we know which point estimator (formula) to use for a given 
parameter, we can develop confidence intervals (interval estimates) for these same 
parameters.

In this section, we deal with point and interval estimation of a population 
mean m. Tests of hypotheses about m are covered in Section 5.4.

For most problems in this text, we will use sample mean y as a point estimate 
of m; we also will use it to form an interval estimate for the population mean m. 
From the Central Limit Theorem for the sample mean (Chapter 4), we know that 
for a large n, y will be approximately normally distributed, with a mean m and a 
standard error s/Ën. Then from our knowledge of the Empirical Rule and areas 
under a normal curve, we know that the interval m 6 2s/Ën, or, more precisely, 
the interval m 6 1.96s/Ën, includes 95% of the ys in repeated sampling, as shown 
in Figure 5.1.

From Figure 5.1, we can observe that the sample mean y may not be very close 
to the population mean m, the quantity it is supposed to estimate. Thus, when the value 
of y is reported, we should also provide an indication of how accurately y estimates m. 

FIGURE 5.1
Sampling distribution 
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We will accomplish this by considering an interval of possible values for m in place 
of using just a single value y. Consider the interval y 6 1.96s/Ën. Any time y falls in 
the interval m 6 1.96s/Ën, the interval y 6 1.96s/Ën will contain the parameter m 
(see Figure 5.2). The probability of y falling in the interval m 6 1.96s/Ën is .95, so 
we state that y 6 1.96s/Ën is an interval estimate of m with level of confidence .95.

We evaluate the goodness of an interval estimation procedure by examining 
the fraction of times in repeated sampling that interval estimates would encompass 
the parameter to be estimated. This fraction, called the confidence coefficient, is .95 
when using the formula y 6 1.96s/Ën; that is, 95% of the time in repeated sampling 
the intervals calculated using the formula y 6 1.96s/Ën will contain the mean m.

This idea is illustrated in Figure 5.3. Suppose we want to study a commercial 
process that produces shrimp for sale to restaurants. The shrimp are monitored 
for size by randomly selecting 40 shrimp from the tanks and measuring their 
length. We will consider a simulation of the shrimp monitoring. Suppose that the 
distribution of shrimp length in the tank had a normal distribution with a mean 
m  27 cm and a standard deviation s  10 cm. One hundred samples of size 
n  40 are drawn from the shrimp population. From each of these samples, we 
compute the interval estimate y 6 1.96s/Ën  y 6 1.96 110 /Ë40 2 . (See Table 5.1.) 
Note that although the intervals vary in location, only 6 of the 100 intervals failed 
to capture the population mean m. The fact that six samples produced intervals that 
did not contain m is not an indication that the procedure for producing intervals 
is faulty. Because our level of confidence is 95%, we would expect that, in a large 

interval estimate
level of confidence

confidence coefficient
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TABLE 5.1  One hundred interval estimates of the population mean (27)

    Interval      Interval  
    Contains     Contains  
 Sample  Lower  Upper  Population   Sample  Lower  Upper  Population  
Sample Mean Limit Limit Mean Sample Mean Limit Limit Mean 

1 27 .6609 24.5619 30.7599 Yes 51 26.9387 23.8397 30.0377 Yes
2 27 .8315 24.7325 30.9305 Yes 52 26.4229 23.3239 29.5219 Yes
3 25.9366 22.8376 29.0356 Yes 53 24.2275 21.1285 27 .3265 Yes
4 26.6584 23.5594 29.7574 Yes 54 26.4426 23.3436 29.5416 Yes
5 26.5366 23.4376 29.6356 Yes 55 26.3718 23.2728 29.4708 Yes
6 25.9903 22.8913 29.0893 Yes 56 29.3690 26.2700 32.4680 Yes
7 29.2381 26.1391 32.3371 Yes 57 25.9233 22.8243 29.0223 Yes
8 26.7698 23.6708 29.8688 Yes 58 29.6878 26.5888 32.7868 Yes
9 25.7277 22.6287 28.8267 Yes 59 24.8782 21.7792 27 .9772 Yes

10 26.3698 23.2708 29.4688 Yes 60 29.2868 26.1878 32.3858 Yes
11 29.4980 26.3990 32.5970 Yes 61 25.8719 22.7729 28.9709 Yes
12 25.1405 22.0415 28.2395 Yes 62 25.6650 22.5660 28.7640 Yes
13 26.9266 23.8276 30.0256 Yes 63 26.4958 23.3968 29.5948 Yes
14 27 .7210 24.6220 30.8200 Yes 64 28.6329 25.5339 31.7319 Yes
15 30.1959 27 .0969 33.2949 No 65 28.2699 25.1709 31.3689 Yes
16 26.5623 23.4633 29.6613 Yes 66 25.6491 22.5501 28.7481 Yes
17 26.0859 22.9869 29.1849 Yes 67 27 .8394 24.7404 30.9384 Yes
18 26.3585 23.2595 29.4575 Yes 68 29.5261 26.4271 32.6251 Yes
19 27 .4504 24.3514 30.5494 Yes 69 24.6784 21.5794 27 .7774 Yes
20 28.6304 25.5314 31.7294 Yes 70 24.6646 21.5656 27 .7636 Yes
21 26.6415 23.5425 29.7405 Yes 71 26.4696 23.3706 29.5686 Yes
22 25.6783 22.5793 28.7773 Yes 72 26.0308 22.9318 29.1298 Yes
23 22.0290 18.9300 25.1280 No 73 27 .5731 24.4741 30.6721 Yes
24 24.4749 21.3759 27 .5739 Yes 74 26.5938 23.4948 29.6928 Yes
25 25.7687 22.6697 28.8677 Yes 75 25.4701 22.3711 28.5691 Yes
26 29.1375 26.0385 32.2365 Yes 76 28.3079 25.2089 31.4069 Yes
27 26.4457 23.3467 29.5447 Yes 77 26.4159 23.3169 29.5149 Yes
28 27 .4909 24.3919 30.5899 Yes 78 26.7439 23.6449 29.8429 Yes
29 27 .8137 24.7147 30.9127 Yes 79 27 .0831 23.9841 30.1821 Yes
30 29.3100 26.2110 32.4090 Yes 80 24.4346 21.3356 27 .5336 Yes
31 26.6455 23.5465 29.7445 Yes 81 24.7468 21.6478 27 .8458 Yes
32 27 .9707 24.8717 31.0697 Yes 82 27 .1649 24.0659 30.2639 Yes
33 26.7505 23.6515 29.8495 Yes 83 28.0252 24.9262 31.1242 Yes
34 24.9366 21.8376 28.0356 Yes 84 27 .1953 24.0963 30.2943 Yes
35 27 .9943 24.8953 31.0933 Yes 85 29.7399 26.6409 32.8389 Yes
36 27 .3375 24.2385 30.4365 Yes 86 24.2036 21.1046 27 .3026 Yes
37 29.4787 26.3797 32.5777 Yes 87 27 .0769 23.9779 30.1759 Yes
38 26.9669 23.8679 30.0659 Yes 88 23.6720 20.5730 26.7710 No
39 26.9031 23.8041 30.0021 Yes 89 25.4356 22.3366 28.5346 Yes
40 27 .2275 24.1285 30.3265 Yes 90 23.6151 20.5161 26.7141 No
41 30.1865 27 .0875 33.2855 No 91 24.0929 20.9939 27 .1919 Yes
42 26.4936 23.3946 29.5926 Yes 92 27 .7310 24.6320 30.8300 Yes
43 25.8962 22.7972 28.9952 Yes 93 27 .3537 24.2547 30.4527 Yes
44 24.5377 21.4387 27 .6367 Yes 94 26.3139 23.2149 29.4129 Yes
45 26.1798 23.0808 29.2788 Yes 95 24.8383 21.7393 27 .9373 Yes
46 26.7470 23.6480 29.8460 Yes 96 28.4564 25.3574 31.5554 Yes
47 28.0406 24.9416 31.1396 Yes 97 28.2395 25.1405 31.3385 Yes
48 26.0824 22.9834 29.1814 Yes 98 25.5058 22.4068 28.6048 Yes
49 25.6270 22.5280 28.7260 Yes 99 25.6857 22.5867 28.7847 Yes
50 23.7449 20.6459 26.8439 No 100 27 .1540 24.0550 30.2530 Yes
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collection of 95% confidence intervals, approximately 5% of the intervals would 
fail to include m. Thus, in 100 intervals, we would expect 4 to 6 intervals (5% of 
100) to not contain m. It is crucial to understand that even when experiments are 
properly conducted, a number of the experiments will yield results that in some 
sense are in error. This occurs when we run only a small number of experiments or 
select only a small subset of the population. In our example, we randomly  selected 
40 observations from the population and then constructed a 95% confidence 
interval for the population mean m. If this process was repeated a very large 
number of times—for example, 10,000 times instead of the 100 in our  example—
the proportion of intervals containing m would be very nearly 95%.

In most situations when the population mean is unknown, the population 
standard deviation s will also be unknown. Hence, it will be necessary to estimate 
both m and s from the data. However, for all practical purposes, if the sample size is 
relatively large, we can estimate the population standard deviation s with the sample 
standard deviation s in the confidence interval formula. Because s is estimated by the 
sample standard deviation s, the actual standard error of the mean s/Ën  is naturally 
estimated by s/Ën . This estimation introduces another source of random error (s will 
vary randomly, from sample to sample, about s) and, strictly speaking, invalidates 
the level of confidence for our interval estimate of m. Fortunately, the formula is 
still a very good approximation for large sample sizes. When the population has a 
normal distribution, a better method for constructing the confidence interval will be 
presented in  Section 5.7 . Also, based on the results from the Central Limit  Theorem, 
if the population distribution is not too nonnormal and the sample size is relatively 
large, level of confidence for the interval y 6 1.96s/Ën  will be approximately the 
same as if we were sampling from a normal distribution with s known and using the 
interval y 6 1.96s/Ën .

eXaMpLe 5.1

A courier company in New York City claims that its mean delivery time to any 
place in the city is less than 3 hours. The consumer protection agency decides to 
conduct a study to see if this claim is true. The agency randomly selects 50 deliveries 
and determines the mean delivery time to be 2.8 hours with a standard deviation of 
s  .6 hours. The agency wants to estimate the mean delivery time m using a 95% 
confidence interval. Obtain this interval and then decide if the courier  com pany’s 
claim appears to be reasonable.

Solution  The random sample of n  50 deliveries yields y  2.8 and s  .6.   
Because the sample size is relatively large, n  50, the appropriate 95% confidence 
interval is then computed using the following formula:

y 6 1.96s/Ën

With s used as an estimate of s, our 95% confidence interval is

2.8 6 1.96
.6

Ë50
   or   2.8 6 .166

The interval from 2.634 to 2.966 forms a 95% confidence interval for the mean 
delivery time, m· In other words, we are 95% confident that the average delivery 
time lies between 2.634 and 2.966 hours. Because the upper value of this inter-
val, 2.966, is less than 3 hours, we can conclude that the data strongly support the 
courier company’s claim. ■
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Confidence Interval  
for m, s Known

y 6 za/2 s/Ën

There are many different confidence intervals for m, depending on the 
confidence coefficient we choose. For example, the interval m 6 2.58s/Ën includes 
99% of the values of y in repeated sampling, and the interval y 6 2.58s/Ën forms 
a 99% confidence interval for m.

We can state a general formula for a confidence interval for m with a 
 confidence coefficient of (1 2 a), where a (Greek letter alpha) is between 0 and 1. 
For a specified value of (1 2 a), a 100(1 2 a)% confidence interval for m is given 
by the following formula. Here we assume that s is known or that the sample size 
is large enough to replace s with s.

99% confidence 
interval

(1 2 a)  confidence 
coefficient

FIGURE 5.4
Interpretation of za/ 2 in 
the confidence interval 

formula

f(y)

y

zα /2

Area = 2

Area = 1 2

/  n

TABLE 5.2
Common values of the  
confidence coefficient 

(1 2 a) and the 
corresponding

z-value, za/ 2

 Confidence Coefficient Value of Area in Table 1 Corresponding z-Value, 
 (1 2 a) a/2 1 2 a/2 za/2

 .90 .05 .95 1.645
 .95 .025 .975 1.96
 .98 .01 .99 2.33
 .99 .005 .995 2.58

The quantity za/ 2 is a value of z having a tail area of a / 2 to its right. In other 
words, at a distance of za/ 2 standard deviations to the right of m, there is an area 
of a / 2 under the normal curve. Values of za/ 2 can be obtained from Table 1 in 
the Appendix by looking up the z-value corresponding to an area of 1 2 (a / 2) 
(see Figure 5.4). Common values of the confidence coefficient (1 2 a) and za/2 are 
given in Table 5.2.

za /2 

eXaMpLe 5.2

A forester wishes to estimate the average number of ‘‘count trees’’ (trees larger 
than a specified size) per acre on a 2,000-acre plantation. She can then use this 
information to determine the total timber volume for trees in the plantation. A ran-
dom sample of n  50 1-acre plots is selected and examined. The average (mean) 
number of count trees per acre is found to be 27 .3, with a standard deviation of 
12.1. Use this information to construct a 99% confidence interval for m, the mean 
number of count trees per acre for the entire plantation.
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Solution We use the general confidence interval with a confidence coefficient 
equal to .99 and a za/ 2-value equal to 2.58 (see Table 5.2). Substituting into the 
formula y 6 2.58 s/Ën and replacing s with s, we have

27.3 6 2.58
12.1

Ë50

This corresponds to the confidence interval 27 .3 6 4.41—that is, the interval from 
22.89 to 31.71. Thus, we are 99% sure that the average number of count trees per 
acre is between 22.89 and 31.71. ■

Statistical inference-making procedures differ from ordinary procedures in 
that we not only make an inference but also provide a measure of how good that 
inference is. For interval estimation, the width of the confidence interval and the 
confidence coefficient measure the goodness of the inference. For a given value of 
the confidence coefficient, the smaller the width of the interval, the more precise 
the inference. The confidence coefficient, on the other hand, is set by the experi-
menter to express how much confidence he or she has that the interval estimate 
encompasses the parameter of interest. For a fixed sample size, increasing the level 
of confidence will result in an interval of greater width. Thus, the experimenter will 
generally express a desired level of confidence and specify the desired width of the 
interval. Next, we will discuss a procedure to determine the appropriate sample 
size to meet these specifications.

 5.3 Choosing the Sample Size for estimating m

How can we determine the number of observations to include in the sample? The 
implications of such a question are clear. Data collection costs money. If the sample 
is too large, time and talent are wasted. Conversely, it is wasteful if the sample is too 
small because inadequate information has been purchased for the time and effort 
expended. Also, it may be impossible to increase the sample size at a later time. 
Hence, the number of observations to be included in the sample will be a compro-
mise between the desired accuracy of the sample statistic as an estimate of the popu-
lation parameter and the required time and cost to achieve this degree of accuracy.

The researchers in the dietary study described in Section 5.1 had to determine 
how many nurses to survey for their study to yield viable conclusions. To deter-
mine how many nurses must be sampled, we have to determine how accurately 
the researchers want to estimate the mean percentage of calories from fat (PCF). 
The researchers specified that they wanted the sample estimator to be within 1.5 
of the population mean m. Then we would want the confidence interval for m to 
be y 6 1.5. Alternatively, the researchers could specify that the tolerable error in 
estimation is 3, which would yield the same specification y 6 1.5 because the toler-
able error is simply the width of the confidence interval.

There are two considerations in determining the appropriate sample size for 
estimating m using a confidence interval. First, the tolerable error establishes the 
desired width of the interval. The second consideration is the level of confidence. In 
selecting our specifications, we need to consider that if the confidence interval of m is 
too wide, then our estimation of m will be imprecise and not very informative. Simi-
larly, a very low level of confidence (say, 50%) will yield a confidence  interval that 
very likely will be in error—that is, fail to contain m. However, obtaining a confidence 
interval having a narrow width and a high level of confidence may require a large 
value for the sample size and hence be unreasonable in terms of cost and/or time.
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What constitutes reasonable certainty? In most situations, the confidence 
level is set at 95% or 90%, partly because of tradition and partly because these lev-
els represent (to some people) a reasonable level of certainty. The 95% (or 90%) 
level translates into a long-run chance of 1 in 20 (or 1 in 10) of not covering the 
population parameter. This seems reasonable and is comprehensible, whereas 1 
chance in 1,000 or 1 in 10,000 is too small.

The tolerable error depends heavily on the context of the problem, and only 
someone who is familiar with the situation can make a reasonable judgment about 
its magnitude.

When considering a confidence interval for a population mean m, the plus-or-
minus term of the confidence interval is zs/2 s/Ën. Three quantities determine the 
value of the plus-or-minus term: the desired confidence level (which determines 
the z-value used), the standard deviation (s), and the sample size. Usually, a guess 
must be made about the size of the population standard deviation. An initial sam-
ple can be taken to estimate the standard deviation; or the value of the sample 
standard deviation from a previous study can be used as an estimate of s. For a 
given tolerable error, once the confidence level is specified and an estimate of s 
supplied, the required sample size can be calculated using the formula shown here.

Suppose we want to estimate m using a 100(1 2 a)% confidence interval 
having tolerable error W. Our interval will be of the form y 6 E, where E  W / 2. 
Note that W is the width of the confidence interval. To determine the sample size 
n, we solve the equation

E  zs/2s/Ën

for n. This formula for n is shown here:

Sample Size 
 required for a  

100(1 2 a)% 
 Confidence Interval 

for m of  
the Form y – 6 E

n 
1zs/2

2 2s2

E2

Note that determining a sample size to estimate m requires knowledge of the 
population standard deviation s. We can obtain an approximate sample size by 
estimating s2, using one of these two methods:

 1. Employ information from a prior experiment to calculate a sample 
standard deviation s. This value is used to approximate s.

 2. Use information on the range of the observations in the population 
to obtain an estimate of s.

We can then substitute the estimated value of s in the sample-size equation to 
determine an approximate sample size n.

We illustrate the procedure for choosing a sample size with two examples.

eXaMpLe 5.3

The cost of textbooks relative to other academic expenses has risen greatly over the 
past few years, and university officials have started to include the average amount 
expended on textbooks in their estimated yearly expenses for students. In order for 
these estimates to be useful, they should be within $25 of the mean expenditure for 
all undergraduate students at the university. How many students should the univer-
sity sample in order to be 95% confident that its estimated cost of textbooks will 
satisfy the stated level of accuracy?
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Solution From data collected in previous years, the university officials have deter-
mined that the annual expenditure for textbooks has a histogram that is normal in 
shape with costs ranging from $250 to $750. An estimate of s is required to find the 
sample size. Because the distribution of book expenditures has a normal-like shape, 
a reasonable estimate of s would be

  ŝ 
range

4


750 2 250
4

 125

The various components in the sample size formula are level of accuracy  E  $25, 
  ŝ  125, and level of confidence  95% which implies za/2  z.05/2  z.025  1.96. 
Substituting into the sample-size formula, we have

n 
11.96 2 2 1125 2 2

125 2 2  96.04

To be on the safe side, we round this number up to the next integer. A sample 
size of 97 or larger is recommended to obtain an estimate of the mean textbook 
expenditure that we are 95% confident is within $25 of the true mean. ■

eXaMpLe 5.4

A federal agency has decided to investigate the advertised weight printed on 
cartons of a certain brand of cereal. The company in question periodically samples 
cartons of cereal coming off the production line to check their weight. A summary 
of 1,500 of the weights made available to the agency indicates a mean weight of 
11.80 ounces per carton and a standard deviation of .75 ounce. Use this information 
to determine the number of cereal cartons the federal agency must examine to 
estimate the average weight of cartons being produced now, using a 99% confidence 
interval of width .50.

Solution The federal agency has specified that the width of the confidence inter-
val is to be .50, so E  .25. Assuming that the weights made available to the agency 
by the company are accurate, we can take s  .75. The required sample size with 
za/ 2  2.58 is

n 
12.58 2 2 1.75 2 2

1.25 2 2  59.91

Thus, the federal agency must obtain a random sample of 60 cereal cartons to 
 estimate the mean weight to within 6.25. ■

 5.4 a Statistical test for m

A second type of inference-making procedure is statistical testing (or hypothesis 
testing). As with estimation procedures, we will make an inference about a popula-
tion parameter, but here the inference will be of a different sort. With point and 
interval estimates, there was no supposition about the actual value of the param-
eter prior to collecting the data. Using sampled data from the population, we are 
simply attempting to determine the value of the parameter. In hypothesis test-
ing, there is a preconceived idea about the value of the population parameter. For 
example, in studying the antipsychotic properties of an experimental compound, 
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we might ask whether the average shock-avoidance response of rats treated with a 
specific dose of the compound is greater than 60—that is, m . 60—the value that 
has been observed after extensive testing using a suitable standard drug. Thus, 
there are two theories or hypotheses involved in a statistical study. The first is the 
hypothesis being proposed by the person conducting the study, called the research 
hypothesis—m . 60 in our example. The second theory is the negation of this 
hypothesis, called the null hypothesis—m # 60 in our example. The goal of the 
study is to decide whether the data tend to support the research hypothesis.

A statistical test is based on the concept of proof by contradiction and is com-
posed of the five parts listed here.

 research hypothesis

null hypothesis
 

statistical test

1. Research hypothesis (also called the alternative hypothesis), denoted  
by Ha.

2. Null hypothesis, denoted by H0.
3. Test statistics, denoted by T.S.
4. Rejection region, denoted by R.R.
5. Check assumptions and draw conclusions.

For example, the Texas A&M agricultural extension service wants to determine 
whether the mean yield per acre (in bushels) for a particular variety of soybeans has 
increased during the current year over the mean yield in the previous 2 years when m 
was 520 bushels per acre. The first step in setting up a statistical test is determining the 
proper specification of H0 and Ha. The following guidelines will be helpful:

 1. The statement that m equals a specific value will always be included 
in H0. The particular value specified for m is called its null value and 
is  denoted m0.

 2. The statement about m that the researcher is attempting to support 
or detect with the data from the study is the research hypothesis, Ha.

 3. The negation of Ha is the null hypothesis, H0.
 4. The null hypothesis is presumed correct unless there is overwhelm-

ing evidence in the data that the research hypothesis is supported.

In our example, m0 is 520. The research statement is that yield in the current 
year has increased above 520; that is, Ha: m . 520. (Note that we will include 520 in 
the null hypothesis.) Thus, the null hypothesis, the negation of Ha, is H0: m # 520.

To evaluate the research hypothesis, we take the information in the sample 
data and attempt to determine whether the data support the research hypothesis or 
the null hypothesis, but we will give the benefit of the doubt to the null hypothesis.

After stating the null and research hypotheses, we then obtain a random sam-
ple of 1-acre yields from farms throughout the state. The decision to state whether 
or not the data support the research hypothesis is based on a quantity computed 
from the sample data called the test statistic. If the population distribution is deter-
mined to be mound-shaped, a logical choice as a test statistic for m is y or some 
function of y.

If we select y as the test statistic, we know that the sampling distribution of 
y is approximately normal with a mean m and a standard deviation s/Ën, provided 
the population distribution is normal or the sample size is fairly large. We are 
attempting to decide between Ha: m . 520 and H0: m # 520. The decision will be to 
 either reject H0 or fail to reject H0. In developing our decision rule, we will assume 

test statistic
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that m  520, the null value of m. We will now determine the values of y that 
define what is called the rejection region; we are very unlikely to observe these 
values if m  520 (or if m is any other value in H0). The rejection region contains 
the values of y that support the research hypothesis and contradict the null 
hypothesis; hence, it is the region of values for y that reject the null hypothesis. 
The rejection region will be the values of y in the upper tail of the null distribution 
(m  520) of y. See Figure 5.5.

As with any two-way decision process, we can make an error by falsely 
rejecting the null hypothesis or by falsely accepting the null hypothesis. We give 
these errors the special names Type I error and Type II error.

rejection region

Type I error
Type II error

FIGURE 5.5
Assuming that H0 is true, 
contradictory values of y 

are in the upper tail

 = 520

f(y)

Acceptance region
Rejection

region

y

Contradictory
values of y

DEFINITION 5.1 A Type I error is committed if we reject the null hypothesis when it is true. 
The probability of a Type I error is denoted by the symbol a.

DEFINITION 5.2 A Type II error is committed if we accept the null hypothesis when it is 
false and the research hypothesis is true. The probability of a Type II error is 
 denoted by the symbol b (Greek letter beta).

The two-way decision process is shown in Table 5.3 with corresponding 
 probabilities associated with each situation.

Although it is desirable to determine the acceptance and rejection regions 
to simultaneously minimize both a and b, this is not possible. The probabilities 
associated with Type I and Type II errors are inversely related. For a fixed  sample 
size n, as we change the rejection region to increase a, then b decreases, and vice 
versa.

To alleviate what appears to be an impossible bind, the experimenter specifies 
a tolerable probability for a Type I error of the statistical test. Thus, the  ex perimenter 
may choose a to be .01, .05, .10, and so on. Specification of a value for a then locates 

TABLE 5.3
Two-way decision process  Null Hypothesis

Decision True False

Reject H0 Type I error Correct
 a 1 2 b
Accept H0 Correct Type II error
 1 2 a b
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the rejection region. Determination of the associated probability of a Type II error 
is more complicated and will be delayed until later in the chapter.

Let us now see how the choice of a locates the rejection region. Returning 
to our soybean example, we will reject the null hypothesis for large values of the 
sample mean y. Suppose we have decided to take a sample of n  36 1-acre plots 
and from these data we compute y  573 and s  124. Can we conclude that the 
mean yield for all farms is above 520?

Before answering this question, we must specify a. If we are willing to take 
the risk that 1 time in 40 we would incorrectly reject the null hypothesis, then 
a  1/40  .025. An appropriate rejection region can be specified for this value of 
a by referring to the sampling distribution of y. Assuming that m  520 and n is 
large enough so that s can be replaced by s, then y is normally distributed, with 
m  520 and s/Ën < 124 /Ë36  20.67. Because the shaded area of Figure 5.6(a) 
corresponds to a, locating a rejection region with an area of .025 in the right tail 
of the distribution of y is equivalent to determining the value of z that has an area 
.025 to its right. Referring to Table 1 in the Appendix, this value of z is 1.96. Thus, 
the rejection  region for our example is located 1.96 standard errors (1.96s/Ën) 
above the mean m  520. If the observed value of y is greater than 1.96 standard 
errors above m  520, we reject the null hypothesis, as shown in Figure 5.6(a).

The reason that we need to consider only m  520 in computing a is that for 
all other values of m in H0—that is, m , 520—the probability of Type I error would 
be smaller than the probability of Type I error when m  520. This can be seen by 
examining Figure 5.6(b)

The area of the rejection region under the curve centered at 500 is less than 
the area of that associated with the curve centered at 520. Thus, a for m  500 is 
less than a for m  520—that is, a (500) , a (520)  .025.

This conclusion can be extended to any value of m less than 520—that is, all 
values of m in H0: m # 520.

specifying a

FIGURE 5.6(a)
Rejection region for the  
soybean example when 

a  .025

 = 520
Rejection

region

Area  equals .025.

y

1.96 /  n

f(y)

FIGURE 5.6(b)
Size of rejection region  

when m  500

500 520

f(y)

Rejection
region

y

1.96 /  n
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eXaMpLe 5.5

The Texas A&M extension service wanted to investigate if the mean yield per acre 
of soybeans (in bushels) was greater than 520 bushels. In a random sample of 36 
1-acre soybean plots, the sample mean and standard deviation were computed to be 
y  573 and s  124, respectively.

Set up all the parts of a statistical test for the soybean example, and use the 
sample data to reach a decision on whether to accept or reject the null hypothesis. 
Set a  .025. Assume that s can be estimated by s.

Solution The first four parts of the test are as follows.

 H0: m # 520
 Ha: m . 520
 T.S.: y
 R.R.:  For a  .025, reject the null hypothesis if y lies more than 1.96 

standard errors above m  520.

The computed value of y is 573. To determine the number of standard errors 
that y lies above m  520, we compute a z-score for y using the formula

z 
y 2 m0

s/Ën
Substituting into the formula with s replacing s, we have

z 
y 2 m0

s/Ën


573 2 520

124 /Ë36
 2.56

Before drawing conclusions from these calculations, it is necessary to check 
the assumptions underlying the probability statements. Thus, it is necessary to 
make sure that the 36 1-acre soybean plots are representative of the population for 
which inferences are to be drawn and to examine the location of the plots to make 
sure that there are no confounding factors that could result in a strong correlation 
among the yields of the 36 plots. Finally, a normal quantile plot should be used to 
assess whether the 36 yields appear to be a random sample from a population hav-
ing a normal distribution. Because the observed value of y lies more than 1.96—in 
fact it is 2.56—standard errors above 520, we reject the null hypothesis in favor of 
the research hypothesis and conclude that there is strong evidence in the data that 
average soybean yield per acre is greater than 520 bushels. ■

The statistical test conducted in Example 5.5 is called a one-tailed test 
because the rejection region is located in only one tail of the distribution of y. If 
our research hypothesis was Ha: m , 520, small values of y would indicate rejection 
of the null hypothesis. This test would also be one-tailed, but the rejection region 
would be located in the lower tail of the distribution of y. Figure 5.7 displays the 
rejection region for the alternative hypothesis Ha: m , 520 when a  .025.

one-tailed test

FIGURE 5.7
Rejection region for  

Ha: m , 520 when 
a  .025 for the  

soybean example

 = 520

f(y)

Rejection
region

y

 = .025

1.96 /  n
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We can formulate a two-tailed test for the research hypothesis Ha: m Z 520, 
where we are interested in detecting whether the mean yield per acre of soybeans 
is different from 520. Clearly, both large and small values of y would contradict 
the null hypothesis, and we would locate the rejection region in both tails of the 
distribution of y. A two-tailed rejection region for Ha: m Z 520 and a  .05 is shown 
in Figure 5.8.

eXaMpLe 5.6

Elevated serum cholesterol levels are often associated with cardiovascular disease. 
Cholesterol levels are often thought to be associated with type of diet, amount 
of  exercise, and genetically related factors. A recent study examined cholesterol 
levels among recent immigrants from China. Researchers did not have any prior 
information about these people and wanted to evaluate whether their mean cho-
lesterol level differed from the mean cholesterol level of middle-aged women in 
the United States. The distribution of cholesterol levels in U.S. women aged 30–50 
is known to be  approximately normally distributed with a mean of 190 mg/dL. A 
random  sample of n  100 female Chinese immigrants aged 30–50 who had immi-
grated to the United States in the past year was selected from USCIS records. 
They were administered blood tests that yielded cholesterol levels having a mean 
of 178.2 mg/dL and a standard  deviation of 45.3 mg/dL. Is there significant evidence 
in the data to demonstrate that the mean cholesterol level of the new immigrants 
differs from 190 mg/dL?

Solution The researchers were interested in determining if the mean cholesterol 
level was different from 190; thus, the research hypothesis for the statistical test 
is Ha: m Z 190. The null hypothesis is the negation of the research hypothesis: 
H0: m  190. With a sample size of n  100, the Central Limit Theorem should 
hold, and, hence, the sampling distribution of y is approximately normal. Using 
a  .05, za/2  z.025  1.96. The two-tailed rejection region for this test is given by

m0 6 1.96s/Ën  190 6 1.96 145.3 2 /Ë100  190 6 8.88

lower rejection  181.1 upper rejection  198.9

The two regions are shown in Figure 5.9.
We can observe from Figure 5.9 that y   178.2 falls into the lower rejection 

region. Therefore, we conclude there is significant evidence in the data that 
the mean cholesterol level of middle-aged Chinese immigrants differs from  
190 mg/dL.

two-tailed test

FIGURE 5.8
Two-tailed rejection  

region for Ha: m Z 520  
when a  .05 for the  

soybean example 

 = 520
Rejection
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Area = .025 Area = .025

Rejection
region1.96 /  n 1.96 /  n

f(y)
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Alternatively, we can determine how many standard errors y lies away from 
m  190 and compare this value to za/2  z.025  1.96. From the data, we compute

z 
y 2 m0

s/Ën


178.2 2 190

45.3 /Ë100
 22.60

The observed value for y lies more than 1.96 standard errors below the speci-
fied mean value of 190, so we reject the null hypothesis in favor of the alternative 
Ha: m Z 190. We have thus reached the same conclusion as we reached using the 
 rejection region. The two methods will always result in the same conclusion. ■

The mechanics of the statistical test for a population mean can be greatly 
simplified if we use z rather than y as a test statistic. Using

H0: m # m0 (where m0 is some specified value)
Ha: m . m0

and the test statistic

z 
y 2 m0

s/Ën

then for a  .025 we reject the null hypothesis if z $ 1.96—that is, if y lies more 
than 1.96 standard errors above the mean. Similarly, for a  .05 and Ha: m Z m0, we 
reject the null hypothesis if the computed value of z $ 1.96 or the computed value 
of z # 21.96. This is equivalent to rejecting the null hypothesis if the computed 
value of |z| $ 1.96.

The statistical test for a population mean m is summarized next. Three 
different sets of hypotheses are given with their corresponding rejection 
regions. In a given situation, you will choose only one of the three alternatives 
with its associated rejection region. The tests given are appropriate only when 
the population distribution is normal with known s. The rejection region will 
be approximately the correct region even when the population distribution is 
nonnormal provided the sample size is large. We can then apply the results from 
the  Central Limit Theorem with the sample standard deviation s replacing s to 
conclude that the sampling distribution of z  1y 2 m0 2 /1s/Ën 2  is approximately 
normal.

test for a population 
mean

FIGURE 5.9
Rejection region for  

Ha: m Z 190 when a  .05

 = 190
y
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Rejection
region

Rejection
region1.96 /  n 1.96 /  n

181.1 198.9

f(y)



5.4 A Statistical test for m    249

eXaMpLe 5.7

As a part of her evaluation of municipal employees, the city manager audits the 
parking tickets issued by city parking officers to determine the number of tickets 
that were contested by the car owner and found to be improperly issued. In past 
years, the number of improperly issued tickets per officer had a normal distribution 
with mean m  380 and standard deviation s  35.2. Because there has recently 
been a change in the city’s parking regulations, the city manager suspects that the 
mean number of improperly issued tickets has increased. An audit of 50 randomly 
selected officers is conducted to test whether there has been an increase in improper 
tickets. Use the sample data given here and a  .01 to test the research hypothesis 
that the mean number of improperly issued tickets is greater than 380. The audit 
generates the following data: n  50 and y  390.

Solution Using the sample data with a  .01, the five parts of a statistical test are 
as follows.

H0: m # 380
Ha: m . 380

T.S.: z 
y 2 m0

s/Ën


390 2 380

35.2 /Ë50


10
35.2 /7.07

 2.01

 R.R.:  For a  .01 and a right-tailed test, we reject H0 if z $ z.01, 
where z.01  2.33.

Check assumptions and draw conclusions: Because the observed value of z, 2.01, 
does not exceed 2.33, we might be tempted to accept the null hypothesis that 
m # 380. The only problem with this conclusion is that we do not know b, the 
probability of incorrectly accepting the null hypothesis. To hedge somewhat in 
situations in which z does not fall in the rejection region and b has not been cal-
culated, we recommend stating that there is insufficient evidence to reject the null 
hypothesis. ■

Summary of a 
 Statistical test 

for m with a 
 Normal  population 

 Distribution  
(s Known) or Large  

Sample Size n 

Hypotheses: 

Case 1. H0: m # m0 vs. Ha: m . m0 (right-tailed test)
Case 2. H0: m $ m0 vs. Ha: m , m0 (left-tailed test)
Case 3. H0: m  m0 vs. Ha: m Z m0 (two-tailed test)

 T.S.: z 
y 2 m0

s/Ën
 R.R.: For a probability a of a Type I error,

Case 1. Reject H0 if z $ za.
Case 2. Reject H0 if z # 2za.
Case 3. Reject H0 if |z| $ za/ 2.

Note: These procedures are appropriate if the population distribution 
is normally distributed with s known. If the sample size is large, then 
the Central Limit Theorem allows us to use these procedures when the 
 population distribution is nonnormal. Also, if the sample size is large, then 
we can replace s with the sample standard deviation s. The situation in 
which n is small is  presented later in this chapter.
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We can illustrate the computation of b, the probability of a Type II error, 
using the data in Example 5.7 . If the null hypothesis is H0: m # 380, the probability 
of incorrectly accepting H0 will depend on how close the actual mean is to 380. 
For example, if the actual mean number of improperly issued tickets is 400, we 
would expect b to be much smaller than if the actual mean is 387 . The closer the 
actual mean is to m0, the more likely we are to obtain data having a value y in the 
acceptance region. The whole process of determining b for a test is a ‘‘what-if’’ 
type of process. In practice, we compute the value of b for a number of values of m 
in the alternative hypothesis Ha and plot b versus m in a graph called the OC curve. 
Alternatively, tests of hypotheses are evaluated by computing the probability that 
the test rejects false null hypotheses, called the power of the test. We note that 
power  1 2 b. The plot of power versus the value of m is called the power curve. 
We attempt to design tests that have large values of power and hence small values 
for b.

Let us suppose that the actual mean number of improper tickets is 395 per 
 officer. What is b? With the null and research hypotheses as before,

 H0: m # 380
 Ha: m . 380

and with a  .01, we use Figure 5.10(a) to display b. The shaded portion of 
 Figure 5.10(a) represents b, as this is the probability of y falling in the acceptance 
 region when the null hypothesis is false and the actual value of m is 395. The power 
of the test for detecting that the actual value of m is 395 is 1 2 b, the area in the 
 rejection region.

Let us consider two other possible values for m—namely, 387 and 400. The 
corresponding values of b are shown as the shaded portions of Figures 5.10(b) and (c), 
respectively; power is the unshaded portion in the rejection region of Figures 5.10(b) 
and (c). The three situations illustrated in Figure 5.10 confirm what we alluded 
to earlier; that is, the probability of a Type II error b decreases (and hence power 
 increases) the farther m lies away from the hypothesized mean under H0.

The following notation will facilitate the calculation of b. Let m0 denote the 
null value of m, and let ma denote the actual value of the mean in Ha. Let b(ma) be the 
probability of a Type II error if the actual value of the mean is ma, and let PWR(ma) 
be the power at ma. Note that PWR(ma) equals 1 2 b(ma). Although we never really 
know the actual mean, we select feasible values of m and determine b for each 
of these values. This will allow us to determine the probability of a Type II error 
 occurring if one of these feasible values happens to be the actual value of the mean. 
The decision whether or not to accept H0 depends on the magnitude of b for one 
or more reasonable values for ma. Alternatively, researchers calculate the power 
curve for a test of hypotheses. Recall that the power of the test at ma, PWR(ma), is 
the probability the test will detect that H0 is false when the actual value of m is ma. 
Hence, we want tests of hypotheses in which PWR(ma) is large when ma is in Ha and 
is far from m0.

For a one-tailed test, H0: m # m0 or H0: m $ m0, the value of b at ma is the 
probability that z is less than

za 2
0m0 2 ma 0

s/Ën
This probability is written as

b 1ma 2  P cz , za 2
0m0 2 ma 0

s/Ën
d  pnormaza 2

0m0 2 ma 0
s/Ën

b

computing b

OC curve 

power
power curve 
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The value of b(ma) is found by looking up the probability corresponding to the 
number za 2 0m0 2 ma| /s/Ën in Table 1 in the Appendix.

Formulas for b are given here for one- and two-tailed tests. Examples using 
these formulas follow.

FIGURE 5.10
The probability b of  
a Type II error when  
m  395, 387, and 400

/  n

/  n

/  n

Calculation of b for 
a One- or two-tailed 

test about m 

1. One-tailed test:

 b 1ma 2  Paz # za 2
0m0 2 ma 0

s/Ën
b  pnormaza 2

0m0 2 ma 0
s/Ën

b
 PWR(ma)  1 2 b(ma).

2. Two-tailed test:

 b 1ma 2 < Paz # za/2 2
0m0 2 ma 0

s/Ën
b  pnormaza/2 2

0m0 2 ma 0
s/Ën

b
 PWR(ma)  1 2 b(ma).
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EXAMPLE 5.8

Compute b and power for the test in Example 5.7 if the actual mean number of 
 improperly issued tickets is 395.

Solution The research hypothesis for Example 5.7 was Ha: m . 380. Using a  .01 
and the computing formula for b with m0  380 and ma  395, we have

b 1395 2  P cz , z.01 2
0m0 2 ma 0

s/Ën
d  P cz , 2.33 2

0380 2 395 0
35.2 /Ë50

d

  P [z , 2.33 2 3.01]  P[z , 2.68]  pnorm(2.68)  .2483

Referring to Table 1 in the Appendix, the area corresponding to z  2.68 is .2483. 
Hence, b(395)  .2483 and PWR(395)  1 2 .2483  .7517 . ■

Previously, when y did not fall in the rejection region, we concluded that 
there was insufficient evidence to reject H0 because b was unknown. Now, when y 
falls in the acceptance region, we can compute b corresponding to one (or more) 
alternative values for m that appear reasonable in light of the experimental setting. 
Then, provided we are willing to tolerate a probability of falsely accepting the 
null hypothesis equal to the computed value of b for the alternative value(s) of 
m considered, our decision is to accept the null hypothesis. Thus, in Example 5.8, 
if the actual mean number of improperly issued tickets is 395, then there is about 
a .25 probability (1 in 4 chance) of accepting the hypothesis that m is less than or 
equal to 380 when in fact m equals 395. The city manager will have to analyze the 
consequence of making such a decision. If the risk is acceptable, then she could 
state that the audit has determined that the mean number of improperly issued 
tickets has not increased. If the risk is too great, then the city manager will have 
to  expand the audit by sampling more than 50 officers. In the next section, we will 
 describe how to select the proper value for n.

EXAMPLE 5.9

As the public concern about bacterial infections increases, a soap manufacturer 
has quickly promoted a new product to meet the demand for an antibacterial soap. 
This new product has a substantially higher price than the “ordinary soaps” on the 
market. A consumer testing agency notes that ordinary soap also kills bacteria and 
questions whether the new antibacterial soap is a substantial improvement over 
ordinary soap. A procedure for examining the ability of soap to kill bacteria is to 
place a solution containing the soap onto a petri dish and then add E. coli bacteria. 
After a 24-hour incubation period, a count of the number of bacteria colonies on 
the dish is taken. From previous studies using many different brands of ordinary 
soaps, the mean bacteria count is 33 for ordinary soap products. The consumer  
group runs the test on the antibacterial soap using 35 petri dishes. For the 35 petri 
dishes, the mean bacterial count is 31.2 with a standard deviation of 8.4. Do the 
data provide sufficient evidence that the antibacterial soap is more effective than 
ordinary soap in reducing bacteria counts? Use a  .05.

Solution Let m be the population mean bacterial count for the antibacterial soap 
and s be the population standard deviation. The five parts to our statistical test are as 
follows.

 H0: m $ 33
 Ha: m , 33
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 T.S.: z 
y 2 mo

s/Ën


31.2 2 33

8.4 /Ë35
 21.27

 R.R.: For a  .05, we will reject the null hypothesis if z # 2 z.05  21.645.

Check assumptions and draw conclusions: With n  35, the sample size is prob-
ably large enough that the Central Limit Theorem would justify our assum-
ing that the sampling distribution of y is approximately normal. The normality 
assumption should be checked using the techniques from Chapter 4. Because the 
observed value of z, 21.27, is not less than 21.645, the test statistic does not fall 
in the  rejection region. We reserve judgment on accepting H0 until we calculate 
the chance of a Type II error, b, for several values of m falling in the alternative 
hypothesis, values of m less than 33. In other words, we conclude that there is 
insufficient evidence to reject the null hypothesis and hence there is not sufficient 
evidence that the antibacterial soap is more effective than ordinary soap. How-
ever, we next need to calculate the chance that the test may have resulted in a 
Type II error. ■

EXAMPLE 5.10

Refer to Example 5.9. Suppose that the consumer testing agency thinks that the 
manufacturer of the antibacterial soap will take legal action if the antibacterial 
soap has a population mean bacterial count that is considerably less than 33—say, 
28. Thus, the consumer group wants to know the probability of a Type II error in its 
test if the population mean m is 28 or smaller; that is, it wants to determine b(28) 
because b(m) # b(28) for m # 28.

Solution Using the computational formula for b with m0  33, ma  28, and 
a  .05, we have

 b 128 2  P cz # z.05 2
|m0 2 ma|

s/Ën
d  P cz # 1.645 2

|33 2 28|

8.4 /Ë35
d

  P 3z # 21.88 4  pnorm 121.88 2  .0301

The area corresponding to z  21.88 in Table 1 of the Appendix is .0301. Hence,

b(28)  .0301  and  PWR(28)  1 2 .0301  .9699

Because b is relatively small, we accept the null hypothesis and conclude that the 
antibacterial soap is not more effective than ordinary soap in reducing bacterial 
counts.

The manufacturer of the antibacterial soap wants to determine the chance 
that the consumer group may have made an error in reaching its conclusions. The 
manufacturer wants to compute the probability of a Type II error for a selection of 
potential values of m in Ha. This would provide it with an indication of how likely it 
is that a Type II error may have occurred when in fact the new soap is considerably 
more effective in reducing bacterial counts in comparison to the mean count for 
 ordinary soap, m  33. Repeating the calculations for obtaining b(28), we obtain 
the values in Table 5.4.

TABLE 5.4
Probability of Type II 

error and power for 
values of m in Ha

m 33 32 31 30 29 28 27 26 25
b(m) .9500 .8266 .5935 .3200 .1206 .0301 .0049 .0005 .0000

PWR(m) .0500 .1734 .4065 .6800 .8794 .9699 .9951 .9995 .9999
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Figure 5.11 is a plot of the b(m) values in Table 5.4 with a smooth curve 
through the points. Note that as the value of m decreases, the probability of Type II 
error decreases to 0 and the corresponding power value increases to 1.0. The com-
pany could examine this curve to determine whether the chances of Type II error 
are reasonable for values of m in Ha that are important to the company. From 
Table 5.4 or Figure 5.11, we observe that b(28)  .0301, a relatively small number. 
Based on the results from Example 5.9, we find that the test statistic does not fall 
in the rejection region. The manufacturer has decided that if the true population 
mean bacterial count for its antibacterial soap is 29 or less, this product is consid-
ered a substantial improvement over ordinary soap. Based on the values of the 
probability of Type II error displayed in Table 5.4, the chance is relatively small 
that the test run by the consumer agency has resulted in a Type II error for values 
of the mean bacterial count of 29 or smaller. Thus, the consumer testing agency was 
relatively certain in reporting that the new antibacterial soap did not decrease the 
mean bacterial count in comparison to ordinary soap. ■

In Section 5.2, we discussed how we measure the effectiveness of interval esti-
mates. The effectiveness of a statistical test can be measured by the magnitudes of 
the Type I and Type II errors, a and b(m). When a is preset at a tolerable level by 
the experimenter, b(ma) is a function of the sample size for a fixed value of ma. The 
larger the sample size n, the more information we have concerning m, and the less 
likely we are to make a Type II error—hence the smaller the value of b(ma). To illus-
trate this idea, suppose we are testing the hypotheses H0: m # 84 versus Ha: m . 84, 
where m is the mean of a population having a normal distribution with s  1.4. If we 
take a  .05, then the probability of Type II errors is plotted in  Figure 5.12(a) for 
three possible sample sizes, n  10, 18, and 25. Note that b(84.6) becomes smaller 
as we increase n from 10 to 25. Another relationship of interest is that  between a 
and b(m). For a fixed sample size n, if we change the rejection  region to increase 
the value of a, the value of b(ma) will decrease. This relationship can be  observed in 
Figure 5.12(b). Fix the sample size at 25 and plot b(m) for three different values of 
a  .05, .01, and .001. We observe that b(84.6) becomes smaller as a increases from 
.001 to .05. A similar set of graphs can be obtained for the power of the test by sim-
ply plotting PWR(m)  1 2 b(m) versus m. The relationships  described would be 
reversed; that is, for fixed a, increasing the value of the sample size would increase 
the value of PWR(m), and for fixed sample size, increasing the value of a would 

FIGURE 5.11
Probability of Type II error

.3

.4

.5

.6

.7

.8

.9

1.0

Pr
ob

ab
ili

ty
 o

f 
T

yp
e 

II
 e

rr
or

.2

.1

0
25 26 27 28 29 30 31 32 33

Mean



5.5 Choosing the Sample Size for testing m    255

increase the value of PWR(m). We will consider now the problem of designing an 
experiment for testing hypotheses about m when a is specified and b(ma) is preset 
for a fixed value ma. This problem  reduces to determining the sample size needed 
to achieve the fixed values of a and b(ma). Note that in those cases in which the 
determined value of n is too large for the initially specified values of a and b, we 
can increase our specified value of a and achieve the desired value of b(ma) with a 
smaller sample size.

 5.5 Choosing the Sample Size for testing m

The quantity of information available for a statistical test about m is measured by the 
magnitudes of the Type I and II error probabilities, a and b(m), for various values of m 
in the alternative hypothesis Ha. Suppose that we are interested in testing H0: m # m0 
against the alternative Ha: m . m0. First, we must specify the value of a. Next, we 
must determine a value of m in the alternative, m1, such that if the actual value of 
the mean is larger than m1, then the consequences of making a Type II error will be 
substantial. Finally, we must select a value for b(m1), b. Note that for any value of m 
larger than m1, the probability of a Type II error will be smaller than b(m1); that is,

b(m) , b(m1), for all m . m1

Let D  m1 2 m0. The sample size necessary to meet these requirements is

n  s2
1za 1 zb 2 2

D2

Note: If s2 is unknown, substitute an estimated value from previous studies or a 
pilot study to obtain an approximate sample size.

The same formula applies when testing H0: m $ m0 against the alternative Ha:  
m , m0, with the exception that we want the probability of a Type II error to be of 
magnitude b or less when the actual value of m is less than m1, a value of the mean 
in Ha; that is,

b(m) , b, for all m , m1

with D  m0 2 m1.

FIGURE 5.12 Impact of a and n on b(m)
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eXaMpLe 5.11

A cereal manufacturer produces cereal in boxes having a labeled weight of 
16 ounces. The boxes are filled by machines that are set to have a mean fill per box 
of 16.37 ounces. Because the actual weight of a box filled by these machines has 
a normal distribution with a standard deviation of approximately .225 ounces, the 
percentage of boxes with a fill weighing less than 16 ounces is 5% using this setting. 
The manufacturer is concerned that one of its machines is underfilling the boxes 
and wants to sample boxes from the machine’s output to determine whether the 
mean weight m is less than 16.37—that is, to test

H0: m $ 16.37

Ha: m , 16.37

with a  .05. If the true mean weight is 16.27 or less, the manufacturer needs the 
probability of failing to detect this underfilling of the boxes with a probability of at 
most .01, or it risks incurring a civil penalty from state regulators. Thus, we need to 
determine the sample size n such that our test of H0 versus Ha has a  .05 and b(m) 
less than .01 whenever m is less than 16.27 ounces.

Solution We have a  .05, b  .01, D  16.37 2 16.27  .1, and s  .225. Using 
our formula with z.05  1.645 and z.01  2.33, we have

n 
1.225 2 2 11.645 1 2.33 2 2

1.1 2 2  79.99 < 80

Thus, the manufacturer must obtain a random sample of n  80 boxes to conduct 
this test under the specified conditions.

Suppose that after obtaining the sample, we compute y  16.35 ounces. The 
computed value of the test statistic is

z 
y 2 16.37

s/Ën


16.35 2 16.37

.225 /Ë80
 2.795

Because the rejection region is z , 21.645, the computed value of z does not fall 
in the rejection region. What is our conclusion? Knowing that b(m) # .01 when 
m # 16.27, the manufacturer is somewhat secure in concluding that the mean fill 
from the examined machine is at least 16.37 ounces. ■

With a slight modification of the sample size formula for the one-tailed tests, 
we can test

H0: m  m0

Ha: m Z m0

for a specified a, b, and D, where

b(m) # b, whenever k m 2 m0 k $ D

Thus, the probability of Type II error is at most b whenever the actual mean differs 
from m0 by at least D. A formula for an approximate sample size n when testing a 
two-sided hypothesis for m is presented here:
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 5.6 the Level of Significance of a Statistical test

In Section 5.4, we introduced hypothesis testing along rather traditional lines: We 
defined the parts of a statistical test along with the two types of errors, a and b(ma), 
and their associated probabilities. The problem with this approach is that if other 
researchers want to apply the results of your study using a different value for a, then 
they must compute a new rejection region before reaching a decision concerning H0 
and Ha. An alternative approach to hypothesis testing contains the following steps: 
Specify the null and alternative hypotheses, specify a value for a, collect the sample 
data, and determine the weight of evidence for rejecting the null hypothesis. This 
weight, given in terms of a probability, is called the level of significance (or p-value) 
of the statistical test. More formally, the level of significance is defined as follows: 
the probability of obtaining a value of the test statistic that is as likely or more likely 
to reject H0 as the actual observed value of the test statistic, assuming that the null 
hypothesis is true. Thus, if the level of significance is a small value, then the sample 
data fail to support H0, and our decision is to reject H0. On the other hand, if the 
level of significance is a large value, then we fail to reject H0. We must next decide 
what is a large or small value for the level of significance. The following  decision 
rule yields results that will always agree with the testing procedures we  introduced 
in Section 5.5.

level of significance 
p-value 

approximate Sample 
Size for a two-Sided 

test of H0: m 5 m0
 

n >
s2

D2 1za/2 1 zb 2 2

Note: If s2 is unknown, substitute an estimated value to get an approximate 
 sample size.

We illustrate the calculation of a level of significance with several examples.

eXaMpLe 5.12

Refer to Example 5.7 .

a. Determine the level of significance (p-value) for the statistical test, and 
reach a decision concerning the research hypothesis using a  .01.

b. If the preset value of a is .05 instead of .01, does your decision 
concerning Ha change?

Solution

a. The null and alternative hypotheses are

H0:  m # 380
Ha:  m . 380

Decision rule for 
hypothesis testing 

Using the p-Value

1. If the p-value # a, then reject H0.
2. If the p-value . a, then fail to reject H0.
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 From the sample data, with s replacing s, the computed value of the 
test statistic is

 z 
y 2 380

s/Ën


390 2 380

35.2 /Ë50
 2.01

  The level of significance for this test (i.e., the weight of evidence for reject-
ing H0) is the probability of observing a value of y greater than or equal to 
390 assuming that the null hypothesis is true; that is, m  380. This value 
can be computed by using the z-value of the test statistic, 2.01, because

 p-value  P(y $ 390, assuming m  380)  P(z $ 2.01)
  1 2 pnorm(2.01)  .0222

  Referring to Table 1 in the Appendix, P(z $ 2.01)  1 2 P(z , 2.01) 
 1 2 .9778  .0222. This value is shown by the shaded area in 
 Figure 5.13. Because the p-value is greater than a (.0222 . .01), 
we fail to reject H0 and conclude that the data do not support the 
research hypothesis.

FIGURE 5.13
Level of significance 

for Example 5.12 

z = 0

f(z)

z
2.01

p = .0222

b. Another person examines the same data but with a preset value 
for a  .05. This person is willing to support a higher risk of a 
Type I error, and, hence, the decision is to reject H0 because the 
p-value is less than a (.0222 # .05). It is important to emphasize that 
the value of a used in the decision rule is preset and not selected 
after calculating the p-value. ■

As we can see from Example 5.12, the level of significance represents the 
probability of observing a sample outcome more contradictory to H0 than the 
observed sample result. The smaller the value of this probability, the heavier the 
weight of the sample evidence against H0. For example, a statistical test with a level 
of significance of p  .01 shows more evidence for the rejection of H0 than does 
another statistical test with p  .20.

eXaMpLe 5.13

Refer to Example 5.9. Using a preset value of a  .05, is there sufficient evidence 
in the data to support the research hypothesis?

Solution The null and alternative hypotheses are

H0:  m $ 33
Ha:  m , 33

From the sample data, with s replacing s, the computed value of the test statistic is

z 
y 2 m0

s/Ën


31.2 2 33

8.4 /Ë35
 21.27
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The level of significance for this test statistic is computed by determining which 
 values of y are more extreme to H0 than the observed y. Because Ha specifies m  
less than 33, the values of y that would be more extreme to H0 are those values less 
than 31.2, the observed value. Thus,

p-value  P(y # 31.2, assuming m  33)  P(z # 21.27)  .1020

There is considerable evidence to support H0. More precisely, p-value  .1020 . 
.05  a, and, hence, we fail to reject H0. Thus, we conclude that there is insufficient 
evidence (p-value  .1020) to support the research hypothesis. Note that this is 
exactly the same conclusion reached using the traditional approach.

For two-tailed tests, Ha: m Z m0, we still determine the level of significance by 
computing the probability of obtaining a sample having a value of the test statistic 
that is more contradictory to H0 than the observed value of the test statistic. How-
ever, for two-tailed research hypotheses, we compute this probability in terms of 
the magnitude of the distance from y to the null value of m because both values of 
y much less than m0 and values of y much larger than m0 contradict m  m0. Thus, 
the level of significance is written as

p-value  P(k y 2 m0 k $ observed k y 2 m0 k)  P(k z k $ k computed z k)
  2P(z $ k computed z k)

To summarize, the level of significance (p-value) can be computed as

Case 1 Case 2 Case 3
H0: m # m0 H0: m $ m0 H0: m  m0

Ha: m . m0 Ha: m , m0 Ha: m Z m0

p-value: P(z $ computed z) P(z # computed z) 2P(z $ k computed z k )

EXAMPLE 5.14

Refer to Example 5.6. Using a preset value of a  .01, is there sufficient evidence 
in the data to support the research hypothesis?

Solution The null and alternative hypotheses are

 H0:  m = 190
 Ha:  m Z 190

From the sample data, with s replacing s, the computed value of the test statistic is

z 
y 2 m0

s/Ën


178.2 2 190

45.3 /Ë100
 22.60

The level of significance for this test statistic is computed using the formula given 
in Example 5.13, Case 3.

p-value  2P(z $  k computed z|)  2P(z $ |22.60|)  2P(z $ 2.60)
  2(1 2 .9953)  .0094

Because the p-value is very small, there is very little evidence to support H0. More 
precisely, p-value  .0094 # .01  a, and, hence, we reject H0. Thus, there is suf-
ficient evidence (p-value  .0094) to support the research hypothesis and conclude 
that the mean cholesterol level differs from 190. Note that this is exactly the same 
conclusion reached using the traditional approach. ■

■
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There is much to be said in favor of this approach to hypothesis testing. 
Rather than reaching a decision directly, the statistician (or person performing the 
statistical test) presents the experimenter with the weight of evidence for rejecting 
the null  hypothesis. The experimenter can then draw his or her own conclusion. 
Some experimenters reject a null hypothesis if p # .10, whereas others require 
p # .05 or p # .01 for rejecting the null hypothesis. The experimenter is left to 
make the decision based on what he or she believes is enough evidence to indicate 
rejection of the null hypothesis.

Many professional journals have followed this approach by reporting the 
results of a statistical test in terms of its level of significance. Thus, we might read 
that a particular test was significant at the p  .05 level or perhaps the p , .01 level. 
By reporting results this way, the reader is left to draw his or her own conclusion.

One word of warning is needed here. The p-value of .05 has become a magic 
level, and many seem to feel that a particular null hypothesis should not be rejected 
unless the test achieves the .05 level or lower. This has resulted in part from the 
 decision-based approach with a preset at .05. Try not to fall into this trap when 
reading journal articles or reporting the results of your statistical tests. After all, 
statistical significance at a particular level does not dictate importance or practical 
significance. Rather, it means that a null hypothesis can be rejected with a specified 
low risk of error. For example, suppose that a company is interested in determining 
whether the average number of miles driven per car per month for the sales force 
has risen above 2,600. Sample data from 400 cars show that y  2,640 and s  35. 
For these data, the z statistic for H0: m  2,600 is z  22.86 based on s  35; the 
level of significance is p , .0000000001. Thus, even though there has been only a 
1.5% increase in the average monthly miles driven for each car, the result is (highly) 
statistically significant. Is this increase of any practical significance? Probably not. 
What we have done is proved conclusively that the mean m has increased slightly.

The company should not examine just the size of the p-value. It is very impor-
tant to also determine the size of the difference between the null value of the popu-
lation mean m0 and the estimated value of the population mean y. This difference 
is called the estimated effect size. In this example, the estimated effect size would 
be y 2 m0  2,640 2 2,600  40 miles driven per month. This is the quantity that 
the company should consider when attempting to determine if the change in the 
population mean has practical significance.

Throughout the text, we will conduct statistical tests from both the decision-
based approach and the level-of-significance approach to familiarize you with 
both avenues of thought. For either approach, remember to consider the practical 
significance of your findings after drawing conclusions based on the statistical test.

 5.7 Inferences about m for a Normal  
population, s Unknown

The estimation and test procedures about m presented earlier in this chapter were 
based on the assumption that the population variance was known or that we had 
enough observations to allow s to be a reasonable estimate of s. In this section, we 
present a test that can be applied when s is unknown, no matter what the sample 
size, provided the population distribution is approximately normal. In Section 5.8, 
we will provide inference techniques for the situation where the population distri-
bution is nonnormal. Consider the following example. Researchers would like to 
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determine the average concentration of a drug in the bloodstream 1 hour after it is 
given to patients suffering from a rare disease. For this situation, it might be impos-
sible to obtain a random sample of 30 or more observations at a given time. What 
test procedure could be used in order to make inferences about m?

W. S. Gosset faced a similar problem around the turn of the nineteenth 
century. As a chemist for Guinness Breweries, he was asked to make judgments on 
the mean quality of various brews, but he was not supplied with large sample sizes 
to reach his conclusions.

Gosset thought that when he used the test statistic

z 
y 2 m0

s/Ën

with s replaced by s for small sample sizes, he was falsely rejecting the null hypoth-
esis H0: m  m0 at a slightly higher rate than that specified by a. This problem 
intrigued him, and he set out to derive the distribution and percentage points of 
the test statistic

y 2 m0

s /Ën

for n , 30.
For example, suppose an experimenter sets a at a nominal level—say, .05. 

Then he or she expects falsely to reject the null hypothesis approximately 1 time 
in 20. However, Gosset proved that the actual probability of a Type I error for this 
test was somewhat higher than the nominal level designated by a. He published the 
results of his study under the pen name Student because at that time it was against 
company policy for him to publish his results in his own name. The quantity

y 2 m0

s /Ën

is called the t statistic, and its distribution is called the Student’s t distribution, or 
simply Student’s t. (See Figure 5.14.)

Although the quantity

y 2 m0

s /Ën

Student’s t

FIGURE 5.14
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possesses a t distribution only when the sample is selected from a normal popula-
tion, the t distribution provides a reasonable approximation to the distribution of

y 2 m0

s /Ën

when the sample is selected from a population with a mound-shaped distribution. 
We summarize the properties of t here.

properties of 
 Student’s 

t Distribution

1. There are many different t distributions. We specify a particular one by a 
parameter called the degrees of freedom (df). (See Figure 5.14.)

2. The t distribution is symmetrical about 0 and hence has a mean equal to 
0, the same as the z distribution.

3. The t distribution has variance df/(df 2 2) and hence is more  variable 
than the z distribution, which has a variance equal to 1. (See Figure 5.14.)

4. As the df increase, the t distribution approaches the z distribution.  
(Note that as the df increase, the variance df/(df 2 2) approaches 1.)

5. Thus, with

t 
y 2 m0

s /Ën

 we conclude that t has a t distribution with df  n 2 1, and as n  in creases, 
the distribution of t approaches the distribution of z.

The phrase ‘‘degrees of freedom’’ sounds mysterious now, but the idea will 
eventually become second nature to you. The technical definition requires advanced 
mathematics, which we will avoid; on a less technical level, the basic idea is that 
degrees of freedom are pieces of information for estimating s using s. The stand-
ard deviation s for a sample of n measurements is based on the deviations yi 2 y. 
Because S 1yi 2 y 2  0 always, if n 2 1 of the deviations are known, the last (nth) is 
fixed mathematically to make the sum equal 0. It is therefore noninformative. Thus, 
in a sample of n measurements, there are n 2 1 pieces of information (degrees of 
freedom) about s. A second method of explaining degrees of freedom is to recall 
that s measures the dispersion of the population values about m, so prior to estimat-
ing s we must first estimate m. Hence, the number of pieces of information (degrees 
of freedom) in the data that can be used to estimate s is n 2 1, the number of origi-
nal data values minus the number of parameters estimated prior to estimating s.

Because of the symmetry of t, only upper-tail percentage points (probabilities 
or areas) of the distribution of t have been tabulated; these appear in Table 2 in the 
Appendix. The degrees of freedom (df) are listed along the left column of the page. 
An entry in the table specifies a value of t—say, ta—such that an area a lies to its right. 
See Figure 5.15. Various values of a appear across the top of Table 2 in the Appendix. 
Thus, for example, with df  7, the value of t with an area .05 to its right is 1.895 (found 
in the a  .05 column and df  7 row). Since the t distribution approaches the z distri-
bution as df approach `, the values in the last row of Table 2 are the same as za. Thus, 
we can quickly determine za by using values in the last row of Table 2 in the Appendix.

We can use the t distribution to make inferences about a population mean 
m. The sample test concerning m is summarized next. The only difference between 
the z test discussed earlier in this chapter and the test given here is that s replaces 
s. The t test (rather than the z test) should be used any time s is unknown and the 
distribution of y-values is mound-shaped.

ta
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FIGURE 5.15
Illustration of area 

 tabulated in Table 2 in the 
Appendix  

for the t distribution

0

f(t)

t
t

Summary of a 
 Statistical test 

for m with a 
 Normal  population 

 Distribution 
(s Unknown)  

Hypotheses: 

Case 1. H0: m # m0 vs. Ha: m . m0 (right-tailed test)
Case 2. H0: m $ m0 vs. Ha: m , m0 (left-tailed test)
Case 3. H0: m  m0 vs. Ha: m Z m0 (two-tailed test)

 T.S.: t 
y 2 m0

s /Ën

 R.R.: For a probability a of a Type I error and df  n 2 1:

Case 1. Reject H0 if t $ ta  qt(1 2 a, n 2 1)
Case 2. Reject H0 if t # 2ta  2qt(1 2 a, n 2 1)
Case 3. Reject H0 if | t | $ ta / 2  qt(1 2 a/2, n 2 1)

Level of significance (p-value):

Case 1. p-value  P(t $ computed t)
Case 2. p-value  P(t # computed t)
Case 3.    p-value  2P(t $ |computed t|)

Recall that a denotes the area in the tail of the t distribution. For a one-tailed test 
with the probability of a Type I error equal to a, we locate the rejection region using the 
value from Table 2 in the Appendix for the specified a and df  n 2 1. However, for a 
two-tailed test, we use the t-value from Table 2 corresponding to a / 2 and df  n 2 1.

Thus, for a one-tailed test, we reject the null hypothesis if the computed 
value of t is greater than the t-value from Table 2 in the Appendix with the speci-
fied a and df  n 2 1. Similarly, for a two-tailed test, we reject the null hypothesis 
if k t  k is greater than the t-value from Table 2 with a/2 and df  n 2 1.

eXaMpLe 5.15 

A massive multistate outbreak of foodborne illness was attributed to Salmo-
nella enteritidis. Epidemiologists determined that the source of the illness was ice 
cream. They sampled nine production runs from the company that had produced 
the ice cream to determine the level of Salmonella enteritidis in the ice cream. 
These levels (MPN/g) are as follows: 

.593 .142 .329 .691 .231 .793 .519 .392 .418 

Use these data to determine whether the average level of Salmonella enteritidis 
in  the ice cream is greater than .3 MPN/g, a level that is considered to be very 
 dangerous. Set a  .01.
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Solution The null and research hypotheses for this example are 

H0:  m # .3

Ha:  m . .3

Because the sample size is small, we need to examine whether the data appear 
to have been randomly sampled from a normal distribution. Figure 5.16 is a 
 normal probability plot of the data values. All nine points fall nearly on the 
straight line. We conclude that the normality condition appears to be satisfied. 
Before setting up the rejection region and computing the value of the test sta-
tistic, we must first compute the sample mean and standard deviation. You can 
verify that 

y  .456  and  s  .2128

The rejection region with a  .01 is 

R.R.: Reject H0 if t . 2.896

where, from Table 2 in the Appendix, the value of t.01 with df  9 2 1  8 is 2.896. 
The computed value of t is 

t 
y 2 m0

s/Ën


.456 2 .3

.2128 /Ë9
 2.20

The observed value of t is not greater than 2.896, so we have insufficient evidence 
to indicate that the average level of Salmonella enteritidis in the ice cream is 
greater than .3 MPN/g. The level of significance of the test is given by 

p-value  P(t . computed t)  P(t . 2.20)  1 2 pt(2.2, 8)  .029

Using the t-tables there are only a few areas (a) for each value of df. The best we can do 
is bound the p-value. From Table 2 with df  8, t.05  1.860 and t.025  2.306. Because 
computed t  2.20, .025 , p-value , .05. However, with a  .01 , .025 , p-value, 
we can still conclude that p-value . a and hence fail to reject H0. 

FIGURE 5.16
Normal probability plot 

for Salmonella data
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In order to assess the chance of a Type II error, we need to calculate the prob-
ability of a Type II error for some crucial values of m in Ha. These calculations are 
somewhat more complex than the calculations for the z test. We will use a set of 
graphs to determine b(ma). The value of b(ma) depends on three quantities, df  n 
2 1, a, and the distance d from ma to m0 in s units: 

d 
|ma 2 m0|

s

Thus, to determine b(ma), we must specify a and ma and provide an estimate of s. 
Then with the calculated d and df  n 2 1, we locate b(ma) on the graph. Table 3 
in the Appendix provides graphs of b(ma) for a  .01 and .05 for both one-sided 
and two-sided hypotheses for a variety of values for d and df. ■

eXaMpLe 5.16

Refer to Example 5.15. We have n  9, a  .01, and a one-sided test. Thus, df  8, 
and if we estimate s < .25, we can compute the values of d corresponding to 
 selected values of ma. The values of b(ma) can then be determined using the graphs 
in Table 3 in the Appendix. Figure 5.17 is the necessary graph for this example. To 
illustrate the calculations, let ma  .45. Then 

d 
|ma 2 m0|

s


|.45 2 .3|
.25

 .6

We draw a vertical line from d  .6 on the horizontal axis to the curve labeled 8, 
our df. We then locate the value on the vertical axis at the height of the intersection, 
.79. Thus, b(.45)  .79. Similarly, to determine b(.55), first compute d  1.0, draw a 
vertical line from d  1.0 to the curve labeled 8, and locate .43 on the vertical axis. 

FIGURE 5.17
Probability of Type II 
error curves a  .01, 

 one-sided 
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Thus, b(.55)  .43. Table 5.5 contains values of b(ma) for several values of ma.  Because 
the values of b(ma) are large for values of ma that are considerably larger than 
m0  .3—for example, b(.6)  .26—we will not state that m is less than or equal to .3 
but will only state that the data fail to support the contention that m is larger than .3.

TABLE 5.5
Probability of Type II 

errors

ma .35 .4 .45 .5 .55 .6 .65 .7  .75  .8

d .2 .4 .6 .8 1.0 1.2 1.4 1.6  1.8  2.0

b(ma) .97 .91 .79 .63 .43 .26 .13 .05  .02  .00

In addition to being able to run a statistical test for m when s is unknown, 
we can construct a confidence interval using t. The confidence interval for m with 
s unknown is identical to the corresponding confidence interval for m when s is 
known, with z replaced by t and s replaced by s. 

100(1 2 a)% 
 Confidence 

Interval for m, s 
 Unknown 

y 6 ta/2 s/Ën

Note: df  n 2 1 and the confidence coefficient is (1 2 a).

eXaMpLe 5.17 

An airline wants to evaluate the depth perception of its pilots over the age of 50. 
A random sample of n  14 airline pilots over the age of 50 is asked to judge the 
distance between two markers placed 20 feet apart at the opposite end of the 
laboratory. The sample data listed here are the pilots’ errors (recorded in feet) in 
judging the distance. 

2.7  2.4  1.9  2.6  2.4  1.9  2.3 
2.2  2.5  2.3  1.8  2.5  2.0  2.2 

Use the sample data to place a 95% confidence interval on m, the average 
error in depth perception for the company’s pilots over the age of 50. 

Solution Before setting up a 95% confidence interval on m, we must first assess 
the normality assumption by plotting the data in a normal probability plot or a 
boxplot. Figure 5.18 is a boxplot of the 14 data values. The median line is near the 
center of the box, the right and left whiskers are approximately the same length, 
and there are no outliers. The data appear to be a sample from a normal distri-
bution. Thus, it is appropriate to construct the confidence interval based on the t 
distribution. You can verify that 

y  2.26  and  s  .28

FIGURE 5.18
Boxplot of distance  

(with 95% t confidence  
interval for the mean) 

■
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Referring to Table 2 in the Appendix, the t-value corresponding to a  .025 and 
df  13 is 2.160. Hence, the 95% confidence interval for m is 

y 6 ta/2 s/Ën  or  2.26 6 2.160 1.28 2 /Ë14

which is the interval 2.26 6 .16, or 2.10 to 2.42. Thus, we are 95% confident that the 
average error in the pilots’ judgment of the distance is between 2.10 and 2.42 feet.  ■ 

In this section, we have made the formal mathematical assumption that 
the population is normally distributed. In practice, no population has exactly a 
normal distribution. How does nonnormality of the population distribution affect 
inferences based on the t distribution?

There are two issues to consider when populations are assumed to be non-
normal. First, what kind of nonnormality is assumed? Second, what possible 
effects do these specific forms of nonnormality have on the t-distribution proce-
dures? The  most important deviations from normality are skewed distributions 
and heavy-tailed distributions. Heavy-tailed distributions are roughly symmetric 
but have outliers relative to a normal distribution. Figure 5.19 displays these non-
normal distributions: Figure 5.19(a) is the standard normal distribution, Figure 
5.19(b) is a heavy-tailed distribution (a t distribution with df  3), Figure 5.19(c) is 
a distribution mildly skewed to the right, and Figure 5.19(d) is a distribution heav-
ily skewed to the right.

To evaluate the effect of nonnormality as exhibited by skewness or heavy-
tailedness, we will consider whether the t-distribution procedures are still approxi-
mately correct for these forms of nonnormality and whether there are other more 
efficient procedures. For example, even if a test procedure for m based on the t dis-
tribution gives nearly correct results for, say, a heavy-tailed population distribution, 

skewed  distributions 
heavy-tailed 
 distributions

FIGURE 5.19
Standard normal 

distriubtion and three 
nonnormal distributions

(a) Density of the standard normal distribution

(c) Density of a lightly skewed distribution

(b) Density of a heavy-tailed distribution

(d) Density of a highly skewed distribution
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it might be possible to obtain a test procedure with a more accurate probability of 
Type I error and greater power if we test hypotheses about the population median in 
place of the population m. Also, in the case of heavily tailed or highly skewed popu-
lation distributions, the median rather than m is a more appropriate representation 
of the population center.

The question of approximate correctness of t procedures has been studied 
extensively. In general, probabilities specified by the t procedures, particularly the 
confidence level for confidence intervals and the Type I error for statistical tests, 
have been found to be fairly accurate, even when the population distribution is 
heavy-tailed. However, when the population is very heavy-tailed, as is the case in 
Figure 5.19(b), the tests of hypotheses tend to have a probability of Type I errors 
smaller than the specified level, which leads to a test having much lower power 
and hence greater chances of committing Type II errors. Skewness, particularly 
with small sample sizes, can have an even greater effect on the probability of both 
Type I and Type II errors. When we are sampling from a population distribution 
that is normal, the sampling distribution of a t statistic is symmetric. However, 
when we are sampling from a population distribution that is highly skewed, the 
sampling distribution of a t statistic is skewed, not symmetric. Although the degree 
of skewness decreases as the sample size increases, there is no procedure for 
 determining the sample size at which the sampling distribution of the t statistic 
becomes symmetric.

As a consequence, the level of a nominal a  .05 test may actually have a level 
of .01 or less when the sample size is less than 20 and the population distribution 
looks like that of Figure 5.19(b), (c), or (d). Furthermore, the power of the test will 
be considerably less than when the population distribution is a normal distribution, 
thus causing an increase in the probability of Type II errors. A simulation study 
of the effect of skewness and heavy-tailedness on the level and power of the t 
test yielded the results given in Table 5.6. The values in the table are the power 
values for a level a  .05 t test of H0: m # m0 versus Ha: m . m0. The power values 
are calculated for shifts of size d  |ma 2 m0|/s for values of d  0, .2, .6, .8. Three 
different sample sizes were used: n  10, 15, and 20.When d  0, the level of 
the test is given for each type of population distribution. We want to compare 
these values to .05. The values when d . 0 are compared to the corresponding 
values when sampling from a normal population. We observe that when sampling 
from the lightly skewed distribution and the heavy-tailed distribution, the levels 
are somewhat less than .05 with values nearly equal to .05 when using n  20. 
However, when sampling from a heavily skewed distribution, even with n  20 
the level is only .011. The power values for the heavily tailed and heavily skewed 
populations are considerably less than the corresponding values when sampling from 
a normal distribution. Thus, the test is much less likely to correctly detect that the 

 n  10 n  15 n  20

 Shift d Shift d Shift d 
Population 
Distribution 0 .2 .6 .8 0 .2 .6 .8 0 .2 .6 .8

Normal .05  .145 .543 .754 .05 .182 .714 .903 .05 .217 .827 .964
Heavy-tailedness .035 .104 .371 .510 .049 .115 .456 .648 .045 .163 .554 .736
Light skewness .025 .079 .437 .672 .037 .129 .614 .864 .041 .159 .762 .935
Heavy skewness .007 .055 .277 .463 .006 .078 .515 .733 .011 .104 .658 .873 

TABLE 5.6
Level and power values  

for t test
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alternative hypothesis Ha is true. This reduced power is present even when n  20. 
When sampling from a lightly skewed population distribution, the power values 
are very nearly the same as the values for the normal distribution. 

Because the t procedures have reduced power when sampling from skewed 
populations with small sample sizes, procedures have been developed that are not 
as affected by the skewness or extreme heavy-tailedness of the population distri-
bution. These procedures are called robust methods of estimation and inference. 
Three robust procedures, the bootstrap, the sign test, and Wilcoxon signed rank 
test, will be considered in Sections 5.8 and 5.9, and Chapter 6, respectively. They 
are both more efficient than the t test when the population distribution is very 
nonnormal in shape. Also, they maintain the selected a level of the test, unlike 
the t test, which, when applied to very nonnormal data, has a true a value much 
different from the selected a value. The same comments can be made with respect 
to confidence intervals for the mean. When the population distribution is highly 
skewed, the coverage probability of a nominal 100(1 2 a) confidence interval is 
considerably less than 100(1 2 a).

So what is a nonexpert to do? First, examine the data through graphs. A 
 boxplot or normal probability plot will reveal any gross skewness or extreme 
 outliers. If the plots do not reveal extreme skewness or many outliers, the nominal 
t-distribution probabilities should be reasonably correct. Thus, the level and power 
calculations for tests of hypotheses and the coverage probability of confidence 
 intervals should be reasonably accurate. If the plots reveal severe skewness 
or heavy-tailedness, the test procedures and confidence intervals based on the  
t distribution will be highly suspect. In these situations, we have two alternatives. 
First, it may be more appropriate to consider inferences about the population 
median rather than the population mean. When the data are highly skewed or 
very heavily tailed, the median is a more appropriate measure of the center of the 
population than is the mean. In Section 5.9, we will develop tests of hypotheses and 
confidence intervals for the population median. These procedures will avoid the 
problems encountered by the t-based procedures discussed in this section when the 
population distribution is highly skewed or heavily tailed. However, in some situ-
ations, the researcher may be required to provide inferences about the mean, or 
the median may not be an  appropriate alternative to the mean as a summary of the 
population. In Section 5.8, we will discuss a technique based on bootstrap methods 
for obtaining an approximate confidence interval for the population mean.

 5.8 Inferences about m When the population Is 
 Nonnormal and n Is Small: Bootstrap Methods
The statistical techniques in the previous sections for constructing a confidence 
interval or a test of hypotheses for m required that the population have a normal 
distribution or that the sample size be reasonably large. In those situations where 
neither of these requirements can be met, an alternative approach using boot-
strap methods can be employed. This technique was introduced by Efron in the 
article “Bootstrap Methods: Another Look at the Jackknife” [Annals of Statistics 
(1979) 7:1–26]. The bootstrap is a technique by which an approximation to the sam-
pling  distribution of a statistic can be obtained when the population distribution is 
 unknown. In Section 5.7, inferences about m were based on the fact that the  statistic

t statistic 
y 2 m

s/Ën

robust methods
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had a t distribution. We used the t-tables (Table 2 in the Appendix) to obtain 
 appropriate percentiles and p-values for confidence intervals and tests of  hypotheses. 
However, it was required that the population from which the sample was randomly 
selected have a normal distribution or that the sample size n be reasonably large.
The bootstrap will provide a means for obtaining percentiles of 

y 2 m

s /!n
 when the

population distribution is nonnormal and/or the sample size is relatively small.
The bootstrap technique utilizes data-based simulations for statistical inference. The 

central idea of the bootstrap is to resample from the original data set, thus producing a 
large number of replicate data sets from which the sampling distribution of a statistic can 
be approximated. Suppose we have a sample y1, y2, . . . , yn from a population and we want 
to construct a confidence interval or test a set of hypotheses about the population mean 
m. We realize either from prior experience with this population or from an examination 
of a normal quantile plot that the population has a nonnormal distribution. Thus, we are 
fairly certain that the sampling distribution of t 

y 2 m

s /!n
 is not the t distribution, so it would 

not be appropriate to use the t-tables to obtain percentiles. Also, the sample size n is rela-
tively small so we are not too sure about applying the Central Limit Theorem and using 
the z-tables to obtain percentiles to construct confidence intervals or to test hypotheses.

The bootstrap technique consists of the following steps:

 1. Select a random sample y1, y2, . . . , yn of size n from the population, 
and compute the sample mean, y, and sample standard deviation, s.

 2. Select a random sample of size n, with replacement from y1, y2, . . . , 
yn yielding y1

*, y2
*, . . . , yn

*.
 3. Compute the mean  y* and standard deviation s* of y1

*, y2
*, . . . , yn

*.
 4. Compute the value of the statistic

 t̂ 
y* 2 y

s*/Ën
 5. Repeat Steps 2–4 a large number of times, B, to obtain t̂1, ̂t2, . . . , t̂B. 

Use these values to obtain an approximation to the sampling distri-
bution of 

y 2 m

s /!n
.

Suppose we have n  20 and we select B  9,999 bootstrap samples. The steps 
in obtaining the bootstrap approximation to the sampling distribution of 

y 2 m

s /!n
 are 

 depicted here.

  Obtain random sample y1, y2, . . . , y20 from the population, and compute 
y and s.

  First bootstrap sample: y1
*, y2

*, . . . , y20
*  yields y*, s*, and  ̂  t1 

y* 2 y
s*/Ë20

  Second bootstrap sample: y1
*, y2

*, . . . , y20
*  yields y*, s*, and  ̂  t2 

y* 2 y

s*/Ë20  .
  .
  .
  Bth bootstrap sample: y1

*, y2
*, . . . , y20

*  yields y*, s*, and  ̂  tB 
y* 2 y
s*/Ë20

We then use the B values of t̂—t̂1, ̂t2, . . . , ̂tB—to obtain the approximate percentiles. 
For example, suppose we want to construct a 95% confidence interval for m and 
B  9,999. We need the lower and upper .025 percentiles, t̂.025 and ̂t.975. Thus, 
we would take the (9,999 1 1)(.025)  250th-largest value of t̂   t̂ .025 and the 
(9,999 1 1)(1 2 .025)  9,750th-largest value of t̂   t̂ .975. The approximate 95% 
confidence interval for m would be

ay 2t̂.975 
s

Ën
,   y 2 t̂.025 

s

Ën
 b
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eXaMpLe 5.18

Secondhand smoke is of great concern, especially when it involves young children. 
Breathing secondhand smoke can be harmful to children’s health, contributing to 
health problems such as asthma, Sudden Infant Death Syndrome (SIDS), bron-
chitis and pneumonia, and ear infections. The developing lungs of young children 
are severely affected by exposure to secondhand smoke. Child Protective Services 
(CPS) in a city is concerned about the level of exposure to secondhand smoke for 
children placed by their agency in foster parents’ care. A method of determining 
level of exposure is to determine the urinary concentration of cotanine, a metabo-
lite of nicotine. Unexposed children will typically have mean cotanine levels of 75 
or less. A random sample of 20 children suspected of being exposed to secondhand 
smoke yielded the following urinary concentrations of cotanine:

29, 30, 53, 75, 89, 34, 21, 12, 58, 84, 92, 117, 115, 119, 109, 115, 134, 253, 289, 287

CPS wants an estimate of the mean cotanine level in the children under their 
care. From the sample of 20 children, it computes y  105.75 and s  82.429. Con-
struct a 95% confidence interval for the mean cotanine level for children under 
the supervision of CPS.

Solution Because the sample size is relatively small, an assessment of whether the 
population has a normal distribution is crucial prior to using a confidence interval 
procedure based on the t distribution. Figure 5.20 displays a normal probability 
plot for the 20 data values. From the plot, we observe that the data do not fall near 
the straight line, and the p-value for the test of normality is less than .01. Thus, we 
would conclude that the data do not appear to follow a normal distribution. The 
confidence interval based on the t distribution would not be appropriate; hence, we 
will use a bootstrap confidence interval.

B  9,999 samples of size 20 are selected with replacement from the original 
sample. Table 5.7 displays 5 of the 9,999 samples to illustrate the nature of the 
bootstrap samples.

FIGURE 5.20
Normal probability plot  

for cotanine data 

�100 0 100
Cotanine concentrations

200 300

p-value <.010
RJ .917
N 20
StDev 82.43
Mean 105.8

5

1

10

20

Pe
rc

en
t

30
40
50
60
70
80

90

95

99



272 ChApteR 5 InfeRenCeS About populAtIon CentRAl VAlueS  

Upon examination of Table 5.7, it can be observed that in each of the bootstrap 
samples there are repetitions of some of the original data values. This arises due 
to the sampling with replacement. The following histogram of the 9,999 values of
  ̂t 

y * 2 y

s*/Ën  illustrates the effect of the nonnormal nature of the population distribution 
on the sampling distribution on the t statistic. If the sample had been randomly 
selected from a normal distribution, the histogram would be symmetric, as was 
depicted in Figure 5.14. The histogram in Figure 5.21 is somewhat left-skewed.

Original 29 30 53 75 89 34 21 12 58 84
Sample 92 117 115 119 109 115 134 253 289 287

Bootstrap 29 21 12 115 21 89 29 30 21 89
Sample 1 30 84 84 134 58 30 34 89 29 134

Bootstrap 30 92 75 109 115 117 84 89 119 289
Sample 2 115 75 21 92 109 12 289 58 92 30

Bootstrap 53 289 30 92 30 253 89 89 75 119
Sample 3 115 117 253 53 84 34 58 289 92 134

Bootstrap 75 21 115 287 119 75 75 53 34 29
Sample 4 117 115 29 115 115 253 289 134 53 75

Bootstrap 89 119 109 109 115 119 12 29 84 21
Sample 5 34 134 115 134 75 58 30 75 109 134

TABLE 5.7
Bootstrap samples

FIGURE 5.21
Histogram of  

bootstrapped t-statistic
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After sorting the 9,999 values of t̂  from smallest to largest, we obtain the 
250th-smallest and 250th-largest values: 23.167 and 1.748, respectively. We thus 
have the following percentiles:

t̂ .025  23.167  and  t̂ .975  1.748

The 95% confidence interval for the mean cotanine concentration is given here using 
the original sample mean of y  105.75 and original sample standard deviation of 
s  82.429:

ay 2 t̂.975 
s

Ën
,   y 2 t̂.025 

s

Ën
b   a105.75 2 1.748 

82.429

Ë20
, 105.75 1 3.167 

82.429

Ë20
b

  173.53, 164.12 2
A comparison of these two percentiles to the percentiles from the t distribu-
tion (Table 2 in the Appendix) reveals how much in error our confidence inter-
vals would have been if we has directly applied the formulas from Section 5.7 .  
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From Table 2 in the Appendix, with df  19, we have t.025  22.093 and t.975  2.093. 
This would yield a 95% confidence interval on m of

105.75 6 2.093 
82.429

Ë20
 1 167.17,  144.33 2

Note that the confidence interval using the t distribution is centered about the 
sample mean, whereas the bootstrap confidence interval has its upper limit farther 
from the mean than its lower limit. This is due to the fact that the random sample 
from the population indicated that the population distribution was not symmetric. 
Thus, we would expect that the sampling distribution of our statistic would not be 
symmetric due to the relatively small size, n  20. ■

We will next apply the bootstrap approximation of the test statistic t 
y 2 m0

s / !n  
to obtain a test of hypotheses for the situation where n is relatively small and the 
population distribution is nonnormal. The method for obtaining the p-value for 
the bootstrap approximation to the sampling distribution of the test statistic under 
the null value of m, m0, involves the following steps: Suppose we want to test the 
following hypotheses:

H0: m # m0  versus  Ha: m . m0

 1. Select a random sample y1, y2, . . . , yn of size n from the population,
   and compute the value of t 

y 2 m0
s / !n .

 2. Select a random sample of size n, with replacement from y1, 
y2, . . . , yn, and compute the mean y* and standard deviation s* of 
y1

*, y2
*, . . . , yn

*.
 3. Compute the value of the statistic

 
t̂ 

y* 2 y

s*/Ën

 4. Repeat Steps 2–4 a large number of times, B, to obtain t̂1, t̂2, c,  t̂B.

  Use these B values to approximate sampling distribution of 
y 2 m
s / Ën .

 5. Let m be the number of values that are greater than or equal to the 
value t computed from the original sample.

 6. The bootstrap p-value is m
B .

When the hypotheses are H0: m $ m0 versus Ha: m , m0, the only change would be 
to let m be the number of values from t̂1, t̂2, c,  t̂B that are less than or equal to 
the value t computed from the original sample. Finally, when the hypotheses are 
H0: m  m0 versus Ha: m Z m0, let mL be the number of values from t̂1, t̂2, c,  t̂B that 
are less than or equal to the value t computed from the original sample and mU be 
the number of values from t̂1, t̂2, c,  t̂B that are greater than or equal to the value 
t computed from the original sample. Compute pL 

mL

B  and pU 
m

U

B . Take the 
p-value to be the minimum of 2pL and 2pU.

A point of clarification concerning the procedure described above: The 
bootstrap test statistic replaces m0 with the sample mean from the original sample. 
Recall that when we calculate the p-value of a test statistic, the calculation 
is  always done under the assumption that the null hypothesis is true. In our 
bootstrap procedure, this requirement results in the bootstrap test statistic having 
m0 replaced with the sample mean from the original sample. This ensures that our 
bootstrap approximation of the sampling distribution of the test statistic is under 
the null value of m, m0.
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eXaMpLe 5.19

Refer to Example 5.18. CPS personnel wanted to determine if the mean cotanine 
level was greater than 75 for children under their supervision. Based on the sample 
of 20 children and using a  .05, do the data support the contention that the mean 
exceeds 75?

Solution The set of hypotheses that we want to test is

H0: m # 75 versus H0: m . 75

Because there was a strong indication that the distribution of contanine levels in 
the population of children under CPS supervision was not normally distributed 
and because the sample size n was relatively small, the use of the t distribution to 
compute the p-value may result in a very erroneous decision based on the observed 
data. Therefore, we will use the bootstrap procedure.

First, we calculate the value of the test statistic in the original data:

t 
y 2 m0

s /Ën


105.75 2 75

82.429 /Ë20
 1.668

Next, we use the 9,999 bootstrap samples generated in Example 5.18 to determine 

the number of samples, m, with  ̂  t 
y * 2 y

s*/Ën 
y * 2 105.75

s*/Ë20
 greater than 1.668. From 

the 9,999 values of t̂ , we find that m  330 of the B  9,999 values of t̂  exceeded 
or were equal to 1.668. Therefore, our p-value  mYB  330/9,999  .033 , .05  a. 
Therefore, we conclude that there is sufficient evidence that the mean cotanine 
level exceeds 75 in the population of children under CPS supervision.

It is interesting to note that if we had used the t distribution with 19 degrees 
of freedom to compute the p-value, the result would have produced a different 
conclusion. From Table 2 in the Appendix with df  19,

p-value  P[t $ 1.668]  .056 . .05  a

Using the t-tables, we would have concluded there is insufficient evidence in the data 
to support the contention that the mean cotanine exceeds 75. The small sample size, 
n  20, and the possibility of nonnormal data would make this conclusion suspect. ■

Steps for Obtaining Bootstrap tests  
and Confidence Intervals
The following steps using the R software will yield the p-value and confidence 
intervals given in Example 5.18 using B  9,999 bootstrap samples selected with 
replacement from the original 20 data values. Note that each running of the code 
will yield slightly different values for the p-value and confidence intervals.

 1.  x  c(29, 30, 53, 75, 89, 34, 21, 12, 58, 84, 92, 117, 115, 119, 109, 115, 
134, 253, 289, 287)

 2. n  length(x)
 3. mndata  mean(x)
 4. sdata  sd(x)
 5. tdata  (mndata-75)Y(sdata/sqrt(n))
 6. B  9,999
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 7 . mnsamp  rep(0, times B)
 8. ssamp  rep(0, times  B)
 9. tsamp  rep(0, times  B)
 10. for (i in 1 : B) {
 11. samp  sample(x, replace  TRUE)
 12. mnsamp  mean(samp)
 13. ssamp  sd(samp)
 14. tsamp[i]  (mnsamp-mndata)Y(ssampYsqrt(n)) }
 15. pval  sum(tsamp .  tdata)YB
 16. tsort  sort(tsamp)
 17 . L  mndata 2 tsort[9750]*sdataYsqrt(n)
 18. U  mndata 2 tsort[250]*sdataYsqrt(n)

 5.9 Inferences About the Median

When the population distribution is highly skewed or very heavily tailed, the median 
is more appropriate than the mean as a representation of the center of the population. 
Furthermore, as was demonstrated in Section 5.7, the t procedures for constructing 
confidence intervals and for testing hypotheses for the population mean are not 
appropriate when applied to random samples from such populations with small sample 
sizes. In this section, we will develop a test of hypotheses and a confidence interval for 
the population median that will be appropriate for all types of population distributions.

The estimator of the population median M is based on the order statistics 
that were discussed in Chapter 3. Recall that if the measurements from a random 
sample of size n are given by y1, y2, . . . , yn, then the order statistics are these values 
ordered from smallest to largest. Let y(1) # y(2) # . . . # y(n) represent the data in 
ordered fashion. Thus, y(1) is the smallest data value and y(n) is the largest data 
value. The estimator of the population median is the sample median     M̂. Recall that 
    M̂ is computed as follows:

If n is an odd number, then     M̂  y(m), where m  (n 1 1)/2. 
If n is an even number, then     M̂  (y(m) 1 y(m11))/2, where m  n/2. 

To take into account the variability of     M̂ as an estimator of M, we next 
 construct a confidence interval for M. A confidence interval for the population 
median M may be obtained by using the binomial distribution with p  0.5.

100(1 2 a)% 
 Confidence 

Interval for the 
 Median

A confidence interval for M with level of confidence at least 100(1 2 a)% is 
given by 

 1ML, MU 2  1y1La/2
2, y1Ua/2

2 2
where

 La / 2  Ca(2), n 1 1
 Ua / 2  n 2 Ca(2), n

Table 4 in the Appendix contains values for Ca(2), n, which are percentiles from a 
binomial distribution with p  .5.

Because the confidence limits are computed using the binomial distribution, which 
is a discrete distribution, the level of confidence of (ML, MU) will generally be somewhat 
larger than the specified 100(1 2 a)%. The exact level of confidence is given by

Level  1 2 2P[Bin(n, .5) # Ca(2), n]  1 2 2 pbinom(Ca(2), n, n, .5)
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The following example will demonstrate the construction of the interval.

eXaMpLe 5.20

The sanitation department of a large city wants to investigate ways to reduce the 
amount of recyclable materials that are placed in the city’s landfill. By separating 
the recyclable material from the remaining garbage, the city could prolong the life 
of the landfill site. More important, the number of trees needed to be harvested for 
paper products and the aluminum needed for cans could be greatly reduced. From an 
analysis of recycling records from other cities, it is determined that if the average weekly 
amount of recyclable material is more than 5 pounds per household, a commercial 
 recycling firm could make a profit collecting the material. To determine the feasibility 
of the recycling plan, a random sample of 25 households is  selected. The weekly weight 
of recyclable material (in pounds/week) for each household is given here.

14.2 5.3 2.9 4.2 1.2   4.3 1.1   2.6 6.7 7 .8 25.9 43.8 2.7 
  5.6 7 .8 3.9 4.7 6.5 29.5 2.1 34.8 3.6 5.8   4.5   6.7 

Determine an appropriate measure of the amount of recyclable waste from a 
typical household in the city.

Boxplot of recyclable wastes
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FIGURE 5.22(a)
Boxplot for waste data
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Solution A boxplot and normal probability of the recyclable waste data 
(Figures 5.22(a) and (b)) reveal the extreme right skewness of the data. Thus, the 
mean is not an appropriate  rep resentation of the typical household’s potential 
recyclable material. The  sample median and a confidence interval on the population 
are given by the following computations. First, we order the data from smallest 
value to largest value: 

 1.1 1.2 2.1 2.6 2.7 2.9 3.6   3.9   4.2   4.3   4.5   4.7 5.3

5.6 5.8 6.5 6.7 6.7  7 .8  7 .8 14.2 25.9 29.5 34.8 43.8

The number of values in the data set is an odd number, so the sample median is  
given by 

    M̂  y((2511)/2)  y(13)  5.3

The sample mean is calculated to be y  9.53. Thus, we see that 20 of the 25 house-
holds have weekly recyclable waste that is less than the sample mean. Note that 12 
of the 25 waste values are less and 12 of the 25 are greater than the sample median. 
Thus, the sample median is more representative of the typical household’s recy-
clable waste than is the sample mean. Next, we will construct a 95% confidence 
interval for the population median. 

From Table 4 in the Appendix, we find 

Ca(2), n  C.05, 25  7 

Thus, 

L.025  C.05, 25 1 1  8 

U.025  n 2 C.05, n  25 2 7  18 

The 95% confidence interval for the population median is given by 

(ML, MU)  (y(8), y(18))  (3.9, 6.7) 

Using the binomial distribution, the exact level of coverage is given by 1 2 2P[Bin 
(25, .5) # 7]  .957, which is slightly larger than the desired level 95%. Thus, we are 
at least 95% confident that the median amount of recyclable waste per household 
is between 3.9 and 6.7 pounds per week. ■

Large-Sample approximation
When the sample size n is large, we can apply the normal approximation to the 
binomial distribution to obtain approximations to Ca(2), n. The approximate value 
is given by

Ca122, n <
n
2

2 za/2Å
n
4

Because this approximate value for Ca(2), n is generally not an integer, we set Ca(2), n  
to be the largest integer that is less than or equal to the approximate value. 

eXaMpLe 5.21

Using the data in Example 5.20, find a 95% confidence interval for the median 
using the approximation to Ca(2), n. 

Solution We have n  25 and a  .05. Thus, z.05/2  1.96, and

Ca122, n <
n
2

2 za/2Å
n
4


25
2

2 1.96Å
25
4

 7.6
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Thus, we set Ca(2), n  7, and our confidence interval is identical to the interval 
constructed in Example 5.20. If n is larger than 30, the approximate and the exact 
value of Ca(2), n will often be the same integer. ■

In Example 5.20, the city wanted to determine whether the median amount 
of recyclable material was more than 5 pounds per household per week. We con-
structed a confidence interval for the median, but we still have not answered the 
question of whether the median is greater than 5. Thus, we need to develop a test 
of hypotheses for the median. 

We will use the ideas developed for constructing a confidence interval for the 
median in our development of the testing procedures for hypotheses concerning a 
population median. In fact, a 100(1 2 a)% confidence interval for the population 
median M can be used to test two-sided hypotheses about M. If we want to test H0: 
M  M0 versus H1: M Z M0 at level a, then we construct a 100(1 2 a)% confidence 
interval for M. If M0 is contained in the confidence interval, then we fail to reject H0. 
If M0 is outside the confidence interval, then we reject H0.

For testing one-sided hypotheses about M, we will use the binomial distribu-
tion to determine the rejection region. The testing procedure is called the sign test 
and is constructed as follows. Let y1, . . . , yn be a random sample from a population 
having median M. Let the null value of M be M0, and define Wi  yi 2 M0. The sign 
test statistic B is the number of positive Wi s. Note that B is simply the number of 
yi s that are greater than M0. Because M is the population median, 50% of the data 
values are greater than M and 50% are less than M. Now, if M  M0, then there is 
a 50% chance that yi is greater than M0 and hence a 50% chance that Wi is positive. 
Because the Wis are independent, each Wi has a 50% chance of being positive when-
ever M  M0, and B counts the number of positive Wis under H0. B is a binomial 
random variable with p  .5, and the percentiles from the binomial distribution with 
p  .5 given in Table 4 in the Appendix can be used to construct the rejection region 
for the  test of hypotheses. The statistical test for a population  median M is sum-
marized next. Three different sets of hypotheses are given with their cor responding 
rejection regions. The tests given are appropriate for any population  distribution.

sign test  

test for a population 
median M  

 Summary of a 
 Statistical test for 

the population  
Median M

Hypotheses: 

Case 1. H0: M # M0 vs. Ha: M . M0 (right-tailed test)
Case 2. H0: M $ M0 vs. Ha: M , M0 (left-tailed test)
Case 3. H0: M  M0 vs. Ha: M Z M0  (two-tailed test) 

 T.S.: Let Wi  yi 2 M0 and B  number of positive Wi s. 

 R.R.: For a probability a of a Type I error,

Case 1. Reject H0 if B $ n 2 Ca(1), n

Case 2. Reject H0 if B # Ca(1), n

Case 3. Reject H0 if B # Ca(2), n or B $ n 2 Ca(2), n.

The following example will illustrate the test of hypotheses for the population 
 median.

eXaMpLe 5.22

Refer to Example 5.20. The sanitation department wanted to determine whether 
the median household recyclable waste was greater than 5 pounds per week. Test 
this research hypothesis at level a  .05 using the data from Exercise 5.20. 
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Solution The set of hypotheses is 

H0: M # 5 versus Ha: M . 5 

The data set consisted of a random sample of n  25 households. From Table 4 
in the Appendix, we find Ca(1), n  C.05, 25  7 . Thus, we will reject H0: M # 5 if 
B $ n 2 Ca(1), n  25 2 7  18. Let Wi  yi 2 M0  yi 2 5, which yields

23.9 23.8 22.9 22.4 22.3 22.1 21.4 21.1 20.8
20.7 20.5 20.3 0.3 0.6 0.8 1.5 1.7 1.7

2.8 2.8 9.2 20.9 24.5 29.8 38.8

The 25 values of Wi contain 13 positive values. Thus, B  13, which is not greater 
than 18. We conclude that the data set fails to demonstrate that the median house-
hold level of recyclable waste is greater than 5 pounds. ■

Large-Sample approximation 
When the sample size n is larger than the values given in Table 4 in the Appendix, 
we can use the normal approximation to the binomial distribution to set the rejec-
tion region. The standardized version of the sign test is given by 

BST 
B 2 1n /2 2

Ën /4
When M equals M0, BST has approximately a standard normal distribution. Thus, 
we have the following decision rules for the three different research hypotheses: 

Case 1. Reject H0:  M # M0 if BST $ za, with p-value  P(z $ BST)

Case 2. Reject H0:  M $ M0 if BST # 2za, with p-value  P(z # BST)

Case 3. Reject H0:  M  M0 if |BST| $ za/2, with p-value  2P(z $ |BST |)

where za is the standard normal percentile.

eXaMpLe 5.23

Using the information in Example 5.22, construct the large-sample approximation 
to the sign test, and compare your results to those obtained using the exact sign test. 

Solution Refer to Example 5.22, where we had n  25 and B  13. We conduct 
the large-sample approximation to the sign test as follows. We will reject H0: M # 5 
in favor of Ha: M . 5 if BST $ z.05  1.96. 

BST 
B 2 1n /2 2

Ën /4


13 2 125 /2 2
Ë25 /4

 0.2

Because BST is not greater than 1.96, we fail to reject H0. The p-value  P(z $ 
0.2)  1 2 P(z , 0.2)  1 2 .5793  .4207 using Table 1 in the Appendix. Thus, we 
reach the same conclusion as was obtained using the exact sign test. ■

In Section 5.7, we observed that the performance of the t test deteriorated 
when the population distribution was either very heavily tailed or highly skewed. 
In Table 5.8, we compute the level and power of the sign test and compare these 
values to the comparable values for the t test for the four population distributions 
depicted in Figure 5.19 in Section 5.7 . Ideally, the level of the test should remain 
the same for all population distributions. Also, we want tests having the largest 
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possible power values because the power of a test is its ability to detect false null 
hypotheses. When the population distribution is either heavily tailed or highly 
skewed, the level of the t test changes from its stated value of .05. In these situa-
tions, the level of the sign test stays the same because the level of the sign test is the 
same for all distributions. The power of the t test is greater than the power of the 
sign test when sampling from a population having a normal distribution. However, 
the power of the sign test is greater than the power of the t test when sampling from 
very heavily tailed distributions or highly skewed distributions.

 5.10 reSearCh StUDy: percentage of Calories from Fat

In Section 5.1, we introduced the potential health problems associated with obesity. The 
assessment and quantification of a person’s usual diet is crucial in evaluating the degree 
of relationship between diet and diseases. This is a very difficult task but is  important 
in an effort to monitor dietary behavior among individuals. Rosner,  Willett, and 
Spiegelman, in “Correction of Logistic Regression Relative Risk Estimates and Confidence 
Intervals for Systematic Within-Person Measurement Error” [Statistics in Medicine (1989) 
8:1051–1070], describe a nurses’ health study in which the diet of a large sample of women 
was examined. One of the objectives of the study was to determine the percentage of 
calories from fat (PCF) in the diet of a population of nurses and compare this value with 
the recommended value of 30%. The most commonly used method in large nutritional 
epidemiology studies is the food frequency questionnaire (FFQ). This questionnaire 
uses a carefully designed series of questions to determine the dietary intakes of 
participants in the study. In the nurses’ health study, a sample of nurses completed a 
single FFQ. These women represented a random sample from a population of nurses. 
From the information gathered from the questionnaire, the PCF was then computed.

To minimize missteps in a research study, it is advisable to follow the four- 
step process outlined in Chapter 1. We will illustrate these steps using the PCF 
study described at the beginning of this chapter. The first step is determining the 
goals and objectives of the study.

Defining the problem
The researchers in this study would need to answer questions similar to the following:

 1. What is the population of interest?
 2. What dietary variables may have an effect on a person’s health?

 n 5 10 n 5 15 n 5 20 
 (Ma 2 M0)/s (Ma 2 M0)/s (Ma 2 M0)/s

Population Test 
Distribution Statistic Level .2 .6 .8 Level .2 .6 .8 Level .2 .6 .8

Normal t .05 .145 .543 .754 .05 .182 .714 .903 .05 .217 .827 .964 
 Sign .055 .136 .454 .642 .059 .172 .604 .804 .058 .194 .704 .889 
Heavily Tailed t .035 .104 .371 .510 .049 .115 .456 .648 .045 .163 .554 .736 
 Sign .055 .209 .715 .869 .059 .278 .866 .964 .058 .325 .935 .990 
Lightly Skewed t .055 .140 .454 .631 .059 .178 .604 .794 .058 .201 .704 .881 
 Sign .025 .079 .437 .672 .037 .129 .614 .864 .041 .159 .762 .935 
Highly Skewed t .007 .055 .277 .463 .006 .078 .515 .733 .011 .104 .658 .873 

 Sign .055 .196 .613 .778 .059 .258 .777 .912 .058 .301 .867 .964 

TABLE 5.8 Level and power values of the t test versus the sign test
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 3. What characteristics of the nurses other than dietary intake may be 
 important in studying their health condition?

 4. How should the nurses be selected to participate in the study?
 5. What hypotheses are of interest to the researchers?

The researchers decided that the main variable of interest was the percentage of 
calories from fat in the diet of nurses. The parameters of interest were the PCF 
mean m for the population of nurses, the standard deviation s of the PCF for the 
population of nurses, and the proportion p of nurses having a PCF greater than 
50%. They also wanted to determine if the average PCF for the population of 
nurses exceeded the recommended value of 30%.

In order to estimate these parameters and test hypotheses about the param-
eters, it was first necessary to determine the sample size required to meet certain 
specifications imposed by the researchers. The researchers wanted to estimate the 
mean PCF with a 95% confidence interval having a tolerable error of 3. From pre-
vious studies, the PCF values ranged from 10% to 50%. Because we want a 95% 
confidence interval with width 3, E  3/ 2  1.5 and za/2  z.025  1.96. Our estimate 
of s is   ŝ  range/4  (50 2 10)/4  10. Substituting into the formula for n, we have

n 
1za/2

2 2
ŝ

2

E2 
11.96 2 2 110 2 2

11.5 2 2  170.7

Thus, a random sample of 171 nurses should give a 95% confidence interval for m 
with the desired width of 3, provided 10 is a reasonable estimate of s. Three nurses 
originally selected for the study did not provide information on PCF; therefore, the 
sample size was only 168.

Collecting the Data
The researchers would need to carefully examine the data from the FFQs to deter-
mine if the responses were recorded correctly. The data would then be transfered 
to computer files and prepared for analysis following the steps outlined in Chapter 
2. The next step in the study would be to summarize the data through plots and 
summary statistics.

Summarizing the Data
The PCF values for the 168 women are displayed in Figure 5.23 in a stem-and-leaf 
diagram along with a table of summary statistics. A normal probability plot is 
provided in Figure 5.24 to assess the normality of the distribution of PCF values.

From the stem-and-leaf plot and normal probability plot, it appears that the 
data are nearly normally distributed, with PCF values ranging from 15% to 57%. The 
proportion of the women who have a PCF greater than 50% is p̂  4 /168  2.4 %. 
From the table of summary statistics in the output, the sample mean is y  36.919, 
and the sample standard deviation is s  6.728. The researchers want to draw 
inferences from the random sample of 168 women to the population from which 
they were selected. Thus, we would need to place bounds on our point estimates 
in order to reflect our degree of confidence in their estimation of the population 
values. Also, the researchers may be interested in testing hypotheses about the 
size of the population PCF mean m or variance s2. For example, many nutritional 
experts recommend that one’s daily diet have no more than 30% of total calories 
from fat. Thus, we would want to test the statistical hypothesis that m is greater than 
30 to  determine if the average PCF value for the population of nurses exceeds the 
 recommended value.
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analyzing the Data and Interpreting the analyses
One of the objectives of the study was to estimate the mean PCF in the diet of 
nurses. Also, the researchers wanted to test whether the mean was greater than the 
recommended value of 30%. Prior to constructing confidence intervals or testing 
 hypotheses, we must first check whether the data represent a random sample from 
a normally distributed population. From the normal probability plot in  Figure 5.24, 
the data  values fall nearly on a straight line. Hence, we can conclude that the data 
appear to follow a normal distribution. The mean and standard  deviation of the 
PCF data were given by y  36.92 and s  6.73. We can next construct a 95% 
confidence  interval for the mean PCF for the population of nurses as follows:

36.92 6 t.025, 167 
6.73

Ë168
 36.92 6 1.974 

6.73

Ë168
 36.92 6 1.02

Thus, we are 95% confident that the mean PCF in the population of nurses is 
between 35.90 and 37 .94. As a result, we would be inclined to conclude that the 
mean PCF for the population of nurses exceeds the recommended value of 30.

FIGURE 5.23 The percentage of calories from fat (PCF) for 168 women in a dietary study
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Descriptive Statistics for Percentage of Calories from Fat Data

Variable N Mean Median TrMean StDev SE Mean
PCF 168 36.919 36.473 36.847 6.728 0.519

Variable Minimum Maximum Q1 Q3
PCF 15.925 57.847 32.766 41.295

FIGURE 5.24
Normal probability plot  

for percentage of calories  
from fat (PCF)
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We will next formally test the following hypotheses:

H0: m # 30 versus Ha: m . 30

Since the data appear to be normally distributed and in any case the sample size is 
reasonably large, we can use the t test with rejection region as follows.

R.R: For a one-tail t test with a  .05, we reject H0 if 

t 
y 2 30

s /Ë168
$ t.05, 167  1.654

Since t  36.92 2 30

6.73 /Ë168
 13.33, we reject H0. The p-value of the test is essentially 0, 

so we can conclude that the mean PCF value is very significantly greater than 30. 
Thus, there is strong evidence that the population of nurses has an average PCF 
larger than the recommended value of 30. The experts in this field would have to 
determine the practical consequences of having a PCF value between 5.90 and 7 .94 
units higher than the recommended value.

reporting the Conclusions
A report summarizing our findings from the study would include the following items: 

 1. Statement of objective for study
 2. Description of study design and data collection procedures
 3. Numerical and graphical summaries of data sets
 4. Description of all inference methodologies:
	 ● t tests
	 ● t-based confidence interval on population mean
	 ●  Verification that all necessary conditions for using inference 

 techniques were satisfied
 5. Discussion of results and conclusions
 6. Interpretation of findings relative to previous studies
 7 . Recommendations for future studies
 8. Listing of data set

 5.11 Summary and Key Formulas

A population mean or median can be estimated using point or interval estimation. 
The selection of the median in place of the mean as a representation of the 
center of a population depends on the shape of the population distribution. The 
performance of an interval estimate is determined by the width of the interval and 
the confidence coefficient. The formulas for a 100(1 2 a)% confidence interval for 
the mean m and median M were given. A formula was provided for determining 
the necessary sample size in a study so that a confidence interval for m would have 
a predetermined width and level of confidence. 

Following the traditional approach to hypothesis testing, a statistical test con-
sists of five parts: research hypothesis, null hypothesis, test statistic, rejection region, 
and checking assumptions and drawing conclusions. A statistical test  employs the 
technique of proof by contradiction. We conduct experiments and studies to gather 
data to verify the research hypothesis through the contradiction of the null hypothesis 
H0. As with any two-decision process based on variable data, there are two types of 
errors that can be committed. A Type I error is the rejection of H0 when H0 is true, 
and a Type II error is the acceptance of H0 when the alternative hypothesis Ha is true. 
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The probability for a Type I error is denoted by a. For a given value of the mean 
ma in Ha, the probability of a Type II error is denoted by b(ma). The value of b(ma) 
decreases as the distance from ma to m0  increases. The power of a test of hypotheses 
is the probability that the test will  reject H0 when the value of m resides in Ha. Thus, 
the power at ma equals 1 2 b(ma).

We also demonstrated that for a given sample size and value of the mean ma, 
a and b(ma) are inversely related; as a is increased, b(ma) decreases, and vice versa. 
If we specify the sample size n and a for a given test procedure, we can compute 
b(ma) for values of the mean ma in the alternative hypothesis. In many studies, we 
need to determine the necessary sample size n to achieve a testing procedure having 
a specified value for a and a bound on b(ma). A formula is provided to determine n 
such that a level a test has b(ma) # b whenever ma is a specified distance beyond m0. 

We developed an alternative to the traditional decision-based approach for a 
statistical test of hypotheses. Rather than relying on a preset level of a, we compute 
the weight of evidence in the data for rejecting the null hypothesis. This weight, 
expressed in terms of a probability, is called the level of significance for the test. 
Most professional journals summarize the results of a statistical test using the level 
of significance. We discussed how the level of significance can be used to obtain the 
same results as the traditional approach. 

We also considered inferences about m when s is unknown (which is the usual 
situation). Through the use of the t distribution, we can construct both confidence 
intervals and a statistical test for m. The t-based tests and confidence intervals do not 
have the stated levels or power when the population distribution is highly skewed or 
very heavily tailed and the sample size is small. In these situations, we may use the 
median in place of the mean to represent the center of the population. Procedures 
were provided to construct confidence intervals and tests of hypotheses for the popu-
lation median. Alternatively, we can use bootstrap methods to approximate confi-
dence intervals and tests when the population distribution is nonnormal and n is small. 

Key Formulas
Estimation and tests for m and the  median:

1. 100(1 2 a)% confidence interval for m (s unknown) when sampling from a 
 normal population or when n is large

y 6 ta/2s /Ën,  df  n 2 1

2. Sample size for estimating m with a 100(1 2 a)% confidence interval, y 6 E

n 
1za/2

2 2ŝ2

E 2

 where ŝ2 is an estimate of population variance.
3. Statistical test for m (s unknown) when sampling from a normal population 

or when n is large 

Test statistics: t 
y 2 m0

s/Ën
,  df  n 2 1 

4. Calculation of b(ma) (and equivalent power) for a test on m (ŝ estimate of s)  
when sampling from a normal population or when n is large
 a. One-tailed level a test 

b 1ma 2  Paz , za 2
|m0 2 ma|

ŝ/Ën
b
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 5.12 exercises

 5.1 Introduction

 pol. Sci. 5.1  The county government in a city that is dominated by a large state university is concerned 
that a small subset of its population has been overutilized in the selection of residents to serve on 
county court juries. The county decides to determine the mean number of times that an adult resi-
dent of the county has been selected for jury duty during the past 5 years. They will then compare 
the mean jury participation for full-time students to that of nonstudents.

 a. Identify the populations of interest to the county officials.
 b. How might you select a sample of voters to gather this information?

 Med. 5.2  In the research study on percentage of calories from fat,
 a. What is the population of interest?
 b. What dietary variables other than PCF might affect a person’s health?
 c.  What characteristics of the nurses other than dietary intake might be important in 

studying their health condition?
 d. Describe a method for randomly selecting which nurses participate in the study.
 e. State several hypotheses that may be of interest to the researchers.

 engin. 5.3  Face masks used by firefighters often fail by having their lenses fall out when exposed 
to very high temperatures. A manufacturer of face masks claims that for its masks the average 
temperature at which pop-out occurs is 550°F. A sample of 75 masks is tested, and the average 
temperature at which the lenses popped out was 470°F. Based on this information is the manu-
facturer’s claim valid?

 a. Identify the population of interest to the firefighters in this problem.
 b.  Would an answer to the question posed involve estimation or hypothesis testing?

 b. Two-tailed level a test 

b 1ma 2 < Paz , za/2 2
|m0 2 ma|

ŝ/Ën
b

 5. Calculation of b(ma) (and equivalent power) for a test on m (s unknown) when 
sampling from a normal population or when n is large: Use Table 3 in the  
Appendix. 

 6. Sample size n for a statistical test on m (ŝ estimate of s) when sampling from 
a  normal population 
 a. One-tailed level a test 

n 
ŝ2

D2
 1za 1 zb 2 2

 b. Two-tailed level a test 

n .
ŝ2

D2
 1za/2 1 zb 2 2

 7 . 100(1 2 a)% confidence interval for the population median M

1y1La/2
2, y1Ua/22

2 ,  where La/2  Ca122, n 1 1  and  Ua/2  n 2 Ca122, n

8.  Statistical test for median 

Test statistic:

Let Wi  yi 2 M0  and  B  number of positive Wis 
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  5.4  Refer to Exercise 5.3. Describe a process to select a sample of face masks from the manu-
facturer to evaluate the claim.

 5.2 estimation of m
 engin. 5.5  A company that manufacturers coffee for use in commercial machines monitors the caf-

feine content in its coffee. The company selects 50 samples of coffee every hour from its pro-
duction line and determines the caffeine content. From historical data, the caffeine content (in 
milligrams, mg) is known to have a normal distribution with ŝ  7.1 mg. During a 1-hour time 
period, the 50 samples yielded a mean caffeine content of y  110 mg.

 a. Identify the population about which inferences can be made from the sample data.
 b.  Calculate a 95% confidence interval for the mean caffeine content m of the coffee 

produced during the hour in which the 50 samples were selected.
 c.  Explain to the CEO of the company in nonstatistical language the interpretation 

of the constructed confidence interval.

  5.6  Refer to Exercise 5.5. The engineer in charge of the coffee manufacturing process examines 
the confidence intervals for the mean caffeine content calculated over the past several weeks and 
is concerned that the intervals are too wide to be of any practical use. That is, they are not provid-
ing a very precise estimate of m.

 a.  What would happen to the width of the confidence intervals if the level of confi-
dence of each interval is increased from 95% to 99%?

 b.  What would happen to the width of the confidence intervals if the number of sam-
ples per hour was increased from 50 to 100?

  5.7  Refer to Exercise 5.5. Because the company is sampling the coffee production process every 
hour, there are 720 confidence intervals for the mean caffeine content m constructed every month.

 a.  If the level of confidence remains at 95% for the 720 confidence intervals in a 
given month, how many of the confidence intervals would you expect to fail to 
contain the value of m and hence provide an incorrect estimation of the mean caf-
feine content?

 b.  If the number of samples is increased from 50 to 100 each hour, how many of the 
95% confidence intervals would you expect to fail to contain the value of m in a 
given month?

 c.  If the number of samples remains at 50 each hour but the level of confidence 
is increased from 95% to 99% for each of the intervals, how many of the 99% 
confidence intervals would you expect to fail to contain the value of m in a given 
month?

 Bus. 5.8  As part of the recruitment of new businesses, the city’s economic development  department 
wants to estimate the gross profit margin of small businesses (under $1 million in sales) currently 
residing in the city. A random sample of the previous years  annual reports of 15 small businesses 
shows the mean net profit margin to be 7 .2% (of sales) with a standard deviation of 12.5%.

 a.  Construct a 99% confidence interval for the mean gross profit margin of m of all 
small businesses in the city.

 b.  The city manager reads the report and states that the confidence interval for m 
constructed in part (a) is not valid because the data are obviously not normally 
distributed and thus the sample size is too small. Based on just knowing the mean 
and standard  deviation of the sample of 15 businesses, do you think the city man-
ager is valid in his conclusion about the data? Explain your answer.

 Soc. 5.9  A program to reduce recidivism has been in effect for two years in a large northeastern 
state. A sociologist investigates the effectiveness of the program by taking a random sample of 
200 prison records of repeat offenders. The records were selected from the files in the courthouse 
of the largest city in the state. The average length of time out of prison between the first and 
second offenses is 2.8 years with a standard deviation of 1.3 years.

 a.  Use this information to estimate the mean prison-free time between first and 
 second offenses using a 95% confidence interval.
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 b.  Identify the group for which the confidence interval would be an appropriate 
estimate of the population mean.

 c.  Would it be valid to use this confidence interval to estimate the mean prison-free 
time between first and second offenses for all two-time offenders in the whole 
state? In a large southern state?

 ag. 5.10  The susceptibility of the root stocks of a variety of orange tree to a specific larva is investigated 
by a group of researchers. Forty orange trees are exposed to the larva and then examined by the 
researchers 6 months after exposure. The number of larvae per gram is recorded on each root 
stock. The mean and standard deviation of the logarithm of the counts are recorded to be 9.02 
and 1.12, respectively.

 a.  Use the sample information to construct a 90% confidence interval on the mean 
of the logarithm of the larvae counts.

 b.  Identify the population for which this confidence interval could be used to assess 
the susceptibility of the orange trees to the larva.

  5.11  Refer to Example 5.4. Suppose an estimate of s is given by ŝ  .75
 a.  If the level of confidence remains 99% but the desired width of the interval is 

 reduced to 0.3, what is the necessary sample size?
 b.  If the level of confidence is reduced to 95% but the desired width of the interval 

remains 0.5, what is the necessary sample size?
 c.  If the level of confidence is increased to 99.5% but the desired width of the inter-

val remains 0.5, what is the necessary sample size?
 d.  Describe the impact on the value of the sample size of increases (decreases) in the 

level of confidence for a fixed desired width.
 e.  Describe the impact on the value of the sample size of increases (decreases) in the 

desired width for a fixed level of confidence.

 5.3 Choosing the Sample Size for estimating m

  5.12  In any given situation, if the level of confidence and the standard deviation are kept 
 constant, how much would you need to increase the sample size to decrease the width of the 
 interval to half its original size?

 Bio. 5.13  A biologist wishes to estimate the effect of an antibiotic on the growth of a particular bacte-
rium by examining the mean amount of bacteria present per plate of culture when a fixed amount 
of the antibiotic is applied. Previous experimentation with the antibiotic on this type of bacte-
ria  indicates that the standard deviation of the amount of bacteria present is approximately 13 
cm2. Use this information to determine the number of observations (cultures that must be devel-
oped and then tested) necessary to estimate the mean amount of bacteria present, using a 99% 
confidence interval with a half-width of 3 cm2.

 Gov. 5.14  The housing department in a large city monitors the rent for rent-controlled apartments in 
the city. The mayor wants an estimate of the average rent. The housing department must deter-
mine the number of apartments to include in a survey in order to be able to estimate the average 
rent to within $100 using a 95% confidence interval. From past surveys, the monthly charge for 
rent-controlled apartments ranged from $1,000 to $3,500. How many renters must be included in 
the survey to meet the requirements?

 Gov. 5.15  Refer to Exercise 5.14. Suppose the mayor's staff reviews the proposed survey and decides 
that in order for the survey to be taken seriously the requirements need to be increased.

 a.  If the level of confidence is increased to 99% with the average rent estimated 
within $50, how many apartments need to be included in the survey?

 b.  Suppose the budget for the survey will not support increasing the level of 
confidence to 99%. Provide an explanation to the mayor, who has never taken a 
statistics course, of the impact on the accuracy of the estimate of the average rent 
of not raising the level of confidence from 95% to 99%.
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 5.4 a Statistical test for m

 Basic 5.16 A study is designed to test the hypotheses H0: m $ 26 versus Ha: m , 26. A random sample 
of 50 units was selected from a specified population, and the measurements were summarized to 
y  25.9 and s  7.6.

 a.  With a  .05, is there substantial evidence that the population mean is less  
than 26?

 b.  Calculate the probability of making a Type II error if the actual value of the 
population mean is at most 24.

 c.  If the sample size is doubled to 100, what is the probability of making a Type II 
error if the actual value of the population mean is at most 24?

 Basic 5.17  Refer to Exercise 5.16. Graph the power curve for rejecting H0: m $ 26 for the following 
values of m: 20, 21, 22, 23, 24, 25, and 26.

 a.  Describe the change in the power as the value of m decreases from m0  26.
 b.  Suppose the value of n remains at 50 but a is decreased to a  .01. Without 

 recalculating the values of the power, superimpose on the graph for a  .05 and 
n  50 the power curve for a  .01 and n  50.

 c.  Suppose the value of n is decreased to 35 but a is kept at a  .05. Without recal-
culating the values of the power, superimpose on the graph for a  .05 and n  50 
the power curve for a  .05 and n  35.

 Basic 5.18  Use a computer to simulate 100 samples of n  25 from a normal distribution with 
m  43 and a  4. Test the hypotheses H0: m  43 versus Ha: m Z 43 separately for each of the 
100 samples of size 25 with a  .05.

 a. How many of the 100 tests of hypotheses resulted in a rejection of H0?
 b.  Suppose 1,000 tests of hypotheses of H0: m  43 versus Ha: m Z 43 were 

conducted. Each of the 1,000 data sets consists of n  50 data values randomly 
selected from a population having m  43. Suppose a  .05 is used in each of 
the 1,000 tests. On the average, how many of the 1,000 tests would result in the 
rejection of H0?

 c.  Suppose the procedure in part (b) is repeated with 1,000 tests with n  75 and 
a  .01. On the average, how many of the 1,000 tests would result in a rejection  
of H0?

 Basic 5.19  Refer to Exercise 5.18. Simulate 100 samples of size n  25 from a normal population in 
which m  45 and s  4. Use a  .05 in conducting a test of H0: m  43 versus Ha: m Z 43 for each 
of the 100 samples.

 a.  What proportion of the 100 tests of H0: m  43 versus Ha: m Z 43 resulted in the 
correct decision, that is, the rejection of H0?

 b.  Calculate the power of the test of hypotheses necessary to reject H0: m  43 when 
the value of m is 45.

 c.  Based on the calculated probability, in part (b), how many of the 100 tests on the 
average should produce a rejection of H0? Compare this value to the number of 
rejections obtained in the simulation. Explain why the estimated number of rejec-
tions and the number of rejections observed in the simulation differ.

 Basic 5.20  Refer to Exercises 5.18 and 5.19.
 a.  Answer the questions asked in Exercises 5.18 and 5.19 with a  .01 replacing 

a  .05. You can use the same simulated data, but the exact power will need to be 
recalculated.

 b.  Did decreasing a from .05 to .01 result in the power increasing or decreasing? 
 Explain why this change occurred.

 Med. 5.21  A study was conducted of 90 adult male patients following a new treatment for congestive 
heart failure. One of the variables measured on the patients was the increase in exercise capacity 
(in minutes) over a 4-week treatment period. The previous treatment regime had produced 
an  average increase of m  2 minutes. The researchers wanted to evaluate whether the new 
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treatment had increased the value of m in comparison to the previous treatment. The data yielded  
y  2.17 and s  1.05.

 a. Using a  .05, what conclusions can you draw about the research hypothesis?
 b. What is the probability of making a Type II error if the actual value of m is 2.1?

  5.22  Refer to Exercise 5.21. Compute the power of the test PWR(ma) at ma  2.1, 2.2, 2.3, 2.4, 
and 2.5. Sketch a smooth curve through a plot of PWR(ma) versus ma.

 a. If a is reduced from .05 to .01, what would be the effect on the power curve?
 b.  If the sample size is reduced from 90 to 50, what would be the effect on the 

power curve?

 5.5 Choosing the Sample Size for testing m

 Med. 5.23  A national agency sets recommended daily dietary allowances for many supplements. In 
particular, the allowance for zinc for males over the age of 50 years is 15 mg/day. The agency 
would like to determine if the dietary intake of zinc for active males is significantly higher than 
15 mg/day. How many males would need to be included in the study if the agency wants to con-
struct an a  .05 test with the probability of committing a Type II error at most .10 whenever the 
 average zinc content is 15.3 mg/day or higher? Suppose from previous studies they estimate the 
standard deviation to be approximately 4 mg/day.

 edu. 5.24  To evaluate the success of a 1-year experimental program designed to increase the 
mathematical achievement of underprivileged high school seniors, a random sample of participants 
in the program will be selected and their mathematics scores will be compared with the previous 
year’s statewide average of 525 for underprivileged seniors. The researchers want to determine 
whether the experimental program has increased the mean achievement level over the previous 
year’s statewide average. If a  .05, what sample size is needed to have a probability of Type II 
error of at most .025 if the actual mean is increased to 550? From previous results, s < 80.

  5.25  Refer to Exercise 5.24. Suppose a random sample of 100 students is selected yielding  
y  542 and s  76. Is there sufficient evidence to conclude that the mean mathematics achieve-
ment level has been increased? Explain.

 Bus. 5.26  The administrator of a nursing home would like to do a time-and-motion study of staff time 
spent per day performing nonemergency tasks. Prior to the introduction of some efficiency measures, 
the average number of person-hours per day spent on these tasks was m  16. The administrator 
wants to test whether the efficiency measures have reduced the value of m. How many days must be 
sampled to test the proposed hypothesis if she wants a test having a  .05 and the probability of a 
Type II error of at most .10 when the actual value of m is 12 hours or less (at least a 25% decrease from 
the number of hours spent before the efficiency measures were implemented)? Assume s  7 .64.

 env. 5.27  The vulnerability of inshore environments to contamination due to urban and industrial 
expansion in Mombasa is discussed in the paper “Metals, Petroleum Hydrocarbons and Organo-
chlorines in Inshore Sediments and Waters on Mombasa, Kenya” [Marine Pollution Bulletin (1997) 
34:570–577]. A geochemical and oceanographic survey of the inshore waters of Mombasa, 
Kenya, was undertaken during the period from September 1995 to January 1996. In the survey, 
suspended particulate matter and sediment were collected from 48 stations within Mombasa’s 
 estuarine creeks. The concentrations of major oxides and 13 trace elements were determined 
for a varying number of cores at each of the stations. In particular, the lead concentrations in sus-
pended particulate matter (mg kg21 dry weight) were determined at 37 stations. The researchers 
were  interested in determining whether the average lead concentration was greater than 30 mg 
kg21 dry weight. The data are given in the following table along with summary statistics and a 
normal probability plot.

Lead concentrations (mg kg21 dry weight) from 37 stations in Kenya

48 53 44 55 52 39 62 38 23 27
41 37 41 46 32 17 32 41 23 12

3 13 10 11 5 30 11 9 7 11
77 210 38 112 52 10 6



290 ChApteR 5 InfeRenCeS About populAtIon CentRAl VAlueS  

2001000

.001

.01

.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
il

it
y

Lead concentration

 a.  Is there sufficient evidence (a  .05) in the data that the mean lead concentra-
tion  exceeds 30 mg kg21 dry weight?

 b.  What is the probability of a Type II error if the actual mean concentration is 50?
 c. Do the data appear to have a normal distribution?
 d.  Based on your answer in (c), is the sample size large enough for the test proce-

dures to be valid? Explain.

 5.6 the Level of Significance of a Statistical test

 engin. 5.28  The R&D department of a paint company has developed an additive that it hopes will in-
crease the ability of the company’s stain for outdoor decks to resist water absorption. The current 
formulation of the stain has a mean absorption rate of 35 units. Before changing the stain, a study 
was designed to evaluate whether the mean absorption rate of the stain with the additive was 
decreased from the current rate of 35 units. The stain with the additive was applied to 50 pieces 
of decking material. The resulting data were summarized to y  33.6 and s  9.2

 a.  Is there substantial evidence (a  .01) that the additive reduces the mean ab-
sorption from its current value?

 b. What is the level of significance (p-value) of your test results?
 c.  What is the probability of a Type II error if the stain with the additive in fact has 

a mean absorption rate of 30?
 d.  Estimate the mean absorption using a 99% confidence interval. Is the confidence 

interval consistent with your conclusions from the test of hypotheses?

 engin. 5.29  Refer to Exercise 5.28. If the R&D department used a  .10 in place of a  .01, would the 
conclusion about whether the additive reduced the mean absorption change from the conclusion 
using a  .01?

 env. 5.30  A concern to public health officials is whether a concentration of lead in the paint of older 
homes may have an effect on the muscular development of young children. In order to evaluate 
this phenomenon, a researcher exposed 90 newly born mice to paint containing a specified 
amount of lead. The number of Type 2 fibers in the skeletal muscle was determined 6 weeks 
after exposure. The mean number of Type 2 fibers in the skeletal muscles of normal mice of this 
age is 21.7 . The n  90 mice yielded y  18.8, s  15.3. Is there significant evidence in the data 
to support the hypothesis that the mean number of Type 2 fibers is different from 21.7 using an 
a = .05 test?

  5.31  Refer to Exercise 5.30. In fact, the researcher was more concerned about determining if the 
lead in the paint reduced the mean number of Type 2 fibers in skeletal muscles. Does the change 
in the research hypothesis alter your conclusion about the effect of lead in paint on the mean 
number of Type 2 fibers in skeletal muscles?
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 Med. 5.32  A tobacco company advertises that the average nicotine content of its cigarettes is at most 
14 milligrams. A consumer protection agency wants to determine whether the average nicotine 
content is in fact greater than 14. A random sample of 300 cigarettes of the company’s brand yields 
an average nicotine content of 14.6 milligrams and a standard deviation of 3.8 milligrams. Deter-
mine the level of significance of the statistical test of the agency’s claim that m is greater than 14. If 
a  .01, is there significant evidence that the agency’s claim has been supported by the data? 

 psy. 5.33  A psychological experiment was conducted to investigate the length of time (time delay) 
between the administration of a stimulus and the observation of a specified reaction. A random 
sample of 36 persons was subjected to the stimulus, and the time delay was recorded. The sample 
mean and standard deviation were 2.2 and .57 seconds, respectively. Is there significant evidence 
that the mean time delay for the hypothetical population of all persons who may be subjected to 
the stimulus differs from 1.6 seconds? Use a  .05. What is the level of significance of the test?

 5.7 Inferences about m for a Normal population, s Unknown

 Basic 5.34  Provide the rejection region based on a t-test statistic for the following situations:
 a. H0: m $ 28 versus Ha: m , 28 with n  11, a  .05
 b. H0: m # 28 versus Ha: m . 28 with n  21, a  .025
 c. H0: m $ 28 versus Ha: m , 28 with n  8, a  .001
 d. H0: m  28 versus Ha: m Z 28 with n  13, a  .01

 Basic 5.35  A study was designed to evaluate whether the population of interest has a mean greater 
than 9. A random sample of n  17 units was selected from a population, and the data yield 
x  10.1 and s  3.1.

 a. Is there substantial evidence (a  .05) that the population mean is greater than 9?
 b. What is the level of significance of the test?

 edu. 5.36  The ability to read rapidly and simultaneously maintain a high level of comprehension is 
often a determining factor in the academic success of many high school students. A school district 
is considering a supplemental reading program for incoming freshmen. Prior to implementing the 
program, the school runs a pilot program on a random sample of n  20 students. The students 
were thoroughly tested to determine reading speed and reading comprehension. Based on a 
fixed-length standardized test reading passage, the following reading times (in minutes) and 
comprehension scores (based on a 100-point scale) were recorded.

Student  1  2  3   4  5  6  7  8  9 10 11 12 13 14  15 16 17 18 19 20 n y s
Reading Time  5  7 15  12  8  7 10 11  9 13 10  6 11  8  10  8  7  6 11  8 20  9.10  2.573
Comprehension 60 76 76  90 81 75 95 98 88 73 90 66 91 83 100 85 76 69 91 78 20 82.05 10.88

 a.  What is the population about which inferences are being made?
 b.  Place a 95% confidence interval on the mean reading time for all incoming fresh-

men in the district.
 c.  Plot the reading time using a normal probability plot or boxplot. Do the data 

 appear to be a random sample from a population having a normal distribution?
 d. Provide an interpretation of the interval estimate in part (b).

  5.37  Refer to Exercise 5.36. Using the reading comprehension data, is there significant evidence 
that the reading program would produce for incoming freshmen a mean comprehension score 
greater than 80, the statewide average for comparable students during the previous year? 
Determine the level of significance for your test. Interpret your findings.

  5.38  Refer to Exercise 5.36.
 a.  Does there appear to be a relationship between reading time and reading comprehen-

sion of the individual students? Provide a plot of the data to support your conclusion.
 b.  What are some weak points in this study relative to evaluating the potential of 

the reading improvement program? How would you redesign the study to over-
come these weak points?
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 Bus. 5.39  A consumer testing agency wants to evaluate the claim made by a manufacturer of discount 
tires. The manufacturer claims that its tires can be driven at least 35,000 miles before wearing out. 
To determine the average number of miles that can be obtained from the manufacturer’s tires, the 
agency randomly selects 60 tires from the manufacturer’s warehouse and places the tires on 15 cars 
driven by test drivers on a 2-mile oval track. The number of miles driven (in thousands of miles) 
until the tires are determined to be worn out is given in the following table.

Car  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 n y s
Miles Driven 25 27 35 42 28 37 40 31 29 33 30 26 31 28 30 15 31.47 5.04

 a.  Place a 99% confidence interval on the average number of miles driven, m, prior 
to the tires wearing out. 

 b.  Is there significant evidence (a  .01) that the manufacturer’s claim is false? 
What is the level of significance of your test? Interpret your findings.

  5.40  Refer to Exercise 5.39. 
 a. Does the normality of the data appear to be valid? 
 b. How close to the true value were your bounds on the p-value? 
 c.  Is there a contradiction between the interval estimate of m and the conclusion 

reached by your test of the hypotheses?

 env. 5.41  The amount of sewage and industrial pollutants dumped into a body of water affects the 
health of the water by reducing the amount of dissolved oxygen available for aquatic life. Over 
a 2-month period, eight samples were taken from a river at a location 1 mile downstream from a 
sewage treatment plant. The amount of dissolved oxygen in the samples was determined and is 
reported in the following table. The current research asserts that the mean dissolved oxygen level 
must be at least 5.0 parts per million (ppm) for fish to survive.

Sample 1 2 3 4 5 6 7 8 n  y s
Oxygen (ppm) 5.1 4.9 5.6 4.2 4.8 4.5 5.3 5.2 8 4.95 .45

 a.  Place a 95% confidence on the mean dissolved oxygen level during the 2-month 
period.

 b.  Using the confidence interval from part (a), does the mean oxygen level appear 
to be less than 5 ppm?

 c.  Test the research hypothesis that the mean oxygen level is less than 5 ppm. What 
is the level of significance of your test? Interpret your findings.

 env. 5.42  A dealer in recycled paper places empty trailers at various sites. The trailers are gradu-
ally filled by individuals who bring in old newspapers and magazines and are picked up on 
several schedules. One such schedule involves pickup every second week. This schedule is desir-
able if the average amount of recycled paper is more than 1,600 cubic feet per 2-week period. 
The dealer’s records for 18 2-week periods show the following volumes (in cubic feet) at a 
particular site: 

1,660 1,820 1,590 1,440 1,730 1,680 1,750 1,720 1,900
1,570 1,700 1,900 1,800 1,770 2,010 1,580 1,620 1,690

y  1,718.3 and s  137 .8

 a.  Assuming the 18 2-week periods are fairly typical of the volumes throughout the 
year, is there significant evidence that the average volume m is greater than 1,600 
cubic feet?

 b. Place a 95% confidence interval on m.
 c.  Compute the p-value for the test statistic. Is there strong evidence that m is 

greater than 1,600?
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 5.8  Inferences about m When the population Is Nonnormal and n Is 
Small: Bootstrap Methods

  5.43  Refer to Exercise 5.36.
 a.  Use a computer program to obtain 10,000 bootstrap samples from the 20 com-

prehension scores. Use these 10,000 samples to obtain the bootstrap p-value for 
the t test of Ha: m . 80.

 b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.37 .

  5.44  Refer to Exercise 5.39.
 a.  Use a computer program to obtain 10,000 bootstrap samples from the 15 sets of 

tire wear data. Use these 10,000 samples to obtain the bootstrap p-value for the  
t test of Ha: m , 35.

 b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.39.

  5.45  Refer to Exercise 5.41.
 a.  Use a computer program to obtain 10,000 bootstrap samples from the eight oxy-

gen levels. Use these 10,000 samples to obtain the bootstrap p-value for the t 
test of Ha: m , 5.

 b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.41.

  5.46  Refer to Exercise 5.42.
 a.  Use a computer program to obtain 10,000 bootstrap samples from the 18 

recycling volumes. Use these 10,000 samples to obtain the bootstrap p-value 
for the t test of Ha: m . 1,600.

 b. Compare the p-value from part (a) to the p-value obtained in Exercise 5.42.

 5.9 Inferences about the Median

 Basic 5.47  A random sample of 12 measurements is obtained from a population. Let M be the me-
dian for the population. The research study requires an estimate of M. The sample median 
is determined to be 37 .8. The researchers want to assess a range of values for this point 
estimator.

 a.  Display a 95% confidence interval on M by obtaining the values of La/2 and Ua/2.
 b.  Obtain a 95% confidence interval on M using the large-sample approximations 

of La/2 and Ua/2. Compare the two confidence intervals.
 c. Provide reasons for the difference in the two confidence intervals.

 Basic 5.48  A random sample of 50 measurements is obtained from a population. Let M be the median 
for the population. The research study requires an estimate of M. The sample median is deter-
mined to be 37 .8. The researchers want to assess a range of values for this point estimator.

 a.  Display a 95% confidence interval on M by obtaining the values of La/2 and Ua/2.
 b.  Obtain a 95% confidence interval on M using the large-sample approximations 

of La/2 and Ua/2. Compare the two confidence intervals.
 c. Provide reasons for the difference in the two confidence intervals.

 Basic 5.49  A researcher selects a random sample of 25 units from a population. Let M be the 
population median. Display the rejection region for an a  .01 test that the population median is 
greater than 40.

 Basic 5.50  Refer to Exercise 5.49.
 a.  Display the rejection region for an a  .01 test that the population median is 

greater than 40 using the large-sample approximation.
 b.  Compare the rejection region from Exercise 5.49 to the rejection region in part (a).  

Provide reasons for the differences in the two regions.

 Bus. 5.51  The amount of money spent on health care is an important issue for workers because many 
companies provide health insurance that only partially covers many medical procedures. The 
director of employee benefits at a midsize company wants to determine the amount spent on health 
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care by the typical hourly worker in the company. A random sample of 25 workers is  selected, and 
the amounts they spent on their families’ health care needs during the past year are given here.

400 345 248 1,290 398 218 197 342 208 223 531 172 4,321
143 254 201 3,142 219 276 326 207 225 123 211 108

 a.  Graph the data using a boxplot or normal probability plot, and determine 
whether the population has a normal distribution. 

 b.  Based on your answer to part (a), is the mean or the median cost per household a 
more appropriate measure of what the typical worker spends on health care needs?

 c.  Place a 95% confidence interval on the amount spent on health care by the typi-
cal worker. Explain what the confidence interval is telling us about the amount 
spent on health care needs.

 d.  Does the typical worker spend more than $400 per year on health care needs? 
Use a  .05.

 Gov. 5.52  Many states have attempted to reduce the blood-alcohol level at which a driver is declared 
to  be legally drunk. There has been resistance to this change in the law by certain business 
groups who have argued that the current limit is adequate. A study was conducted to demonstrate 
the  effect on reaction time of a blood-alcohol level of .1%, the current limit in many states. 
A random sample of 25 persons of legal driving age had their reaction times recorded in a standard 
laboratory test procedure before and after drinking a sufficient amount of alcohol to raise their 
blood alcohol to a .1% level. The difference (After 2 Before) in their reaction times in seconds was 
recorded as follows:

.01 .02 .04 .05 .07 .09 .11 .26 .27 .27 .28 .28 .29

.29 .30 .31 .31 .32 .33 .35 .36 .38 .39 .39 .40

 a. Graph the data and assess whether the population has a normal distribution.
 b.  Place a 99% confidence interval on both the mean and the median differences in 

reaction times of drivers who have a blood-alcohol level of .1%. 
 c.  Is there sufficient evidence that a blood-alcohol level of .1% causes any increase 

in the mean reaction time?
 d.  Is there sufficient evidence that a blood-alcohol level of .1% causes any increase 

in the median reaction time?
 e.  Which summary of reaction time differences seems more appropriate, the mean 

or median? Justify your answer.

  5.53  Refer to Exercise 5.52 . The lobbyist for the business group has his expert examine the 
 experimental equipment and determines that measurement errors may have been made when 
recording the reaction times. Unless the difference in reaction time is at least .25 seconds, the 
expert claims that the two times are essentially equivalent.

 a.  Is there sufficient evidence that the median difference in reaction times is greater 
than .25 seconds?

 b.  What other factors about the drivers are important in attempting to decide 
whether moderate consumption of alcohol affects reaction time?

 Soc. 5.54  In an attempt to increase the amount of money people would receive at retirement from 
 Social Security, the U.S. Congress during its 1999 session debated whether a portion of Social 
 Security funds should be invested in the stock market. Advocates of mutual stock funds reassured 
the public by stating that most mutual funds would provide a larger retirement income than the 
income currently provided by Social Security. The annual rates of return of two highly recom-
mended mutual funds for the years 1989 through 1998 are given here. (The annual rate of return 
is defined as (P1 2 P0)/P0, where P0 and P1 are the prices of the fund at the beginning and end of 
the year, respectively.)

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Fund A 25.4 17 .1 28.9 26.7 3.6 28.5 21.3 32.9 22.9 26.6
Fund B 31.9 28.4 41.8 6.2 17 .4 22.1 30.5 15.8 26.8 5.7
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 a.  For both fund A and fund B, estimate the mean and median annual rates of 
return, and construct a 95% confidence interval for each. 

 b.  Which of the parameters, the mean or median, do you think best represents the 
 annual rate of return for fund A and for fund B during the years 1989 through 
1998? Justify your answer.

  5.55  Refer to Exercise 5.54.
 a.  Is there sufficient evidence that the median annual rate of return for the two 

mutual funds is greater than 10%?
 b.  Is there sufficient evidence that the mean annual rate of return for the two 

mutual funds is greater than 10%?

  5.56  Using the information in Table 5.8, answer the following questions.
 a.  If the population has a normal distribution, then the population mean and 

median are identical. Thus, either the mean or the median could be used to 
represent the center of the population. In this situation, why is the t test more 
appropriate than the sign test for testing hypotheses about the center of the 
distribution?

 b.  Suppose the population has a distribution that is highly skewed to the right. The 
 researcher uses an a  .05 t test to test hypotheses about the population mean. If 
the sample size is n  10, will the probability of a Type I error for the test be .05? 
 Justify your answer.

 c.  When testing hypotheses about the mean or median of a highly skewed population, 
the  difference in power between the sign and t tests decreases as the size of 
(Ma 2 M0)  increases. Verify this statement using the values in Table 5.8. Why do 
think this  occurs?

 d.  When testing hypotheses about the mean or median of a lightly skewed popula-
tion, the difference in power between the sign and t tests is much less than that 
for a highly skewed population distribution. Verify this statement using the 
values in Table 5.8. Why do you think this occurs?

Supplementary exercises

 Bus. 5.57  A Internet provider has implemented a new process for handling customer complaints. 
Based on a review of customer complaint data for the past 2 years, the mean time for handling a 
customer complain was 27 minutes. Three months after implementing the plan, a random sam-
ple of the records of 50 customers who had complaints produced the following response times. 
Use the 50 data values to determine if the new process has reduced the mean time to handle 
customer complaints.

32.3 26.9 25.4 32.9 27 .7 32.2 24.8 20.5 30.4 21.3 25.9 27 .1 19.2 28.4 18.0
33.1 31.1 21.9 33.4 24.3 25.5 29.6 32.7 21.3 31.8 27 .6 17 .4 26.9 18.9 28.6
23.5 21.6 20.1 30.9 26.8 28.7 24.6 21.5 21.9 28.3 24.1 28.9 29.8 27 .1 23.8
25.3 30.7 27 .2 19.0 30.0

 a.   Estimate the mean time for handling a customer complaint under the new 
 process using a 95% confidence interval.

 b.  Is there substantial evidence (a  .05) that the new process has reduced the 
mean time to handle a customer complaint?

 c. What is the population about which inferences from these data can be made?

 env. 5.58  The concentration of mercury in a lake has been monitored for a number of years. 
Measurements taken on a weekly basis yielded an average of 1.20 mg/m3 (milligrams per 
cubic meter) with a standard deviation of .32 mg/m3. Following an accident at a smelter on the 
shore of the lake, 15 measurements produced the following mercury concentrations.

1.60 1.77 1.61 1.08 1.07 1.79 1.34 1.07
1.45 1.59 1.43 2.07 1.16 0.85 2.11
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 a. Give a point estimate of the mean mercury concentration after the accident. 
 b.  Construct a 95% confidence interval on the mean mercury concentration after 

the accident. Interpret this interval. 
 c.  Is there sufficient evidence that the mean mercury concentration has increased 

since the accident? Use a  .05.
 d.  Assuming that the standard deviation of the mercury concentration is .32 mg/m3, 

calculate the power of the test to detect mercury concentrations of 1.28, 1.32, 
1.36, and 1.40.

 Med. 5.59  In a standard dissolution test for tablets of a particular drug product, the manufacturer 
must obtain the dissolution rate for a batch of tablets prior to release of the batch. Suppose that 
the dissolution test consists of assays for 24 randomly selected individual 25 mg tablets. For each 
test, the tablet is suspended in an acid bath and then assayed after 30 minutes. The results of the 
24 assays are given here.

19.5 19.7 19.7 20.4 19.2 19.5 19.6 20.8
19.9 19.2 20.1 19.8 20.4 19.8 19.6 19.5
19.3 19.7 19.5 20.6 20.4 19.9 20.0 19.8

 a.  Using a graphical display, determine whether the data appear to be a random 
sample from a normal distribution.

 b.  Estimate the mean dissolution rate for the batch of tablets, for both a point esti-
mate and a 99% confidence interval.

 c.  Is there significant evidence that the batch of pills has a mean dissolution rate 
less than 20 mg (80% of the labeled amount in the tablets)? Use a  .01.

 d. Calculate the probability of a Type II error if the true dissolution rate is 19.6 mg.

 Bus. 5.60  When an audit must be conducted that involves a tedious examination of a large 
inventory, the audit may be very costly and time consuming if each item in the inventory must 
be examined. In such situations, the auditor frequently obtains a random sample of items from 
the complete inventory and uses the results of an audit of the sampled items to check the validity 
of the company's financial statement. A large company’s financial statement claims an inventory 
that averages $600 per item. The following data are the auditor’s assessment of a random sample 
of 75 items from the company’s inventory. The values resulting from the audit are rounded to 
the nearest dollar.

303 547 1,368 493 984 507 148 2,546 738 83 2 135 274 74 1,472
399 1,784 71 751 136 571 147 282 2,039 1,909 748 188 548 1 280
102 618 129 1,324 1,428 469 102 454 1,059 939 303 600 234 514 17
551 293 1,395 7 28 2 973 506 511 812 1,290 685 447 11 35
252 1,526 464 5 67 99 67 259 7 67 248 3,215 3 33 41

 a.  Estimate the mean value of an item in the inventory using a 95% confidence 
interval.

 b.  Is there substantial evidence (a  .01) that the mean value of an item in the 
inventory is less than $600?

 c. What is the target population for the above inferences?
 d.  Would normal distribution–based procedures be appropriate for answering the 

above questions?

 Bus. 5.61  Over the past 5 years, the mean time for a warehouse to fill a buyer’s order has been 
25 minutes. Officials of the company believe that the length of time has increased recently, either 
due to a change in the workforce or due to a change in customer purchasing policies. The processing 
times (in minutes) were recorded for a random sample of 15 orders processed over the past month.

28 25 27 31 10
26 30 15 55 12
24 32 28 42 38

Do the data present sufficient evidence to indicate that the mean time to fill an order has  increased?
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 engin. 5.62  If a new process for mining copper is to be put into full-time operation, it must produce 
an average of more than 50 tons of ore per day. A 15-day trial period gave the results shown in 
the accompanying table.

Day 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15
Yield (tons) 57 .8 58.3 50.3 38.5 47 .9 157 .0 38.6 140.2 39.3 138.7 49.2 139.7 48.3 59.2 49.7

 a.  Estimate the typical amount of ore produced by the mine using both a point 
estimate and a 95% confidence interval.

 b.  Is there significant evidence that on a typical day the mine produces more than 
50 tons of ore? Test by using a  .05.

 env. 5.63  The board of health of a particular state was called to investigate claims that raw pollut-
ants were being released into the river flowing past a small residential community. By applying 
financial pressure, the state was able to get the violating company to make major concessions 
toward the installation of a new water purification system. In the interim, different production 
systems were to be initiated to help reduce the pollution level of water entering the stream. To 
monitor the effect of the interim system, a random sample of 50 water specimens was taken 
throughout the month at a location downstream from the plant. If y  5.0 and s  .70, use the 
sample data to determine whether the mean dissolved oxygen count of the water (in ppm) is less 
than 5.2, the average reading at this location over the past year.

 a. List the five parts of the statistical test, using a  .05.
 b. Conduct the statistical test and state your conclusion.

 env. 5.64  The search for alternatives to oil as a major source of fuel and energy will inevitably bring 
about many environmental challenges. These challenges will require solutions to problems in 
such areas as strip mining and many others. Let us focus on one. If coal is considered as a major 
source of fuel and energy, we will have to consider ways to keep large amounts of sulfur dioxide 
(SO2) and particulates from getting into the air. This is especially important at large government 
and industrial operations. Here are some possibilities. 

 1. Build the smokestack extremely high. 
 2. Remove the SO2 and particulates from the coal prior to combustion. 
 3.  Remove the SO2 from the gases after the coal is burned but before the gases are 

 released into the atmosphere. This is accomplished by using a scrubber.

  A new type of scrubber has been recently constructed and is set for testing at a power plant. 
Over a 15-day period, samples are obtained three times daily from gases emitted from the stack. 
The amounts of SO2 emissions (in pounds per million BTU) are given here:

Day

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  6 a.m. .158 .129 .176 .082 .099 .151 .084 .155 .163 .077 .116 .132 .087 .134 .179
  2 p.m. .066 .135 .096 .174 .179 .149 .164 .122 .063 .111 .059 .118 .134  .066 .104
10 p.m.  .128 .172 .106 .165 .163 .200 .228 .129 .101 .068 .100 .119 .125 .182 .138

 a.  Estimate the average amount of SO2 emissions during each of the three time 
periods using 95% confidence intervals.

 b.  Does there appear to be a significant difference in the average amounts of SO2 
emissions over the three time periods?

 c.  Combining the data over the entire day, is the average amount of SO2 emissions 
using the new scrubber less than .145, the average daily value for the old scrubber?

 Soc. 5.65  As part of an overall evaluation of training methods, an experiment was conducted to 
determine the average exercise capacity of healthy male army inductees. To do this, each 
male in a random sample of 35 healthy army inductees exercised on a bicycle ergometer 
(a device for measuring work done by the muscles) under a fixed workload until he tired. 
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Blood pressure, pulse rate, and other indicators were carefully monitored to ensure that 
no one’s health was in danger. The exercise capacities (mean time, in minutes) for the 35 
inductees are listed here.

23 19 36 12 41 43 19
28 14 44 15 46 36 25
35 25 29 17 51 33 47
42 45 23 29 18 14 48
21 49 27 39 44 18 13

 a.  Use these data to construct a 95% confidence interval for m, the average 
 exercise  capacity for healthy male inductees. Interpret your findings.

 b. How would your interval change using a 99% confidence interval?

  5.66  Using the data in Exercise 5.65, determine the number of sample observations that would 
be required to estimate m to within 1 minute, using a 95% confidence interval.

 h.r. 5.67  Faculty members in a state university system who resign within 10 years of initial employ-
ment are entitled to receive the money paid into a retirement system, plus 4% per year. Unfortu-
nately, experience has shown that the state is extremely slow in returning this money. Concerned 
about such a practice, a local teachers’ organization decides to investigate. For a random sample of 
50 employees who resigned from the state university system over the past 5 years, the average time 
between the termination date and reimbursement was 75 days, with a standard deviation of 15 days. 
Use the data to estimate the mean time to reimbursement, using a 95% confidence interval.

  5.68  Refer to Exercise 5.67 . After a confrontation with the teachers’ union, the state prom-
ised to make reimbursements within 60 days. Monitoring of the next 40 resignations yields an 
average of 58 days, with a standard deviation of 10 days. If we assume that these 40 resignations 
represent a random sample of the state’s future performance, estimate the mean reimbursement 
time using a 99% confidence interval.

 Bus. 5.69  Improperly filled orders are a costly problem for mail-order houses. To estimate the 
mean loss per incorrectly filled order, a large firm plans to sample n incorrectly filled orders and 
to determine the added cost associated with each one. The firm estimates that the added cost 
is between $40 and $400. How many incorrectly filled orders must be sampled to estimate the 
mean additional cost using a 95% confidence interval of width $20?

 engin. 5.70  The recipe for producing a high-quality cement specifies that the required percentage of 
SiO2 is 6.2%. A quality control engineer evaluates this specification weekly by randomly  selecting 
samples from n  20 batches on a daily basis. On a given day, she obtained the following values:

1.70 9.86 5.44 4.28 4.59 8.76 9.16 6.28 3.83 3.17
5.98 2.77 3.59 3.17 8.46 7 .76 5.55 5.95 9.56 3.58

 a. Estimate the mean percentage of SiO2 using a 95% confidence interval.
 b.  Evaluate whether the percentage of SiO2 is different from the value specified in 

the recipe using an a  .05 test of hypotheses.
 c.  Produce a plot to determine if the procedures you used in parts (a) and (b) were valid.

  5.71  Refer to Exercise 5.70.
 a. Estimate the median percentage of SiO2 using a 95% confidence interval.
 b.  Evaluate whether the median percentage of SiO2 is different from 6.2% using an 

a  .05 test of hypotheses.

  5.72  Refer to Exercise 5.70. Generate 9,999 bootstrap samples from the 20 SiO2 percentages.
 a.  Construct a 95% bootstrap confidence interval on the mean SiO2 percentage. 

Compare this interval to the interval obtained in Exercise 5.70(a).
 b.  Obtain the bootstrap p-value for testing whether the mean percentage of  

SiO2 differs from 6.2%. Compare this value to the p-value for the test in  
Exercise 5.70(b).

 c.  Why is there such a good agreement between the t-based and bootstrap values in 
parts (a) and (b)?
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 Med. 5.73  A medical team wants to evaluate the effectiveness of a new drug that has been proposed 
for people with high intraocular pressure (IOP). Prior to running a full-scale clinical trial of 
the drug, a pilot test was run using 10 patients with high IOP values. The n  10 patients had 
a mean decrease in IOP of y  15.2 mm Hg with a standard deviation of the 10 IOPs equal to 
s  9.8 mm Hg after 15 weeks of using the drug. Determine the appropriate sample size for an 
a  .01 test to have at most a .10 probability of failing to detect at least a 4 mm Hg decrease in 
the mean IOP.

 Gov. 5.74  A federal regulatory agency is investigating an advertised claim that a certain device can 
increase the gasoline mileage of cars (mpg). Ten such devices are purchased and installed in cars 
belonging to the agency. Gasoline mileage for each of the cars is recorded both before and after 
installation. The data are recorded here.

 Car

 1 2 3 4 5 6 7 8 9 10 n x  s
Before (mpg) 19.1 29.9 17 .6 20.2 23.5 26.8 21.7 25.7 19.5 28.2 10 23.22 4.25
After (mpg) 25.8 23.7 28.7 25.4 32.8 19.2 29.6 22.3 25.7 20.1 10 25.33 4.25
Change (mpg) 6.7 26.2 11.1 5.2 9.3 27 .6 7 .9 23.4  6.2 28.1 10  2.11 7 .54

Place 90% confidence intervals on the average mpg for both the before and the after phases of 
the study. Interpret these intervals. Does it appear that the device will significantly increase the 
average mileage of cars? 

  5.75  Refer to Exercise 5.74.
 a.  The cars in the study appear to have grossly different mileages before the devices 

were installed. Use the change data to test whether there has been a significant 
gain in mileage after the devices were installed. Use a  .05.

 b.  Construct a 90% confidence interval for the mean change in mileage. On the 
basis of this interval, can one reject the hypothesis that the mean change is either 
zero or negative? (Note that the two-sided 90% confidence interval corresponds 
to a one-tailed a  .05 test by using this decision rule: Reject H0: m $ m0 if m0 is 
greater than the upper limit of the confidence interval.) 

  5.76  Refer to Exercise 5.74.
 a.  Calculate the probability of a Type II error for several values of mc, the average 

change in mileage. How do these values affect the conclusion you reached in 
 Exercise 5.75?

 b. Suggest some changes in the way in which this study in Exercise 5.74 was conducted.



 6.1 Introduction and Abstract of Research Study

The inferences we have made so far have concerned a parameter from a single 
 population. Quite often we are faced with an inference involving a comparison 
of parameters from different populations. We might wish to compare the mean 
corn crop yields for two different varieties of corn, the mean annual incomes for 
two ethnic groups, the mean nitrogen contents of two different lakes, or the mean 
lengths of time between administration and eventual relief for two different 
antivertigo drugs.

In many sampling situations, we will select independent random samples 
from two populations to compare the populations’ parameters. The statistics 
used to make these inferences will, in many cases, be the differences between 
the corresponding sample statistics. Suppose we select independent random 
samples of n1 observations from one population and n2 observations from 
a second population. We will use the difference between the sample means,  
1y1 2 y2 2 , to make an inference about the difference between the population 
means, 1m1 2 m2 2 .

The following theorem will help in finding the sampling distribution for 
the difference between sample statistics computed from independent random 
samples.
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Theorem 6.1 can be applied directly to find the sampling distribution of the 
difference between two independent sample means or two independent sample 
proportions. The Central Limit Theorem (discussed in Chapter 4) implies that 
if two random samples of sizes, n1 and n2, are independently selected from two 
populations, 1 and 2, then where n1 and n2 are large, the sampling distributions of 
y1  and y2  will be approximately normal with means and variances 1m1, s

2
1 /n1 2  and 

1m2, s
2
2 /n2 2 , respectively. Consequently, because y1 and y2 are independent, normally 

distributed random variables, it follows from Theorem 6.1 that the sampling 
distribution for the difference in the sample means, 1y1 2 y2 2, is approximately 
normal with a mean of
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If two independent random variables y1 and y2 are normally distributed 
with means and variances 1m1, s1

2 2  and 1m2, s2
2 2 , respectively, the difference 

between the random variables is normally distributed with mean 1m1 2 m2 2  
and variance 1s2

1 1 s2
2 2 . Similarly, the sum 1y1 1 y2 2 of the random variables 

is normally distributed with mean 1m1 1 m2 2  and variance 1s2
1 1 s2

2 2 .

THEOREM 6.1

Properties of the 
Sampling

Distribution for the 
Difference Between 
Two Sample Means, 

1 y1 2 y2 2  

1. The sampling distribution of  1y1 2 y2 2  is approximately normal for large 
samples.

2. The mean of the sampling distribution, my12y2
, is equal to the difference

 between the population means, 1m1 2 m2 2 .
3. The standard error of the sampling distribution is
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The sampling distribution of the difference between two independent, normally 
distributed sample means is shown in Figure 6.1.

The sampling distribution for the difference between two sample means, 
1y1 2 y2 2 , can be used to answer the same types of questions as we asked about 
the sampling distribution for y in Chapter 4. Because sample statistics are used 
to make inferences about corresponding population parameters, we can use the 
sampling distribution of a statistic to calculate the probability that the statistic will 
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be within a specified distance of the population parameter. For example, we could 
use the sampling distribution of the difference in sample means to calculate the 
probability that 1y1 2 y2 2 will be within a specified distance of the unknown dif-
ference in population means, 1m1 2 m2 2 . Inferences (estimations or tests) about 
1m1 2 m2 2  will be discussed in succeeding sections of this chapter.

Abstract of Research Study: Effects of an Oil Spill  
on Plant Growth
On January 7, 1992, an underground oil pipeline ruptured and caused the contami-
nation of a marsh along the Chiltipin Creek in San Patricio County, Texas. The 
cleanup process consisted of a number of procedures, including vacuuming the 
spilled oil, burning the contaminated region in the marsh to remove the remaining 
oil, and then planting native plants in the contaminated region. Federal regulations 
require the company responsible for the oil spill to document that the contami-
nated region has been restored to its prespill condition. To evaluate the effective-
ness of the cleanup process and, in particular, to study the residual effects of the 
oil spill on the flora, researchers designed a study of plant growth 1 year after the 
burning. In an unpublished Texas A&M University dissertation, Newman (1998) 
describes the researchers’ plan for evaluating the effect of the oil spill on Distichlis 
spicata, a flora of particular importance to the area of the spill.

After holding lengthy discussions, reading the relevant literature, and searching 
many data bases about similar sites and flora, the researchers found there was no spe-
cific information on the flora in this region prior to the oil spill. They determined that 
the flora parameters of interest were the average Distichlis spicata density m after 
burning the spill region, the variability s in flora density, and the proportion p of the 
spill region in which the flora density was essentially zero. Since there was no relevant 
information on flora density in the spill region prior to the spill, it was necessary to 
evaluate the flora density in unaffected areas of the marsh to determine whether 
the plant density had changed after the oil spill. The researchers located several 
regions that had not been contaminated by the oil spill. The spill region and the unaf-
fected regions were divided into tracts of nearly the same size. The number of tracts 
needed in the study was determined by specifying how accurately the parameters m, 
s, and p needed to be estimated in order to achieve a level of precision as specified 
by the width of 95% confidence intervals and by the power of tests of hypotheses. 
From these calculations and within budget and time limitations, it was decided that 
40 tracts from both the spill and the unaffected areas would be used in the study.  
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Forty tracts of exactly the same size were randomly selected in these locations, and 
the Distichlis spicata density was recorded. Similar measurements were taken within 
the spill area of the marsh. The data are presented in Section 6.7.

From the data, summary statistics were computed in order to compare the 
two sites. The average flora density in the control sites is yCon  38.48 with a stand-
ard deviation of sCon  16.37. The sites within the spill region have an average den-
sity of ySpill  26.93 with a standard deviation of sSpill  9.88. Thus, the control sites 
have a larger average flora density and a greater variability in flora density than do 
the sites within the spill region. Whether these observed differences in flora density 
reflect similar differences in all the sites and not just the ones included in the study 
will require a statistical analysis of the data. We will discuss the construction of con-
fidence intervals and statistical tests about the differences between mCon and mSpill 
in Section 6.7.  The estimation and testing of the population standard deviations, ss, 
and population proportions, ps, will be the topic of Chapters 7 and 10. At the end 
of this chapter, we will provide an analysis of the data sets to determine if there is 
evidence that the conditions in the spill area have been returned to a state that is 
similar to its prespill condition.

 6.2 Inferences About m1 2 m2: Independent Samples

In situations where we are making inferences about m1 2 m2 based on random 
samples independently selected from two populations, we will consider three 
cases: 

Case 1.  Both population distributions are normally distributed with 
s1  s2.

Case 2. Both sample sizes, n1 and n2, are large. 
Case 3.  The sample sizes, n1 or n2, are small, and the population 

distributions are nonnormal.

In this section, we will consider the situation in which we are independently select-
ing random samples from two populations that have normal distributions with 
different means, m1 and m2.  The data will be summarized into the statistics: sample 
means y1 and y2 and sample standard deviations s1 and s2. We will compare the two 
populations by constructing  appropriate graphs, confidence intervals for m1 2 m2, 
and tests of hypotheses concerning the difference m1 2 m2.

A logical point estimate for the difference in population means is the sample 
difference y1 2 y2. The standard error for the difference in sample means is more 
complicated than for a single sample mean, but the confidence interval has the 
same form: point estimate 6ta/ 2 (standard error). A general confidence interval for 
m1 2 m2 with a confidence level of (1 2 a) is given here for the situations s1  s2.

Confidence  
 Interval for m1 2 m2,  

Independent Samples  
Equal Variances

  1y1 2 y2 2 6 ta/2 sp Å
1
n1

1
1
n2

where

 sp  Å
1n1 2 1 2 s2

1 1 1n2 2 1 2 s 2
2

n1 1 n2 2 2
  and  df  n1 1 n2 2 2
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The sampling distribution of y1 2 y2 is a normal distribution with standard 
deviation

sy12y2
 Å

s2
1

n1
1

s2
2

n2
 Å

s2

n1
1

s2

n2
 sÅ

1
n1

1
1
n2

because we require that the two populations have the same standard deviation s. 
If we knew the value of s, then we would use za/ 2 in the formula for the confidence 
interval. Because s is unknown in most cases, we must estimate its value. This esti-
mate is denoted by sp and is determined by combining (pooling) the two independ-
ent estimates of s, s1, and s2. In fact, s 2

P  is a weighted average of the sample variances 
s 2

1  and s 2
2. We have to estimate the standard deviation of the point estimate of m1 2 m2, 

so we must use the percentile from the t distribution, ta/ 2, in place of the normal 
percentile, za/ 2. The degrees of freedom for the t-percentile are df  n1 1 n2 2 2 
because we have a total of n1 1 n2 data values and two parameters, m1 and m2, that 
must be estimated prior to estimating the standard deviation s. Remember that 
we use y1 and y2 in place of m1 and m2, respectively, in the formulas for s 2

1  and s 2
2.

Recall that we are assuming that the two populations from which we draw the 
samples have normal distributions with a common variance s2. If the confidence 
 interval presented was valid only when these assumptions were met exactly, the 
 estimation procedure would be of limited use. Fortunately, the confidence coef fi-
cient remains relatively stable if both distributions are mound-shaped and the sam-
ple sizes are approximately equal. For those situations in which these con ditions do 
not hold, we will discuss alternative procedures in this section and in Section 6.3.

EXAMPLE 6.1 

Company officials were concerned about the length of time a particular drug prod-
uct retained its potency. A random sample of n1  10 bottles of the product was 
drawn from the production line and analyzed for potency. 

A second sample of n2  10 bottles was obtained and stored in a regulated 
environment for a period of 1 year. The readings obtained from each sample are 
given in Table 6.1.

s 2p, a weighted 
 average

TABLE 6.1
Potency reading for  

two samples

 Fresh Stored

10.2 10.6 9.8 9.7
10.5 10.7 9.6 9.5
10.3 10.2 10.1 9.6
10.8 10.0 10.2 9.8
9.8 10.6 10.1 9.9

Suppose we let m1 denote the mean potency for all bottles that might be sam-
pled coming off the production line and let m2 denote the mean potency for all 
bottles that may be retained for a period of 1 year. Estimate m1 2 m2 using a 95% 
confidence interval.

Solution The potency readings for the fresh and stored bottles are plotted in 
Figures 6.2(a) and (b) in normal probability plots to assess the normality assump-
tion. We find that the plotted points in both plots fall very close to a straight line, 



6.2 Inferences About m1 2 m2: Independent Samples    305

and, hence, the normality condition appears to be satisfied for both types of bottles. 
The summary statistics for the two samples are presented next.

Fresh Bottles Stored Bottles 
n1  10 n2  10
y1  10.37 y2  9.83
s1  0.3234 s2  0.2406 

In Chapter 7, we will provide a test of equality for two population variances. 
However, for the above data, the computed sample standard deviations are 
approximately equal considering the small sample sizes. Thus, the conditions 
required to construct a confidence interval on m1 2 m2—that is, normality, equal 

FIGURE 6.2(a)
Normal probability plot: 
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variances, and independent random samples—appear to be satisfied. The estimate 
of the common standard deviation s is 

sp  Å
1n1 2 1 2s2

1 1 1n2 2 1 2s2
2

n1 1 n2 2 2
 Å

9 1.3234 2 2 1 9 1.2406 2 2

18
 .285

From Table 2 in the Appendix, the t-percentile based on df  n1 1 n2 2  
2  18 and a  .025 is 2.101. A 95% confidence interval for the difference in mean 
potencies is

 110.37 2 9.83 2 6 2.101 1.285 2Ë1 /10 1 1 /10

  .54 6 .268  1.272, .808 2
We estimate that the difference in mean potencies for the bottles from the produc-
tion line and those stored for 1 year, m1 2 m2, lies in the interval .272 to .808. Com-
pany officials would then have to evaluate whether a decrease in mean potency of 
a size between .272 and .808 would have a practical impact on the useful potency 
of the drug. ■

EXAMPLE 6.2 

During the past 20 years, the domestic automobile industry has been repeatedly 
challenged by consumer groups to raise the quality of their cars to the level of 
comparably priced imports. An automobile industry association decides to 
compare the mean repair costs of two models: a popular full-sized imported car 
and a widely purchased full-sized domestic car. The engineering firm hired to 
run the tests proposes driving the vehicles at a speed of 30 mph into a concrete 
barrier. The costs of the  repairs to the vehicles will then be assessed. To account 
for variation in the damage to the vehicles, it is decided to use 10 imported cars 
and 10 domestic cars. After completing the crash testing, it was determined that 
the speed of one of the imported cars had exceeded 30 mph and thus was not a 
valid test run. Because of budget constraints, it was decided not to run another 
crash test using a new imported vehicle. The data, recorded in thousands of dollars, 
produced sample means and standard deviations as shown in Table 6.2. Use these 
data to construct a 95% confidence  interval on the difference in mean repair costs,  
(mdomestic 2 mimported)  1m1 2 m2 2 .

TABLE 6.2
Summary of repair cost  

data for Example 6.2

 Domestic Imported

Sample Size 10 9
Sample Mean 8.27 6.78
Sample Standard Deviation 2.956 2.565

Solution A normal probability of the data for each of the two samples suggests that 
the populations of damage repairs are nearly normally distributed. Also, considering 
the very small sample sizes, the closeness in size of the sample standard deviations 
would not indicate a difference in the population standard deviations; that is, it 
is appropriate to conclude that s1 < s2  s. Thus, the conditions nec essary for 
applying the pooled t-based confidence intervals would appear to be satisfied.

The difference in sample means is

y1 2 y2  8.27 2 6.78  1.49
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The estimate of the common standard deviation in repair costs s is

   sp  Å
1n1 2 1 2s2

1 1 1n2 2 1 2s2
2

n1 1 n2 2 2
 Å

110 2 1 2 12.956 2 2 1 19 2 1 212.565 2 2

10 1 9 2 2
 2.778

The t-percentile for a/2  .025 and df  10 1 9 2 2  17 is given in Table 2 
of the Appendix as 2.110. A 95% confidence interval for the difference in mean 
 repair costs is given here.

y1 2 y2 6 ta/2sp Å
1
n1

1
1
n2

Substituting the values from the repair cost study into the formula, we obtain

1.49 6 2.110 12.778 2Å
1
10

1
1
9

 1.49 6 2.69  121.20, 4.18 2

Thus, we estimate the difference in mean repair costs between particular brands 
of domestic and imported cars tested to lie somewhere between 21.20 and 4.18. If 
we multiply these limits by $1,000, the 95% confidence interval for the difference in 
mean repair costs is 2$l,200 to $4,180. This interval includes both positive and nega-
tive values for m1 2 m2, so we are unable to determine whether the mean  repair cost 
for domestic cars is larger or smaller than the mean repair cost for imported cars. ■

We can also test a hypothesis about the difference between two population 
means. As with any test procedure, we begin by specifying a research hypothesis for 
the difference in population means. Thus, we might, for example, specify that the 
difference m1 2 m2 is greater than some value D0. (Note: D0 will often be 0.) The 
entire test procedure is summarized here. 

A Statistical Test for  
m1 2 m2, Independent 

Samples, Equal 
Variances

The assumptions under which the test will be valid are the same as were  required 
for constructing the confidence interval on m1 2 m2: population  distributions 
are normal with equal variances, and the two random samples are independent.

 H0: 1. m1 2 m2 # D0 (D0 is a specified value, often 0)
  2. m1 2 m2 $ D0
  3. m1 2 m2  D0

 Ha: 1.   m1 2 m2 . D0
  2. m1 2 m2 , D0
  3. m1 2 m2 

2  D0

 T.S.: t 
1y1 2 y2 2 2 D0

sp Å
1
n1

1
1
n2

 R.R.: For a level a, Type I error rate and with df  n1 1 n2 2 2,
  1. Reject H0 if t $ ta. 
  2. Reject H0 if t # 2ta. 
  3. Reject H0 if |t| $ ta/2. 

   Check assumptions and draw conclusions.
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EXAMPLE 6.3 

An experiment was conducted to evaluate the effectiveness of a treatment for 
tapeworm in the stomachs of sheep. A random sample of 24 worm-infected lambs 
of approximately the same age and health was randomly divided into two groups. 
Twelve of the lambs were injected with the drug, and the remaining 12 were left 
untreated. After a 6-month period, the lambs were slaughtered, and the worm 
counts recorded are listed in Table 6.3: 

TABLE 6.3
Sample data for treated 

and untreated sheep

Drug-Treated Sheep 18 43 28 50 16 32 13 35 38 33  6  7
Untreated Sheep 40 54 26 63 21 37 39 23 48 58 28 39

a. Is there significant evidence that the untreated lambs have a mean 
tapeworm count that is more than five units greater than the mean 
count for the treated lambs? Use an a  .05 test.

b. What is the level of significance for this test? 
c. Place a 95% confidence interval on m1 2 m2 to assess the size of the 

 difference in the two means.
Solution

a. Boxplots of the worm counts for the treated and untreated lambs are 
 displayed in Figure 6.3. From the plots, we can observe that the data 
for the untreated lambs are symmetric with no outliers and the data 
for the treated lambs are slightly skewed to the left with no outliers. 
Also, the widths of the two boxes are approximately equal. Thus, the 
condition that the population distributions are normal with equal 
variances appears to be satisfied. The condition of independence of 
the worm counts both  between and within the two groups is evaluated 
by considering how the lambs were  selected, assigned to the two 
groups, and cared for during the 6-month  experiment. Because the 24 
lambs were randomly selected from a representative herd of infected 
lambs, were randomly assigned to the treated and untreated groups, 
and were properly separated and cared for during the 6-month 
 period of the experiment, the 24 worm counts are presumed to be 
independent random samples from the two populations. Finally, we 
can  observe from the boxplots that the untreated lambs  appear to 
have higher worm counts than the treated lambs because the median 
line is higher for the untreated group. The following test confirms 
our  observation. The data for the treated and untreated sheep are 
summarized next.

FIGURE 6.3
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Drug-Treated Lambs Untreated Lambs
 n2  12 n1  12
 y2  26.58 y1  39.67
 s2  14.36 s1  13.86 

   The sample standard deviations are of a similar size, so from this 
and from our observation from the boxplot, the pooled estimate of the 
common population standard deviation s is now computed: 

sp  Å
1n1 2 1 2s2

1 1 1n2 2 1 2s2
2

n1 1 n2 2 2
 Å

11 113.86 2 2 1 11 114.36 2 2

22
 14.11

   The test procedure for evaluation of the research hypothesis that 
the untreated lambs have a mean tapeworm count (m1) that is more 
than five units greater than the mean count (m2) of the treated lambs 
is as follows:

   H0: m1 – m2 # 5 (drug does not reduce the mean tapeworm count 
by more than 5 units)

   Ha: m1 – m2 . 5 (drug does reduce the mean tapeworm count by 
more than 5 units)

   T.S.: t 
1y1 2 y2 2 2 D0

sp#1
n1

1 1
n2


139.67 2 26.58 2 2 5

14.11# 1
12 1 1

12

 1.404

    R.R.: Reject H0 if t $ 1.717, where 1.717 is the value from Table 2 in the 
Appendix for a critical t-value with a  .05 and df  n1 1 n2 2 2  22.

 Conclusion: Because the observed value of t  l.404 is less than 1.717 
and hence is not in the rejection region, there is insufficient evidence 
to conclude that the drug treatment reduces the mean tapeworm 
count by five or more units.

b. Using Table 2 in the Appendix with t  1.404 and df  22, we can bound 
the level of significance (p-value) in the range .05 , p-value , .10.

 Using the R function pt(tc, df), which calculates P(t # tc), we can 
obtain the p-value for the calculated value of the T.S., tc  1.404.

   p-value  P(t $ 1.404)  1 2 P(t # 1.404)  12 pt(1.404, 22)  
12 .913  .087

c. A 95% confidence interval on m1 2 m2 provides the experimenter 
with an estimate of the size of the reduction in mean tapeworm count 
obtained by using the drug. This interval can be computed as follows:

 1y1 2 y2 2 6 t.025sp Å
1
n1

1
1
n2

 139.67 2 26.58 2 6 12.074 2114.11 2 Å
1
12

1
1
12

 13.09 6 11.95  11.14, 25.4 2

 Thus, we are 95% certain that the reduction in mean tapeworm 
count through the use of the drug is between 1.1 and 25.0 worms. 
The confidence interval contains values that are less than 5, which 
is consistent with our conclusions. ■
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The confidence interval and test procedures for comparing two population means 
presented in this section require three conditions to be satisfied. The first and most criti-
cal condition is that the two random samples are independent. Practically, we mean that 
the two samples are randomly selected from two distinct populations and that the ele-
ments of one sample are statistically independent of those of the second sample. Two 
types of dependencies (data are not independent) commonly occur in experiments and 
studies. The data may have a cluster effect, which often results when the data have been 
collected in subgroups. For example, 50 children are selected from five different class-
rooms for an experiment to compare the effectiveness of two tutoring techniques. The 
children are randomly assigned to one of the two techniques. Because children from 
the same classroom have a common teacher and hence may tend to be more similar in 
their academic achievement than children from different classrooms, the condition of 
independence between participants in the study may be lacking.

A second type of dependence is the result of serial or spatial correlation. When 
measurements are taken over time, observations that are closer together in time tend 
to be serially correlated—that is, more similar than observations collected at greatly 
different times. A similar dependence occurs when the data are collected at different 
locations—for example, water samples taken at various locations in a lake to assess 
whether a chemical plant is discharging pollutants into the lake. Measurements that 
are physically closer to each other are more likely to be similar than measurements 
taken farther apart. This type of dependence is spatial correlation. When the data are 
dependent, the procedures based on the t distribution produce confidence intervals 
having coverage probabilities different from the  intended values and tests of hypoth-
eses having Type I error rates different from the stated values. There are appropriate 
statistical procedures for handling this type of data, but they are more advanced. 
A book on longitudinal or repeated measures data analysis or the analysis of spatial 
data can provide the details for the analysis of dependent data.

When the population distributions are either very heavily tailed or highly 
skewed, the coverage probability for confidence intervals and the level and power 
of the t test will differ greatly from the stated values. A nonparametric  alternative 
to the t test is presented in the next section; this test does not require normality.

The third assumption is that the two population variances, s 2
1  and s 2

2, are 
equal. In Chapter 7, a formal test of the equality of the two variances, named the 
F test, will be presented. However, the F test is not very reliable if the population 
distributions are not close to a normal distribution. Thus, use of the F test is not rec-
ommended in deciding whether the equal variance t-procedures are appropriate. 
If there is evidence in the data that the two variances are considerably different, 
then alternatives to the equal-variance t test should be implemented. In particular, 
if one of the variances is at least four times the other (e.g., s 2

1  4s 2
2), then the 

equal-variance t test and confidence intervals should not be used.
To illustrate the effect of unequal variances, a computer simulation was per-

formed in which two independent random samples were generated from normal 
populations having the same means but unequal variances: s1  ks2 with k  .25, 
.5, 1, 2, and 4. For each combination of sample sizes and standard deviations, 
1,000 simulations were run. For each simulation, a level .05 test was conducted. 
The  proportions of the 1,000 tests that incorrectly rejected H0 are presented in 
Table 6.4. If the pooled t test is unaffected by the unequal variances, we would 
expect the  proportions to be close to .05, the intended level, in all cases.

From the results in Table 6.4, we can observe that when the sample sizes 
are equal, the proportion of Type I errors remains close to .05 (ranging from .042 
to .065). When the sample sizes are different, the proportion of Type I errors 
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deviates greatly from .05. The more serious case occurs when the smaller sample 
size is associated with the larger variance. In this case, the error rates are much larger 
than .05. For example, when n1  10, n2  40, and s1  4s2, the error rate is .307 . 
However, when n1  10, n2  10, and s1  4s2, the error rate is .063, much closer to 
.05. This is remarkable and provides a convincing argument to use equal sample sizes.

In the situation in which the sample variances (s2
1 and s2

2) suggest that s2
1 2 s2

2, 
there is an approximate t test using the test statistic

t r 
1   y1 2 y2 2 2 D0

Å
s2

1

n1

1
s2

2

n2

Welch (1947) showed that the percentage points of a t distribution with modified 
 degrees of freedom, known as Welch-Satterthwaite approximation, can be used to 
set the rejection region for t9. This approximate t test is summarized here.

TABLE 6.4
The effect of unequal 

 variances on the Type I 
error rates of the pooled 

t test

 s1  ks2

n1 n2 k  .25 .50 1 2 4

10 10 .065 .042 .059 .045 .063
10 20 .016 .017 .049 .114 .165
10 40 .001 .004 .046 .150 .307
15 15 .053 .043 .056 .060 .060
15 30 .007 .023 .066 .129 .174
15 45 .004 .010 .069 .148 .250

Approximate t Test 
for Independent 

Samples, Unequal 
Variance 

 H0:  1. m1 2 m2 # D0   Ha: 1. m1 2 m2 . D0

   2. m1 2 m2 $ D0 2. m1 2 m2 , D0

   3. m1 2 m2  D0 3. m1 2 m2 2 D0

 T.S.: t r 
1y1 2 y2 2 2 D0

Å
s2

1

n1
1

s2
2

n2

 R.R.: For a level a, Type I error rate,
  1. Reject H0 if t r $ ta

  2. Reject H0 if t r # 2ta

  3. Reject H0 if |t r| $ ta/2
with

df 
1n1 2 121n2 2 1 2

11 2 c 2 2 1n1 2 1 2 1 c2 1n2 2 1 2   and c 
s2

1 /n1

s2
1

n1
1

s2
2

n2

Note: If the computed value of df is not an integer, round down to the 
nearest integer.
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The test based on the t9 statistic is sometimes referred to as the separate-variance 
t test because we use the separate sample variances s2

1 and s2
2 rather than a pooled 

sample variance.
When there is a large difference between s1 and s2, we must also modify 

the confidence interval for m1 2 m2. The following formula is developed from the 
 separate-variance t test.

Approximate 
Confidence 

 Interval for m1 2 m2, 
 Independent 

 Samples with s1 Z s2 

 1y1 2 y2 2 6 ta/2Å
s2

1

n1
1

s2
2

n2

where the t percentile has

 df 
1n1 2 1 2 1n2 2 1 2

11 2 c 2 2 1n1 2 1 2 1 c2 1n2 2 1 2  with c 
s2

1 /n1

s2
1

n1
1

s2
2

n2

EXAMPLE 6.4

The weekend athlete often incurs an injury due to not having the most appropriate 
or latest equipment. For example, tennis elbow is an injury that is the result of the 
stress encountered by the elbow when striking a tennis ball. There have been enor-
mous improvements in the design of tennis rackets in the last 20 years. To investi-
gate whether the new oversized racket delivers less stress to the elbow than does a 
more conventionally sized racket, a group of 45 tennis players of intermediate skill 
volunteered to participate in the study. Because there was no current information 
on the oversized rackets, an unbalanced design was selected. Thirty-three players 
were randomly assigned to use the oversized racket, and the remaining 12 players 
used the conventionally sized racket. The force on the elbow just after the impact 
of a forehand strike of a tennis ball was measured five times for each of the 45 ten-
nis players. The mean force was then taken of the five force readings; the summary 
of these 45 force readings is given in Table 6.5.

TABLE 6.5
Summary of force  

readings for Example 6.4

 Oversized Conventional

Sample Size 33 12
Sample Mean 25.2 33.9
Sample Standard Deviation 8.6 17 .4 

Use the information in Table 6.5 to test the research hypothesis that a tennis player 
would encounter a smaller mean force at the elbow using an oversized racket than 
he or she would encounter using a conventionally sized racket.

Solution A normal probability of the force data for each type of racket suggests 
that the two populations of forces are nearly normally distributed. That the sample 
standard deviation in the forces for the conventionally sized racket is more than 
double that for the oversized racket would indicate a difference in the population 
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standard deviations. Thus, it would not be appropriate to conclude that s1 < s2. 
The separate-variance t test was  applied to the data. The test procedure for evalu-
ating the research hypothesis that the oversized racket has a smaller mean force is 
as follows:

H0:  m1 $ m2 (that is, oversized racket does not have smaller mean force)
Ha:  m1 , m2 (that is, oversized racket has smaller mean force)

Writing the hypotheses in terms of m1 2 m2 yields

 H0: m1 2 m2 $ 0 versus Ha : m1 2 m2 , 0

 T.S.:  t r 
1y1 2 y2 2 2 D0

Å
s2

1

n1

1
s2

2

n2


125.2 2 33.9 2 2 0

Å
18.6 2 2

33
1

117.4 2 2

12

 21.66

To compute the rejection region and p-value, we need to compute the approximate 
df for t9:

 c 
s2

1 /n1

s2
1

n1
1

s2
2

n2


18.6 2 2 /33

18.6 2 2

33
1

117.4 2 2

12

 .0816

 df 
1n1 2 1 21n2 2 1 2

11 2 c2 21n1 2 1 2 1 c2 1n2 2 1 2

 
133 2 1 2112 2 1 2

11 2 .0816 2 2 133 2 1 2 1 1.0816 2 2 112 2 1 2  13.01

We round 13.01 down to 13.
Table 2 in the Appendix has the t-percentile for a  .05 equal to 1.771. We can 

now construct the rejection region.
R.R.: For a  .05 and df  13, reject H0 if t9 , 21.771.

Because t9  21.66 is not less than 2l.771, we fail to reject H0 and conclude that 
there is not significant evidence that the mean force of oversized rackets is smaller 
than the mean force of conventionally sized rackets. We can bound the p-value 
using Table 2 in the Appendix with df  l3. With t9  21.66, we conclude .05 ,  
p-value , .10. Using a software package, the p-value is computed to be .060. ■

The standard practice in many studies is to always use the pooled t test. To 
 illustrate that this type of practice may lead to improper conclusions, we will con-
duct the pooled t test on the above data. The estimate of the common standard 
 deviation in mean force s is

sp  Å
1n1 2 1 2s2

1 1 1n2 2 1 2s2
2

n1 1 n2 2 2
 Å

133 2 1 2 18.6 2 2 1 112 2 1 2 117.4 2 2

33 1 12 2 2
 11.5104

T.S. :   t r 
1y1 2 y2 2 2 D0

spÅ
1
n1

1
1
n2


125.2 2 33.9 2 2 0

11.5104Å
1
33

1
1
12

 22.24
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The t-percentile for a  .05 and df  33 1 12 2 2  43 is given in Table 2 of the 
Appendix as 1.684 (for df  40). We can now construct the rejection region.

R.R.: For a  .05 and df  43, reject H0 if t , 21.684.

Because t  22.24 is less than 21.684, we would reject H0 and conclude that there 
is significant evidence that the mean force of oversized rackets is smaller than the 
mean force of conventionally sized rackets. Using a software package, the p-value is 
computed to be .015. Thus, an application of the pooled t test when there is strong 
evidence of a difference in variances would lead to a wrong conclusion concerning 
the difference in the two means.

Although we failed to determine that the mean force delivered by the over-
sized racket was statistically significantly lower than the mean force delivered by 
the conventionally sized racket, the researchers may be interested in the range of 
values for the difference in the mean forces of the two types of rackets. We will now 
estimate the size of the difference in the two mean forces, m1 2 m2, using a 95% 
confidence interval.

Using df  13, as computed previously, the t-percentile from Table 2 in the 
 Appendix is ta/2  t.025  2.160. Thus, the confidence interval is given by the follow-
ing calculations:

y1 2 y2 6 ta/2Å
s2

1

n1

1
s2

2

n2

 25.2 2 33.9 6 2.16Å
18.6 2 2

33
1

117.4 2 2

12

 28.7 6 11.32

Thus, we are 95% confident that the difference in the mean forces is between 
220.02 and 2.62. An expert who studies the effect on the elbow of varying amounts 
of force would then have to determine if this range of forces has any practical 
 significance on injuries to the elbow of tennis players.

To illustrate that the separate-variance t test is less affected by unequal 
variances than is the pooled t test, the data from the computer simulation reported 
in Table 6.4 were analyzed using the separate-variance t test. The proportion of the 
1,000 tests that incorrectly rejected H0 is presented in Table 6.6. If the separate-
variance t test was unaffected by the unequal variances, we would expect the 
proportions to be close to .05, the intended level, in all cases.

From the results in Table 6.6, we can observe that the separate-variance t test 
has a Type I error rate that is consistently very close to .05 in all the cases considered. 
On the other hand, the pooled t test has Type I error rates very different from .05 
when the sample sizes are unequal and we sample from populations having very 
different variances. 

In this section, we developed pooled-variance t methods based on the require-
ment of independent random samples from normal populations with equal population 

TABLE 6.6
The effect of unequal  

variances on the Type I  
error rates of the  

separate-variance t test

 s1  ks2

n1 n2 k 5 .25 .50 1 2 4

10 10 .055 .040 .056 .038 .052
10 20 .055 .044 .049 .059 .051
10 40 .049 .047 .043 .041 .055
15 15 .044 .041 .054 .055 .057
15 30 .052 .039 .051 .043 .052
15 45 .058 .042 .055 .050 .058
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variances. For situations when the variances are not equal, we introduced the separate-
variance t9 statistic. Confidence intervals and hypothesis tests based on these proce-
dures (t or t9) need not give identical results. Standard computer packages often report 
the results of both t and t9 tests. Which of these results should you use in your report?

If the sample sizes are equal and the population variances are equal, the 
 separate-variance t test and the pooled t test give algebraically identical results; 
that is, the computed t equals the computed t9. Thus, why not always use t9 in place 
of t when n1  n2? The reason we would select t over t9 is that the df for t are nearly 
 always larger than the df for t9, and, hence, the power of the t test is greater than 
the power of the t9 test when the variances are equal. When the sample sizes and 
variances are very unequal, the results of the t and t9 procedures may differ greatly. 
The evidence in such cases indicates that the separate-variance methods are some-
what more reliable and more conservative than the results of the pooled t methods. 
However, if the populations have both different means and different variances, an 
examination of just the size of the difference in their means, m1 2 m2, would be an 
inadequate description of how the populations differ. We should always examine 
the size of the differences in both the means and the standard deviations of the 
populations being compared. In Chapter 7, we will discuss procedures for examin-
ing the difference in the standard deviations of two populations. 

 6.3 A Nonparametric Alternative:  
The Wilcoxon Rank Sum Test

The two-sample t test of the previous section was based on several conditions: 
 independent samples, normality, and equal variances. When the conditions of nor-
mality and equal variances are not valid but the sample sizes are large, the results 
using a t (or t9) test are approximately correct. There is, however, an alternative 
test procedure that requires less stringent conditions. This procedure, called the 
Wilcoxon rank sum test, is discussed here.

The assumptions for this test are that we have two independent random sam-
ples of sizes n1 and n2: 

x1, x2, . . . , xn1   
and  y1, y2, . . . , yn2

The population distributions of the xs and ys are identical with the exception that 
one distribution may be shifted to the right of the other distribution, as shown in 
Figure 6.4. We model this relationship by stating

y 
d x 1 D

Wilcoxon rank sum 
test

FIGURE 6.4
Skewed population  
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that the distribution of y equals the distribution of x plus a shift of size D. When D 
is a positive number, the population (treatment) associated with the y-values tends 
to have larger values than the population (treatment) associated with the x-values. 
In the previous section, D  m1 2 m2; that is, we were evaluating the  difference in 
the population means. In this section, we will consider the difference in the popu-
lations more generally. Furthermore, the t-based procedures from Chapter 5 and 
Section 6.2 required that the population distributions have a normal distribution. 
The Wilcoxon rank sum test does not impose this restriction. Thus, the Wilcoxon 
procedure is more broadly applicable than the t-based procedures, especially for 
small sample sizes.

Because we are now allowing the population distributions to be nonnormal, 
the rank sum procedure must deal with the possibility of extreme observations in 
the data. One way to handle samples containing extreme values is to replace each 
data value with its rank (from lowest to highest) in the combined sample—that is, 
the sample consisting of the data from both populations. The smallest value in the 
combined sample is assigned the rank of 1, and the largest value is assigned the 
rank of N  n1 1 n2. The ranks are not affected by how far the smallest (largest) 
data value is from next smallest (largest) data value. Thus, extreme values in data 
sets do not have as strong an effect on the rank sum statistic as they did in the 
t-based  procedures.

The calculation of the rank sum statistic consists of the following steps: 

1. List the data values in the combined data set from smallest to 
largest. 

2. In the next column, assign the numbers 1 to N to the data values with 1 
assigned to the smallest value and N to the largest value. These are the 
ranks of the observations.

3. If there are ties—that is, duplicated values—in the combined data set, 
the ranks for the observations in a tie are taken to be the average of 
the ranks for those observations. 

4. Let T denote the sum of the ranks for the observations from 
 population 1.

If the null hypothesis of identical population distributions is true, the n1 ranks 
from population 1 are just a random sample from the N integers 1, . . . , N. Thus, 
under the null hypothesis, the distribution of the sums of the ranks T depends only 
on the sample sizes, n1 and n2, and does not depend on the shape of the population 
distributions. Under the null hypothesis, the sampling distribution of T has a mean 
and variance given by 

mT 
n1 1n1 1 n2 1 1 2

2
  and  s2

T 
n1n2

12
 1n1 1 n2 1 1 2

Intuitively, if T is much smaller (or larger) than mT , we have evidence that the 
null hypothesis is false and in fact the population distributions are not equal. 
The  rejection region for the rank sum test specifies the size of the difference 
between T and mT  for the null hypothesis to be rejected. Because the distribution 
of T under the null hypothesis does not depend on the shape of the population 
distributions, Table 5 in the Appendix provides the critical values for the test 
 regardless of the shape of the population distribution. The Wilcoxon rank sum 
test is summarized here.

ranks 
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After the completion of the test of hypotheses, we need to assess the size of the 
difference in the two populations (treatments). That is, we need to obtain a sample 
estimate of D and place a confidence interval on D. We use the Wilcoxon rank 
sum statistics to produce the confidence interval for D. First, obtain the M  n1n2 
possible differences in the two data sets: xi 2 yj for i  1, . . . , n1 and j  1 . . . , n2. 
The estimator of D is the median of these M differences:

D̂  median 3 1xi 2 yj 2 , where i  1, . . . , n1 and j  1, . . . , n2 4
Let D(1) # D(2) # D(M) denote the ordered values of the M differences, xi 2 yj. If 
M  n1n2 is odd, take

D̂  D11M112/22

If M  n1n2 is even, take

D̂ 
1
2

 3D1M/22 1 D1M/ 2112 4

We obtain a 95% confidence interval for D using the values from Table 5 in 
the Appendix for the Wilcoxon rank sum statistic. Let TU be the a  .025 one-tailed 
value from Table 5 in the Appendix, and let

C.025 
n1 12n2 1 n1 1 1 2

2
1 1 2 TU

If C.025 is not an integer, take the nearest integer less than or equal to C.025. The 
approximate 95% confidence interval for D, (DL, DU) is given by

DL  D1C.0252 and DU  D1M112C.0252

where D1C.0252 and D1M112C.0252 are obtained from the ordered values of all possible 
differences in the xs and ys.

For large values of n1 and n2, the value of Ca/2 can be approximated using

Ca/ 2 
n1n2

2
2 za/2Å

n1n2 1n1 1 n2 1 1 2
12

where za/2 is the percentile from the standard normal tables. We will illustrate these 
procedures in the following example.

Wilcoxon Rank  
Sum Test* 

(n1 # 10, n2 # 10)

 H0: The two populations are identical (D  0).
 Ha: 1. Population 1 is shifted to the right of population 2 (D . 0).
  2. Population 1 is shifted to the left of population 2 (D , 0).
  3. Populations 1 and 2 are shifted from each other (D Z 0).

T.S.:  T, the sum of the ranks in sample 1

R.R.:  Use Table 5 in the Appendix to find critical values for TU and TL;
  1. Reject H0 if T . TU (one-tailed from Table 5).
  2. Reject H0 if T , TL (one-tailed from Table 5).
  3. Reject H0 if T . TU or T , TL (two-tailed from Table 5).

 Check assumptions and draw conclusions.

*This test is equivalent to the Mann-Whitney U test (Conover, 1999).
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EXAMPLE 6.5

Many states are considering lowering the blood-alcohol level at which a driver is 
designated as driving under the influence (DUI) of alcohol. An investigator for a 
legislative committee designed the following test to study the effect of alcohol on 
reaction time. Ten participants consumed a specified amount of alcohol. Another 
group of 10 participants consumed the same amount of a nonalcoholic drink, a 
placebo. The two groups did not know whether they were receiving alcohol or 
the placebo. The 20 participants’ average reaction times (in seconds) to a series of 
simulated driving situations are reported in Table 6.7 . Does it appear that alcohol 
consumption increases reaction time?

TABLE 6.7
Data for Example 6.5 Placebo 0.90  0.37  1.63  0.83  0.95  0.78  0.86  0.61  0.38  1.97

Alcohol 1.46  1.45  1.76  1.44  1.11  3.07  0.98  1.27  2.56  1.32

a. Why is the t test inappropriate for analyzing the data in this study?
b. Use the Wilcoxon rank sum test to test the hypotheses:
 H0:   The distributions of reaction times for the placebo and alcohol 

populations are identical (D  0).
 Ha:   The distribution of reaction times for the placebo consumption 

population is shifted to the left of the distribution for the alco-
hol population. (Larger reaction times are associated with the 
 consumption of alcohol, D , 0.)

c. Place 95% confidence intervals on the median reaction times for the 
two groups and on D.

d. Compare the results you obtain to the results from a software program.
Solution

a. A boxplot of the two samples is given in Figure 6.5. The plots 
indicate that the population distributions are skewed to the right 
because 10% of the data values are large outliers and the upper 
whiskers are longer than the lower whiskers. The sample sizes are 
both small, and, hence, the t test may be inappropriate for analyzing 
this study. 

b. The Wilcoxon rank sum test will be conducted to evaluate whether 
alcohol consumption increases reaction time. Table 6.8 contains the 
ordered data for the combined samples, along with their associated 
ranks. We will designate observations from the placebo group as 1 
and from the alcohol group as 2. 

FIGURE 6.5
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   For a  .05, reject H0 if T , 83, using Table 5 in the Appendix 
with a  .05, one-tailed, and n1  n2  10. The value of T is 
computed by summing the ranks from group 1: T  1 1 2 1 3 1 
4 1 5 1 6 1 7 1 8 1 16 1 18  70. Because 70 is less than 83, we 
reject H0 and conclude there is significant evidence that the placebo 
population has smaller  reaction times than the population of alcohol 
consumers.

c. Because we have small sample sizes and the population distributions 
 appear to be skewed to the right, we will construct confidence intervals 
on the median reaction times in place of confidence intervals on the 
mean reaction times. Using the methodology from Section 5.9 and 
Table 4 in the Appendix, we find

  Ca122, n  C.05, 10  1

Thus, 

 L.025  C.05, 10 1 1  2

and

 U.025  n 2 C.05, 10  10 2 1  9

The 95% confidence intervals for the population medians are given by

 (ML, MU)  (y(2), y(9))

 Thus, a 95% confidence interval is (.38, 1.63) for the placebo popu-
lation median and (1.11, 2.56) for the alcohol population median. 
Because the sample sizes are very small, the confidence intervals are 
not very  informative.

    To compute the 95% confidence interval for D, we need to 
form the M  n1n2  10(10)  100 possible differences Dij  y1i 2 y2j. 
Next, we  obtain the a  .025 value of TU from Table 5 in the 
Appendix with n1  n2  10—that is, TU  131. Using the formula 
for C.025, we obtain

C.025 
n1 12n2 1 n1 1 1 2

2
1 1 2TU 

10 12 110 2 1 10 1 1 2
2

1 1 2 131  25

TABLE 6.8
Ordered reaction  

times and ranks 

 Ordered    Ordered 
 Data  Group  Rank   Data  Group  Rank

 1 0.37 1  1 11 1.27 2 11
 2 0.38 1  2 12 1.32 2 12
 3 0.61 1  3 13 1.44 2 13
 4 0.78 1  4 14 1.45 2 14
 5 0.83 1  5 15 1.46 2 15
 6 0.86 1  6 16 1.63 1 16
 7 0.90 1  7 17 1.76 2 17
 8 0.95 1  8 18 1.97 1 18
 9 0.98 2  9 19 2.56 2 19
10 1.11 2 10 20 3.07 2 20
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DL  D1C.0252  D1252 and DU  D1M112C.0252  D1100112252  D1762

 Thus, we need to find the 25th and 76th ordered values of the dif-
ferences Dij  xi 2 yj. Table 6.9 contains the 100 differences, Ds. We 
would next sort the Ds from smallest to largest. The estimator of D 
would be the median of the differences:

D̂ 
1
2

 3D1502 1 D1512 4 
1
2

 3 120.61 2 1 120.61 2 4  20.61

To obtain an approximate 95% confidence interval for D, we first need 
to obtain

D1252  21.07  and  D1762  20.28

Therefore, our approximate 95% confidence interval for D is (21.07, 
20.28).

d. The output from Minitab is given here. 

TABLE 6.9 Summary data for Example 6.5

y1i y2j Dij y1i y2j Dij y1i y2j Dij y1i y2j Dij y1i y2j Dij

.90 1.46 2.56 .37 1.46 21.09 1.63 1.46 .17 .83 1.46 2.63 .95 1.46 2.51

.90 1.45 2.55 .37 1.45 21.08 1.63 1.45 .18 .83 1.45 2.62 .95 1.45 2.50

.90 1.76 2.86 .37 1.76 21.39 1.63 1.76 2.13 .83 1.76 2.93 .95 1.76 2.81

.90 1.44 2.54 .37 1.44 21.07 1.63 1.44 .19 .83 1.44 2.61 .95 1.44 2.49

.90 1.11 2.21 .37 1.11 2.74 1.63 1.11 .52 .83 1.11 2.28 .95 1.11 2.16

.90 3.07 22.17 .37 3.07 22.70 1.63 3.07 21.44 .83 3.07 22.24 .95 3.07 22.12

.90 0.98 2.08 .37 .98 2.61 1.63 .98 .65 .83 .98 2.15 .95 .98 2.03

.90 1.27 2.37 .37 1.27 2.90 1.63 1.27 .36 .83 1.27 2.44 .95 1.27 2.32

.90 2.56 21.66 .37 2.56 22.19 1.63 2.56 2.93 .83 2.56 21.73 .95 2.56 21.61

.90 1.32 2.42 .37 1.32 2.95 1.63 1.32 .31 .83 1.32 2.49 .95 1.32 2.37

.78 1.46 2.68 .86 1.46 2.60 .61 1.46 2.85 .38 1.46 21.08 1.97 1.46 .51

.78 1.45 2.67 .86 1.45 2.59 .61 1.45 2.84 .38 1.45 21.07 1.97 1.45 .52

.78 1.76 2.98 .86 1.76 2.90 .61 1.76 21.15 .38 1.76 21.38 1.97 1.76 .21

.78 1.44 2.66 .86 1.44 2.58 .61 1.44 2.83 .38 1.44 21.06 1.97 1.44 .53

.78 1.11 2.33 .86 1.11 2.25 .61 1.11 2.50 .38 1.11 2.73 1.97 1.11 .86

.78 3.07 22.29 .86 3.07 22.21 .61 3.07 22.46 .38 3.07 22.69 1.97 3.07 21.10

.78 .98 2.20 .86 .98 2.12 .61 .98 2.37 .38 .98 2.60 1.97 .98 .99

.78 1.27 2.49 .86 1.27 2.41 .61 1.27 2.66 .38 1.27 2.89 1.97 1.27 .70

.78 2.56 21.78 .86 2.56 21.70 .61 2.56 21.95 .38 2.56 22.18 1.97 2.56 2.59

.78 1.32 2.54 .86 1.32 2.46 .61 1.32 2.71 .38 1.32 2.94 1.97 1.32 .65

Mann–Whitney Confidence Interval and Test

PLACEBO N 10 Median 0.845
ALCOHOL N 10 Median 1.445
Point estimate for ETA1-ETA2 is 0.610
95.5 Percent CI for ETA1-ETA2 is ( 1.080, 0.250)
W 70.0
Test of ETA1 ETA2 vs ETA1 ETA2 is significant at 0.0046
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Minitab refers to the test statistic as the Mann-Whitney test. This test 
is equiva lent to the Wilcoxon test statistic. In fact, the value of the test 
 statistic W  70 is identical to the Wilcoxon T  70. The output indi-
cates that the p-value  .0046 and a 95.5% confidence interval for D 
is given by (21.08, 2.25).

Note: This interval is slightly different from the interval com-
puted in part (c) because Minitab computed a 95.6% confidence 
interval, whereas we computed a 94.8% confidence interval. ■

When both sample sizes are more than 10, the sampling distribution of T is 
approximately normal; this allows us to use a z statistic in place of T when using 
the Wilcoxon rank sum test: 

z 
T 2 mT

sT

The theory behind the Wilcoxon rank sum test requires that the population distri-
butions be continuous, so the probability that any two data values are equal is zero. 
Because in most studies we record data values to only a few decimal places, we will 
often have ties—that is, observations with the same value. For these situations, each 
observation in a set of tied values receives a rank score equal to the average of the 
ranks for the set of values. When there are ties, the variance of T must be  adjusted. 
The adjusted value of s2

T  is shown here. 

s2
T 

n1n2

12
 a 1n1 1 n2 1 1 2 2

gk
j1tj 1t 2

j 2 1 2
1n1 1 n2 21n1 1 n2 2 1 2 b

where k is the number of tied groups and tj denotes the number of tied observa-
tions in the jth group. Note that when there are no tied observations, tj  1 for all 
j, which results in 

s2
T 

n1n2

12
 1n1 1 n2 1 1 2

From a practical standpoint, unless there are many ties, the adjustment will result 
in very little change to s2

T . The normal approximation to the Wilcoxon rank sum 
test is summarized here.

Wilcoxon Rank Sum 
Test: Normal  

Approximation 

n1 . 10 and n2 . 10

 H0:    The two populations are identical.
 Ha: 1. Population 1 is shifted to the right of population 2.

  2. Population 1 is shifted to the left of population 2.
  3. Population 1 and 2 are shifted from each other.

 T.S.:    z 
T 2 mT

sT

, where T denotes the sum of the ranks in sample 1

R.R.:     For a specified value of a,
   1. Reject H0 if z $ za.
   2. Reject H0 if z # 2za.
   3. Reject H0 if |z| $ za/2.

Check assumptions and draw conclusions.
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EXAMPLE 6.6

Environmental engineers were interested in determining whether a cleanup pro-
ject on a nearby lake was effective. Prior to initiation of the project, they obtained 
12 water samples at random from the lake and analyzed the samples for the amount 
of dissolved oxygen (in ppm). Due to diurnal fluctuations in the dissolved oxygen, 
all measurements were obtained at the 2 p.m. peak period. The before and after 
data are presented in Table 6.10.

TABLE 6.10
Dissolved oxygen  

measurements (in ppm) 

 Before After 
 Cleanup Cleanup

11.0 11.6 10.2 10.8
11.2 11.7 10.3 10.8 
11.2 11.8 10.4 10.9 
11.2 11.9 10.6 11.1 
11.4 11.9 10.6 11.1 
11.5 12.1 10.7 11.3 

a. Use a  .05 to test the following hypotheses: 

H0:  The distributions of dissolved oxygen measurements taken 
before the cleanup project and 6 months after the cleanup 
project began are identical. 

Ha:  The distribution of dissolved oxygen measurements taken 
before the cleanup project is shifted to the right of the cor-
responding distribution of measurements taken 6 months 
after the cleanup project began. (Note that a cleanup pro-
ject has been effective in one sense if the dissolved oxygen 
level drops over a period of time.) 

 For convenience, the data are arranged in ascending order in Table 6.10.
b. Has the correction for ties made much of a difference? 

Solution

a. First, we must jointly rank the combined sample of 24 observations 
by  assigning the rank of 1 to the smallest observation, the rank of 2 
to the next smallest, and so on. When two or more measurements 
are the same, we assign all of them a rank equal to the average of the 
ranks they occupy. The sample measurements and associated ranks 
(shown in parentheses) are listed in Table 6.11.

Because n1 and n2 are both greater than 10, we will use the test  
statistic z. If we are trying to detect a shift to the left in the 
distribution after the cleanup, we expect the sum of the ranks for the 
observations in sample 1 to be large. Thus, we will reject H0 for large 
values of z  1T 2 mT 2 /sT .

Grouping the measurements with tied ranks, we have 18 groups. 
These groups are listed in Table 6.12 with the corresponding values of 
tj, the  number of tied ranks in the group.

For all groups with tj  1, there is no contribution for 

S j  tj 1t2
j 2 1 2

1n1 1 n2 21n1 1 n2 2 1 2
in s2

T  because t 2
j 2 1  0. Thus, we will need only tj  2, 3.
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Substituting our data in the formulas, we obtain 

 mT 
n1 1n1 1 n2 1 1 2

2


12 112 1 12 1 1 2
2

 150 

 s2
T 

n1n2

12
 c 1n1 1 n2 1 1 2 2

Stj 1t 2
j 2 1 2

1n1 1 n2 2 1n1 1 n2 2 1 2 d

 
12 112 2

12
 c25 2

6 1 6 1 6 1 24 1 6
24 123 2 d

  12 125 2 .0870 2  298.956 

 sT  17.29 

The computed value of z is

z 
T 2 mT

sT


216 2 150

17.29
 3.82

Using the R function pnorm(zc), the test statistic z  3.82 has 
p-value P(z $ 3.82)  1 2 pnorm(3.82)  .00007 . This implies that 
there is very strong evidence in the data that the  distribution of 
before-cleanup measurements is shifted to the right of the correspond-
ing distribution of after-cleanup measurements; that is, the after-
cleanup measurements of dissolved oxygen tend to be smaller than 
the corresponding before-cleanup measurements. 

TABLE 6.11
Dissolved oxygen 

measurements and ranks

 Before Cleanup After Cleanup

11.0  (10)  10.2  (1)
11.2  (14)  10.3  (2)
11.2  (14)  10.4  (3)
11.2  (14)  10.6  (4.5)
11.4  (17)  10.6  (4.5)
11.5  (18)  10.7  (6)
11.6  (19)  10.8  (7 .5)
11.7  (20)  10.8  (7 .5)
11.8  (21)  10.9  (9)
11.9  (22.5)  11.1  (11.5)
11.9  (22.5)  11.1  (11.5)
12.1  (24)  11.3  (16)
 T  216

TABLE 6.12
Ranks, groups, and ties Rank Group  tj  Rank Group  tj

1  1  1  14, 14, 14  10  3 
2  2  1  16  11  1 
3  3  1  17  12  1 
4.5, 4.5  4  2  18  13  1 
6  5  1  19  14  1 
7 .5, 7 .5  6  2  20  15  1 
9  7  1  21  16  1 
10  8  1  22.5, 22.5  17  2 
11.5, 11.5  9  2  24  18  1
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b. The value of s2
T  without correcting for ties is 

s2
T 

12 112 2125 2
12

 300  and  sT  17.32

For this value of sT, z  3.81 rather than 3.82, which was found by 
 applying the correction. This should help you understand how little 
 effect the correction has on the final result unless there are a large 
 number of ties. ■

The Wilcoxon rank sum test is an alternative to the two-sample t test, with the 
rank sum test requiring fewer conditions than the t test. In particular, the rank sum 
test does not require the two populations to have normal distributions; it requires 
only that the distributions be identical except possibly that one distribution could 
be shifted from the other distribution. When both distributions are normal, the t test 
is more likely to detect an existing difference; that is, the t test has greater power 
than the rank sum test. This is logical because the t test uses the magnitudes of the 
observations rather than just their relative magnitudes (ranks), as is done in the rank 
sum test. However, when the two distributions are nonnormal, the Wilcoxon rank 
sum test has greater power; that is, it is more likely to detect a shift in the population 
distributions. Also, the level or probability of a Type I error for the Wilcoxon rank 
sum test will be equal to the stated level for all population distributions. The t test’s 
actual level will deviate from its stated value when the population distributions 
are nonnormal. This is particularly true when nonnormality of the population 
distributions is present in the form of severe skewness or extreme outliers. 

Randles and Wolfe (1979) investigated the effect of skewed and heavy-tailed 
distributions on the power of the t test and the Wilcoxon rank sum test. Table 6.13 
contains a portion of the results of their simulation study. For each set of distribu-
tions, sample sizes and shifts in the populations, 5,000 samples were drawn, and 
the proportion of times a level a  .05 t test or Wilcoxon rank sum test rejected 
H0 was recorded. The distributions considered were normal, double exponen-
tial (symmetric, heavy-tailed), Cauchy (symmetric, extremely heavy-tailed), and 
Weibull (skewed to the right). Shifts of size 0, .6s, and 1.2s were considered, where 
s denotes the standard deviation of the distribution, with the exception of the 
Cauchy distribution, where s is a general scale  parameter.

When the distribution is normal, the t test is only slightly better—has greater 
power values—than the Wilcoxon rank sum test. For the double exponential, the 
Wilcoxon test has greater power than the t test. For the Cauchy distribution, the 

TABLE 6.13
Power of t test (t)  

and Wilcoxon rank sum  
test (T) with a  .05

   Double  
Distribution  Normal Exponential Cauchy Weibull 

 Shift 0  .6  1.2  0  .6  1.2  0  .6  1.2  0  .6  1.2 
n1, n2 Test 

5, 5  t  .044  .213  .523  .045  .255  .588  .024  .132  .288  .049  .221  .545 
 T  .046  .208  .503  .049  .269  .589  .051  .218  .408  .049  .219  .537 

5, 15  t  .047  .303  .724  .046  .304  .733  .056  .137  .282  .041  .289  .723 
 T  .048  .287  .694  .047  .351  .768  .046  .284  .576  .049  .290  .688 

15, 15  t  .052  .497  .947  .046  .507  .928  .030  .153  .333  .046  .488  .935 
 T  .054  .479  .933  .046  .594  .962  .046  .484  .839  .046  .488  .927 
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level of the t test deviates significantly from .05, and its power is much lower than for 
the Wilcoxon test. When the distribution was somewhat skewed, as in the Weibull 
distribution, the tests had similar performance. Furthermore, the level and power of 
the t test were nearly identical to the values when the distribution was normal. The 
t test is quite robust to skewness except when there are numerous extreme values.

 6.4 Inferences About m1 2 m2: Paired Data

The methods we presented in the preceding three sections were appropriate for 
situations in which independent random samples are obtained from two popula-
tions. These methods are not appropriate for studies or experiments in which each 
measurement in one sample is matched or paired with a particular measurement in 
the other sample. In this section, we will deal with methods for analyzing “paired” 
data. We begin with an example.

EXAMPLE 6.7

Insurance adjusters are concerned about the high estimates they are receiving for 
auto repairs from garage I compared to garage II. To verify their suspicions, each 
of 15 cars recently involved in an accident was taken to both garages for separate 
estimates of repair costs. The estimates from the two garages are given in Table 6.14.

A preliminary analysis of the data used a two-sample t test.

Solution Computer output for these data is shown here. 

TABLE 6.14
Repair estimates  

(in hundreds of dollars)

Car Garage I Garage II

1 17 .6 17 .3
2 20.2 19.1
3 19.5 18.4
4 11.3 11.5
5 13.0 12.7
6 16.3 15.8
7 15.3 14.9
8 16.2 15.3
9 12.2 12.0

10 14.8 14.2
11 21.3 21.0
12 22.1 21.0
13 16.9 16.1
14 17 .6 16.7
15 18.4 17 .5

Totals: y1  16.85 y2  16.23
 s1  3.20 s1  2.94

Two-Sample T-Test and Confidence Interval

Two-sample T for Garage I vs Garage II

N Mean StDev SE Mean
Garage I 15 16.85 3.20 0.83
Garage II 15 16.23 2.94 0.76

95% CI for mu Garage I mu Garage II: ( 1.69, 2.92)
T-Test mu Garage I mu Garage II (vs not ): T 0.55 P 0.59 DF 27



326 ChApteR 6 InfeRenCeS CompARIng two populAtIon CentRAl VAlueS

From the output, we see there is a consistent difference in the sample means  
(y1 2 y2  .62). However, this difference is rather small considering the variability 
of the measurements (s1  3.20, s2  2.94). In fact, the computed t-value (.55) has 
a p-value of .59, indicating very little evidence of a difference in the average claim 
estimates for the two garages. ■

A closer glance at the data in Table 6.14 indicates that something about the 
conclusion in Example 6.7 is inconsistent with our intuition. For all but one of the 
15 cars, the estimate from garage I was higher than that from garage II. From our 
knowledge of the binomial distribution, the probability of observing garage I esti-
mates higher in y  14 or more of the n  15 trials, assuming no difference (p  .5) 
for garages I and II, is 

P 1y  14 or 15 2   P 1y  14 2 1 P 1y  15 2

  a15
14

b 1.5 2 14 1.5 2 1 a15
15

b 1.5 2 15  .000488

Thus, if the two garages in fact have the same distribution of estimates, there is 
 approximately a 5 in 10,000 chance of having 14 or more estimates from garage I 
higher than those from garage II. Using this probability, we would argue that the 
observed estimates are highly contradictory to the null hypothesis of equality of 
distribution of estimates for the two garages. Why are there such conflicting results 
from the t test and the binomial calculation? 

The explanation of the difference in the conclusions from the two procedures 
is that one of the required conditions for the t test, two samples being independent 
of each other, has been violated by the manner in which the study was conducted. 
The adjusters obtained a measurement from both garages for each car. For the two 
samples to be independent, the adjusters would have to take a random sample of 
15 cars to garage I and a different random sample of 15 to garage II. 

As can be observed in Figure 6.6, the repair estimates for a given car are 
about the same value, but there is a large variability in the estimates from each 
garage. The large variability among the 15 estimates from each garage diminishes 
the relative size of any difference between the two garages. When designing the 
study, the adjusters recognized that the large differences in the amount of damage 
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suffered by the cars would result in a large variability in the 15 estimates at both 
garages. By having both garages give an estimate on each car, the adjusters could 
calculate the difference between the estimates from the garages and hence reduce 
the large car-to-car variability. 

This example illustrates a general design principle. In many situations, the 
available experimental units may be considerably different prior to their random 
 assignment to the treatments with respect to characteristics that may affect the 
experimental responses. These differences will often then mask true treatment dif-
ferences. In the previous example, the cars had large differences in the amount of 
damage suffered during the accident and hence would be expected to have large 
differences in their repair estimates no matter what garage gave the repair estimate. 
When comparing two treatments or groups in which the available experimental 
units have important differences prior to their assignment to the treatments or 
groups, the samples should be paired. There are many ways to design experiments 
to yield paired data. One method involves having the same group of experimental 
units receive both treatments, as was done in the repair estimates example. A sec-
ond method involves having measurements taken before and after the treatment is 
 applied to the experimental units. For example, suppose we want to study the effect 
of a new medicine proposed to reduce blood pressure. We would record the blood 
pressure of participants before they received the medicine and then after receiving 
the medicine. A third design procedure uses naturally occurring pairs such as twins 
or spouses. A final method pairs the experimental units with  respect to factors that 
may mask differences in the treatments. For example, a study is proposed to evalu-
ate two methods for teaching remedial reading. The participants could be paired 
based on a pretest of their reading ability. After pairing the participants, the two 
methods are randomly assigned to the participants within each pair. 

A proper analysis of paired data needs to take into account the lack of 
 independence between the two samples. The sampling distribution for the differ-
ence in the sample means, y1 2 y2, will have a mean and standard error of

my12y2
 m1 2 m2   and  sy12y2

 Å
s2

1 1 s2
2 2 2s1s2r

n
where r measures the amount of dependence between the two samples. When the 
two samples produce similar measurements, r is positive and the standard error of 
y1 2 y2 is smaller than what would be obtained using two independent samples. 
This was the case in the repair estimates data. The size and sign of r can be deter-
mined by examining the plot of the paired data values. The magnitude of r is large 
when the plotted points are close to a straight line. The sign of r is positive when 
the plotted points follow an increasing line and negative when the plotted points 
follow a decreasing line. From Figure 6.6, we observe that the estimates are close 
to an  increasing line, and, thus, r will be positive. Using paired data in the repair 
estimate study will reduce the variability in the standard error of the difference in 
the sample means in comparison to using independent samples. 

The actual analysis of paired data requires us to compute the differences in 
the n pairs of measurements, di  y1i 2 y2i, and obtain d, sd, and the mean and 
standard deviations in the dis. Also, we must transform the hypotheses about m1 
and m2 into hypotheses about the mean of the differences, md  m1 2 m2. The con-
ditions required to develop a t procedure for testing hypotheses and constructing 
confidence intervals for md are 

1. The sampling distribution of the dis is a normal distribution. 
2. The dis are independent; that is, the pairs of observations are  independent.
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A summary of the test procedure is given here.

Paired t test  H0: 1. md # D0 (D0 is a specified value, often .0) 
  2. md $ D0 
  3. md  D0 

 Ha: 1. md . D0

  2. md , D0 
  3. md Z D0 

 T.S.: t 
d 2 D0

sd /Ën

 R.R.: For a level a, Type I error rate with df  n 2 1
  1. Reject H0 if t $ ta. 
  2. Reject H0 if t # 2ta. 
  3. Reject H0 if |t| $ ta/2. 

Check assumptions and draw conclusions. 

100(1 2 a)% 
Confidence  Interval 

for md Based on 
Paired Data

d 6 ta/2
sd

Ën

where n is the number of pairs of observations (and hence the number of 
 differences) and df  n 2 1.

TABLE 6.15
Difference data  
from Table 6.14

Car 1  2  3  4  5  6  7 8  9  10  11  12  13  14  15 
di .3  1.1  1.1  2.2  .3  .5  .4 .9  .2  .6  .3  1.1  .8  .9  .9

EXAMPLE 6.8

Refer to the data of Example 6.7, and perform a paired t test. Draw a conclusion 
based on a  .05.

Solution For these data, the parts of the statistical test are 

 H0: md  m1 2 m2 # 0

 Ha: md . 0

 T.S.:  t 
d

sd /#n

 R.R.: For df  n 2 1  14, reject H0 if t $ t.05.

Before computing t, we must first calculate d and sd . For the data of 
Table 6.14, we have the differences di  garage I estimate 2 garage II estimate 
(see Table 6.15). 

The corresponding 100(1 2 a)% confidence interval on md  m1 2 m2 based 
on the paired data is shown here.
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The mean and standard deviation are given here.
d  .61  and  sd  .394

Substituting into the test statistic t, we have

t 
d 2 0

sd /#n


.61

.394 /Ë15
 6.00

Indeed, t  6.00 is far beyond all tabulated t values for df  14, so the p-value is 
less than .005; in fact, the p-value is .000016. We conclude that the mean repair 
estimate for garage I is greater than that for garage II. This conclusion agrees with 
our intuitive finding based on the binomial distribution.

The point of all this discussion is not to suggest that we typically have two or 
more analyses that may give very conflicting results for a given situation. Rather, the 
point is that the analysis must fit the experimental situation. For this experiment, 
the samples are dependent, demanding that we use an analysis appropriate for 
dependent (paired) data.

After determining that there is a statistically significant difference in the 
means, we should estimate the size of the difference. A 95% confidence interval 
for m1 2 m2  md will provide an estimate of the size of the difference in the 
average  repair estimate between the two garages:

 d 6 ta/2 

sd

Ën

 .61 6 2.145 
.394

Ë15
 .61 6 .22  1.39, .83 2

Thus, we are 95% confident that the mean repair estimates differ by a 
value between $390 and $830. The insurance adjusters determined that a dif-
ference of this size is of practical significance. ■

Reducing the standard error of y1 2 y2 by using the differences, dis, in place 
of the observed values, y1is and y2is, will often produce a t test having greater power 
and confidence intervals having smaller width. Is there any loss in using paired 
data  experiments? Yes, the t procedures using the dis have df  n 2 1, whereas the 
t procedures using the individual measurements have df  n1 1 n2 2 2  2(n 2 1). 
Thus, when designing a study or experiment, the choice between using an 
independent samples experiment and a paired data experiment will depend on 
how much difference exists in the experimental units prior to their assignment to 
the treatments. If there are only small differences, then the independent samples 
design is more efficient. If the differences in the experimental units are extreme, 
then the paired data design is more efficient, provided that the two measurements 
within the pairs are positively correlated.

 6.5 A Nonparametric Alternative:  
The Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test, which makes use of the sign and the magnitude of 
the rank of the differences between pairs of measurements, provides an alterna-
tive to the paired t test when the population distribution of the differences is non-
normal. The Wilcoxon signed-rank test requires that the population distribution 
of differences be symmetric about the unknown median M. Let D0 be a specified 
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 hypothesized value of M. The test evaluates shifts in the distribution of differences 
to the right or left of D0; in most cases, D0 is 0. The computation of the signed-rank 
test involves the following steps:

1. Calculate the differences in the n pairs of observations.
2. Subtract D0 from all the differences.
3. Delete all zero values. Let n be the number of nonzero values.
4. List the absolute values of the differences in increasing order, and 

 assign them the ranks 1, . . . , n (or the average of the ranks for ties).

We define the following notation before describing the Wilcoxon signed-rank 
test: 

   n  the number of pairs of observations with a nonzero difference 
T1  the sum of the positive ranks; if there are no positive ranks, T  0 
T2  the sum of the negative ranks; if there are no negative ranks, T  0
  T  the smaller of T1 and T2

mT 
n 1n 1 1 2

4

 ST  Å
n 1n 1 1 212n 1 1 2

24

If we group together all differences assigned the same rank and there are g such 
groups, the variance of T is

s2
T 

1
24

 cn 1n 1 1 2 12n 1 1 2 2
1
2 a j tj 1tj 2 1 2 1tj 1 1 2 d

where tj is the number of tied ranks in the jth group. Note that if there are no tied 
ranks, tj  1 for all groups. The formula then reduces to

s2
T 

n 1n 1 1 212n 1 1 2
24

The Wilcoxon signed-rank test is presented here. Let M be the median of the 
 population of differences.

mT

sT

g groups 

tj

Wilcoxon 
 Signed-Rank Test

 H0: M  D0 (D0 is specified; generally D0 is set to 0.)

 Ha:    1. M . D0

  2. M , D0

  3. M Z D0

(n # 50)

 T.S.:    1. T  T2

  2. T  T1

  3. T  smaller of T1 and T2

 R.R.:  For a specified value of a (one-tailed .05, .025, .01, or .005; two-
tailed .10, .05, .02, .01) and fixed number of nonzero differences n, 
 reject H0 if the value of T is less than or equal to the appropriate 
entry in Table 6 in the Appendix. 
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EXAMPLE 6.9

A city park department compared a new formulation of a fertilizer, brand A, to 
the previously used fertilizer, brand B, on each of 20 different softball fields. Each 
field was divided in half, with brand A randomly assigned to one half of the field 
and brand B to the other. Sixty pounds of fertilizer per acre were then applied to 
the fields. The effect of the fertilizer on the grass grown at each field was measured 
by the weight (in pounds) of grass clippings produced by mowing the grass at the 
fields over a 1-month period. Evaluate whether brand A tends to produce more 
grass than brand B. The data are given in Table 6.16.

(n . 50)

 T.S.: Compute the test statistic

z 

T 2
n 1n 1 1 2

4

Å
n 1n 1 1 212n 1 1 2

24

 R.R.:  For cases 1 and 2, reject H0 if z , 2za; for case 3, reject H0 if  
z , 2za /2. 

Check assumptions, place a confidence interval on the median of the differ-
ences, and state conclusions.

Field Brand A Brand B Difference Field Brand A Brand B Difference

 1 211.4 186.3 25.1 11 208.9 183.6 25.3
 2 204.4 205.7 21.3 12 208.7 188.7 20.0
 3 202.0 184.4 17 .6 13 213.8 188.6 25.2
 4 201.9 203.6 21.7 14 201.6 204.2 22.6
 5 202.4 180.4 22.0 15 201.8 181.6 20.1
 6 202.0 202.0 0 16 200.3 208.7 28.4
 7 202.4 181.5 20.9 17 201.8 181.5 20.3
 8 207 .1 186.7 20.4 18 201.5 208.7 27 .2
 9 203.6 205.7 22.1 19 212.1 186.8 25.3
10 216.0 189.1 26.9 20 203.4 182.9 20.5

TABLE 6.16

Solution Evaluate whether brand A tends to produce more grass than brand B. 
Plots of the differences in grass yields for the 20 fields are given in Figures 6.7(a) 
and (b). The differences appear to not follow a normal distribution and appear 
to form two distinct clusters. Thus, we will apply the Wilcoxon signed-rank test 
to evaluate the differences in grass yields from brand A and brand B. The null 
hypothesis is that the distribution of differences is symmetrical about 0 against the 
alternative that the differences tend to be greater than 0. First, we must rank (from 
smallest to largest) the absolute values of the n  20 2 1  19 nonzero differences. 
These ranks appear in Table 6.17 .
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  Rank of    Rank of  
  Absolute Sign of   Absolute Sign of  
Field Difference Difference Difference Field Difference Difference Difference

1 25.1 15 Positive 11 25.3 17 .5 Positive 
2 21.3  1 Negative 12 20.0 8 Positive
3 17 .6  7 Positive 13 25.2 16 Positive
4 21.7  2 Negative 14 22.6 4 Negative
5 22.0 14 Positive 15 20.1 9 Positive
6 0 None Positive 16 28.4 6 Negative
7 20.9 13 Positive 17 20.3 10 Positive
8 20.4 11 Positive 18 27 .2 5 Negative 
9 22.1  3 Negative 19 25.3 17 .5 Positive

10 26.9 19 Positive 20 20.5 12 Positive

TABLE 6.17
Rankings of  

grass yield data

The sums of the positive and negative ranks are 

T2  1 1 2 1 3 1 4 1 5 1 6  21 
and

T1  7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 .5 1 17 .5 1 19  
       169 
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Because Ha: M . 0, T  T2  21. For a one-sided test with n  19 and a  .05, we 
see from Table 6 in the Appendix that we will reject H0 if T is less than or equal to 
53. Thus, we reject H0 and conclude that brand A fertilizer tends to produce more 
grass than does brand B.

A 95% confidence interval on the median difference in grass production is 
 obtained by using the methods given in Chapter 5. Because the number of sample 
differences is an even number, the estimated median difference is obtained by 
taking the  average of the 10th- and 11th-largest differences: D(10) and D(11):

M̂
1
2

 3D1102 1 D1112 4 
1
2

 320.1 1 20.3 4  20.2

A 95% confidence interval for M is obtained as follows. From Table 4 in the 
 Appendix with a(2)  .05, we have Ca(2), 20  5. Therefore,

L.025  C.05, 20  5 1 1  6

and

U.025  n 2 C.05, 20  20 2 5  15

The 95% confidence for the median of population of differences is

(ML, MU)  (D6, D15)  (21.3, 22.0) ■

The choice of an appropriate paired-sample test depends on examining 
 different types of deviations from normality. Because the level of the Wilcoxon 
signed-rank does not depend on the population distribution, it is the same as the 
stated value for all symmetric distributions. The level of the paired t test may be 
different from its stated value when the population distribution is very nonnormal. 
Also, we need to examine which test has greater power. We will report a portion 
of a simulation study contained in Randles and Wolfe (1979). The population 
distributions considered were normal, uniform (short-tailed), double exponential 
(moderately heavy-tailed), and Cauchy (very heavy-tailed). Table 6.18 displays 
the proportion of times in 5,000 replications that the tests rejected H0. The two 
populations were shifted by amounts 0, .4s, and .8s, where s denotes the standard 
deviation of the distribution. (When the population distribution is Cauchy, s 
denotes a scale parameter.)

   Double  
 Distribution  Normal  Exponential  Cauchy  Uniform 

 Shift:  0  .4s  .8s  0  .4s  .8s 0  .4s .8s 0  .4s .8s

n  10  t  .049  .330  .758  .047  .374  .781  .028  .197  .414  .051  .294  .746 
 T  .050  .315  .741  .048  .412  .804  .049  .332  .623  .049  .277  .681 

n  15  t .048  .424  .906  .049  .473  .898  .025  .210  .418  .051  .408  .914 
 T .047  .418  .893  .050  .532  .926  .050  .423  .750  .051  .383  .852 

n  20  t .048  .546  .967  .044  .571  .955  .026  .214  .433  .049  .522  .971 
 T .049  .531  .962  .049  .652  .975  .049  .514  .849  .050  .479  .935

TABLE 6.18
Empirical power of 

paired t (t) and signed-
rank (T) tests with  

a  .05 
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From Table 6.18, we can make the following observations. The level of 
the paired t test remains nearly equal to .05 for uniform and double exponential 
distributions, but is much less than .05 for the very heavy-tailed Cauchy distribu-
tion. The Wilcoxon signed-rank test’s level is nearly .05 for all four distributions, 
as  expected because the level of the Wilcoxon test requires only that the popu-
lation distribution be symmetric. When the distribution is normal, the t test has 
only slightly greater power values than the Wilcoxon signed-rank test. When the 
population distribution is short-tailed and uniform, the paired t test has slightly 
greater power than the signed-rank test. Note also that the power values for 
the t test are slightly less than the t power values when the population distribu-
tion is normal. For the double exponential, the Wilcoxon test has slightly greater 
power than the t test. For the Cauchy distribution, the level of the t test deviates 
significantly from .05, and its power is much lower than that of the Wilcoxon test. 
From other studies, if the distribution of differences is grossly skewed, the nomi-
nal t probabilities may be misleading. The skewness has less of an effect on the 
level of the Wilcoxon test. 

Even with this discussion, you might still be confused as to which statistical 
test or confidence interval to apply in a given situation. First, plot the data and 
 attempt to determine whether the population distribution is very heavy-tailed or 
very skewed. In such cases, use a Wilcoxon rank-based test. When the plots are 
not definitive in their detection of nonnormality, perform both tests. If the results 
from the different tests yield different conclusions, carefully examine the data to 
identify any peculiarities to understand why the results differ. If the conclusions 
agree and there are no blatant violations of the required conditions, you should be 
very confident in your conclusions. This particular “hedging” strategy is appropri-
ate not only for paired data but also for many situations in which there are several 
alternative analyses.

 6.6 Choosing Sample Sizes for Inferences About m1 2 m2

Sections 5.3 and 5.5 were devoted to sample-size calculations to obtain a confidence 
interval about m with a fixed width and specified degree of confidence or to conduct 
a statistical test concerning m with predefined levels for a and b. Similar calcula-
tions can be made for inferences about m1 2 m2 with either independent samples 
or paired data. Determining the sample size for a 100(1 2 a)% confidence interval 
about m1 2 m2 of width 2E based on independent samples is possible by solving the 
following expression for n:

za/2sÅ
1
n

1
1
n

 E

Note that, in this formula, s is the common population standard deviation and we 
have assumed equal sample sizes. 

Sample Sizes for a  
100(1 2 a)% 

 Confidence Interval 
for m1 2 m2 of the 

Form y1 2 y2 6 E, 
Independent 

 Samples

n 
2z2

a/2 s
2

E 2

(Note: If s is unknown, substitute an estimated value to get an approximate 
sample size.)
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The sample sizes obtained using this formula are usually approximate because 
we have to substitute an estimated value of s, the common population standard 
deviation. This estimate will probably be based on an educated guess from infor-
mation on a previous study or on the range of population values. 

Corresponding sample sizes for one- and two-sided tests of m1 2 m2 based on 
specified values of a and b, where we desire a level a test having the probability of 
a Type II error b(m1 2 m2) # b whenever |m1 2 m2| $ D, are shown here.

Sample Sizes for 
Testing  

m1 2 m2,  Independent 
 Samples

 One-sided test:  n  2s2 
1za 1 zb 2 2

D2

 Two-sided test:  n  2s2 
1za/2 1 zb 2 2

D2

where n1  n2  n and the probability of a Type II error is to be # b when 
the true difference |m1 2 m2| $ D. (Note: If s is unknown, substitute an 
 estimated value to obtain an approximate sample size.)

EXAMPLE 6.10

One of the crucial factors in the construction of large buildings is the amount of 
time it takes for poured concrete to reach a solid state, called the “set-up” time. 
Researchers are attempting to develop additives that will accelerate the set-up 
time without diminishing any of the strength properties of the concrete. A study is 
being designed to compare concrete with the most promising additive to concrete 
without the additive. The research hypothesis is that the concrete with the addi-
tive will have a smaller mean set-up time than the concrete without the additive. 
The researchers have decided to have the same number of test samples for the 
concrete with and without the additive. For an a  .05 test, determine the appro-
priate number of test samples needed if we want the probability of a Type II error 
to be less than or equal to .10 whenever the concrete with the additive has a mean 
set-up time of 1.5 hours less than the concrete without the additive. From previous 
experiments, the standard deviation in set-up time is 2.4 hours.

Solution Let m1 be the mean set-up time for concrete without the additive and m2 
be the mean set-up time for concrete with the additive. From the description of the 
problem, we have

●● One-sided research hypothesis: m1 . m2
●● s < 2.4
●● a  .05
●● b # .10 whenever m1 2 m2 $ 1.5  D
●● n1  n2  n

From Table 1 in the Appendix, za  z.05  1.645 and zb  z.10  1.28. Substituting 
into the formula, we have

n <
2s2 1za 1 zb 2 2

D2 
2 12.4 2 2 11.645 1 1.28 2 2

11.5 2 2  43.8,  or  44

Thus, we need 44 test samples of concrete with the additive and 44 test samples of 
concrete without the additive. ■
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Sample-size calculations can also be performed when the desired sample 
sizes are unequal, n1 Z n2. Let n2 be some multiple m of n1; that is, n2  mn1. For 
example, we may want n1 three times as large as n2; hence, n2  1

3n1. The displayed 
formulas can still be used, but we must substitute (m 1 1)/m for 2 and n1 for n in 
the sample-size formulas. After solving for n1, we have n2  mn1.

EXAMPLE 6.11

Refer to Example 6.10. Because the set-up time for concrete without the additive has 
been thoroughly documented, the experimenters wanted more information about 
the concrete with the additive than about the concrete without the additive. In par-
ticular, the experimenters wanted three times more test samples of concrete with the 
additive than without the additive; that is, n2  mn1  3n1. All other specifications 
are as given in Example 6.10. Determine the appropriate values for n1 and n2. 

Solution   In the sample-size formula, we have m  3.  Thus, replace 2 with m 1 1
m  4

3. 
We then have

n1 <

am 1 1
m

b  s2 1za 1 zb 2 2

D2 

a4
3
b  12.4 2 2 11.645 1 1.28 2 2

11.5 2 2  29.2,  or  30

Thus, we need n1  30 test samples of concrete without the additive and n2  mn1  
(3)(30)  90 test samples with the additive. ■

Sample sizes for estimating md and conducting a statistical test for md based on 
paired data (differences) are found using the formulas of Chapter 5 for m. The only 
change is that we are working with a single sample of differences rather than a sin-
gle sample of y-values. For convenience, the appropriate formulas are shown here.

Sample Sizes for 
Testing m1 2 m2, 
Paired Samples

One-sided test:  n 
s2

d 1za 1 zb 2 2

D2

Two-sided test:  n >
s2

d 1za/2 1 zb 2 2

D2

where the probability of a Type II error is b or less if the true difference 
md $ D. (Note: If sd is unknown, substitute an estimated value to obtain an 
approximate sample size.)

Sample Sizes for a  
100(1 2 a)% 

 Confidence Interval 
for m1 2 m2 of the 

Form d2 6 E, Paired 
Samples

n 
z2

a/2 s
2
d

E 2

(Note: If sd is unknown, substitute an estimated value to obtain an approximate 
sample size.)

 6.7 RESEARCH STuDy: Effects of an Oil Spill  
on Plant Growth

The oil company responsible for the oil spill described in the abstract at the begin-
ning of this chapter implemented a plan to restore the marsh to prespill condition. 
To evaluate the effectiveness of the cleanup process, and in particular to study the 
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residual effects of the oil spill on the flora, researchers designed a study of plant 
growth 1 year after the burning. In an unpublished Texas A&M University disser-
tation, Newman (1998) describes the researchers’ plan for evaluating the effect of 
the oil spill on Distichlis spicata, a flora of particular importance to the area of the 
spill. We will now describe a hypothetical set of steps that the researchers may have 
implemented in order to successfully design their research study.

Defining the Problem
The researchers needed to determine the important characteristics of the flora that 
may be affected by the spill. Some of the questions that needed to be answered 
prior to starting the study included the following:

1. What are the factors that determine the viability of the flora?
2. How did the oil spill affect these factors?
3. Are there data on the important flora factors prior to the spill?
4. How should the researchers measure the flora factors in the oil-spill 

 region?
5. How many observations are necessary to confirm that the flora has 

 undergone a change after the oil spill?
6. What type of experimental design or study is needed?
7 . What statistical procedures are valid for making inferences about the 

change in flora parameters after the oil spill?
8. What types of information should be included in a final report to 

document the changes observed (if any) in the flora parameters?

Collecting the Data
The researchers determined that there was no specific information on the flora in 
this region prior to the oil spill. Since there was no relevant information on flora 
density in the spill region prior to the spill, it was necessary to evaluate the flora 
density in unaffected areas of the marsh to determine whether the plant density 
had changed after the oil spill. The researchers located several  regions that had 
not been contaminated by the oil spill. They needed to determine how many tracts 
would be required in order for their study to yield viable conclusions. To deter-
mine how many tracts must be sampled, we have to  determine how accurately the 
researchers want to estimate the difference in the mean flora densities in the spilled 
and unaffected regions. The researchers specified that they wanted the estimator 
of the difference in the two means to be within eight units of the true difference in 
the means. That is, the researchers wanted to estimate the difference in mean flora 
density with a 95% confidence interval having the form yCon 2 ySpill 6 8. In previ-
ous studies on similar sites, the flora density ranged from 0 to 73 plants per tract. 
The number of tracts the researchers needed to sample in order to achieve their 
specifications would involve the following calculations.

We want a 95% confidence interval on mCon 2 mSpill with E  8 and za/2  
z.025  1.96. Our estimate of s is ŝ  range/4  (73 2 0)/4  18.25. Substituting 
into the sample-size formula, we have

n 
2 1za/2

2 2ŝ2

E2 
2 11.96 2 2 118.25 2 2

18 2 2  39.98 < 40

Thus, a random sample of 40 tracts should give a 95% confidence interval for 
mCon 2 mSpill with the desired tolerance of eight plants provided 18.25 is a reason-
able estimate of s.
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The spill region and the unaffected regions were divided into tracts of nearly 
the same size. From the above calculations, it was decided that 40 tracts from 
both the spill and the unaffected areas would be used in the study. Forty tracts of 
exactly the same size were randomly selected in each of these locations, and the 
Distichlis spicata densities were recorded. The data consist of 40 measurements of 
flora density in the uncontaminated (control) sites and 40 density measurements 
in the contaminated (spill) sites. The data are given below in a stem-leaf plot. The 
researchers would next carefully examine the data from the fieldwork to determine 
if the measurements were recorded correctly. The data would then be transferred 
to computer files and prepared for analysis.

Summarizing Data
The next step in the study would be to summarize the data through plots and 
summary statistics. The data are displayed in Figure 6.8, with summary statistics 
given in Table 6.19. A boxplot of the data displayed in Figure 6.9  indicates that 
the control sites have a somewhat greater plant density than the oil-spill sites. 
From the summary statistics, we see that the average flora density in the control 
sites is yCon  38.48 with a standard deviation of sCon  16.37 . The sites within 
the spill region have an average density of ySpill  26.93 with a standard devia-
tion of sSpill  9.88. Thus, the control sites have a larger average flora density 
and a greater variability in flora density than do the sites within the spill region. 
Whether these observed differences in flora density reflect similar differences in 
all the sites and not just the ones included in the study will require a statistical 
analysis of the data.

FIGURE 6.8
Number of plants 

 observed in tracts at oil-
spill and control sites. 

The data are displayed in 
stem-and-leaf plots

Oil-Spill TractsstcarTlortnoC

Mean: 38.48 000 0 Mean: 26.93
Median: 41.50 7 0 59 Median: 26.00
St. Dev: 16.37 1 1 14 St. Dev: 9.88
n: 40 6 1 77799 n: 40

4 2 2223444
9 2 555667779
0 3 11123444

55678 3 5788
000111222233 4 1

57 4
0112344 5 02

67789 5

Descriptive Statistics 

Variable Site Type N Mean Median Tr. Mean St. Dev.

No. plants Control 40 38.48 41.50 39.50 16.37
 Oil spill 40 26.93 26.00 26.69 9.88

Variable Site Type SE Mean Minimum Maximum Q1 Q3

No. plants Control 2.59 0.00 59.00 35.00 51.00
 Oil spill 1.56 5.00 52.00 22.00 33.75

TABLE 6.19
Summary statistics  

for oil-spill data
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Analyzing Data
The researchers hypothesized that the oil-spill sites would have a lower plant 
density than the control sites. Thus, we will construct confidence intervals on the 
mean plant densities in the control plots, mCon, and in the oil-spill plots, mSpill, to 
assess their average plant density. Also, we can construct confidence intervals on 
the difference mCon 2 mSpill and test the research hypothesis that mCon is greater 
than mSpill. From Figure 6.9, the data from the oil spill area appear to have a nor-
mal distribution, whereas the data from the control area appear to be skewed to 
the left. The normal probability plots are given in Figure 6.10 to further assess 
whether the population distributions are in fact normal in shape. We observe that 
the data from the spill tracts appear to follow a normal distribution but that the 
data from the control tracts do not, since their plotted points do not fall close to 
the straight line. Also, the variability in plant density is higher in the control sites 
than in the spill sites. Thus, the approximate t procedures will be the most appro-
priate  inference procedures.

The sample data yielded the summary values shown in Table 6.20.
The research hypothesis is that the mean plant density for the control plots 

exceeds that for the oil-spill plots. Thus, our statistical test is set up as follows:

H0:  mCon # mSpill versus Ha:  mCon . mSpill

That is,

H0: mCon 2 mSpill # 0
Ha: mCon 2 mSpill . 0

T.S.: t r 
1yCon 2 ySpill 2 2 D0

Å
s 2

Con

nCon

1
s 2

Spill

nSpill


138.48 2 26.93 2 2 0

Å
116.37 2 2

40
1

19.88 2 2

40

 3.82

In order to compute the rejection region and p-value, we need to compute the 
 approximate df for t9.

   c 
s 2

Con /nCon

s 2
Con

nCon
1

s 2
Spill

nSpill


116.37 2 2 /40

116.37 2 2 /40 1 19.88 2 2 /40
 .73

 df 
1nCon 2 121nSpill 2 1 2

11 2 c 2 2 1nCon 2 1 2 1 c2 1nSpill 2 1 2 
139 2139 2

11 2 .73 2 2 139 2 1 1.73 2 2 139 2
 64.38, which is rounded to 64

FIGURE 6.9
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Since Table 2 in the Appendix does not have df  64, we will use the R function 
qt(1 2 .05, 64)  1.699. In fact, the difference is very small when df becomes large: 
t.05  1.671 for df  60, the value from Table 2.

R.R.: For a  .05 and df  64, reject H0 if t9 . 1.699.

FIGURE 6.10
Normal probability plots 
for the two types of sites
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Control Plots Oil-Spill Plots

nCon  40  nSpill  40
yCon  38.48 ySpill  26.93
sCon  16.37 sSpill  9.88

TABLE 6.20
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Since t9  3.82 is greater than 1.699, we reject H0. We can bound the p-value using 
Table 2 in the Appendix with df  60. With t9  3.82, the level of significance is 
p-value , .001. Using R, p-value  1 2 pt(3.82, 64)  .00015. Thus, we can con-
clude that there is significant (p-value , .00015) evidence that mCon is greater than 
mSpill. Although we have determined that there is a statistically significant amount 
of evidence that the mean plant density at the control sites is greater than the mean 
plant density at the spill sites, the question remains whether these differences have 
practical significance. We can estimate the size of the difference in the means by 
placing a 95% confidence interval on mCon 2 mSpill.

The appropriate 95% confidence interval for mCon 2 mSpill is computed by 
using the following formula with df  64, the same as the value that was used for 
the R.R.

1yCon 2 ySpill 2 6 ta/2Å
s2

Con

nCon

1
s2

Spill

nSpill



138.48 2 26.93 2 6 2.0Å
116.37 2 2

40
1

19.88 2 2

40
 11.55 6 6.05  15.5, 17.6 2

Thus, we are 95% confident that the mean plant densities differ by an amount 
 between 5.5 and 17 .6. The plant scientists would then evaluate whether a difference 
in this range is of practical importance. This would then determine whether the 
sites in which the oil spill occurred have been returned to their prespill condition, 
at least in terms of this particular type of flora.

Reporting Conclusions
We would need to write a report summarizing our findings from the study. The fol-
lowing items should be included in the report:

1. Statement of objective for study
2. Description of study design and data collection procedures
3. Numerical and graphical summaries of data sets

● table of means, medians, standard deviations, quartiles, range
● boxplots
● stem-and-leaf plots

4. Description of all inference methodologies:
● approximate t tests of differences in means
● approximate t-based confidence interval on population means
● verification that all necessary conditions for using inference 

 techniques were satisfied using boxplots, normal probability plots
5. Discussion of results and conclusions
6. Interpretation of findings relative to previous studies
7 . Recommendations for future studies
8. Listing of data set

 6.8 Summary and Key Formulas

In this chapter, we have considered inferences about m1 2 m2. The first set of 
methods was based on independent random samples being selected from the 
populations of interest. We learned how to sample data to run a statistical test or to 
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construct a confidence interval for m1 2 m2 using t methods. The Wilcoxon rank sum 
test, which does not require normality of the underlying populations, was presented 
as an alternative to the t test.

The second major set of procedures can be used to make comparisons 
between two populations when the sample measurements are paired. In this situa-
tion, we no longer have independent random samples, and, hence, the procedures of 
Sections 6.2 and 6.3 (t methods and the Wilcoxon rank sum test) are inappropriate. 
The test and estimation methods for paired data are based on the sample differ-
ences for the paired measurements or the ranks of the differences. The paired t test 
and corresponding confidence interval based on the difference measurements were 
introduced and found to be identical to the single-sample t methods of Chapter 5. 
The nonparametric alternative to the paired t test is the Wilcoxon signed-rank test.

The material presented in Chapters 5 and 6 lays the foundation of statistical 
inference (estimation and testing) for the remainder of the text. Review the mate-
rial in this chapter periodically as new topics are introduced so that you retain the 
basic elements of statistical inference. 

Key Formulas

1. 100(1 2 a)% confidence interval for m1 2 m2, independent samples; y1 and 
y2 approximately normal; s2

1  s2
2

1
   y1 2 y2 2 6 ta/2 spÅ

1
n1

1
1
n2

 where

sp  Å
1n1 2 1 2s 2

1 1 1n2 2 1 2s 2
2

n1 1 n2 2 2
   and  df  n1 1 n2 2 2

2. t test for m1 2 m2, independent samples; y1 and y2 approximately normal; 
s2

1  s2
2

T.S.: t 
y1 2 y2 2 D0

spË1 /n1 1 1 /n2

   df  n1 1 n2 2 2

3. t9 test for m1 2 m2, unequal variances; independent samples; y1 and y2 
 approximately normal 

T.S.: t r 
y1 2 y2 2 D0

Å
s2

1

n1

1
s2

2

n2

   df 
1n1 2 1 21n2 2 1 2

11 2 c 2 2 1n1 2 1 2 1 c2 1n2 2 1 2

 where

c 
s2

1 /n1

s2
1

n1
1

s2
2

n2

4. 100(1 2 a)% confidence interval for m1 2 m2, unequal variances; independent 
samples; y1 and y2 approximately normal

1y1 2 y2 2 6 ta/2Å
s2

1

n1

1
s2

2

n2
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 where the t-percentile has

df 
1n1 2 1 21n2 2 1 2

11 2 c 2 2 1n1 2 1 2 1 c2 1n2 2 1 2
 with

c 
s2

1 /n1

s2
1

n1
1

s2
2

n2

5. Wilcoxon rank sum test, independent samples

  H0:  The two populations are identical.
 (n1, n2 # 10)

  T.S.:  T, the sum of the ranks in sample 1
 (n1, n2 . 10)

  T.S.: z 
T 2 mT

sT

 where T denotes the sum of the ranks in sample 1

mT 
n1 1n1 1 n2 1 1 2

2
   and  sT  Å

n1n2

12
 1n1 1 n2 1 1 2

 provided there are no tied ranks

6. Paired t test; differences approximately normal 

T.S.: t 
d 2 D0

sd /Ën
  df  n 2 1

 where n is the number of differences

7 . 100(1 2 a)% confidence interval for md, paired data; differences approxi-
mately normal

d 6 ta/2sd /Ën

8. Wilcoxon signed-rank test, paired data 

   H0: The distribution of differences is symmetrical about D0.
  T.S.:  (n # 50) T2 or T1 or smaller of T1 and T2 depending on the  

form of Ha

  T.S.: (n . 50) 

   
z 

T 2 mT

sT

 where

mT 
n 1n 1 1 2

4
   and   sT  Å

n 1n 1 1 212n 1 1 2
24

 provided there are no tied ranks

9. Independent samples: sample sizes for estimating m1 2 m2 with a  
100(1 2 a)% confidence interval, of the form y1 2 y2 6 E

n 
2z2

a/2s
2

E2
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10. Independent samples: sample sizes for testing m1 2 m2

a. One-sided test: 

n 
2s2 1za 1 zb 2 2

D2

b. Two-sided test: 

n >
2s2 1za/2 1 zb 2 2

D2

 11. Paired samples: sample sizes for estimating m1 2 m2 with 100(1 2 a)% 
confidence interval, of the form d 6 E

n 
z2

a/2s
2
d

E2

12. Paired samples: sample sizes for testing m1 2 m2 
a. One-sided test: 

n 
s2

d 1za 1 zb 2 2

D2

b. Two-sided test: 

n >  
s2

d 1za/2 1 zb 2 2

D2

 6.9 Exercises

 6.1 Introduction
 Env. 6.1  Refer to the oil-spill case study.

 a. What are the populations of interest?
 b.  What are some factors other than flora density that may indicate that the oil spill 

has affected the marsh?
 c.  Describe a method for randomly selecting the tracts where flora density measure-

ments were to be taken.
 d. State several hypotheses that may be of interest to the researchers.

 6.2 Inferences About m1 2 m2: Independent Samples
 Basic 6.2  For each of the situations, set up the rejection region:

 a. H0 : ml  m2 versus Ha: ml ? m2 with n1  12, n2  15, and a  .05
 b. H0 : ml # m2 1 3 versus Ha: ml > m2 1 3 with n1  n2  25 and a  .01
 c. H0 : ml $ m2 2 9 versus Ha: ml < m2 2 9 with n1  13, n2  15, and a  .025

 Basic 6.3  Conduct a test of H0 : ml $ m2 2 2.3 versus Ha : ml , m2 2 2.3 for the sample data summarized 
here. Use a  .01 in reaching your conclusions.

 Population

 1 2

Sample size 13 21
Sample mean 50.3 58.6
Sample standard deviation 7 .23 6.98
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 Basic 6.4  Refer to Exercise 6.3.
 a. What is the level of significance for your test?
 b. Place a 99% confidence interval on m1 2 m2.

 Med. 6.5  In an effort to link cold environments with hypertension in humans, a preliminary experi-
ment was conducted to investigate the effect of cold on hypertension in rats. Two random samples 
of 6 rats each were exposed to different environments. One sample of rats was held in a normal 
environment at 26°C. The other sample was held in a cold 5°C environment. Blood pressures and 
heart rates were measured for rats for both groups. The blood pressures for the 12 rats are shown 
in the accompanying table.

 a.  Do the data provide sufficient evidence that rats exposed to a 5°C environment have a 
higher mean blood pressure than rats exposed to a 26°C environment? Use a  .05. 

 b.  Evaluate the three conditions required for the test used in part (a). 
 c.  Provide a 95% confidence interval on the difference in the two population means. 

 26°C 5°C

Rat Blood Pressure Rat Blood Pressure

 1 152  7 384
 2 157  8 369
 3 179  9 354
 4 182 10 375
 5 176 11 366
 6 149 12 423

 Env. 6.6  The Department of Natural Resources (DNR) received a complaint from recreational fish-
ermen that a community was releasing sewage into the river where they fished. These types of 
releases lower the level of dissolved oxygen in the river and hence cause damage to the fish resid-
ing in the river. An inspector from the DNR designs a study to investigate the fishermen’s claim. 
Fifteen water samples are selected at locations on the river upstream from the community and 
fifteen samples are selected downstream from the community. The dissolved oxygen readings in 
parts per million (ppm) are given in the following table.

Upstream 5.2 4.8 5.1 5.0 4.9 4.8 5.0 4.7 4.7 5.0 4.6 5.2 5.0 4.9 4.7
Downstream 3.2 3.4 3.7 3.9 3.6 3.8 3.9 3.6 4.1 3.3 4.5 3.7 3.9 3.8 3.7

 a.  In order for the discharge to have an impact on fish health, there needs to be at 
least an .5 ppm reduction in the dissolved oxygen. Do the data provide sufficient 
evidence that there is a large enough reduction in the mean dissolved oxygen be-
tween the upstream and downstream water in the river to impact the health of the 
fish? Use a  .01.

 b. Do the required conditions to use the test in part (a) appear to be valid?
 c. What is the level of significance of the test in part (a)?
 d.  Estimate the size of the difference in the mean dissolved oxygen readings for the 

two locations on the river using a 99% confidence interval.

 Engin. 6.7  An industrial engineer conjectures that a major difference between successful and 
unsuccessful companies is the percentage of their manufactured products returned because 
of defectives. In a study to evaluate this conjecture, the engineer surveyed the quality control 
departments of 50  successful companies (identified by the annual profit statement) and 
50 unsuccessful companies. The companies in the study all produced products of a similar nature 
and cost. The percentages of the total output  returned by customers in the previous year are 
provided in following table.

 a.  Do the data provide sufficient evidence that successful businesses have a lower 
percentage of their products returned by customers? Use a  .05. 
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 b. Do the required conditions for applying your test in part (a) appear to be valid? 
 c.  In order for the difference in percentage returns to have an economical impact, 

the difference must be at least 5%. Is there significant evidence that the 
percentage for successful businesses is at least 5% less that the percentage for 
unsuccessful businesses? 

 d.  Estimate the difference in the percentages of returns for successful and 
unsuccessful businesses using a 95% confidence interval.

 Soc. 6.8  The number of households currently receiving a daily newspaper has decreased over the 
last 10 years, and many people state they obtain information about current events through 
 television news and the Internet. To test whether people who receive a daily newspaper have a 
greater knowledge of current events than people who don’t, a sociologist gave a current events 
test to 25 randomly selected people who subscribe to a daily newspaper and to 30 randomly 
 selected persons who do not receive a daily newspaper. The following stem-and-leaf graphs give 
the scores (maximum score is 70) for the two groups. Does it appear that people who receive a 
daily newspaper have a greater knowledge of current events? Be sure to evaluate all necessary 
conditions for your procedures to be valid.

Character Stem-and-Leaf Display

Stem-and-leaf of No Newspaper Deliver Stem-and-leaf of Newspaper Subscribers
N N03 25
Leaf Unit tinUfaeL0.1 1.0

0 000
0
1 3
1 59

224332
992752

23432003
98866398553

3332110004421004
66655454

2505
95555

6 2

 Env. 6.9  The study of concentrations of atmospheric trace metals in isolated areas of the world 
has received considerable attention because of the concern that humans might somehow alter 
the climate of the earth by changing the amount and distribution of trace metals in the atmos-
phere. Consider a study at the South Pole, where, over a 2-month period, seventy air samples 
were obtained. In thirty-five of the samples, the amount of magnesium was determined. In the 
remaining thirty-five samples, the amount of europium was determined. 

Unsuccessful 11.35 9.19 10.30 8.59 4.98 6.82 6.03 11.15 9.38 8.32
Businesses 8.34 7 .69 13.58 10.49 11.07 6.98 9.77 9.36 8.39 7 .98
 6.56 6.85 8.06 7 .71 11.04 11.69 9.40 10.00 5.45 9.67
 8.93 7 .32 13.70 8.67 10.08 8.53 9.14 9.02 6.70 5.66
 8.26 7 .07 12.23 11.93 4.76 13.81 11.41 6.44 9.50 8.99

Successful 10.24 6.16 5.06 10.64 6.77 10.13 4.59 1.38 8.81 1.97
Businesses 5.43 6.32 0.43 7 .30 0.47 10.82 9.34 2.39 11.06 4.19
 5.09 8.20  10.51 1.94 9.82 6.69 0.91 6.17 0.17 7 .47
 3.62 2.23 1.08 9.16 6.07 7 .51 4.46 2.13 2.41 7 .24
 4.06 7 .70 8.32 6.33 3.83 4.96 9.05 6.41 0.27 8.48
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 Sample Size Sample Mean Sample Standard Deviation

Magnesium 35 1.0 2.21
Europium 35 17 .0 12.65

 a. What are the populations of interest in this study?
 b.  Is there significant evidence of a difference in the mean magnesium and 

Europium levels? Use a  .05.
 c. What is the level of significance of your test?
 d.  Estimate the mean levels of magnesium and Europium using a 95% confidence 

interval.

 Env. 6.10  Refer to Exercise 6.9.
 a.  Based on the values of the sample mean and sample standard deviation for 

magnesium, provide a reason why the distribution of magnesium does not have a 
normal distribution.

 b.  Are the inferences given in Exercise 6.9 valid based on your answer in part (a)?

 Env. 6.11  PCBs have been in use since 1929, mainly in the electrical industry, but it was not until 
the 1960s that they were found to be a major environmental contaminant. In the paper “The 
Ratio of DDE to PCB Concentrations in Great Lakes Herring Gull Eggs and Its Use in Interpreting 
Contaminants Data” [ Journal of Great Lakes Research (1998) 24(1):12–31], researchers report on 
the following study. Thirteen study sites from the five Great Lakes were selected. At each site, 9 
to 13 herring gull eggs were collected randomly each year for several years. Following collection, 
the PCB content was determined. The mean PCB content at each site is reported in the following 
table for the years 1982 and 1996.

Site

Year  1 2 3 4 5 6 7 8 9 10 11 12 13

1982 61.48 64.47 45.50 59.70 58.81 75.86 71.57 38.06 30.51 39.70 29.78 66.89 63.93
1996 13.99 18.26 11.28 10.02 21.00 17 .36 28.20 7 .30 12.80  9.41 12.63 16.83 22.74

 a.  Legislation was passed in the 1970s restricting the production and use of PCBs. 
Thus, the active input of PCBs from current local sources has been severely 
curtailed. Do the data provide evidence that there has been a significant 
decrease in the mean PCB content of herring gull eggs?

 b.  Estimate the size of the decrease in mean PCB content from 1982 to 1996, using 
a 95% confidence interval.

 c.  Evaluate the conditions necessary to validly test the hypotheses and construct 
the confidence intervals using the collected data.

 d. Does the independence condition appear to be violated?

  6.12  Refer to Exercise 6.11. There appears to be a large variation in the mean PCB content 
across the 13 sites. How could we reduce the effect of variation in PCB content due to site differ-
ences on the evaluation of the difference in the PCB content means between the 2 years?

 H.R. 6.13  A firm has a generous but rather complicated policy concerning end-of-year bonuses for its 
lower-level managerial personnel. The policy’s key factor is a subjective judgment of “contribu-
tion to corporate goals.” A personnel officer took samples of 24 female and 36 male managers to 
see whether there was any difference in bonuses, expressed as a percentage of yearly salary. The 
data are listed here: 
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Gender Bonus Percentage

 F 9.2 7 .7 11.9 6.2 9.0 8.4 6.9 7 .6 7 .4
 8.0 9.9 6.7 8.4 9.3 9.1 8.7 9.2 9.1
 8.4 9.6 7 .7 9.0 9.0 8.4
 M 10.4 8.9 11.7 12.0 8.7 9.4 9.8 9.0 9.2 
 9.7 9.1 8.8 7 .9 9.9 10.0 10.1 9.0 11.4 
 8.7 9.6 9.2 9.7 8.9 9.2 9.4 9.7 8.9 
 9.3 10.4 11.9 9.0 12.0 9.6 9.2 9.9 9.0

 a.  What are the populations of interest in this study?
 b.  Is there significant evidence that the mean bonus percentage for males is more 

than five units larger than the mean bonus percentage for females? Use a  .05.
 c.  What is the level of significance of your test?
 d.  Estimate the difference in the mean bonus percentages for males and females 

using a 95% confidence interval.

 6.3 A Nonparametric Alternative: The Wilcoxon Rank Sum Test
 Basic 6.14  Provide the rejection region for the Wilcoxon rank sum test for each of the following sets 

of hypotheses:
 a. H0: D  0 versus Ha: D Z 0 with n1  8, n2  9, and a  .10
 b. H0: D  0 versus Ha: D , 0 with n1  6, n2  7, and a  .05
 c. H0: D  0 versus Ha: D . 0 with n1  5, n2  9, and a  .025

  6.15  Random samples of size n1  8 and n2  8 were selected from populations A and B, 
respectively. The data are given in the following table.

Population A 4.3  4.6  4.7  5.1  5.3  5.3  5.8 5.4
Population B 3.5  3.8  3.7  3.9  4.4  4.7  5.2 4.4

 a.  Test for a difference in the medians of the two populations using an a  .05 
Wilcoxon rank sum test.

 b.  Place a 95% confidence interval on the difference in the medians of the two 
populations.

 Basic 6.16  Refer to Exercise 6.15.
 a.  Test for a difference in the means in the two populations using an a  .05 t-test.
 b.  Place a 95% confidence interval on the difference in the means of the two  

populations.
 c.  Compare the inferences obtained from the results from the Wilcoxon rank sum 

test and the t-test.
 d.  Which inferences appear to be more valid, inferences on the means or the  

medians?

 Bus. 6.17  A cable TV company was interested in making its operation more efficient by cutting down 
on the distance between service calls while still maintaining at least the same level of service 
quality. A treatment group of 18 repairpersons was assigned to a dispatcher who monitored all 
the incoming requests for cable repairs and then provided a service strategy for that day’s work 
orders. A control group of 18 repairpersons was to perform their work in a normal fashion—that 
is, by providing service in roughly a sequential order as requests for repairs were received. The 
average daily mileages for the 36 repairpersons are recorded here:
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Treatment Group 62.2  79.3  83.2  82.2  84.1  89.3
 95.8  97 .9  91.5  96.6  90.1  98.6
 85.2  87 .9  86.7  99.7  101.1  88.6

Control Group 97 .1  70.2  94.6  182.9  85.6  89.5
 109.5  101.7  99.7  193.2  105.3  92.9
 63.9  88.2  99.1  95.1  92.4  87 .3

 a.  What are the populations of interest in this study?
 b.  Is there significant evidence that the treatment group had a smaller average daily 

mileage than the control group? Use a  .05.
 c.  What is the level of significance of your test?
 d.  Estimate the difference in the average daily mileage for the treatment and control 

groups using a 95% confidence interval.
 e.  There are three possible procedures that could be applied to answer the questions 

in parts (b), (c), and (d). Which of these procedures appears to be the most valid?

 Med. 6.18  The paper “Serum Beta-2-Microglobulin (SB2M) in Patients with Multiple Myeloma Treated 
with Alpha Interferon” [ Journal of Medicine (1997) 28:311–318] reports on the influence of alpha 
interferon administration in the treatment of patients with multiple myeloma (MM). Twenty 
newly diagnosed patients with MM were entered into the study. The researchers randomly 
assigned the 20 patients to the two groups. Ten patients were treated with both intermittent 
melphalan and sumiferon (treatment group), whereas the remaining 10 patients were treated 
only with intermittent melphalan (control group). The SB2M levels were measured before and 
at days 3, 8, and 15 and months 1, 3, and 6 from the start of therapy. The measurement of SB2M 
was performed using a radioimmunoassay method. The measurements before treatment are given 
here.

Treatment Group 2.9  2.7  3.9  2.7  2.1  2.6  2.2  4.2  5.0  0.7
Control Group 3.5  2.5  3.8  8.1  3.6  2.2  5.0  2.9  2.3  2.9

 a. Plot the sample data for both groups using boxplots or normal probability plots.
 b.  Based on your findings in part (a), which procedure appears more appropriate for 

comparing the distributions of SB2M?
 c.  Is there significant evidence that there is a difference in the distribution of SB2M 

for the two groups?
 d.  Discuss the implications of your findings in part (c) for the evaluation of the 

influence of alpha interferon.
  6.19  The simulation study described in Section 6.3 evaluated the effect of heavy-tailed and 

skewed distributions on the level of significance and power of the t test and Wilcoxon rank sum 
test. Examine the results displayed in Table 6.13, and then answer the following questions.

 a.  What has a greater effect, if any, on the level of significance of the t test, skewness 
or heavy-tailness?

 b.  What has a greater effect, if any, on the level of significance of the Wilcoxon rank 
sum test, skewness or heavy-tailness?

  6.20  Refer to Exercise 6.19.
 a.  What has a greater effect, if any, on the power of the t test, skewness or heavy 

tailedness?
 b.  What has a greater effect, if any, on the power of the Wilcoxon rank sum test, 

skewness or heavy tailedness?

  6.21  Refer to Exercises 6.19 and 6.20.
 a.  For what type of population distributions would you recommend using the t test? 

 Justify your answer.
 b.  For what type of population distributions would you recommend using the 

Wilcoxon rank sum test? Justify your answer.
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 6.4 Inferences About m1 2 m2: Paired Data
 Basic 6.22  Provide the rejection region for the paired t test for each of the following sets of 

hypotheses:

 a. H0: md  0 versus Ha: md Z 0 with n  19, and a  .05
 b. H0: md # 0 versus Ha: md . 0 with n  8, and a  .025
 c. H0: md $ 0 versus Ha: md , 0 with n  14, and a  .01

 Basic 6.23  A random sample of eight pairs of twins was randomly assigned to treatment A or 
treatment B. The data are given in the following table.

Twins 1 2 3 4 5 6 7 8

Treatment A 48.3 44.6 49.7 40.5 54.3 55.6 45.8 35.4
Treatment B 43.5 43.8 53.7 43.9 54.4 54.7 45.2 34.4

 a.  Is there significant evidence that the two treatments differ using an a  .05 
paired t test. 

 b.  Is there significant evidence that the two treatments differ using an a  .05  
sign test.

 c. Do your conclusions in parts (a) and (b) agree?
 d.  How do your inferences about the two treatments based on the paired t test and 

based on the sign test differ?

 Basic 6.24  Refer to Exercise 6.23.
 a. What is the level of significance of the paired t test?
 b. What is the level of significance of the sign test?
 c.  Place a 95% confidence interval on the mean difference between the responses 

from the two treatments.
 d.  Which of the two procedures, the paired t test or the sign test, appears to be more 

valid in this study?

  6.25  Refer to the data of Exercise 6.11. A potential criticism of analyzing these data as if they 
were two independent samples is that the measurements taken in 1996 were taken at the same sites 
as the measurements taken in 1982. Thus, there is the possibility that there will be a strong positive 
correlation between the pair of observations at each site.

 a.  Plot the pairs of observations in a scatterplot with the 1982 values on the 
horizontal axis and the 1996 values on the vertical axis. Does there appear to be a 
positive  correlation between the pairs of measurements? Estimate the correlation 
between the pairs of observations?

 b.  Compute the correlation coefficient between the pairs of observations. Does this 
value confirm your observations from the scatterplot? Explain your answer.

 c.  Answer the questions posed in parts (a) and (b) of Exercise 6.11 using a paired 
data analysis. Are your conclusions different from the conclusions you reached 
treating the data as two independent samples?

 Engin. 6.26  Researchers are studying two existing coatings used to prevent corrosion in pipes that 
transport natural gas. The study involves examining sections of pipe that had been in the ground 
at least 5 years. The effectiveness of the coating depends on the pH of the soil, so the research-
ers recorded the pH of the soil at all 20 sites at which the pipe was buried prior to measuring the 
amount of corrosion on the pipes. The pH readings are given here. Describe how the researchers 
could conduct the study to reduce the effect of the differences in the pH readings on the evalua-
tion of the difference in the two coatings’ corrosion protection. 

pH Readings at Twenty Research Sites

Coating A 3.2 4.9 5.1 6.3 7 .1 3.8 8.1 7 .3 5.9 8.9
Coating B 3.7 8.2 7 .4 5.8 8.8 3.4 4.7 5.3 6.8 7 .2
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 Med. 6.27  Suppose you are a participant in a project to study the effectiveness of a new treatment 
for high cholesterol. The new treatment will be compared to a current treatment by recording the 
change in cholesterol readings over a 10-week treatment period. The effectiveness of the treat-
ment may depend on each participant’s age, body fat percentage, diet, and general health. The 
study will involve at most 30 participants because of cost considerations.

 a. Describe how you would conduct the study using independent samples.
 b. Describe how you would conduct the study using paired samples.
 c.  How would you decide which method, paired or independent samples, would be 

more efficient in evaluating the change in cholesterol readings?

 Med. 6.28  The paper “Effect of Long-Term Blood Pressure Control on Salt Sensitivity” [Journal of  Medicine 
(1997) 28:147–156] describes a study evaluating salt sensitivity (SENS) after a period of antihyper-
tensive treatment. Ten hypertensive patients (diastolic blood pressure between 90 and 115 mmHg) 
were studied after at least 18 months on antihypertensive treatment. SENS readings, which were 
obtained before and after the patients were placed on an antihypertensive treatment, are given here.

Patient 1 2 3 4 5 6 7 8 9 10

Before treatment 22.86 7 .74 15.49 9.97 1.44 9.39 11.40 1.86 26.71 6.42
After treatment  6.11 24.02 8.04 3.29 20.77 6.99 10.19 2.09 11.40 10.70

 a.  Is there significant evidence that the mean SENS value decreased after the patient 
 received antihypertensive treatment? 

 b. Estimate the size of the change in the mean SENS value.
 c.  Do the conditions required for using the t procedures appear to be valid for these 

data? Justify your answer. 

 Edu. 6.29  A study was designed to measure the effect of home environment on academic achieve-
ment of 12-year-old students. Because genetic differences may also contribute to academic 
achievement, the researcher wanted to control for this factor. Thirty sets of identical twins were 
identified who had been adopted prior to their first birthday, with one twin placed in a home in 
which academics were emphasized (Academic) and the other twin placed in a home in which 
 academics were not emphasized (Nonacademic). The final grades (based on 100 points) for the 60 
students are given here.

Set of   Set of 
Twins Academic Nonacademic Twins Academic Nonacademic

  1 78 71 16 90 88
  2 75 70 17 89 80
  3 68 66 18 73 65
  4 92 85 19 61 60
  5 55 60 20 76 74
  6 74 72 21 81 76
  7 65 57 22 89 78
   8 80 75 23 82 78
   9 98 92 24 70 62
 10 52 56 25 68 73
 11 67 63 26 74 73
 12 55 52 27 85 75
 13 49 48 28 97 88
 14 66 67 29 95 94
 15 75 70 30 78 75

 a.  Is there a difference in the mean final grades between the students in an academi-
cally oriented home environment and those in a nonacademically oriented home 
environment. Use a  .05.
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 b.  Estimate the size of the difference in the mean final grades of the students in 
academic and nonacademic home environments using a 95% confidence interval.

 c. Do the conditions for using the t procedures appear to be satisfied for these data? 
 d.  Does it appear that using twins in this study to control for variation in final scores 

was effective as compared to taking a random sample of 30 students in both types 
of home environments? Justify your answer.

 6.5 A Nonparametric Alternative: The Wilcoxon Signed-Rank Test
 Basic 6.30   Provide the rejection region for the Wilcoxon signed-rank test for each of the following sets 

of hypotheses::

 a. H0: M  0 versus Ha: M Z 0 with n  19, and a  .05
 b. H0: M # 0 versus Ha: M . 0 with n  8, and a  .025
 c. H0: M $ 0 versus Ha: M , 0 with n  14, and a  .01

 Basic 6.31  A random sample of eight pairs of twins were randomly assigned to treatment A or 
treatment B. The data are given in the following table.

Twins 1 2 3 4 5 6 7 8

Treatment A 48.3 44.6 49.7 40.5 54.3 55.6 45.8 35.4
Treatment B 43.5 43.8 53.7 43.9 54.4 54.7 45.2 34.4

 a.  Is there significant evidence that the two treatments differ using an a  .05  
Wilcoxon signed-rank test.

 b.  Compare your conclusion with the conclusions obtained using the paired t test 
and sign test in Exercise 6.23.

 Basic 6.32  Refer to Exercise 6.31.
 a. What is the level of significance of the Wilcoxon signed-rank test?
 b.  Compare the levels of significance of the Wilcoxon signed-rank test, paired t test, 

and sign test for the data set in Exercise 6.31?
 c.  Place a 95% confidence interval on the mean difference between the responses 

from the two treatments.
 d.  Which of the three procedures, the Wilcoxon signed-rank test, paired t test  

or sign test, appears to be most valid test for this study?
  6.33   Use the level and power values for the paired t test and Wilcoxon signed-rank test given in 

Table 6.18 to answer the following questions. 
 a.  For small sample sizes, n # 20, does the actual level of the t test appear to deviate 

from the nominal level of a  .05?
 b.  Which type of deviations from a normal distribution, skewness or heavy-

tailedness,  appears to have the greater affect on the t test?
 c.  For small sample sizes, n # 20, does the actual level of the Wilcoxon signed-rank 

test appear to deviate from the nominal level of a  .05?
 d.  Which type of deviations from a normal distribution, skewness or heavy-

tailedness, appears to have the greater effect on the Wilcoxon signed-rank test?

  6.34   Use the level and power values for the paired t test and Wilcoxon signed-rank test given in 
Table 6.18 to answer the following questions:

 a.  Suppose a level .05 test is to be applied to a paired data set that has differences 
that are highly skewed to the right. Will the Wilcoxon signed-rank test’s “actual” 
level or the paired t test’s actual level be closer to .05? Justify your answer.

 b.  Suppose a boxplot of the differences in the pairs from a paired data set has many 
outliers, with an equal number above and below the median. If a level a  .05 test 
is applied to the differences, will the Wilcoxon signed-rank test’s “actual” level or 
the paired t test’s actual level be closer to .05? Justify your answer.
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 Soc. 6.35   A study was conducted to determine whether automobile repair charges are higher for 
 female customers than for male customers. Twenty auto repair shops were randomly 
selected from the telephone book. Two cars of the same age, brand, and engine problem 
were used in the study. For each repair shop, the two cars were randomly assigned to a man 
and woman participant and then taken to the shop for an estimate of repair cost. The repair 
costs (in dollars) are given here. 

Repair
Shop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Female
  customers 871 684 795 838 1,033 917 1,047  723 1,179 707 817 846 975 868 1,323 791 1,157 932 1,089 770
Male 
  customers 792 765 511 520   618 447 548 720 899 788 927 657 851 702 918 528 884 702 839 878

 a. Which procedure, t or Wilcoxon, is more appropriate in this situation? Why? 
 b.  Are repair costs generally higher for female customers than for male customers?  

Use a  .05.

 Bio. 6.36  The effect of Benzedrine on the heart rate of dogs (in beats per minute) was examined in 
an experiment on 14 dogs chosen for the study. Each dog was to serve as its own control, with half 
of the dogs assigned to receive Benzedrine during the first study period and the other half  assigned 
to receive a placebo (saline solution). All dogs were examined to determine the heart rates after 
2 hours on the medication. After 2 weeks in which no medication was given, the regimens for the 
dogs were switched for the second study period. The dogs previously on Benzedrine were given the 
placebo, and the others received Benzedrine. Again, heart rates were measured after 2 hours.

    The following sample data are not arranged in the order in which they were taken but have 
been summarized by regimen. Use these data to test the research hypothesis that the distribution 
of heart rates for the dogs when receiving Benzedrine is shifted to the right of that for the same 
animals when on the placebo. Use a one-tailed Wilcoxon signed-rank test with a  .05. 

Dog Placebo Benzedrine Dog Placebo Benzedrine

 1 250 258  8 296 305
 2 271 285  9 301 319
 3 243 245 10 298 308
 4 252 250 11 310 320
 5 266 268 12 286 293
 6 272 278 13 306 305
 7 293 280 14 309 313

 6.6 Choosing Sample Sizes for Inferences About m1 2 m2

 Med. 6.37  A study is being planned to evaluate the possible side effects of an anti-inflammatory drug. It 
is suspected that the drug may lead to an elevation in the blood pressure of users of the drug. A pre-
liminary study of two groups of patients, one receiving the drug  and the other receiving a placebo, 
provides the following information on the systolic blood pressure (in mm Hg) of the two groups:

Group Mean Standard Deviation

Placebo 129.9 18.5
Anti-inflammatory drug 135.5 18.7

  Assume that both groups have systolic blood pressures that have a normal distribution with stand-
ard deviations relatively close to the values obtained in the pilot study. Suppose the study plan  
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provides for the same number of patients in the placebo group as in the treatment group. Deter-
mine the sample size necessary for an a  .05 t test to have a power of .80 to detect an increase of 
5 mm Hg in the blood pressure of the treatment group relative to that of the placebo group.

 Med. 6.38  Refer to Exercise 6.37 . Suppose that the agency sponsoring the study specifies that the 
group receiving the drug should have twice as many patients as the placebo group. Determine the 
sample sizes necessary for an a  .05 t test to have a power of .80 to detect an increase of 5 mm 
Hg in the blood pressure of the treatment group relative to that of the placebo group.

 Med. 6.39  Refer to Exercise 6.37 . The researchers also need to obtain precise estimates of the mean 
difference in systolic blood pressures for people who use the anti-inflammatory drug versus those 
who do not.

 a.  Suppose the sample sizes are the same for both groups. What sample size is 
needed to obtain a 95% confidence interval for the mean difference in systolic 
blood pressure between the users and nonusers having a width of at most  
5 mm Hg.

 b.  Suppose the user group will have twice as many patients as the placebo group. 
What sample size is needed to obtain a 95% confidence interval for the mean 
difference in systolic blood pressures between the users and nonusers having a 
width of at most 5 mm Hg.

 Env. 6.40  An environmental impact study was performed in a small state to determine the effective-
ness of scrubbers on the amount of pollution coming from the cooling towers of a chemical plant. 
The amounts of pollution (in ppm) detected from the cooling towers before and after the scrub-
bers were installed are given below for 23 cooling towers.

 Mean Standard Deviation

Before scrubber 71 26
After scrubber 63 25
Difference  before 2 after  8 20

  Suppose a larger study is planned for a state with a more extreme pollution problem.
 a.  How many chemical plant cooling towers need to be measured if we want a prob-

ability of .90 of detecting a mean reduction in pollution of 10 ppm due to installing 
the scrubbers using an a  .01 test?

  b.  What assumptions did you make in part (a) in order to compute the sample size?

 Env. 6.41  Refer to Exercise 6.40. The state regulators also need to obtain a precise estimate of the 
mean reduction in the pollution level after installing the scrubbers. What sample size is needed to 
obtain a 99% confidence interval having width of 8.5 ppm?

Supplementary Exercises
 Med. 6.42  Long-distance runners have contended that moderate exposure to ozone increases lung 

capacity. To investigate this possibility, a researcher exposed 12 rats to ozone at the rate of two parts 
per million for a period of 30 days. The lung capacity of the rats was determined at the beginning of 
the study and again after the 30 days of ozone exposure. The lung capacities (in mL) are given here.

Rat 1 2 3 4 5 6 7 8 9 10 11 12

Before exposure 8.7 7 .9 8.3  8.4 9.2 9.1 8.2 8.1 8.9 8.2  8.9 7 .5
After exposure 9.4 9.8 9.9 10.3 8.9 8.8 9.8 8.2 9.4 9.9 12.2 9.3
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 a.  Is there sufficient evidence to support the conjecture that ozone exposure 
increases lung capacity? Use a  .05. Report the p-value of your test.

 b.  Estimate the size of the increase in lung capacity after exposure to ozone using a 
95% confidence interval.

 c.  After completion of the study, the researcher claimed that ozone causes increased 
lung capacity. Is this statement supported by this experiment? 

 Env. 6.43  In an environmental impact study for a new airport, the noise levels of various jets were 
measured just seconds after their wheels left the ground. The jets were either wide-bodied or 
 narrow-bodied. The noise levels in decibels (dB) are recorded here for 15 wide-bodied jets and 
12 narrow-bodied jets. 

Wide-Bodied Jets 109.5 107 .3 105.0 117 .3 105.4 113.7 121.7 109.2 108.1 106.4 104.6 110.5 110.9 111.0 112.4

Narrow-Bodied Jets 131.4 126.8 114.1 126.9 108.2 122.0 106.9 116.3 115.5 111.6 124.5 116.2

 a.  Do the two types of jets have different mean noise levels? Report the level of 
significance of the test. 

 b.  Estimate the size of the difference in mean noise levels between the two types of 
jets using a 95% confidence interval. 

 c. How would you select the jets for inclusion in this study? 

 Ag. 6.44  An entomologist is investigating which of two fumigants, F1 or F2, is more effective in 
 controlling parasities in tobacco plants. To compare the fumigants, nine fields of differing 
soil characteristics, drainage, and amount of wind shield were planted with tobacco. Each 
field was then divided into two plots of equal area. Fumigant F1 was randomly assigned to 
one plot in each field and F2 to the other plot. Fifty plants were randomly selected from each 
field, 25 from each plot, and the numbers of parasites were counted. The data are in the fol-
lowing table. 

Field 1 2 3 4 5 6 7 8 9

Fumigant F1 77 40 11 31 28 50 53 26 33
Fumigant F2 76 38 10 29 27 48 51 24 32

 a.  What are the populations of interest? 
 b.  Do the data provide sufficient evidence to indicate a difference in the mean 

levels of  parasites for the two fumigants? Use a  .10. Report the p-value for the 
experimental data.

 c.  Estimate the size of the difference in the mean numbers of parasites between the 
two fumigants using a 90% confidence interval.

  6.45  Refer to Exercise 6.44. An alternative design of the experiment would involve randomly 
assigning fumigant F1 to nine of the plots and F2 to the other nine plots, ignoring which fields 
the plots were from. What are some of the problems that may occur in using the  alternative 
design?

 Env. 6.46  Following the March 24, 1989, grounding of the tanker Exxon Valdez in Alaska, 
approximately 35,500 tons of crude oil were released into Prince William Sound. The paper 
“The Deep Benthos of Prince William Sound, Alaska, 16 Months After the Exxon Valdez Oil Spill” 
(Feder and Blanchard, 1998) reports on an evaluation of deep  benthic infauna after the spill. 
Thirteen sites were selected for study. Seven of the sites were within the oil trajectory, and six 
were outside the oil trajectory. Collection of environmental and biological data at two depths, 
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40 m and 100 m, occurred in the period July 1–23, 1990. One of the variables measured was 
population abundance (individuals per square meter). The values are given in the following 
table. 

 Within Oil Trajectory Outside Oil Trajectory

Site 1 2 3 4 5 6 7 1 2 3 4 5 6

Depth 40 m 5,124 2,904 3,600 2,880 2,578 4,146 1,048 1,336 394 7,370 6,762 744 1,874
Depth 100 m 3,228 2,032 3,256 3,816 2,438 4,897 1,346 1,676 2,008 2,224 1,234 1,598 2,182

 a.  After combining the data from the two depths, does there appear to be a differ-
ence in population mean abundances between the sites within and outside the oil 
trajectory? Use a  .05.

 b.  Estimate the size of the difference in the mean population abundances at the two 
types of sites using a 95% confidence interval. 

 c.  What are the required conditions for the techniques used in parts (a) and (b)? 
 d.  Check to see whether the required conditions are satisfied. 

  6.47  Refer to Exercise 6.46. Answer the following questions using the combined data for both 
depths.

 a.  Use the Wilcoxon rank sum test to assess whether there is a difference in popula-
tion abundances between the sites within and outside the oil trajectory. Use  
a  .05.

 b. What are the required conditions for the techniques used in part (a)?
 c. Are the required conditions satisfied? 
 d.  Discuss any differences in the conclusions obtained using the t procedures and the 

Wilcoxon rank sum test.
  6.48  Refer to Exercise 6.46. The researchers also examined the effect of depth on population 

abundance. 
 a.  Plot the four data sets using side-by-side boxplots to demonstrate the effect of 

depth on population abundance. 
 b.  Separately for each depth, evaluate differences between the sites within and 

outside the oil trajectory. Use a  .05. 
 c. Are your conclusions at 40 m consistent with your conclusions at 100 m?

  6.49   Refer to Exercises 6.46–6.48.
 a.  Discuss the veracity of the following statement: “The oil spill did not adversely 

affect the population abundance; in fact, it appears to have increased the 
population abundance.”

 b.  A possible criticism of the study is that the six sites outside the oil trajectory 
were not comparable in many aspects to the seven sites within the oil trajec-
tory. Suppose that the researchers had data on population abundance at the 
seven within-trajectory sites prior to the oil spill. What type of analysis could 
be used on these data to evaluate the effect of the oil spill on population abun-
dance? What are some advantages to using these data rather than the data in 
Exercise 6.46? 

 c.  What are some possible problems with using the before and after oil spill data in 
 assessing the effect of the spill on population abundance? 

 Bio. 6.50  A study was conducted to evaluate the effectiveness of an antihypertensive product. 
Three groups of 20 rats each were randomly selected from a strain of hypertensive rats. The 20 
rats in the first group were treated with a low dose of an antihypertensive product, the  second 
group with a higher dose of the same product, and the third group with an inert control. The 
amounts of decrease in systolic blood pressure 30 minutes after the rats receive an injection are 
given in the following table. Note that negative values represent increases in blood pressure.
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Row Low Dose High Dose Control
1 45.1 54.2 18.2
2 59.8 89.1 17.2
3 58.1 89.6 34.8
4 23.7 98.8 3.2
5 64.9 107.3 42.9
6 12.1 65.1 27.2
7 10.5 75.6 42.6
8 42.5 52.0 10.0
9 48.5 50.2 102.3
10 1.7 80.9 61.0
11 65.4 92.6 33.1
12 17.5 55.3 55.1
13 22.1 103.2 84.6
14 15.4 45.4 40.3
15 96.5 70.9 30.5
16 27.7 29.7 18.5
17 16.7 40.3 29.3
18 39.5 73.3 19.7
19 4.2 21.0 37.2
20 41.3 73.2 48.8

-------------------------------------------

Two-sample T for Low Dose vs Control

N Mean StDev SE Mean
Low Dose 20 3.8 44.0 9.8
Control 20 29.8 34.0 7.6

95% CI for mu Low Dose mu Control: ( 51.3, 0.8)
T-Test mu Low Dose mu Control (vs not ): T 2.09 P 0.044 DF 35

--------------------------------------------------------------------------------

Two-sample T for High Dose vs Control

N Mean StDev SE Mean
High Dose 20 68.4 24.5 5.5
Control 20 29.8 34.0 7.6

95% CI for mu High Dose mu Control: (19.5, 57.6)
T-Test mu High Dose mu Control (vs not ): T 4.12 P 0.0002 DF 34

--------------------------------------------------------------------------------

Two-sample T for Low Dose vs High Dose

N Mean StDev SE Mean
Low Dose 20 3.8 44.0 9.8
High Dose 20 68.4 24.5 5.5

95% CI for mu Low Dose mu High Dose: ( 87.6, 41.5)
T-Test mu Low Dose mu High Dose (vs not ): T 5.73 P 0.0000 DF 29

 a.  Compare the mean drops in blood pressure for the high-dose group and the 
control group. Use a  .05 and report the level of significance. 

 b.   Estimate the size of the difference in the mean drops for the high-dose and con-
trol groups using a 95% confidence interval. 

 c.  Do the conditions required for the statistical techniques used in parts (a) and  
(b) appear to be satisfied? Justify your answer. 

  6.51   Refer to Exercise 6.50.
 a.  Compare the mean drops in blood pressure for the low-dose group and the con-

trol group. Use a  .05 and report the level of significance.
 b.   Estimate the size of the difference in the mean drops for the low-dose and control 

groups using a 95% confidence interval. 
 c.   Do the conditions required for the statistical techniques used in parts (a) and  

(b) appear to be satisfied? Justify your answer. 

  6.52   Refer to Exercise 6.50.
 a.  Compare the mean drops in blood pressure for the low-dose group and the high-

dose group. Use a  .05 and report the level of significance. 
 b.  Estimate the size of the difference in the mean drops for the low-dose and high-

dose groups using a 95% confidence interval. 
 c.  Do the conditions required for the statistical techniques used in parts (a) and  

(b) appear to be satisfied? Justify your answer. 
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 Med. 6.53  Refer to Exercise 6.50.
 a.  Describe the populations to which the inferences provided in Exercises 6.50–6.52 

are relevant.
 b.  A much larger study is to be designed to further examine the effectiveness of 

the high-dose level of the drug. How many rats would be needed in the new 
study to be 90% confident that an a  .05 test would detect a reduction of  
10 mm Hg by the high-dose level relative to the mean blood pressure  readings 
of the control group? Hint: Assume that the decreases in blood pressure for 
the high-dose and control groups have normal distributions with standard 
 deviations of 30 mm Hg.

 c.  The company producing the drug wants a precise estimate of the mean reduction in 
the systolic blood pressure after injection with a high dose of the drug. What sample 
size is needed to obtain a 99% confidence interval having width of 5 mm Hg?

 Med. 6.54  To assess whether degreed nurses received a more comprehensive training than reg-
istered nurses, a study was designed to compare the two groups. The state nursing licensing 
board randomly selected 50 nurses from each group for evaluation. They were given the state 
 licensing board examination, and their scores are given in the following table. 

Degreed 429 408 418 402 424 369 372 406 391 404
Nurses 408 417 422 408 365 412 379 423 412 420
 382 394 399 403 373  434  406 428 398 418
 383 395 408 402 416 424 439  382 371 386
 382 404 381 430 394 410 382 410 394 404

Registered 364 330 368 342 327 310 347 361 364 358
Nurses 362 356 333 347 356 306 375 345 420 332
 354 390  382 342 348 389  354 338 328 339
 320 382 295 341 387 284 383 311 387 397
 363 365 309 327 321 352 416 380 341 330

 a.  Can the licensing board conclude that the mean score of nurses who receive a BS 
in nursing is higher than the mean score of registered nurses? Use a  .05. 

 b. Report the p-value for your test. 
 c.  Estimate the size of the difference in the mean scores of the two groups of nurses 

using a 95% confidence interval. 
 d.  The mean test scores are considered to have a meaningful difference only if they 

differ by more than 40 points. Is the observed difference in the mean scores a 
meaningful one? 

 Pol. Sci. 6.55  All persons running for public office must report the amounts of money spent during their 
campaigns. Political scientists have contended that female candidates generally find it difficult to 
raise money and therefore spend less in their campaigns than do male candidates.  Suppose the 
 accompanying data represent the campaign expenditures of a randomly selected group of 20 male  
and 20 female candidates for the state legislature. Do the data support the claim that female 
candidates generally spend less in their campaigns for public office than do male  candidates? 

Campaign Expenditures (in thousands of dollars) 

Candidate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Female 169 206 257 294 252 283 240 207 230 183 298 269 256 277 300 126 318 184 252 305
Male 289 334 278 268 336 438 388 388 394 394 425 386 356 342 305 365 355 312 209 458

 a.  Estimate the size of the difference in the mean campaign expenditures between 
female and male candidates using a 95% confidence interval. 

 b.  Is there a significant difference at the .05 level in the mean campaign expenditures 
between female and male candidates? 
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 c.  Is there a practical difference in the mean campaign expenditures between female 
and male candidates? 

 d. Are the conditions necessary to analyze the data using the t test to satisfied? 
 Pol. Sci. 6.56  Refer to Exercise 6.55.

 a. To what populations are the conclusions obtained in Exercise 6.55 relevant?
 b.  A more precise estimate of the mean expenditure for female candidates is 

requested. How many female candidates would need to be included in the new 
study to estimate the mean expenditure using a 95% confidence interval having a 
width of at most $10?

 Env. 6.57  After strip-mining for coal, the state land office requires the mining company to restore 
the land to its condition prior to mining. One of many factors that is considered is the pH of 
the soil, which is an important factor in determining what types of plants will survive in a given 
location. The area to be mined was divided into grids before the mining took place. Fifteen 
grids were randomly selected, and the soil pH was measured before mining. When the mining 
was completed, the land was restored, and another set of pH readings was taken on the same 15 
grids; see the accompanying table.

Location  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Before 10.02 10.16  9.96 10.01  9.87 10.05 10.07 10.08 10.05 10.04 10.09 10.09 9.92 10.05 10.13
After 10.21 10.16 10.11 10.10 10.07 10.13 10.08 10.30 10.17 10.10 10.06 10.37 10.24 10.19 10.13

 a.  What is the level of significance of the test for a change in mean pH after 
 reclamation of the land? 

 b. What is the research hypothesis that the land office was testing? 
 c.  Estimate the change in mean soil pH after strip-mining using a 99% confidence 

interval. 
 d.  The land office assessed a fine on the mining company because the t test indicated 

a significant difference in mean pH after the reclamation of the land. Is the assess-
ment of the fine supported by the data? Justify your answer using the results from 
parts (a) and (c).

  6.58  Refer to Exercise 6.57 . Based on the land office’s decision in the test of hypotheses, could 
it have made (select one of the following)

 a. A Type I error? 
 b. A Type II error? 
 c. Both a Type I and a Type II error? 
 d. Neither a Type I nor a Type II error? 

 Med. 6.59  Company officials are concerned about the length of time a particular drug retains its 
 potency. A random sample (sample 1) of 10 bottles of the product is drawn from current produc-
tion and analyzed for potency. A second sample (sample 2) is obtained, stored for 1 year, and 
then  analyzed. The readings obtained are as follows: 

Sample 1 10.2 10.5 10.3 10.8  9.8 10.6 10.7 10.2 10.0 10.6
Sample 2  9.8  9.6 10.1 10.2 10.1  9.7  9.5  9.6  9.8  9.9

   
 a. What is the research hypothesis? 
 b. Compute the values of the t and t9 statistics? Why are they equal for this data set? 
 c. What are the p-values for the t and t9 statistics? Why are they different? 
 d.  Are the conclusions concerning the research hypothesis the same for the two tests 

if we use a  .05? 
 e.  Which test, t or t9, is more appropriate for this data set?
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 Engin. 6.60  An industrial concern has experimented with several different mixtures of the four 
 components—magnesium, sodium nitrate, strontium nitrate, and a binder—that comprise a 
rocket propellant. The company has found that two mixtures in particular give higher flare- 
illumination values than the others. Mixture 1 consists of a blend composed of the proportions 
.40, .10, .42, and .08, respectively, for the four components of the mixture; mixture 2 consists of 
a blend using the proportions .60, .25, .10, and .05. Twenty different blends (10 of each mixture) 
are prepared and tested to obtain the flare-illumination values. These data appear here (in units 
of 1,000  candles).

Mixture 1 185 192 201 215 170 190 175 172 198 202

Mixture 2 221 210 215 202 204 196 225 230 214 217

 a.  Plot the sample data. Which test(s) could be used to compare the mean 
 illumination values for the two mixtures?

 b. Give the level of significance of the test and interpret your findings. 

  6.61  Refer to Exercise 6.60. Instead of conducting a statistical test, use the sample data to 
 answer the question, What is the difference in mean flare illuminations for the two mixtures?

  6.62  Refer to Exercise 6.60. Suppose we wish to test the research hypothesis that m1 , m2 for the 
two mixtures. Assume that the population distributions are normally distributed with a common 
s  12. Determine the sample size required to obtain a test having a  .05 and b(md) , .10 when 
m2 2 m1 $ 15.

 Med. 6.63  Refer to the epilepsy study data in Table 3.19. Use the data for the number of seizures after 
8 weeks for the placebo patients and for the patients treated with the drug progabide to answer 
the following questions.

 a.  Do the data support the conjecture that progabide reduces the mean number of 
seizures for epileptics? Use both a t test and the Wilcoxon test with a  .05.

 b. Which test appears to be more appropriate for this study? Why? 

 c.  Estimate the size of the difference in the mean numbers of seizures between the 
two groups.

 Bus. 6.64  Many people purchase sport utility vehicles (SUVs) because they think they are sturdier 
and hence safer than regular cars. However, preliminary data have indicated that the costs for 
repairs of SUVs are higher than for midsize cars when both vehicles are in an accident. A random 
sample of 8 new SUVs and 8 midsize cars is tested for front-impact resistance. The amounts of 
damage (in hundreds of dollars) to the vehicles when crashed at 20 mph head on into a stationary 
barrier are recorded in the following table. 

Car 1  2  3  4  5  6  7  8 

SUV 14.23 12.47 14.00 13.17 27 .48 12.42 32.59 12.98

Midsize 11.97 11.42 13.27  9.87 10.12 10.36 12.65 25.23

 a.  Plot the data to determine whether the conditions required for the t procedures 
are valid.

 b.  Do the data support the conjecture that the mean damage is greater for SUVs 
than for midsize vehicles? Use a  .05 with both the t test and the Wilcoxon test. 

 c. Which test appears to be the more appropriate procedure for this data set? 
 d. Do you reach the same conclusions from both procedures? Why or why not? 
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  6.65  Refer to Exercise 6.64. The small number of vehicles in the study has led to criticism of the 
results. A new study is to be conducted with a larger sample size. Assume that both populations 
of damages are normally distributed with a common s  $700. 

 a.  Determine the sample size that allows us to be 95% confident that the estimate of 
the  difference in mean repair costs is within $500 of the true difference. 

 b.  For the research hypothesis Ha: mSUV . mMID, determine the sample size required 
to obtain a test having a  .05 and b(md) , .05 when mSUV 2  mMID $ $500.

 Law 6.66  The following memorandum opinion on statistical significance was issued by the judge in 
a trial involving many scientific issues. The opinion has been stripped of some legal jargon and 
has been taken out of context. Still, it can give us an understanding of how others deal with the 
problem of ascertaining the meaning of statistical significance. Read this memorandum and com-
ment on the issues raised regarding statistical significance.

Memorandum Opinion

This matter is before the Court upon two evidentiary issues that were raised in 
anticipation of trial. First, it is essential to determine the appropriate level of 
statistical significance for the admission of scientific evidence.
 With respect to statistical significance, no statistical evidence will be 
admitted during the course of the trial unless it meets a confidence level of 
95%. 

Every relevant study before the Court has employed a confidence level 
of at least 95%. In addition, plaintiffs concede that social scientists routinely 
utilize a 95% confidence level. Finally, all legal authorities agree that statistical 
evidence is admissible only if it meets the 95% confidence level required by 
statisticians. Therefore, because plaintiffs advance no reasonable basis to alter 
the accepted approach of mathematicians to the test of statistical significance, 
no statistical evidence will be admitted at trial unless it satisfies the 95% con-
fidence level.

 Env. 6.67  Defining the Problem (1). Lead is an environmental pollutant especially worthy of atten-
tion because of its damaging effects on the neurological and intellectual development of chil-
dren. Morton et al. (1982) collected data on lead absorption by children whose parents worked 
at a factory in Oklahoma where lead was used in the manufacture of batteries. The concern was 
that children might be exposed to lead inadvertently brought home on the bodies or clothing 
of their parents. Levels of lead (in micrograms per deciliter) were measured in blood samples 
taken from 33 children who might have been exposed in this way. They constitute the exposed 
group.

  Collecting the Data (2). The researchers formed a control group by making matched pairs. 
For each of the 33 children in the exposed group they selected a matching child of the same 
age, living in the same neighborhood, and with parents employed at a place where lead is 
not used.

    The data set LEADKIDS contains three variables, each with 33 cases. All involve measure-
ments of lead in micrograms per deciliter of blood.

c1   Exposed   Lead (mg/dl of whole blood) for children of workers
in the battery factory

c2   Control   Lead (mg/dl of whole blood) for matched controls
c3   Diff      The differences: 'Exposed' - 'Control'.

These data are listed next.
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Exposed    Control      Diff               Lead     JobExp     JobHyg
38         16         22                 14         3          1
23         18          5                 13         3          1
41         18         23                 25         3          1
18         24         -6                 39         2          1
37         19         18                 41         3          2
36         11         25                 18         3          2
23         10         13                 49         3          2
62         15         47                 29         2          2
31         16         15                 16         1          2
34         18         16                 38         3          3
24         18          6                 23         3          3
14         13          1                 37         3          3
21         19          2                 62         3          3
17         10          7                 24         3          3
16         16          0                 45         3          3
20         16          4                 39         3          3
15         24         -9                 48         3          3
10         13         -3                 44         3          3
45          9         36                 35         3          3
39         14         25                 43         3          3
22         21          1                 34         3          3
35         19         16                 73         3          3
49          7         42                 31         2          3
48         18         30                 34         2          3
44         19         25                 20         2          3
35         12         23                 22         2          3
43         11         32                 35         2          3
39         22         17                 36         1          3
34         25          9                 23         1          3
13         16         -3                 21         1          3
73         13         60                 17         1          3
25         11         14                 27         1          3
27         13         14                 15         1          3

10         1          3

LEADKIDS LEADEXP

This is necessarily an observational study rather than a controlled experiment. There 
is no way that the researchers could have assigned children at random to parents in or out of 
 lead-related occupations. Furthermore, the exposed subjects were all chosen from the small 
group of children whose parents worked at one particular plant. They were not chosen from the 
larger  population of children everywhere who might be exposed to lead as a result of their par-
ents’ working conditions.

If lead levels are unusually high in the exposed group, it might be argued that the lead 
in their blood came from some source other than their parents’ place of work: from lead 
 solder in water pipes at home, from lead-paint dust at school, from air pollution, and so on. 
For this reason, a properly chosen control group of children is crucial to the credibility of 
the study.

In principle, the children in the control group should be subject to all of the same 
 possible lead contaminants as those in the exposed group except for lead brought home from 
work by parents. In practice, the designers of this study chose to use two criteria in form-
ing pairs: neighborhood and age. Neighborhood seems a reasonable choice because general 
environmental conditions, types of housing, and so on could vary greatly for children living 
in  different neighborhoods. Controlling for age seems reasonable because lead poisoning is 
largely cumulative, so levels of lead might be higher in older children. Thus, for each child in 
the exposed group, researchers sought a paired child of the same age and living in the same 
neighborhood.

  Summarizing the Data (3). We begin by looking at dot plots of the data for the exposed and 
control groups:
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We can see that over half of the children in the exposed group have more lead in their blood than 
do any of the children in the control group. This graphical comparison is not the most effective 
one we could make because it ignores the pairing of exposed and control children. Even so, it 
presents clear evidence that, on average, the exposed children have more lead in their blood than 
do the control children.

Notice that the lead levels of the exposed group are much more diverse than those of the 
control group. This suggests that some children in the exposed group are getting a lot more lead, 
presumably from their working parents, than are others in this group. Perhaps some parents at 
the battery factory do not work in areas where they come into direct contact with lead. Perhaps 
some parents wear protective clothing that is left at work, or they shower before they leave work. 
For this study, information on the exposure and hygiene of parents was collected by the investiga-
tors. Such factors were found to contribute to the diversity of the lead levels observed among the 
exposed children.

Some toxicologists believe that any amount of lead may be detrimental to children, but 
all agree that the highest levels among the exposed children in our study are dangerously high. 
Specifically, it is generally agreed that children with lead levels above 40 micrograms per decili-
ter need medical treatment. Children above 60 on this scale should be immediately hospitalized 
for treatment (Miller and Keane, 1957). A quick glance at the dot plot shows that we are looking 
at some serious cases of lead poisoning in the exposed group.

By plotting differences, we get an even sharper picture. For each matched pair of children the 
variable Diff shows how much more lead the exposed child has than his or her control neighbor 
of the same age.

.       . .   . .
. . : .: :...  :.:.  : :  ..  .   .  .        .

-+---------+---------+---------+---------+---------+-----Diff
-15         0        15        30         45        60

If we consider a hypothetical population of pairs of children, the difference measures the in-
creased lead levels that may result from exposure via a parent working at the battery factory.

If parents who work at the battery factory were not bringing lead home with them, we 
would expect about half of these values to be positive and half to be negative. The lead values in 
the blood would vary but in such a way that the exposed child would have only a 50–50 chance of 
having the higher value. Thus, we would expect the dot plot to be centered near 0.

In contrast, look at the dot plot of the actual data. Almost every child in the exposed group 
has a higher lead value than does the corresponding control child. As a result, most of the dif-
ferences are positive. The average of the differences is the balance point of the dot plot, located 
somewhat above 15. (In some respects, we can read the dot plot quite precisely. In 1 pair out of 
33, both children have the same value, to the nearest whole number as reported. In only 4 pairs 
does the control child have the higher level of lead.)

The dot plot of the differences displays strong evidence that the children in the exposed 
group have more lead than their control counterparts. It will be necessary to perform some formal 
statistical tests to check whether this effect is statistically significant, but we already suspect from 
this striking graph what the conclusion must be.
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We have looked directly at the pairs of children around which the study was built. It may 
take a bit more thought to deal with differences than to look at the separate  variables exposed 
and control as we did previously. But looking at pairs is best. If the effect had turned out to be 
weaker and if we had not thought to look at pairs, then we might have missed seeing the effect.

 a.  Obtain the mean, median, and standard deviation for each of the three variables  
in LEADKIDS. 

  1)  Compare the median of the exposed children with the maximum of the  
control children. What statement in the discussion does this confirm?

  2)  Compare the difference between the individual means of the exposed and 
control groups with the mean of the differences. On average, how much 
higher are the lead values for exposed children?

 b.  In contrast to part (a), notice that the difference between the individual medians 
of the exposed and control groups is not the same as the median for Diff. Why 
not? Which figure based on medians would you use if you were trying to give the 
most  accurate view of the increase in lead exposure due to a parent working at the 
battery factory?

  6.68  Analyzing Data, the Interpreting the Analyses, and Communicating the Results (4). A 
paired t test for the difference data in Exercise 6.67 is shown here.

Paired T for Exposed - Control

N      Mean     StDev     SE Mean
Exposed        33     31.85     14.41        2.51
Control        33     15.88      4.54        0.79
Difference     33     15.97     15.86        2.76

95% CI for mean difference: (10.34, 21.59)
T-Test of mean difference = 0 (vs not = 0):

T-Value = 5.78  P-Value = 0.000

The p-value in the output reads .000, which means that it is smaller than .0005 (1 chance 
in 2,000). Thus, it is extremely unlikely that we would see data as extreme as those actually col-
lected unless workers at the battery factory were contaminating their children. We reject the null 
hypothesis and conclude that the difference between the lead levels of children in the exposed 
and control groups is large enough to be statistically significant.

The next question is whether the difference between the two groups is large enough to be 
of practical importance. This is a judgment for people who know about lead poisoning to make, 
not for statisticians. The best estimate of the true (population) mean difference is 15.97, or about 
16. On average, children of workers in the battery plant have about 16 mg/dl more lead than their 
peers whose parents do not work in a lead-related industry. Almost any toxicologist would deem 
this increase to be dangerous and unacceptable. (The mean of the control group is also about 16. 
On average, the effect of having a parent who works in the battery factory is to double the lead  
level. Doubling the lead level brings the average value for exposed children to about 32, which 
is getting close to the level where medical treatment is required. Also remember that some toxi-
cologists believe that any amount of lead is harmful to the neurological development of children.)

 a.  Should the t test we did have been one-sided? In practice, we must make the 
decision to do a one-sided test before the data are collected. We might argue 
that having a  parent working at the battery factory could not decrease a child’s 
 exposure to lead.

  1)  Write the null hypothesis and its one-sided alternative in both words and 
 symbols. Perform the test. How is its p-value related to the p-value for the 
two-sided test?

  2)  It might be tempting to argue that children of workers at a lead-using factory 
could not have generally lower levels of lead than children in the rest of the 
population. But can you imagine a scenario in which the mean levels would 
really be lower for exposed children?
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 b.  We used a t test to confirm our impression that exposed children have more lead 
in their blood than their control counterparts. Although there is no clear reason 
to  prefer nonparametric tests for these data, verify that they yield the same con-
clusion as the t test does.

 Med. 6.69  The article “Increased Risk for Vitamin A Toxicity in Severe Hypertriglyceridemia”  [ Annals 
of Internal Medicine ( 1987) 105:877–879 (© American College of Physicians)] illustrates the impor-
tance of checking whether the appropriate conditions have been met prior to applying a statistical 
procedure. The data consist of the retinyl ester concentrations (mg/dl) of nine normal  individuals 
and nine Type V hyperlipoproteinemic subjects.

Type V Subjects 1.4 2.5 4.6 0.0 0.0 2.9 1.9 4.0 2.0
Normal Subjects 30.9 134.6 13.6 28.9 434.1 101.7 85.1 26.5 44.8

 a.  Assess whether the data sets support the condition that both population distribu-
tions have normal distributions with equal variances.

 b.  Test for a difference in the mean retinyl ester concentrations of the two groups 
using the pooled t test, separate-variance t test, and Wilcoxon rank sum test.  
Use a  .01.

 c.  Based on your conclusions in part (a), which test statistic would you recommend 
to test for a difference in the mean retinyl ester concentrations of the two groups?
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CHAPTER 7

Inferences About 
Population 
Variances
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of Research Study
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a Population Variance

7.3 Estimation and Tests 
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Population Variances
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Population Variances

7.5 Research Study: 
Evaluation of Methods 
for Detecting E. coli

7.6 Summary and Key 
Formulas

7.7 Exercises

 7.1 Introduction and Abstract of Research Study

When people think of statistical inference, they usually think of inferences con-
cerning population means. However, the population parameter that answers an 
experimenter’s practical questions will vary from one situation to another. In many 
situations, the variability of a population’s values is as important as the population 
mean. In the case of problems involving product improvement, product quality 
is defined as a product having mean value at the target value with low variability 
about the mean. For example, the producer of a drug product is certainly con-
cerned with controlling the mean potency of tablets, but he or she must also worry 
about the variation in potency from one tablet to another. Excessive potency or 
an underdose could be very harmful to a patient. Hence, the manufacturer would 
like to produce tablets with the desired mean potency and with as little variation in 
 potency (as measured by s or s2) as possible. Another example is from the area of 
investment strategies. Investors search for a portfolio of stocks, bonds, real estate, 
and other investments having low risk. A measure used by investors to determine 
the uncertainty inherent in a particular portfolio is the variance in the value of the 
investments over a set period. At times, a portfolio with a high average value and 
a large standard deviation will have a value that is much lower than the average 
value. Investors thus need to examine the variability in the value of a portfolio 
along with its average value when determining its degree of risk.

Abstract of Research Study: Evaluation of Methods  
for Detecting E. coli

The outbreaks of bacterial disease in recent years due to the consumption of 
 contaminated meat products have created a demand for new, rapid methods for 
 detecting pathogens in meats that can be used in a meat surveillance program. 
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Under specific environmental conditions, certain strains of bacteria such as E. coli 
are  capable of causing hemorrhagic colitis, hemolytic uremic syndrome, and even 
death. An  effective pathogen surveillance program requires three main attributes: 
(1) a probability-based sampling plan (as described in Chapter 2), (2) a method 
 capable of  efficiently removing viable organisms from the target surface of animals, 
and (3) a  repeatable, accurate, and practical microbial test for the target pathogen. 
The paper “Repeatability of the Petrifilm HEC Test and Agreement with a Hydrophobic 
Grid Membrane Filtration Method for the Enumeration of Escherichia coli 0157:H7 on 
Beef Carcasses” (Power et al., 1998), describes a formal comparison between a new 
microbial method for the detection of E. coli, the Petrifilm HEC test, and an elabo-
rate laboratory-based procedure, hydrophobic grid membrane filtration (HGMF). 
The HEC test is  eas ier to inoculate, more compact to incubate, and safer to handle 
than conventional procedures. However, it was necessary to compare the perfor-
mance of the HEC test to that of the HGMF procedure in order to determine if the 
HEC test might be a viable method for detecting E. coli.

What aspects of the E. coli counts obtained by HEC and HGMF should 
be of interest to the researchers? A comparison of just the mean concentrations 
obtained by the two procedures would indicate whether or not the two procedures 
were in agreement with respect to the average readings over a large number of 
determinations. However, we would not know if HEC was more variable in its 
determination of E. coli than HGMF. For example, consider the two distributions 
in Figure 7.1. Suppose the distributions represent the population of E. coli 
concentration determinations from HEC and HGMF for a situation in which the 
true E. coli concentration is 7 log10 CFU/ml. The distributions would indicate that 
the HEC evaluation of a given meat sample may yield a reading very different from 
the  true E. coli concentration, whereas the individual readings from HGMF are 
more likely to be near the true concentration. In this type of situation, it is crucial to 
compare both the means and the standard deviations of the two procedures. In fact, 
we need to examine other aspects of the relationship between HEC and HGMF 
 determinations in order to evaluate the comparability of the two procedures.

FIGURE 7.1
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The experiment was designed to have two phases. Phase One of the study 
was to apply both procedures to pure cultures of E. coli representing 107 CFU/ml of 
strain E318N. Based on the specified degree of precision in estimating the E. coli 
level, it was determined that the HEC and HGMF procedures would be applied 
to 24 pure cultures each (we will discuss how the sample size of 24 was selected 
later in this chapter). Phase Two of the study was to apply both procedures to 
artificially contaminated beef.  Portions of beef trim were obtained from three 
Holstein cows that had tested negatively for E. coli. Eighteen portions of beef trim 
were obtained from the cows and then contaminated with E. coli. The HEC and 
HGMF procedures were then applied to a portion of each of the 18 samples. The 
two procedures yielded E. coli concentrations (log10 CFU/ml). The data in this 
case would be 18 paired  samples. The researchers were interested in determining 
a model to  relate the two procedures’ determinations of E. coli concentrations. 
We will consider only Phase One in this chapter. We will consider Phase Two in 
Chapter 11 in our development of model building and calibration. The researchers 
found that the HEC test showed excellent repeatability and excellent agreement 
with the HGMF method. In a later section of this chapter and in Chapter 11, we 
will demonstrate how the  researchers reached these conclusions.

Inferential problems about population variances are similar to the problems  
addressed in making inferences about population means. We must construct point 
estimators, confidence intervals, and test statistics from the randomly sampled 
data to make inferences about the variability in the population values. We then can 
state our degree of certainty that observed differences in the sample data convey 
differences in the population parameters.

 7.2 Estimation and Tests for a Population Variance

The sample variance

s2 
g 1 yi 2 y 2 2

n 2 1

can be used for inferences concerning a population variance s2. For a random sam-
ple of n measurements drawn from a population with mean m and variance s2, s2 is  
an unbiased estimator of s2. If the population distribution is normal, then the sam-
pling distribution of s2 can be specified as follows. From repeated samples of size n 
from a normal population whose variance is s2, calculate the statistic 1n 2 1 2s2 /s2, 
and plot the histogram for these values. The shape of the histogram is similar to those 
depicted in Figure 7.2 because it can be shown that the statistic 1n 2 1 2s2 /s2 follows a 
chi‑square distribution with df 5 n 2 1. The mathematical formula for the chi-square 
(x2, where x is the Greek letter chi) probability distribution is very complex, so we 
will not display it. However, some of the properties of the distribution are as follows:

 1. The chi-square distribution is positively skewed with values between 
0 and `  (see Figure 7.2).

 2. There are many chi-square distributions, and they are labeled by the 
 parameter degrees of freedom (df). Three such chi-square distribu-
tions are shown in Figure 7.2 with df  5, 15, and 30, respectively.

3. The mean and variance of the chi-square distribution are given by 
m  df and s2  2df. For example, if the chi-square distribution 
has df  30, then the mean and variance of that distribution are 
m  30 and s2  60.

unbiased estimator

chi‑square distribution
with df 5 n 2 1
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Upper-tail values of the chi-square distribution can be found in Table 7 in the 
 Appendix. Entries in the table are values of x2 that have an area a to the right 
under the curve. The degrees of freedom are specified in the left column of the 
table, and values of a are listed across the top of the table. Thus, for df  14, 
the value of chi-square with an area a  .025 to its right under the curve is 26.12 
(see Figure 7.3). To determine the value of chi-square with an area of .025 to 
its left under the curve, we compute a  1 2 .025 and obtain 5.629 from Table 7 
in the Appendix. Combining these two values, we have that the area under the 
curve between 5.629 and 26.12 is 1 2 .025 2 .025  .95. (See Figure 7.3.) We can 
use this information to form a confidence interval for s2. Because the chi-square 
distribution is not  symmetrical, the confidence intervals based on this distribution 
do not have the usual form, estimate 6 error, as we saw for m and m1 2 m2. The 
100(1 2 a)% confidence interval for s2 is obtained by dividing the estimator of 
s2, s2, by the lower and upper a/2 percentiles, x2

L and x2
U , as described next.
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FIGURE 7.4
Upper-tail and lower-tail 

 values of chi-square

 a 1n 2 1 2s2

x2
U

, 
1n 2 1 2s2

xL 2 b

where x2
U is the upper-tail value of chi-square for df  n 2 1 with area a/2 to 

its right and x2
L is the lower-tail value with area a/2 to its left (see Figure 7.4). We  

can determine x2
U and x2

L for a specific value of df by obtaining the critical values  
in Table 7 of the Appendix corresponding to a/2 and 1 2 a/2, respectively. 
(Note: The confidence interval for s is found by taking square roots throughout.)

General Confidence  
Interval for s2 (or s)  

with Confidence  
Coefficient (1 2 a)

The upper and lower a percentiles of the chi-square distribution can be obtained 
using the R function qchisq(a, df ):

The upper a / 2 percentile is given by x2
U   qchisq(1 2 a/2, df ).

The lower a / 2 percentile is given by x2
L  qchisq(a/2, df ).

EXAMPLE 7.1

The machine that fills 500-gram coffee containers for a large food processor is 
monitored by the quality control department. Ideally, the amount of coffee in a 
container should vary only slightly about the nominal 500-gram value. If the vari-
ation was large, then a large proportion of the containers would be either under-
filled, thus cheating the customer, or overfilled, thus resulting in economic loss 
to the company. The machine was designed so that the weights of the 500-gram 
containers would have a normal distribution with a mean value of 506.6 grams and 
a standard deviation of 4 grams. This would produce a population of containers 
in which at most 5% of the containers weighed less than 500 grams. To maintain 
a population in which at most 5% of the containers are underweight, a random 
sample of 30 containers is selected every hour to be weighed. These data are then 
used to determine whether the mean and standard deviation are maintained at 
their nominal values. The weights from one of the hourly samples are given here:

501.4 498.0 498.6 499.2 495.2 501.4 509.5 494.9 498.6 497 .6
505.5 505.1 499.8 502.4 497 .0 504.3 499.7 497 .9 496.5 498.9
504.9 503.2 503.0 502.6 496.8 498.2 500.1 497 .9 502.2 503.2

Estimate the mean and standard deviation of the weights of the 30 coffee 
containers using a 99% confidence interval.
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Solution For these data, we find

y  500.453    and    s  3.433

To use our method for constructing a confidence interval for m and s, we 
must first check whether the weights are a random sample from a normal popula-
tion. Figure 7.5 is a normal probability plot of the 30 weights. The 30 values fall 
near the straight line. Thus, the normality condition appears to be satisfied. The 
confidence coefficient for this example is 1 2 a  .99. The upper-tail chi-square 
value can be obtained from Table 7 in the Appendix for df  n 2 1  29 and 
a/2  .005. Similarly, the lower-tail chi-square value is obtained from Table 7 
with 1 2 a /2  .995. Thus,

x2
L  13.12    and    x2

U  52.34

Using the R function, the upper .01/2  .005 and lower .01/2  .005 percentiles for 
a chi-square distribution with df  29 are obtained as follows:

x2
U   qchisq(1 2 .01/2, 29)  qchisq(.995, 29)  52.34

x2
L  qchisq(.01/2, 29)  qchisq(.005, 29)  13.12
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FIGURE 7.5
Normal probability plot  

of container weights

The 99% confidence interval for s is then

qÅ
29 13.433 2 2

52.34
, Å

29 13.433 2 2

13.12
r  12.56, 5.10 2

Thus, we are 99% confident that the standard deviation in the weights of the coffee 
containers lies between 2.56 and 5.10 grams. The designed value for s, 4 grams, 
falls within our confidence interval. Using our results from Chapter 5, a 99% 
confidence interval for m is

500.453 6 2.756 
3.433

Ë30
 500.453 6 1.73  1498.7, 502.2 2

Thus, it appears the machine is underfilling the containers because 506.6 grams 
does not fall within the confidence limits. ■
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In addition to estimating a population variance, we can construct a statistical 
test of the null hypothesis that s2 equals a specified value, s2

0. This test procedure 
is summarized next.

   H0: 1. s2 # s2
0  Ha: 1. s2 . s2

0

 2. s2 $ s2
0 2. s2 , s2

0

 3. s2  s2
0 3. s2 2 s2

0

T.S.: x2 
1n 2 1 2s2

s2
0

R.R.: For a specified value of a,

 1. Reject H0 if x2 is greater than x2
U , the upper-tail value for a and 

df  n 2 1.
 2. Reject H0 if x2 is less than x2

L, the lower-tail value for 1 2 a and 
df  n 2 1.

 3. Reject H0 if x2 is greater than x2
U , based on a /2 and df  n 2 1, or 

less than x2
L, based on 1 2 a /2 and df  n 2 1.

Check assumptions and draw conclusions.

Statistical Test  
for s2 (or s)

EXAMPLE 7.2

New guidelines define persons as diabetic if results from their fasting plasma glu-
cose tests on two different days are 126 milligrams per deciliter (mg/dL) or higher. 
People who have a reading of between 110 and 125 are considered in danger of 
becoming diabetic, as their ability to process glucose is impaired. These people 
should be tested more frequently and counseled about ways to lower their blood 
sugar level and reduce the risk of heart disease.

Amid sweeping changes in U.S. health care, the trend toward cost-effective 
self-care products used in the home emphasizes prevention and early inter-
vention. The home test kit market is offering faster-acting and easier-to-use 
products that lend themselves to being used in less-sophisticated environments 
to meet consumers’ needs. A home blood sugar (glucose) test measures the level 
of glucose in your blood at the time of testing. The test can be done at home, or 
anywhere, using a small portable machine called a blood glucose meter. People 
who take insulin to control their diabetes may need to check their blood glucose 
level several times a day.  Testing blood sugar at home is often called home blood 
sugar monitoring or self-testing.

Home glucose meters are not usually as accurate as laboratory measure-
ment. Problems arise when the machines are not properly maintained and, 
more importantly, when the persons conducting the tests are the patients them-
selves, who may be quite elderly and in poor health. In order to evaluate the 
variability in readings from such devices, blood samples with a glucose level of 
200 mg/dL are given to 20 diabetic patients to perform a self-test for glucose 
level. Trained technicians using the same self-test equipment obtain readings 
that have a standard deviation of 5 mg/dL. The manufacturer of the equip-
ment claims that, with minimal instruction, anyone can obtain the same level of 
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Use these data to determine whether there is sufficient evidence that the variabil-
ity in readings from the diabetic patients is higher than the manufacturer’s claim. 
Use a  .05.

Solution The manufacturer claims that the diabetic patients should have a standard 
deviation of 5 mg/dL. The appropriate hypotheses are

H0: s
2 # 5 (manufacturer’s claim is correct)

Ha: s
2 . 5 (manufacturer’s claim is false)

In order to apply our test statistic to these hypotheses, it is necessary to check 
whether the data appear to have been generated from a normally distributed 
population. From Figure 7.6, we observe that the plotted points fall relatively close 
to the straight line and that the p-value for testing normality is greater than .10. 
Thus, the normality condition appears to be satisfied. From the 20 data values, we 
 compute the sample standard deviation, s  9.908. The test statistic and rejection 
regions are as follows:

 T.S.: x2 
1n 2 1 2s2

s0
2 

19 19.908 2 2

15 2 2  74.61

 R.R.: For a  .05, the null hypothesis, H0, is rejected if the value 
of the T.S. is greater than 30.14, obtained from Table 7 in the 
Appendix for a  .05 and df  n 2 1  19.

Conclusion: Since the computed value of the T.S., 74.61, is greater 
than the  critical value of 30.14, there is sufficient evidence to reject H0, the 
manufacturer’s claim, at the .05 level. In fact, the p-value of the T.S. is p-value  
 P 1x2

19 $ 74.61 2 , P 1x2
19 $ 43.82 2  .001 using Table 7 from the Appendix. 
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consistency in their measurements. The readings from the 20 diabetic patients 
are given here:
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Using the R function pchisq(y, df )  P 1x2 # y 2 , the p-value is computed to be 
p-value  P 1x2 $ 74.61 2   12 pchisq(74.61, 19)  .00000002. Thus, there is very  
strong evidence that patients using the self-test for glucose may have larger 
variability in their readings than what the manufacturer claimed. In fact, to further 
assess the size of this standard  deviation, a 95% confidence interval for s is given by

aÅ
120 2 1 2 19.908 2 2

32.85
, Å

120 2 1 2 19.908 2 2

8.907
b  17.53, 14.47 2

Therefore, the standard deviation in glucose measurements for the diabetic 
patients is potentially considerably higher than the standard deviation for the 
trained technicians. ■

The inference methods about s are based on the condition that the random 
sample is selected from a population having a normal distribution similar to the 
 requirements for using t distribution–based inference procedures. However, 
when sample sizes are moderate to large, the t distribution–based procedures can 
be used to make inferences about m even when the normality condition does not 
hold because for moderate to large sample sizes the Central Limit Theorem pro-
vides that the sampling distribution of the sample mean is approximately normal. 
Unfortunately, the same type of result does not hold for the chi-square–based 
procedures for making inferences about s; that is, if the population distribution 
is  distinctly nonnormal, then these procedures for s are not appropriate even 
if the sample size is large. Population nonnormality, in the form of skewness or 
heavy tailedness, can have serious effects on the nominal significance and confi-
dence probabilities for s. If a boxplot or normal probability plot of the sample 
data shows substantial skewness or a substantial number of outliers, the chi-
square–based inference procedures should not be applied. There are some alter-
native approaches that involve computationally elaborate inference procedures. 
One such procedure is the bootstrap. Bootstrapping is a technique that provides 
a simple and practical way to estimate the uncertainty in sample statistics like 
the sample variance. We can use bootstrap techniques to estimate the sampling 
distribution of a sample variance. The estimated sampling distribution is then 
manipulated to  produce confidence intervals for s and rejection regions for tests 
of hypotheses about s. Information about bootstrapping can be found in An 
Introduction to the Bootstrap (Efron and Tibshirani, 1993) and Randomization, 
Bootstrap and Monte Carlo Methods in Biology (Manly, 1998).

EXAMPLE 7.3

A simulation study was conducted to investigate the effect on the level of the 
chi-square test of sampling from heavy-tailed and skewed distributions rather 
than the required normal distribution. The five distributions were normal, uniform 
(short-tailed), t distribution with df  5 (heavy-tailed), and two gamma distribu-
tions, one slightly skewed and the other heavily skewed. Some summary statistics 
about the distributions are given in Table 7.1.

Note that each of the distributions has the same variance, s2  100, but 
the skewness and kurtosis of the distributions vary. Skewness is a measure of 
lack of symmetry, and kurtosis is a measure of the peakedness or flatness of a 
distribution. From each of the distributions, 2,500 random samples of sizes 10, 20, 
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and 50 were  selected, and a test of H0:  s2 # 100 versus Ha: s
2 . 100 and a test 

of H0: s
2 $ 100 versus Ha: s

2 , 100 were conducted using a  .05 for both sets 
of hypotheses. A chi-square test of variance was performed for each of the 2,500 
samples of the various sample sizes from each of the five distributions. The results 
are given in Table 7.2. What do the results indicate about the sensitivity of the test 
to sampling from a nonnormal population?

 Distribution

 Summary    Gamma Gamma 
 Statistic Normal Uniform t (df 5 5) (shape 5 1) (shape 5 .1)

Mean 0 17.32 0 10 3.162
Variance 100 100 100 100 100
Skewness 0 0 0 2 6.32
Kurtosis 3 1.8 9 9 63

TABLE 7.1
Summary statistics 
for  distributions in 

simulation

 Ha : s2 + 100

Sample
 Distribution

 Size Normal Uniform t Gamma (1) Gamma (.1)

n  10 .047 .004 .083 .134 .139
n  20 .052 .006 .103 .139 .175
n  50 .049 .004 .122 .156 .226

 Ha : s2 * 100

Sample
 Distribution

 Size Normal Uniform t Gamma (1) Gamma (.1)

n  10 .046 .018 .119 .202 .213
n  20 .050 .011 .140 .213 .578
n  50 .051 .018 .157 .220 .528

TABLE 7.2
Proportion of times H0 was 

 rejected (a  .05)

Solution The values in Table 7.2 are estimates of the probability of a Type I 
error, a, for the chi-square test about variances. When the samples are taken from 
a normal population, the actual probabilities of a Type I error are very nearly 
equal to the nominal a  .05 value. When the population distribution is symmetric 
with shorter tails than a normal distribution, the actual probabilities are smaller 
than .05, whereas for a symmetric distribution with heavy tails, the Type I error 
probabilities are much greater than .05. Also, for the two skewed distributions, the 
actual a values are much larger than the nominal .05 value. Furthermore, as the pop-
ulation distribution becomes more skewed, the deviation from .05 increases. From 
these results, there is strong evidence that the claimed a value of the chi-square test 
of a population variance is very sensitive to nonnormality. This strongly reinforces 
our recommendation to evaluate the normality of the data prior to conducting the 
chi‑square test of a population variance. ■
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 7.3 Estimation and Tests for Comparing  
Two Population Variances

In the research study about E. coli detection methods, we are concerned about 
comparing the standard deviations of the two procedures. In many situations in 
which we are comparing two processes or two suppliers of a product, we need 
to compare the standard deviations of the populations associated with process 
measurements. The test developed in this section  requires that the two population 
distributions both have normal distributions. We are interested in comparing the 
variance of population 1, s2

1, to the variance of population 2, s2
2.

When random samples of sizes n1 and n2 have been independently drawn 
from two normally distributed populations, the ratio 

s2
1 /s2

1 
s2

2 /s2
2


s2

1 /s2
2 

s2
1 /s2

2

possesses a probability distribution in repeated sampling referred to as an  
F  distribution. The formula for the probability distribution is omitted here, but we 
will specify its properties.

F distribution

 1. Unlike t or z but like x2, F can assume only positive values.
 2. The F distribution, unlike the normal distribution or the t distribution but 

like the x2 distribution, is nonsymmetrical. (See Figure 7.7.)
 3. There are many F distributions, and each one has a different shape. We 

specify a particular one by designating the degrees of freedom  associated 
with s2

1 and s2
2. We denote these quantities by df1 and df2,  respectively. 

(See Figure 7.7.)
 4. Tail values for the F distribution are tabulated and appear in Table 8 in 

the Appendix.

Properties of the  
F Distribution 

FIGURE 7.7
Densities of two  

F distributions
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Table 8 in the Appendix records upper-tail values of F corresponding to 
areas a  .25, .10, .05, .025, .01, .005, and .001. The degrees of freedom for s2

1, 
designated by df1, are indicated across the top of the table; df2, the degrees of 
freedom for s2

2, appear in the first column to the left. Values of a are given in the 
next column. Thus, for df1  5 and df2  10, the critical values of F correspond-
ing to a  .25, .10, .05, .025, .01, .005, and .001 are, respectively, 1.59, 2.52, 3.33, 
4.24, 5.64, 6.78, and 10.48. It follows that only 5% of the measurements from an 
F distribution with df1  5 and df2  10 would exceed 3.33 in repeated sampling. 
(See Figure 7.8.) Similarly, for df1  24 and df2  10, the critical values of F cor-
responding to tail areas of a  .01 and .001 are, respectively, 4.33 and 7.64.

A statistical test comparing s2
1 and s2

2 utilizes the test statistic s2
1 /s2

2. 
When s2

1  s2
2, s

2
1 /s2

2  1 and s2
1 /s2

2 follows an F distribution with df1  n1 2 1 
and df2  n2 2 1. For a one-tailed alternative hypothesis, the designation of 
which population is 1 and which population is 2 is made such that Ha is of 
the form s2

1 . s2
2. Then the rejection region is located in the upper tail of the 

F distribution.
We summarize the test procedure next.

FIGURE 7.8
Critical value for  

the F distributions  
(df1  5, df2  10)
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2

 2.  s2
1  s2

2  2.  s2
1 2 s2

2

T.S.: F  s2
1 /s2

2

R.R.: For a specified value of a with df1  n1 2 1 and df2  n2 2 1,

 1. Reject H0 if F $ Fa, df1,
 df2

.

 2. Reject H0 if F # F12a/2, df1,
 df2

 or if F $ Fa/2, df1,
 df2

.

A Statistical Test  
Comparing s 

2
1  and s 

2
2



378 ChApteR 7 InfeRenCeS About populAtIon VARIAnCeS

Table 8 in the Appendix provides the upper percentiles of the F distribution. 
The lower percentiles are obtained from the upper percentiles using the following 
relationship. Let Fa, df1,

 df2
 be the upper a percentile and F12a, df1,

 df2
 be the lower a 

percentile of an F distribution with df1 and df2. Then

F12a, df1,
 df2


1

Fa, df2,
 df1

Note that the degrees of freedom have been reversed for the upper F percentile on 
the right-hand side of the equation.

The upper and lower a percentiles of the F distribution can be obtained using 
the R function q f(a, df1, df2).

The upper a percentile is given by Fa, df1,
 df2

  qf(1 2 a, df1, df2)
The lower a percentile is given by F12a, df1,

 df2
  qf(a, df1, df2)

EXAMPLE 7.4

Determine the lower .025 percentile for an F distribution with df1  7 and df2  10. 

Solution From Table 8 in the Appendix, the upper .025 percentile for the F distri-
bution with df1  10 and df2  7 is F.025, 10, 7  4.76. Thus, the lower .025 percentile 
is given by

F.975, 7, 10 
1

F.025, 10, 7


1
4.76

 0.21

Using the R function, the upper .025 percentile for an F distribution with 
df1  10 and df2  7 is obtained as follows:

F.025, 10, 7  q f(1 2 .025, 10, 7)  4.7611

Similarly, the lower .025 percentile for an F distribution with df1  7 and 
df2  10 is given by

F.975, 7, 10  q f(.025, 7, 10)  .2100 ■

EXAMPLE 7.5

In the research study discussed in Chapter 6, we were concerned with assessing 
the restoration of land damaged by an oil spill. Random samples of 80 tracts from 
the unaffected and oil-spill areas were selected for use in the assessment of how 
well the oil-spill area was restored to its prespill status. Measurements of flora 
density were taken on each of the 80 tracts. These 80 densities were then used to 
test whether the unaffected (control) tracts had a higher mean density than the 
 restored spill sites: Ha: mCon . mSpill. A confidence interval was also placed on the 
effect size: mCon 2 mSpill.

We mentioned in Chapter 6 that in selecting the test statistic and constructing 
confidence intervals for m1 2 m2 we require that the random samples be drawn 
from normal populations that may have different means but that must have equal 
variances in order to apply the pooled t procedures. Use the sample data summa-
rized next to test the equality of the population variances for the flora densities. 
Use a  .05.

Control plots: y1  38.48 s1  16.37 n1  40

Spill plots: y2  26.93 s2  9.88  n2  40
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Solution The four parts of the statistical test of H0: s2
1  s2

2  follow:

  H0:  s2
1  s2

2

  Ha:  s2
1 2 s2

2

T.S.:  F 
s2

1

s2
2


116.37 2 2

19.88 2 2  2.75

Prior to setting the rejection region, we must first determine whether the two 
random samples appear to be from normally distributed populations. Figures 
6.9 and 6.10(a) and (b) indicate that the oil-spill sites appear to be selected from 
a normal  distribution. However, the control sites appear to have a distribution 
somewhat skewed to the left. Although the normality condition is not exactly 
satisfied, we will still apply the F test to this situation. In Section 7.4, we will 
introduce a test statistic that is not as sensitive to deviations from normality.

R.R.:   For a two-tailed test with a  .05, we reject H0 if F $ F.025, 39, 39 < 1.88 
or if F # F.975, 39, 39 < 1 /1.88  .53 (we used the values for df1  df2  
 40 as an approximation, since Table 8 in the Appendix does not 
have values for df1  df2  39). Using the R function, the actual 
values are 1.8907 and .5289.

Conclusion: Because F  2.75 exceeds 1.88, we reject H0: s2
1  s2

2 and conclude 
that the two populations have unequal variances. Thus, our decision to use the 
 separate-variance t test in the analysis of the oil-spill data was the correct decision. ■

In Chapter 6, our tests of hypotheses concerned either population means or a shift 
parameter. For both types of parameters, it was important to provide an estimate 
of the effect size along with the conclusion of the test of hypotheses. In the case of 
testing population means, the effect size was stated in terms of the difference in 
the two means: m1 2 m2. When comparing population variances, the appropriate 
measure is the ratio of the population variances: s2

1 /s2
2. Thus, we need to formulate 

a  confidence interval for the ratio s2
1 /s2

2. A 100(1 2 a)% confidence interval for 
this ratio is given here.

General Confidence 
Interval for s2

1 /s
2
2 

with Confidence 
 Coefficient (1 2 a)

 
as2

1

s2
2

 FL, 
s1

2

s2
2

 
FUb

where FU  Fa/2, df2,
 df1

 and FL  F12a/2, df2,
 df1

 1 /Fa/2, df1,
 df2

 with df1  n1 2 1 
and df2  n2 2 1. (Note: A confidence interval for s1 /s2 is found by taking 
the square root of the endpoints of the confidence interval for s2

1 /s2
2.)

EXAMPLE 7.6

Refer to Example 7.5. We rejected the hypothesis that the variances of flora 
density for the control and oil-spill sites were equal. The researchers would then 
want to  estimate the magnitude of the disagreement in the variances. Using the 
data in  Example 7.5, construct a 95% confidence interval for s2

1 /s2
2.

Solution The confidence interval for the ratio of the two variances is given by

as2
1

s2
2
FL, 

s2
1

s2
2
FUb
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where FL  F12a/2, n221, n121  F.975, 39, 39  .53 and FU  Fa/2, n221, n121  F.025, 39, 39  1.89. 
Thus, we have the 95% confidence interval given by 

a 116.37 2 2

19.88 2 2
 .53, 

116.37 2 2

19.88 2 2 1.89b  11.45, 5.19 2

Thus, we are 95% confident that the flora density in the control plots is between 
1.45 and 5.19 times as variable as the oil spill plots. ■

It should be noted that although our estimation procedure for s2
1 /s2

2 is 
 appropriate for any confidence coefficient (1 2 a), Table 8 in the Appendix allows 
us to construct confidence intervals for s2

1 /s2
2 with the more commonly used confi-

dence coefficients, such as .90, .95, .98, .99, and so on. For more detailed tables of 
the F distribution, see Pearson and Hartley (1966) or use the R function qf.

EXAMPLE 7.7

The life length of an electrical component was studied under two operating voltages, 
110 and 220. Ten different components were randomly assigned to operate at 
110 volts, and 16 different components were randomly assigned to operate at 
220 volts. The times to failure (in hundreds of hours) for the 26 components were 
obtained and yielded the following summary statistics and normal probability plots 
(see Figures 7.9 and 7.10 as well as Table 7.3).

FIGURE 7.9
Normal probability plot 

for life length under 
110 volts

FIGURE 7.10
Normal probability plot 

for life length under 
220 volts
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    Standard  
Voltage Sample Size Mean Deviation

 110 10 20.04 .474
 220 16 9.99 .233

The researchers wanted to estimate the relative size of the variation in life length 
under 110 and 220 volts. Use the data to construct a 90% confidence interval for 
s1 /s2, the ratio of the standard deviations in life lengths for the components under 
the two operating voltages.

Solution Before constructing the confidence interval, it is necessary to check 
whether the two populations of life lengths were both normally distributed. From the 
normal probability plots, it would appear that both samples of life lengths are from 
normal distributions. Next, we need to find the upper and lower a/2  .10 /2  .05 
percentiles for the F distribution with df1  10 2 1  9 and df2  16 2 1  15. 
From Table 8 in the Appendix, we find

FU  F.05, 15, 9  3.01 and FL  F.95, 15, 9  1/F.05, 9, 15  1/2.59  .386

Substituting into the confidence interval formula, we have a 90% confidence 
interval for s2

1 /s2
2:

1.474 2 2

1.233 2 2  .386 #
s2

1

s2
2 #

1.474 2 2

1.233 2 2  3.01

  
1.5975 #

s1
2

s2
2 # 12.4569

It follows that our 90% confidence interval for s1 /s2 is given by

Ë1.5975 #
s1

s2
# Ë12.4569    or    1.26 #

s1

s2
# 3.53

Thus, we are 90% confident that s1 is between 1.26 and 3.53 times as large as s2. ■

A simulation study was conducted to investigate the effect on the level of 
the F test of sampling from heavy-tailed and skewed distributions rather than the 
required normal distribution. The five distributions were described in Example 7.3.

For each pair of sample sizes (n1, n2)  (10, 10), (10, 20), or (20, 20), random 
samples of the specified sizes were selected from one of the five distributions. A 
test of H0: s

2
1  s2

2 versus Ha: s
2
1 2 s2

2 was conducted using an F test with a  .05
. This process was repeated 2,500 times for each of the five distributions and three 
sets of sample sizes. The results are given in Table 7.4.

The values given in Table 7.4 are estimates of the probability of Type I errors, 
a, for the F test of equality of two population variances. When the samples are from 
a normally distributed population, the value of a is nearly equal to the nominal 
level of .05 for all three pairs of sample sizes. This is to be expected because the 
F test was constructed to test hypotheses when the population distributions have 
normal distributions. However, when the population distribution is a symmetric 
short-tailed distribution like the uniform distribution, the value of a is much 
smaller than the specified value of .05. Thus, the probability of Type II errors for 

TABLE 7.3
Life length  

summary statistics
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the F test would most likely be much larger than what would occur when sampling 
from normally distributed populations. When we have population distributions 
that are symmetric and heavy-tailed, like the t with df  5, the values of a are two 
to three times larger than the specified value of .05. Thus, the F test commits many 
more Type I errors than would be expected when the population distributions are 
of this type. A similar problem occurs when we sample with skewed population 
 distributions such as the two gamma distributions. In fact, the Type I error rates 
are extremely large in these situations, thus rendering the F test invalid for these 
types of distributions.

TABLE 7.4
Proportion of times  

H0: s2
1  s2

2 was rejected 
(a  .05)

 Distribution

Sample    Gamma Gamma 
 Sizes Normal Uniform t (df 5 5) (shape 5 1) (shape  .1)

(10, 10) .054  .010 .121  .225  .693
(10, 20) .056 .0068 .140 .236 .671
(20, 20) .050 .0044 .150 .264 .673

 7.4 Tests for Comparing t + 2 Population Variances 

In the previous section, we discussed a method for comparing variances from two 
normally distributed populations based on taking independent random samples 
from the populations. In many situations, we will need to compare more than two 
populations. For example, we may want to compare the variability in the levels 
of nutrients in feed supplements from five different suppliers or the variability in 
scores of the students using SAT preparatory materials from the three major pub-
lishers of those materials. Thus, we need to develop a statistical test that will allow 
us to compare t . 2 population variances. The Brown-Forsythe-Levene (BFL) 
test is fairly complex in its computations, but it can be obtained from many of the 
statistical software packages. For example, R, SAS, and Minitab use the BFL test 
for comparing population variances.

The BFL test involves replacing the jth observation from sample i, yij with the 
random variable zij  0 yij 2 yi

~ 0 , where ỹ i is the sample median from the ith sample. 
The mean of all zij s is denoted z.., and the mean of the zij s from the ith sample is 
denoted zi.· With this notation, the BFL test statistic is computed as given in the 
following formula.

The BFL Test for  
Homogeneity of  

Population Variances

   H0:  s2
1  s2

2  c s2
t  homogeneity of variances

   Ha:  Population variances are not all equal

   T.S.:  L 
g t

i1ni 1zi. 2 z.. 2 2
/ 1t 2 1 2

g t
i1gni

j1 1zij 2 zi. 2 2 / 1N 2 t 2
R.R.:   For a specified value of a, reject H0 if L $ Fa, df1,

 df2
, where df1  t 2 1, 

df2  N 2 t, N  gt
i1 ni, and Fa, df1,

 df2
 is the upper a percentile from 

the F distribution (from Table 8 in the Appendix).

Check assumptions and draw conclusions.
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We will illustrate the computations for the BFL test in the following example. 
However, in most cases, we would recommend using a computer software package 
such as SAS or Minitab or R for conducting the test.

EXAMPLE 7.8

Three different additives that are marketed for increasing the miles per gallon 
(mpg) for automobiles were evaluated by a consumer testing agency. Past studies 
have shown an average increase of 8% in mpg for economy automobiles after using 
the product for 250 miles. The testing agency wanted to evaluate the variability 
in the increase in mileage over a variety of brands of cars within the economy class. 
The agency randomly selected 30 economy cars of similar age, number of miles on 
the odometer, and overall condition of the power train to be used in the study. It 
then randomly assigned 10 cars to each additive. The percentage increase in mpg 
obtained by each car was recorded for a 250-mile test drive. The testing agency 
wanted to evaluate whether there was a difference between the three additives 
with respect to their variability in the increase in mpg. The data are given here 
along with the intermediate calculations needed to compute the BFL’s test statistic.

Solution Using the plots in Figures 7.11(a)–(d), we can observe that the samples 
from additive 1 and additive 2 do not appear to be samples from normally 
distributed populations. Hence, we should not use an F test for evaluating 
differences in the variances in this example. The information in Table 7.5 will 
assist us in calculating the value of the BFL test statistic. The medians of the 
percentage  increase in mileage, yijs, for the three additives are 5.80, 7.55, and 9.15. 
We then calculate the absolute deviations of the data values about their respective 
 medians—namely, z1j  0y1j 2 5.80 0, z2j  0y2j 2 7.55 0, and z3j  0y3j 2 9.15 0  for j  
1, . . . , 10. These values are given in column 4 of the table. Next, we calculate 
the three means of these values, z1.  4.07, z2.  8.88, and z3.  2.23. Next, 
we calculate the squared deviations of the zijs about their respective means, 
1zij 2 zi 2 2; that is, 1z1j 2 4.07 2 2, 1z2j 2 8.88 2 2, and 1z3j 2 2.23 2 2. These values are 
contained in column 6 of the table. Then we calculate the squared deviations of 
the zijs about the  overall mean, z..  5.06; that is, (zij 2 zi.)

2  (zij 2 5.06)2. The 
last column in the table contains these values. The final step is to sum columns 6 
and 7, yielding

T1  a
3

i1
a
ni

j1

1zij 2 zi. 2 2  1,742.6    and    T2  a
3

i1
a
ni

j1

1zij 2 z.. 2 2  1,978.4

FIGURE 7.11(a)
Boxplots of additive 1,  

additive 2, and additive 3 
(means are indicated by  

solid circles)
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(a) Boxplots for three additives
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The value of BFL’s test statistic, in an alternative form, is given by

L 
1T2 2 T1 2 / 1t 2 1 2

T1 / 1N 2 t 2 
11,978.4 2 1,742.6 2 / 13 2 1 2

1,742.6 / 130 2 3 2  1.827

The rejection region for the BFL test is this: Reject H0 if L $ Fa, t21, N2 t  F.05, 2, 27  
3.35. Because L  1.827, we fail to reject H0: s

2
1  s2

2  s2
3 Using the R function 

p f(y, df1, df2)  P(F # y), the p-value is computed to be p-value  P(F $ 1.827) 
 1 2 p f(1.827, 2, 27)  .1802, which is considerably larger than .05. Thus, there is 
insufficient evidence in the data to support the research hypothesis that there is a 
difference in the population variances of the percentage increases in mpg for the 
three additives.

FIGURE 7.11(b)–(d)
Normal probability plots 

for additives 1, 2, and 3
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 7.5 RESEARCH STUDY:  Evaluation of Methods  
for Detecting E. coli

A formal comparison between a new microbial method for the detection of E. coli, 
the Petrifilm HEC test, and an elaborate laboratory-based procedure, hydrophobic 
grid membrane filtration (HGMF), will now be described. The HEC test is easier 
to inoculate, more compact to incubate, and safer to handle than conventional 
procedures. However, it was necessary to compare the performance of the HEC 
test to that of the HGMF procedure in order to determine if the HEC test might 
be a viable method for detecting E. coli.

TABLE 7.5
Percentage increase in 
mpg from cars driven 
using three additives

Additive y1j ỹ1 z1j 5 | y1j 2 5.80| z–1. (z1j 2 4.07)2 (z1j 2 5.06)2

1 4.2 5.80 1.60 4.07 6.1009 11.9716
1 2.9  2.90  1.3689 4.6656
1 0.2  5.60  2.3409 0.2916
1 25.7  19.90  250.5889 220.2256
1 6.3  0.50  12.7449 20.7936
1 7 .2  1.40  7 .1289 13.3956
1 2.3  3.50  0.3249 2.4336
1 9.9  4.10  0.0009 0.9216
1 5.3  0.50  12.7449 20.7936
1 6.5  0.70  11.3569 19.0096

Additive y2j ỹ2 z2j 5 |y2j 2 7 .55| z–2. (z2j 2 8.88)2 (z2j 2 5.06)2

2 0.2 7 .55 7 .35 8.88 2.3409 5.2441
2 11.3  3.75  26.3169 1.7161
2 0.3  7 .25  2.6569 4.7961
2 17 .1  9.55  0.4489 20.1601
2 51.0  43.45  1,195.0849 1,473.7921
2 10.1  2.55  40.0689 6.3001
2 0.3  7 .25  2.6569 4.7961
2 0.6  6.95  3.7249 3.5721
2 7 .9  0.35  72.7609 22.1841
2 7 .2  0.35  72.7609 22.1841

Additive y3j ỹ3 z3j 5 |y3j 2 9.15| z–3. (z3j 2 2.23)2 (z3j 2 5.06)2

3 7 .2 9.15 1.95 2.23 0.0784 9.6721
3 6.4  2.75  0.2704 5.3361
3 9.9  0.75  2.1904 18.5761
3 3.5  5.65  11.6964 0.3481
3 10.6  1.45  0.6084 13.0321
3 10.8  1.65  0.3364 11.6281
3 10.6  1.45  0.6084 13.0321
3 8.4  0.75  2.1904 18.5761
3 6.0  3.15  0.8464 3.6481
3 11.9  2.75  0.2704 5.3361

    z–..

 Total    5.06 1,742.6 1,978.4

■
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Defining the Problem
The developers of the HEC method sought answers to the following questions:

 1. What parameters associated with the HEC and HGMF readings 
needed to be compared?

 2. How many observations are necessary for a valid comparison of 
HEC and HGMF?

 3. What type of experimental design would produce the most efficient 
comparison of HEC and HGMF?

 4. What are the valid statistical procedures for making the comparisons?
 5. What types of information should be included in a final report to 

document the evaluation of HEC and HGMF?

Collecting the Data 
The experiment was designed to have two phases. Phase One of the study was to 
apply both procedures to pure cultures of E. coli representing 107 CFU/ml of strain 
E318N. Bacterial counts from both procedures would be obtained from a specified 
number of pure cultures. In order to determine the number of requisite cultures, 
the researchers decided on the following specification: The sample size would need 
to be large enough that there would be 95% confidence that the  sample mean of 
the transformed bacterial counts would be within .1 units of the true mean for the 
HGMF transformed counts. From past experience with the HGMF procedure, 
the standard deviation of the transformed bacterial counts is approximately 
.25 units. The specification was made in terms of HGMF because there was no 
prior  information concerning the counts from the HEC procedure. The following 
calculations yield the number of cultures needed to meet the specification.

The necessary sample size is given by

n 
z2

a/2 ̂
2s

E2  
11.96 2 2 1.25 2 2

1.1 2 2  24.01

Based on the specified degree of precision in estimating the E. coli level, it was 
 determined that the HEC and HGMF procedures would be applied to 24 pure 
 cultures each. Thus, we have two independent samples of size 24 each. The 
determinations yielded the E. coli concentrations in transformed metric units 
(log10 CFU/ml) given in Table 7.6. (The values in Table 7.6 were simulated using 
the summary  statistics given in the paper.)

TABLE 7.6
E. coli readings  

(Log10CFU/ml) from 
HGMF and HEC

Sample HGMF HEC Sample HGMF HEC

 1 6.65 6.67 13 6.94 7.11
 2 6.62 6.75 14 7.03 7.14
 3 6.68 6.83 15 7.05 7.14
 4 6.71 6.87 16 7.06 7.23
 5 6.77 6.95 17 7.07 7.25
 6 6.79 6.98 18 7.09 7.28
 7 6.79 7.03 19 7.11 7.34
 8 6.81 7.05 20 7.12 7.37
 9 6.89 7.08 21 7.16 7.39

10 6.90 7.09 22 7.28 7.45
11 6.92 7.09 23 7.29 7.58
12 6.93 7.11 24 7.30 7.54
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The researchers would next prepare the data for a statistical analysis follow-
ing the steps described in Section 2.5 of the textbook.

Summarizing the Data
The researchers were interested in determining if the two procedures yielded 
equivalent measures of E. coli concentrations. The boxplots of the experimental 
data are given in Figure 7.12. The two procedures appear to be very similar with 
 respect to the width of box and length of whiskers, but HEC has a larger median 
than HGMF. The sample summary statistics are given here.

FIGURE 7.12
Boxplots of HEC and 
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Descriptive Statistics: HGMF, HEC

Variable  N  N*    Mean   SE Mean   StDev
HGMF     24   0  6.9567    0.0414  0.2029
HEC      24   0  7.1383    0.0481  0.2358

Variable  Minimum    Q1    Median    Q3   Maximum
HGMF       6.6200  6.7900  6.9350  7.1050  7.3000
HEC        6.6700  6.9925  7.1100  7.3250  7.5800

From the summary statistics, we note that HEC yields a larger mean concen-
tration than does HGMF. Also, the variability in concentration readings for HEC 
is greater than the value for HGMF. Our initial conclusion would be that the two 
procedures are yielding different distributions of readings for their determina-
tions of E. coli concentration. However, we need to determine if the differences in 
their sample means and standard deviations imply a difference in the correspond-
ing population values. We will next apply the appropriate statistical procedures in 
order to reach conclusions about the population parameters.

Analyzing the Data
Because the objective of the study was to evaluate the HEC procedure for its 
 performance in detecting E. coli, it is necessary to evaluate its repeatability 
and its agreement with an accepted method for E. coli—namely, the HGMF 
procedure. Thus, we need to compare both the level and the variability in the 
two methods for  determining E. coli concentrations. That is, we will need to 
test hypotheses about both the means and the standard deviations of HEC and 
HGMF E. coli concentrations.  Recall we had 24 independent observations from 
the HEC and HGMF procedures on pure cultures of E. coli having a specified 
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level of 7 log10 CFU/ml. Prior to constructing confidence intervals or testing 
hypotheses, we must check whether the data represent random samples from 
normally distributed populations. From the boxplots displayed in Figure 7.12 and 
the normal probability plots in Figures 7.13(a)–(b), the data from both procedures 
appear to follow a normal distribution.

We next will test the hypotheses

H0: s
2
1  s2

2 versus Ha: s
2
1 2 s2

2

where we designate HEC as population 1 and HGMF as population 2. The sum-
mary statistics are given in Table 7.7.

  Sample     Standard  
Procedure Size Mean Deviation

HEC  24  7 .1383  .2358
HGMF  24  6.9567  .2029

TABLE 7.7
HEC and HGMF  

summary statistics

FIGURE 7.13
Normal probability plots  
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R.R.: For a two-tailed test with a  .05, we will reject H0 if

F 
s2

1

s2
2

# F.975, 23, 23 
1

F.025, 23, 23


1
2.31

 .43  or  F $ F.025, 23, 23  2.31

Since F  1.2358 2 2 / 1.2029 2 2  1.35 is neither less than .43 nor greater than 2.31, 
we fail to reject H0. The p-value is computed as follows: p-value  pf ( 1

1.35, 23, 
23) 1 1 2 pf (1.35, 23, 23)  .477. Thus, we can conclude that HEC appears to have 
a degree of variability similar to that of HGMF in its determination of E. coli con-
centration. To  obtain estimates of the variability in the HEC and HGMF readings, 
95% confidence intervals on their standard deviations are given by 

aÅ
124 2 1 2 1.2358 2 2

38.08
, Å

124 2 1 2 1.2358 2 2

11.69
b  10.18, .33 2  for sHEC

and

aÅ
124 2 1 2 1.2029 2 2

38.08
, Å

124 2 1 2 1.2029 2 2

11.69
b  1.16, .28 2  for sHGMF 

Because both the HEC and the HGMF E. coli concentration readings appear 
to be independent random samples from normal populations with a common 
standard deviation, we can use a pooled t test to evaluate

H0:  m1  m2 versus Ha:  m1 2 m2

R.R.: For a two-tailed test with a = .05, we will reject H0 if

0t 0 
0y1 2 y2 0

spË 1
n1

1 1
n2

$ t.025, 46  2.01

Because t  (7.14 2 6.96) / 1.22# 1
24 1 1

24 2  2.86 is greater than 2.01, we  reject H0. 
The p-value  .006. Thus, there is significant evidence that the average HEC E. coli 
concentration readings differ from the average HGMF readings, with an estimated 
difference given by a 95% confidence interval on mHEC 2 mHGMF, (.05, .31). To estimate 
the average readings, 95% confidence intervals are given by (7.04,7.23) for mHEC 
and (6.86,7.04) for mHGMF. The HEC readings are on the average somewhat higher 
than the HGMF readings.

These findings would then prepare us for the second phase of the study. In 
this phase, HEC and HGMF will be applied to the same sample of meats in a 
research study similar to what would be encountered in a meat-monitoring setting. 
The two procedures had similar levels of variability, but HEC produced E. coli 
concentration readings higher than those of HGMF. Thus, the goal of Phase Two 
would be to calibrate the HEC readings to the HGMF readings. We will discuss 
this phase of the study in Chapter 11.

Reporting the Conclusions
We would need to write a report summarizing our findings concerning Phase One 
of the study. We would need to include the following:

 1. Statement of objective for study
 2. Description of study design and data collection procedures
 3. Numerical and graphical summaries of data sets
 4. Description of all inference methodologies

● t and F tests
● t-based confidence intervals on means
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● chi-square–based confidence intervals on standard deviations
●  verification that all necessary conditions for using inference tech-

niques were satisfied
 5. Discussion of results and conclusions
 6. Interpretation of findings relative to previous studies
 7. Recommendations for future studies
 8. Listing of data sets

 7.6 Summary and Key Formulas

In this chapter, we discussed procedures for making inferences concerning 
population variances or, equivalently, population standard deviations. Estimation 
and statistical tests concerning s make use of the chi-square distribution with 
df  n 2 1. Inferences concerning the ratio of two population variances or standard 
deviations utilize the F distribution with df1  n1 2 1 and df2  n1 2 2. Finally, 
when we  developed tests concerning differences in t . 2 population variances, we 
used the Brown-Forsythe-Levene (BFL) test statistic.

The need for inferences concerning one or more population variances can 
be traced to our discussion of numerical descriptive measures of a population in Chap-
ter 3. To describe or make inferences about a population of measurements, we cannot 
always rely on the mean, a measure of central tendency. Many times in evaluating or 
comparing the performance of individuals on a psychological test, the consistency of 
manufactured products emerging from a production line, or the yields of a particular 
variety of corn, we gain important information by studying the population variance.

Key Formulas
1. 100(1 2 a)% confidence interval 

for s2 (or s)

a 1n 2 1 2s2

x2
U
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1n 2 1 2s2
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2. Statistical test for s2 1s2
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 7.7 Exercises

 7.1 Introduction
 Env. 7.1  For the E. coli research study, answer the following.

 a. What are the populations of interest?
 b.  What are some factors other than the type of detection method (HEC versus 

HGMF) that may cause variation in the E. coli readings?
 c.  Describe a method for randomly assigning the E. coli samples to the two devices 

for analysis.
 d. State several hypotheses that may be of interest to the researchers.

 7.2 Estimation and Tests for a Population Variance
 Basic 7.2 Suppose a random variable W has a chi-square distribution with df  23. Determine the 

following probabilities.
 a. P(W . 41.64)
 b. P(W . 35.17)
 c. P(W # 13.09)
 d. P(W # 12.14)
 e. P(W # 35.17)
 f. P(12.14 , W # 35.17)

 Basic 7.3 Find the following percentiles for a chi-square distribution with df  18.
 a. x2

.05

 b. x2
.01

 c. x2
.95

 d. x2
.025

 e. x2
.03

 f. x2
.94

 Basic 7.4 Table 7 in the Appendix is useful for obtaining percentiles for the chi-square distribution 
for a wide range of values of degrees of freedom and values of a. Alternatively, when a com-
puter is available, a software program such as R can be used to obtain percentiles or to compute 
p-values for values of degrees of freedom and values of a not provided in Table 7. However, in 
those situations when a computer is unavailable or Table 7 does not have the desired percentile 
for a specified degrees of freedom, the following approximation can be used provided df . 40.

    x2
a < va1 2

2
9v

1 zaÅ
2
9v

b
3

where x2
a is the upper percentile of the chi-square distribution with df  v and za is the upper 

a percentile of a standard normal distribution.
 a.  For df  20, compare the values obtained from the approximation for x2

.05 and x2
.95

to the values listed in Table 7.
 b.  For df  60, compare the values obtained from the approximation for x2

.05 and x2
.95 

to the values listed in Table 7.
 c.  For df  90, compare the values obtained from the approximation for x2

.05 and x2
.95 

to the values listed in Table 7.
 d.  For df  240, compare the values obtained from the approximation for x2

.05 and x2
.95 

to the values listed in Table 7.
 e.  Comment on the accuracy of the approximation for the percentiles obtained in 

parts (a)–(d).

 Bus. 7.5 A production process for filling orange juice containers labeled as 64 ounces is monitored 
for the actual amount of juice in the container. The process is designed such that the amount 
of juice in the containers has a normal distribution with a mean of 64.3 ounces and a standard 
deviation of .15 ounces. The process is monitored by randomly selecting 24 containers every 
hour and measuring the actual amount of juice in the containers. An increase in the standard 
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deviation beyond .15 ounces with the mean remaining at 64.3 ounces will result in a production 
run with too many underfilled and overfilled containers. The following data are the actual 
amounts of juice in a random sample of 24 containers.

64.37 64.26 64.22 64.42 64.13 64.44 64.64 64.19 63.85 64.17 64.21 64.23
64.64 64.12 63.98 64.34 64.20 64.31 64.15 64.09 64.33 64.19 64.57 64.19

 a.  If the amount of juice in the containers has a normal distribution with a mean of 
64.3 ounces and a standard deviation of .15 ounces, what proportion of containers 
filled on the production line will be underfilled (contain less than 64 ounces)? 
What percentage will be overfilled?

 b.  Construct a 95% confidence interval on the process standard deviation.
 c.  Do the data indicate that the process standard deviation is greater than 

.15 ounces? Use a  .05 in reaching your conclusion.
 d. What is the p-value of your test?
 e.  Is there any indication that the necessary conditions for constructing the 

confidence interval and conducting the test may be violated?
 f. What is the population about which inferences can be made using the given data?

 Engin. 7.6 A leading researcher in the study of interstate highway accidents proposes that a major 
cause of many collisions on the interstates is not the speed of the vehicles but rather the difference 
in speeds of the vehicles. When some vehicles are traveling slowly while other vehicles are 
traveling at speeds greatly in excess of the speed limit, the faster-moving vehicles may have to 
change lanes quickly, which can increase the chance of an accident. Thus, when there is a large 
variation in the speeds of the vehicles in a given location on the interstate, there may be a larger 
number of accidents than when the traffic is moving at a more uniform speed. The researcher 
believes that when the standard deviation in speed of vehicles exceeds 10 mph, the rate of 
accidents is greatly increased. During a 1-hour period of time, a random sample of 50 vehicles is 
selected from a section of an interstate known to have a high rate of accidents, and their speeds 
are recorded using a radar gun. The data are presented here.

56.1 57 .0 53.9 50.2 54.2 47 .9 78.1 60.2 47 .4 68.8
45.5 63.3 59.7 74.3 61.4 58.7 61.2 64.7 64.3 48.2
57 .7 72.1 72.0 67 .6 47 .6 65.9 72.3 55.7 55.0 75.2
62.8 47 .0 48.1 62.9 64.0 80.6 51.2 53.7 53.3 58.3
68.2 69.5 51.8 68.8 63.8 61.8 59.3 63.6 54.7 59.9

 a.  Do the data indicate any violations in the conditions necessary to use 
the chi-square procedures for generating confidence intervals and testing 
hypotheses?

 b.  Estimate the standard deviation in the speeds of the vehicles traveling on the 
interstate using a 95% confidence interval.

 c.  Do the data indicate that the standard deviation in vehicle speeds exceeds 
10 mph? Use a  .05 in reaching your conclusion.

 d.  To what population can the inferences obtained in parts (b) and (c) be validly 
applied?

 Edu. 7.7 A large public school system was evaluating its elementary school reading program. In 
 particular, educators were interested in the performance of students on a standardized reading 
test given to all third graders in the state. The mean score on the test was compared to the state 
average to determine the school system’s rating. Also, the educators were concerned with the 
variation in scores. If the mean scores were at an acceptable level but the variation was high, this 
would indicate that a large proportion of the students still needed remedial reading programs. 
Also, a large variation in scores might indicate a need for programs for those students at the gifted 
level. Without accelerated reading programs, these students lose interest during reading classes. 
To obtain information about students early in the school year (the statewide test is given during 
the last month of the school year), a random sample of 150 third-grade students was given the 
exam used in the previous year. The possible scores on the reading test range from 0 to 100. The 
data are summarized here.
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 a.  Does the following plot of the data suggest any violation of the conditions necessary 
to use the chi- square procedures for generating a confidence interval and a test of 
hypotheses about s?

 b. Estimate the variation in reading scores using a 99% confidence interval.
 c.  Do the data indicate that the standard deviation in reading scores is greater than 9,  

the standard deviation for all students taking the exam the previous year? Use a  .01 
in reaching your conclusion.

Descriptive Statistics for Reading Scores

Variable N Mean Median TrMean StDev SE Mean
Reading 150 70.571 71.226 70.514 9.537 0.779

Variable Minimum Maximum Q1 Q3
Reading 44.509 94.570 65.085 76.144
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 Edu. 7.8 Refer to Exercise 7.7.
 a. Compute the p-value of the test conducted in Exercise 7.7.
 b.  If the value of a is increased to .05, would the conclusion reached in Exercise 7.7 

change?

 Engin. 7.9 Baseballs vary somewhat in their rebounding coefficient. A baseball that has a large 
 rebound coefficient will travel farther when the same force is applied to it than a ball with a 
smaller coefficient. To achieve a game in which each batter has an equal opportunity to hit a 
home run, the balls should have nearly the same rebound coefficient. A standard test has been 
developed to measure the rebound coefficient of baseballs. A purchaser of large quantities of 
baseballs requires that the mean coefficient value be 85 units and the standard deviation be less 
than 2 units. A random  sample of 40 baseballs is selected from a large batch of balls and tested. 
The data are given here.

84.8 88.1 85.1 88.0 86.6 85.3 85.1 91.4 83.4 87 .2
83.7 89.5 85.6 83.5 81.6 81.1 83.6 81.2 84.7 87 .0
87 .5 84.3 86.9 83.3 85.9 82.2 88.2 83.5 82.7 86.0
87 .3 87 .9 82.6 80.5 85.6 82.3 79.3 84.9 80.6 83.9

 a.  Do the data indicate any violations in the conditions necessary to use the  
chi-square procedures for generating confidence intervals and testing hypotheses?

 b.  Estimate the standard deviation in the rebound coefficients using a 99% confidence 
interval.

 c.  Do the data indicate that the mean rebound coefficient is less than 85? Use a  .05 
in reaching your conclusion.

 d.  Do the data indicate that the standard deviation in rebound coefficients exceeds 2? 
Use a  .01 in reaching your conclusion.

 e. To what population can the inferences obtained in parts (b)–(d) be validly applied?
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  7.10  Use the results of the simulation study, summarized in Table 7.2, to answer the following questions.
 a.  Which of skewness or heavy-tailedness appears to have the stronger effect on 

the chi-square tests?
 b.  For a given population distribution, does increasing the sample size yield a 

values more nearly equal to the nominal value of .05? Justify your answer, and 
provide reasons why this may occur.

 c.  For the short-tailed distribution (uniform), the actual probability of Type I error 
is smaller than the specified value of .05. Provide both a negative and a positive 
impact on the chi-square test of having a decrease in the specified value of a.

 7.3 Estimation and Tests for Comparing Two Population Variances
 Basic 7.11 Find the value that locates an area a in the upper tail of the F distribution; that is, find Fa 

for the following values of a and degrees of freedom.
 a. a  .05, df1  7, df2  9
 b. a  .025, dfl  9, df2  7
 c. a   .01, dfl  17, df2  9
 d. a  .10, dfl  9, df2  20
 e. a  .25, dfl  15, df2  12
 f. a  .15, dfl  15, df2  19

 Basic 7.12 Find the value that locates an area a in the upper tail of the F distribution; that is, find Fa  
for the following values of a and degrees of freedom.

 a. a  .05, dfl  6, df2  45
 b. a  .025, dfl  8, df2  55
 c. a  .01, dfl  7, df2  38
 d. a  .10, dfl  12, df2  87
 e. a  .005, dfl  7, df2  46
 f. a  .001, dfl  15, df2  58

 Basic 7.13 Find the following percentiles for an F distribution with the following specifications:
 a. a  .05, dfl  14, df2  9
 b. a  .025, dfl  39, df2  27
 c. a  .01, dfl  50, df2  39
 d. a  .10, dfl  39, df2  40
 e. a  .001, dfl  45, df2  45
 f. a  .005, dfl  25, df2  39

 Basic 7.14 Random samples of sizes n1  25 and n2  20 were selected from populations A and B, 
 respectively. From the samples, the standard deviations were computed to be s1  5.2 and s2  6.8.

 a.  Do the data provide substantial evidence to indicate the populations have 
different standard deviations? Use a  .05.

 b.  Estimate the relative sizes of the standard deviations by constructing a 95% 
confidence interval for the ratio of the standard deviations s1/ s2.

 c.  The data and populations must satisfy what conditions in order for your test and 
confidence interval to be valid?

 Engin. 7.15 A soft-drink firm is evaluating an investment in a new type of canning machine. The company 
has already determined that it will be able to fill more cans per day for the same cost if the new ma-
chines are installed. However, it must determine the variability of fills using the new  machines and 
wants the variability from the new machines to be equal to or smaller than that  currently obtained using 
the old machines. A study is designed in which random samples of 40 cans are selected from the output 
of both types of machines and the amount of fill (in ounces) is determined. The data are given below. 

 Old Machine New Machine

16.74 15.75 16.19 16.54 15.92 16.29 16.44 16.29 15.64 15.81 16.20 16.36 16.36 16.05 16.07 16.04
16.38 16.47 16.56 16.42 16.08 16.47 16.02 16.74 16.08 16.31 16.50 16.14 16.12 16.30 16.41 16.11
15.97 16.47 16.06 16.64 16.40 16.40 16.28 16.66 16.20 16.29 15.75 16.22 16.12 16.23 16.19 16.59
16.80 16.36 16.36 16.27 16.43 16.26 16.31 16.59 16.08 16.07 16.15 16.50. 16.25 16.25 16.19 16.13
16.24 16.63 16.15 16.17 16.32 16.81 16.27 17 .09 15.96 16.02 16.29 15.99 15.99 16.42 16.15 16.23
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 a.  Estimate the standard deviations in fill for types of machines using 95% 
confidence  intervals.

 b.  Do these data present sufficient evidence to indicate that the new type of 
machine has less variability of fills than the old machine?

 c.  Do the necessary conditions for conducting the inference procedures in parts 
(a) and (b) appear to be satisfied? Justify your answer.

 Edu. 7.16 The SAT Reasoning Test is an exam taken by most high school students as part of their 
college admission requirements. A proposal has been made to alter the exam by  having the 
students take the exam on a computer. The exam questions would be selected for the student in 
the following fashion. For a given section of questions, if the student answers the initial questions 
posed correctly, then the following questions become increasingly difficult. If the  student provides 
incorrect answers for the initial questions asked in a given section, then the level of difficulty 
of latter questions does not increase. The final score on the exams will be standardized to take 
into account the overall difficulty of the questions on each exam. The testing agency wants to 
compare the scores obtained using the new method of administering the exam to the scores using 
the current method. A group of 182 high school students is randomly selected to participate in the 
study with 91 students randomly assigned to each of the two methods of administering the exam. 
The data are summarized in the following table and boxplots for the math portion of the exam.

 Summary Data for SAT Reasoning Exams

Testing Method Sample Size Mean Standard Deviation

Computer 91 484.45 53.77
Conventional 91 487 .38 36.94

Boxplots of conventional 
and computer methods 

(means are indicated by 
solid circles)

*

Computer methodConventional method
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Evaluate the two methods of administering the SAT exam. Provide tests of hypotheses and 
 confidence intervals. Are the means and standard deviations of scores for the two methods 
 equivalent? Justify your answer using a  .05.

  7.17 Use the results of the simulation study summarized in Table 7.4 to answer the following 
questions.

 a.  Which of skewness or heavy-tailedness appears to have the stronger effect on 
the F tests?

 b.  For a given population distribution, does increasing the sample size yield a values 
more nearly equal to the nominal value of .05? Justify your answer, and provide 
 reasons why this may occur.

 c.  For the short-tailed distribution (uniform), the actual probability of Type I error 
is smaller than the specified value of .05. Provide both a negative and a positive 
impact on the F test of having a decrease in the specified value of a.



396 ChApteR 7 InfeRenCeS About populAtIon VARIAnCeS

 7.4 Tests for Comparing t + 2 Population Variances

 Bio. 7.18 A wildlife biologist was interested in determining the effect of raising deer in captivity on 
the size of the deer. She decided to consider three populations: deer raised in the wild, deer raised 
on large hunting ranches, and deer raised in zoos. She randomly selected eight deer in each of the 
three environments and weighed the deer at age 1 year. The weights (in pounds) are given in the 
following table.

Environment Weight (in pounds) of Deer

Wild 114.7 128.9 111.5 116.4 134.5 126.7 120.6 129.59
Ranch 120.4 91.0 119.6 119.4 150.0 169.7 100.9 76.1
Zoo 103.1 90.7 129.5 75.8 182.5 76.8 87 .3 77 .3

 a.  The biologist hypothesized that the weights of deer from captive environments 
would have a larger level of variability than the weights from deer raised in the 
wild. Do the data support her contention? 

 b.  Are the requisite conditions for the test you used in part (a) satisfied in this 
situation?  Provide plots to support your answer.

 Theory 7.19 Why do you think that the BFL test is effective in testing for differences in the variances 
from populations having nonnormal distributions, whereas the F statistic cannot be applied to 
nonnormal distributions?

Supplementary Exercises

 Bus. 7.20 A consumer-protection magazine was interested in comparing tires purchased from 
two different companies that each claimed their tires would last 40,000 miles. A random sample 
of 10 tires of each brand was obtained and tested under simulated road conditions. The number 
of miles until the tread thickness reached a specified depth was recorded for all tires. The data are 
given next (in thousands of miles).

Brand I 38.9 39.7 42.3 39.5 39.6 35.6 36.0 39.2 37 .6 39.5
Brand II 44.6 46.9 48.7 41.5 37 .5 33.1 43.4 36.5 32.5 42.0

 a. Plot the data, and compare the distributions of longevity for the two brands.
 b.  Construct 95% confidence intervals on the means and standard deviations for 

the number of miles until tread wearout occurred for both brands. 
 c.  Does there appear to be a difference in wear characteristics for the two brands? 

Justify your statement with appropriate plots of the data, tests of hypotheses, 
and confidence intervals.

 Med. 7.21 A pharmaceutical company manufactures a particular brand of antihistamine tablets. 
In the quality control division, certain tests are routinely performed to determine whether the 
product being manufactured meets specific performance criteria prior to release of the product 
onto the market. In particular, the company requires that the potencies of the tablets lie in the 
range of 90% to 110% of the labeled drug amount. 

 a.  If the company is manufacturing 25 mg tablets, within what limits must tablet 
potencies lie?

 b.  A random sample of 30 tablets is obtained from a recent batch of antihistamine 
tablets. The data for the potencies of the tablets are given next. Is the assump-
tion of normality warranted for inferences about the population variance?

 c.  Translate the company’s 90% to 110% specifications on the range of the product 
 potency into a statistical test concerning the population variance for potencies.  
Draw conclusions based on a  .05.
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24.1 27 .2 26.7 23.6 26.4 25.2
25.8 27 .3 23.2 26.9 27 .1 26.7
22.7 26.9 24.8 24.0 23.4 25.0
24.5 26.1 25.9 25.4 22.9 24.9
26.4 25.4 23.3 23.0 24.3 23.8

 Bus. 7.22 The risk of an investment is measured in terms of the variance in the return that could be 
observed. Random samples of 10 yearly returns were obtained from two different portfolios. The 
data are given next (in thousands of dollars).

Portfolio 1 130 135 135 131 129 135 126 136 127 132
Portfolio 2 154 144 147 150 155 153 149 139 140 141

 a. Does portfolio 2 appear to have a higher risk than portfolio 1?
 b.  Give a p-value for your test, and place a confidence interval on the ratio of the 

standard deviations of the two portfolios.
 c.  Provide a justification that the required conditions have been met for the 

inference procedures used in parts (a) and (b).
  7.23 Refer to Exercise 7.22. Are there any differences in the average returns for the two 

portfolios? Indicate the method you used in arriving at a conclusion, and explain why you used it.
 Med. 7.24 Sales from weight-reducing agents marketed in the United States represent sizable 

amounts of income for many of the companies that manufacture these products. Psychological as 
well as physical effects often contribute to how well a person responds to the recommended ther-
apy. Consider a comparison of two weight-reducing agents, A and B. In particular, consider the 
length of time people remain on the therapy. A total of 26 overweight males, matched as closely as 
possible physically, were randomly divided into two groups. Those in group 1 received preparation 
A and those assigned to group 2 received preparation B. The data are given here (in days).

Preparation A 42 47 12 17 26 27 28 26 34 19 20 27 34
Preparation B 35 38 35 36 37 35 29 37 31 31 30 33 44

  Compare the lengths of times that people remain on the two therapies. Make sure to include all 
relevant plots, tests, confidence intervals, and a written conclusion concerning the two therapies.

  7.25 Refer to Exercise 7.24. How would your inference procedures change if preparation A 
was an old product that had been on the market a number of years and preparation B was a new 
product, and we wanted to determine whether people would continue to use B a longer time in 
 comparison to preparation A?

 Gov. 7.26 A school district in a midsized city currently has a single high school for all its students. 
The number of students attending the high school has become somewhat unmanageable, and, 
hence, the school board has decided to build a new high school. The school board after consid-
erable deliberation divides the school district into two attendance zones, one for the current 
high school and one for the new high school. The board guaranteed the public that the mean 
family  income was the same for the two zones. However, a group of parents is concerned that 
the two zones have greatly different family socioeconomic distributions. A random sample of 30 
homeowners were  selected from each zone to be interviewed concerning relevant family traits. 
Two families in zone II refused to participate in the study, even though the researcher promised 
to keep interview information confidential. One aspect of the collected data was family income. 
The incomes, in thousands of dollars, produced the following data.

 Zone I Incomes
44.1 69.0 46.9 41.7 61.3  43.9 48.0 61.3 31.2 49.3
57 .1 46.5 53.6 47 .0 47 .0 53.7 39.2 64.3 40.9 45.4
58.2 54.6 66.6 36.6 58.2 45.8 62.9 53.2 56.1 53.0
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 Zone II Incomes
53.6 58.4 56.1 48.1 56.5 50.2 60.0 44.4 56.5 57 .3
58.6 53.1 60.4 54.2 54.2 59.5 54.3 59.2 53.9 48.8
58.1 58.4 51.7 59.3 51.4 56.3  57 .7 54.3 62.1 47 .9

 a. Verify that the two attendance zones have the same mean income.
 b.  Use these data to test the hypothesis that although the mean family incomes are 

nearly the same in the two zones, zone I has a much higher level of variability than 
zone II in terms of family income.

 c. Place a 95% confidence interval on the ratio of the two standard deviations.
 d.  For each zone, use your estimates of the zone standard deviations to determine 

the range of incomes that would contain 95% of all incomes in each of the zones.
 e.  Verify that the necessary conditions have been met to apply the procedures you 

used in parts (a)–(c).
 Engin. 7.27 Refer to Example 6.2. In this example, the pooled t-based confidence interval procedures 

were used to estimate the difference between domestic and imported mean repair costs. Verify 
that the necessary conditions were satisfied.

 Bus. 7.28 Refer to Exercise 6.59. The company officials decided to use the separate-variance t test in 
deciding whether the mean potency of the drug after 1 year of storage was different from the mean 
potency of the drug from current production. Provide evidence that their decision in fact was correct.

 Engin. 7.29 A casting company has several ovens in which they heat the raw materials prior to pour-
ing them into a wax mold. It is very important that these metals be heated to a precise tempera-
ture with very little variation. Three ovens are selected at random, and their temperatures are 
recorded (°C) very acurately on 10 successive heats. The collected data are as follows:

Oven Temperature °C

 1 1,670.87 1,670.88 1,671.51 1,672.01 1,669.63 1,670.95 1,668.70 1,671.86 1,669.12 1,672.52
 2 1,669.16 1,669.60 1,669.76 1,669.18 1,671.92 1,669.69 1,669.45 1,669.35 1,671.89 1,673.45
 3 1,673.08 1,672.75 1,675.14 1,674.94 1,671.33 1,660.38 1,679.94 1,660.51 1,668.78 1,664.32

 a.  Is there significant evidence (a  .05) that the three ovens have different levels 
of variation in their temperatures?

 b.  Assess the order of magnitude in the differences in standard deviations by placing 
95% confidence intervals on the ratios of the three pairs of standard deviations.

 c.  Do the conditions that are required by your statistical procedures in parts (a) 
and (b) appear to be valid?

 Med. 7.30 A new steroidal treatment for a skin condition in dogs was under evaluation by a 
veterinary hospital. One of the possible side effects of the treatment is that a dog receiving the 
treatment may have an allergic reaction to the treatment. This type of allegeric reaction manifests 
itself through an elevation in the resting pulse rate of the dog after the dog has received the 
treatment for a period of time. A group of 80 dogs of the same breed and age, and all having the 
skin condition, is randomly assigned to either a placebo treatment or the steroidal treatment. Four 
days after receiving the treatment, either steroidal or placebo, resting pulse rate measurements 
are taken on all the dogs. These data are displayed here. Dogs of this age and breed have a fairly 
constant resting pulse rate of 100 beats a minute. The researchers are interested in testing whether 
there is a significant difference between the placebo and treatment dogs in terms of both the 
means and standard deviations of the resting pulse rates.

 Placebo Group Pulse Rates

105.1 103.3 102.1 102.3 101.5 100.6 104.5 103.2 101.8
102.1 108.1 103.2 104.0 103.9 105.3 103.6 102.3 103.9
103.0 107 .0 102.3 103.5 111.7 101.4 103.0 101.1 103.7
102.3 106.2 100.8 102.1 104.3 104.0  102.2 103.1 104.7
102.3 110.1 103.1 103.4     
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 Treatment Group Pulse Rates

107 .6 107 .8 110.4 106.6 108.2 113.4 113.5 108.7 108.2
106.0 105.3 107 .1 110.3 108.7 107 .4 111.1 105.9 106.9
106.4 111.5 106.8 107 .8 106.1 106.7 105.0 110.4 105.9
106.4 106.0 106.0 106.9 107 .6 107 .0 105.8 108.6 109.3
108.5 106.9 107 .0 109.2     

 a.  Is there significant evidence of an increase in the mean pulse rates for those dogs 
receiving the treatment?

 b.  Is there significant evidence of a difference in the levels of variability in pulse rate 
between the placebo and the treatment group of dogs?

 c.  Provide a 95% confidence interval on the difference in mean pulse rates between 
the placebo and treatment groups.

 d.  Do the necessary conditions hold for the statistical procedures you applied in 
parts (a)–(c)? Justify your answer.

 Met. 7.31 A series of experiments was designed to test a hypothesis that massive silver iodide seed-
ing can, under specified conditions, lead to increased precipitation. The data from these experi-
ments were reported in the article “A Bayesian Analysis of a Multiplicative Treatment Effect in 
Weather Modification” [Technometrics (1975) 17:161–166]. The rain volume falling from the 
cloud after seeding with silver iodide is reported here.

Rainfall (acre‑feet) Unseeded Clouds

 129.6 31.4 2745.6 489.1 430.0 302.8 119.0 4.1
 92.4 17 .5 200.7 274.7 274.7 7 .7 1656.0 978.0
 198.6 703.4 1697 .8 334.1 118.3 255.0 115.3 242.5
 32.7 40.6      

 Rainfall (acre‑feet) Seeded Clouds

 26.1 26.3 87 .0 95.0 372.4 0.0 17 .3 24.4
 11.5 321.2 68.5 81.2 47 .3 28.6 830.1 345.5
 1202.6 36.6 4.9 4.9 41.1 29.0 163.0 244.3
 147 .8 21.7      

 a.  Is there significant evidence that seeding has increased the mean rainfall?
 b.  Is there a significant difference in the levels of variability in the amount of 

rainfall  between seeded and unseeded clouds?
 c.  In order for seeding to be economically viable, it must on the average produce 

at least 100 more acre-feet of rainfall over usual (unseeded) rainfall. Is there evi-
dence in this data set that seeding is economically viable?

  7.32 Refer to the epilepsy data in Table 3.19. The researchers were interested in determining 
whether the treatment patients and placebo patients had differences in the number of epileptic 
seizures during their fourth clinic visit after receiving either the treatment or a placebo.

 a.  Is there significant evidence that the mean number of seizures is smaller in the 
treatment group than in the placebo group?

 b.  Compare the treatment and placebo groups relative to the variation in their 
 respective number of seizures during the fourth visit.

 c.  Do you think that the treatment was effective? Justify your answer.

 Soc. 7.33 Refer to Exercise 3.55.
 a. What are the target populations for this study?
 b.   The state agency in charge of allocations for food stamps wants to deterinine if 

the level of variation in expenditures differed for the five groups. Conduct a test 
and construct confidence intervals to answer the agency’s question.



 8.1 Introduction and Abstract of Research Study

In Chapter 6, we presented methods for comparing two population means based 
on independent random samples selected from each of the populations. In many 
practical/scientific settings, the number of populations for which we want to make 
comparisons will be three or more. For example, it is claimed that the influx of 
 undocumented workers into the United States has resulted in the suppression of 
wages of laborers, especially in the southwestern states. Advocates for the unioni-
zation of farm workers argue that it is not the documentation status of the workers 
that is causing the decrease in wages but rather the lack of union representation. 
We wish to compare the mean hourly wage for farm laborers from three differ-
ent classifications (union-documented, nonunion-documented, nonunion-undoc-
umented).  Independent random samples of farm laborers would be selected 
from each of the three classifications (populations). The sample means and sam-
ple variances would then be used to make an inference about the corresponding 
 population mean hourly wages. It is almost certain that the sample means would 
differ; however, this does not necessarily imply a difference among the population 
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means. How do we  determine the size of difference in the sample means necessary 
for us to state with some degree of certainty that the population means are differ-
ent? The statistical procedure called analysis of variance will provide us with the 
answer to this  question.

The reason we call the testing procedure an analysis of variance will be dem-
onstrated by using the hourly wage example discussed in the previous paragraph. 
Assume that we wish to compare the mean hourly wages of the three classifica-
tions of farm laborers. We will use a random sample of five workers from each of 
the populations to illustrate the basic ideas of an analysis of variance. The sample 
size is unreasonably small for a real evaluation of wages, but it is used in order to 
simplify the presentation.

Suppose the sample data (hourly wages, in dollars) are as shown in Table 8.1. 
Do these data present sufficient evidence to indicate differences among the three 
population means? A brief visual inspection of the data indicates very little vari-
ation within a sample, whereas the variability among the sample means is much 
larger. Because the variability among the sample means is large in comparison to 
the within-sample variation, we might conclude intuitively that the corresponding 
population means are different. 

Table 8.2 illustrates a situation in which the sample means are the same 
as given in Table 8.1, but the variability within a sample is much larger, and the 
 between-sample variation is small relative to the within-sample variability. We 
would be less likely to conclude that the corresponding population means differ 
based on these data. 

The variations in the two sets of data, Tables 8.1 and 8.2, are shown graphi-
cally in Figure 8.1. The strong evidence to indicate a difference in population  

within-sample  
variation

between-sample  
variation

TABLE 8.1
A comparison of three  

sample means (small 
amount of within-sample 

variation)

Sample from Population 

 1 2 3

5.90 5.51 5.01
5.92 5.50 5.00
5.91 5.50 4.99
5.89 5.49 4.98
5.88 5.50 5.02

y1 
 
5.90 y2 

 
5.50 y3  5.00

TABLE 8.2
A comparison of three  

sample means (large 
amount of within-sample 

variation)

Sample from Population 

 1 2 3

5.90 6.31 4.52
4.42 3.54 6.93
7 .51 4.73 4.48
7 .89 7 .20 5.55
3.78 5.72 3.52

y1 
 
5.90 y2  5.50 y3  5.00
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means for the data of Table 8.1 is apparent in Figure 8.1(a). The lack of evidence 
to indicate a difference in population means for the data of Table 8.2 is indicated 
by the overlapping of data points for the samples in Figure 8.1(b).

The preceding discussion, with the aid of Figure 8.1, should indicate what we 
mean by an analysis of variance. All differences in sample means are judged statis-
tically significant (or not) by comparing them to the variation within samples. The 
details of the testing procedure will be presented after we discuss a research study 
that requires an analysis of variance to evaluate its research hypothesis.

Abstract of Research Study: Effect of Timing of the 
Treatment of Port-Wine Stains with Lasers
Port-wine stains are congenital vascular malformations that occur in an estimated 
3 children per 1,000 births. The stigma of a disfiguring birthmark may have a sub-
stantial effect on a child’s social and psychosocial adjustment. In 1985, the flash-
pumped pulsed-dye laser was advocated for the treatment of port-wine stains in 
children. Treatment with this type of laser was hypothesized to be more effec-
tive in children than adults because the skin in children is thinner and the size 
of the port-wine stain is smaller; fewer treatments would therefore be necessary 
to achieve  optimal clearance. These are all arguments to initiate treatment at an 
early age.

In a prospective study described in the paper “Effect of the Timing of Treat-
ment of Port-Wine Stains with the Flash-Lamp-Pumped Pulsed-Dye Laser” (vander 
Horst et al., 1998), the researchers investigated whether treatment at a young age 
would yield better results than treatment at an older age.

One hundred patients, 31 years of age or younger, with a previously  untreated 
port-wine stain were selected for inclusion in the study. During the first consulta-
tion, the extent and location of the port-wine stain were recorded. Four age groups 
of 25 patients each were determined for evaluating whether the laser treatment 
was more effective for younger patients.

The summary statistics (Table 8.3) and boxplots (Figure 8.2) are provided 
for the four age groups. The 12–17 years group showed the greatest improve-
ment, but the 6–11 years group had only a slightly smaller improvement. The other 
two groups had values at least two units less than the 12–17 years group. However, 
from the boxplots, we can observe that the four groups do not appear to have that 

analysis of variance

FIGURE 8.1
Dot diagrams for the data 
of Table 8.1 and Table 8.2: 

, measurement from 
sample 1; ●, 

measurement from 
sample 2; 

, measurement 
from sample 3

3.5
(a) Data from Table 8.1

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

3.5
(b) Data from Table 8.2

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

8.0
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great a difference in their improvements. In the next section, we will develop the 
analysis of variance procedure to confirm whether or not a statistically significant 
difference exists among the four age groups.

 8.2 A Statistical Test About More Than Two 
Population Means: An Analysis of Variance 

In Chapter 6, we presented a method for testing the equality of two population 
means. We hypothesized two normal populations (1 and 2) with means denoted 
by m1 and m2, respectively, and a common variance s2. To test the null hypothesis 
that m1  m2, independent random samples of sizes n1 and n2 were drawn from the 
two populations. The sample data were then used to compute the value of the test 
 statistic 

t 
y1 2 y2

spË 11 /n1 2 1 11 /n2 2
where 

sp
2 

1n1 2 1 2s2
1 1 1n2 2 1 2s2

2

1n1 2 1 2 1 1n2 2 1 2 
1n1 2 1 2s2

1 1 1n2 2 1 2s2
2

n1 1 n2 2 2

is a pooled estimate of the common population variance s2. The rejection region 
for a specified value of a, the probability of a Type I error, was then found using 
Table 2 in the Appendix. 

Now suppose that we wish to extend this method to test the equality of more 
than two population means. The test procedure described here applies to only 

pooled estimate of s2

TABLE 8.3
Descriptive statistics for 
port-wine stain research 

study

Descriptive Statistics: 0–5 Years, 6–11 Years, 12–17 Years, 18–31 Years

Variable      N   Mean  StDev  Minimum     Q1  Median     Q3  Maximum
0–5 Years    21  4.999  3.916     .144  1.143   6.110  8.852   10.325
6–11 Years   24  7.224  3.564     .188  5.804   7.182  8.933   13.408
12–17 Years  21   7.76   5.46      .11   3.53    7.32  10.64    24.72
18–31 Years  23  5.682  4.147     .504  2.320   4.865  8.429   14.036

FIGURE 8.2
Boxplot of stain color 

by age group (means are 
indicated  

by circles)
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two means and therefore is inappropriate. Hence, we will employ a more general 
method of data analysis, the analysis of variance. We illustrate its use with the 
 following example. 

College students from five regions of the United States—northeast, south-
east, midwest, southwest, and west—were interviewed to determine their attitudes 
toward industrial pollution. Each student selected was asked a set of questions 
 re lated to the impact on economic development of proposed federal restrictions 
on air and water pollution. A total score reflecting each student’s responses was 
then produced. Suppose that 250 students are randomly selected in each of the 
five regions. We wish to examine the average student score for each of the five 
regions.

We label the set of all test scores that could have been obtained from region  
I as population I, and we assume that this population possesses a mean m1. A ran-
dom sample of n1  250 measurements (scores) is obtained from this  population 
to monitor student attitudes toward pollution. The set of all scores that could have 
been obtained from students from region II is labeled population II (which has a 
mean m2). A random sample of n2  250 scores is  obtained from this population. 
Similarly m3, m4, and m5 represent the means of the populations for scores from 
regions III, IV, and V, respectively. We also obtain  random samples of 250 student 
scores from each of these populations. 

From each of these five samples, we calculate a sample mean and variance. 
The sample results can then be summarized as shown in Table 8.4. 

If we are interested in testing the equality of the population means (i.e., 
m1  m2  m3  m4  m5), we might be tempted to run all possible pairwise 
 comparisons of two population means. Hence, if we confirm that the five distribu-
tions are approximately normal with the same variance, s2, we could run 10 t tests 
comparing all pairs of means, as listed here (see Section 6.2).

Null Hypotheses 
m1  m2       m1  m4       m2  m3       m2  m5       m3  m5
m1  m3       m1  m5       m2  m4       m3  m4       m4  m5

One obvious disadvantage to this test procedure is that it is tedious and 
time consuming. However, a more important and less apparent disadvantage of 
running multiple t tests to compare means is that the probability of falsely reject-
ing at least one of the hypotheses increases as the number of t tests increases. 
Thus, although we may have the probability of a Type I error fixed at a  .05 for 
each individual test, the probability of falsely rejecting at least one of those tests 
is larger than .05. In other words, the combined probability of a Type I error for 
the set of 10  hypotheses would be much larger than the value .05 set for each 
individual test.  Indeed, it can be proved that the combined probability could be 
as large as .40. 

multiple t tests

TABLE 8.4
Summary of the sample  

results for five 
populations

 Population

 I II III IV V

Sample mean y1 y2 y3 y4 y5

Sample variance s1
2 s2

2 s3
2 s4

2 s5
2

Sample size 250 250 250 250 250
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What we need is a single test of the hypothesis “all five population means are 
equal” that will be less tedious than the individual t tests and can be performed with 
a specified probability of a Type I error (say, .05). This test is the analysis of variance. 

The analysis of variance procedures are developed under the following 
 conditions: 

1. Each of the five populations has a normal distribution. 
2. The variances of the five populations are equal; that is, s2

1  s2
2  s3

2   
s4

2  s5
2  s2.

3. The five sets of measurements are independent random samples 
from their respective populations. 

From condition 2, we now consider the quantity 

s2
W 

1n1 2 1 2  s1
2 1 1n2 2 1 2s2

2 1 1n3 2 1 2s3
2 1 1n4 2 1 2s2

4 1 1n5 2 1 2s2
5

1n1 2 1 2 1 1n2 2 1 2 1 1n3 2 1 2 1 1n4 2 1 2 1 1n5 2 1 2


1n1 2 1 2s2

1 1 1n2 2 1 2s2
2 1 1n3 2 1 2s2

3 1 1n4 2 1 2s4
2 1 1n5 2 1 2s5

2

n1 1 n2 1 n3 1 n4 1 n5 2 5

Note that this quantity is merely an extension of 

s2
p 

1n1 2 1 2s2
1 1 1n2 2 1 2s2

2

n1 1 n2 2 2

which is used as an estimate of the common variance for two populations for a test 
of the hypothesis m1  m2 (Section 6.2). Thus, sW

2  represents a combined estimate of 
the common variance s2, and it measures the variability of the observations within 
the five populations. (The subscript W refers to the within-sample variability.)

Next, we consider a quantity that measures the variability among the pop-
ulation means. If the null hypothesis m1  m2  m3  m4  m5 is true, then the 
 populations are identical, with mean m and variance s2. Drawing single samples 
from the five populations is then equivalent to drawing five different samples from 
the same population. What kind of variation might we expect for these sample 
means? If the variation is too great, we would reject the hypothesis that m1  m2  
m3  m4  m5.

To evaluate the variation in the five sample means, we need to know the 
 sampling distribution of the sample mean computed from a random sample of 
250  observations from a normal population. From our discussion in Chapter 4, we 
 recall that the sampling distribution for y based on n  250 measurements will 
have the same mean as the population, m, but the variance of y will be s2 /250. We 
have five random samples of 250 observations each, so we can estimate the vari-
ance of the distribution of sample means, s2 /250, using the formula

Sample variance of five sample means  
g 5

i1 1yi 2 y. 2 2

5 2 1

where y.  g 5
i1 yi /5 is the average of the five yis.

Note that we merely consider the ys to be a sample of five observations and 
calculate the “sample variance.” This quantity estimates s2 /250, and, hence, 250 3 
(sample variance of the means) estimates s2. We designate this quantity as s2

B; 
the subscript B denotes a measure of the variability among the sample means for 
the five populations. For this problem, s2

B  (250 times the sample variance of the 
means). 

s2
W

 

s2
B
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Under the null hypothesis that all five population means are identical, we 
have two estimates of s2—namely, s2

W and sB
2  . Suppose the ratio 

s2
B

s2
W

is used as the test statistic to test the hypothesis that m1  m2  m3  m4  m5. 
What is the distribution of this quantity if we repeat the experiment over and over 
again, each time calculating s2

B and sW
2 ?

For our example, s2
B /s2

W follows an F distribution with degrees of freedom 
that can be shown to be df1  4 for s2

B and df2  1,245 for s2
W . The proof of these  

remarks is beyond the scope of this text. However, we will make use of this result 
for testing the null hypothesis m1  m2  m3  m4  m5.

The test statistic used to test equality of the population means is 

F 
s2

B

s2
W

When the null hypothesis is true, both s2
B and s2

W estimate s2, and we expect F to 
assume a value near F  1. When the hypothesis of equality is false, s2

B will tend to 
be larger than s2

W due to the differences among the population means. Hence, we 
will reject the null hypothesis in the upper tail of the distribution of F  s2

B /s2
W; for 

a  .05, the critical value of F  s2
B /s2

W is 2.37. (See Figure 8.3.) If the calculated 
value of F falls in the rejection region, we conclude that not all five population 
means are identical. 

This procedure can be generalized (and simplified) with only slight modifica-
tions in the formulas to test the equality of t (where t is an integer equal to or 
greater than 2) population means from normal populations with a common vari-
ance s2. Random samples of sizes n1, n2, . . . , nt are drawn from the respective 
 populations. We then compute the sample means and variances. The null hypoth-
esis m1  m2  c mt is tested against the alternative that at least one of the 
population means is different from the others.

Before presenting the generalized test procedure, we introduce the notation 
to be used in the formulas for s2

B and s2
W. 

The experimental setting in which a random sample of observations is 
taken from each of t different populations is called a completely randomized 
design. Consider a completely randomized design in which four observations are 
obtained from each of the five populations. If we let yij denote the jth observation 
from population i, we could display the sample data for this completely rand-
omized design as shown in Table 8.5. Using Table 8.5, we can introduce notation 
that is helpful when performing an analysis of variance (AOV) for a completely 
randomized design.

test statistic

completely 
randomized design 

analysis of variance

FIGURE 8.3
Critical value of F for 
a  .05, df1  4, and 

df2  1,245

0

f (F )

2.37
F

Area = .05
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yij:  The jth sample observation selected from population i. For example, y23 
denotes the third sample observation drawn from population 2. 

 ni:  The number of sample observations selected from population i. In our 
data set, n1, the number of observations obtained from population 1, is 
4. Similarly, n2  n3  n4  n5  4. However, it should be noted that 
the sample sizes need not be the same. Thus, we might have n1  12, 
n2  3, n3  6, n4  10, and so forth. 

nT:  The total sample size; nT gni. For the data given in Table 8.5,  
nT  n1 1 n2 1 n3 1 n4 1 n5  20. 

yi.:  The average of the ni sample observations drawn from population i; 
yi.  g j yij /ni.

y..: The average of all sample observations; y..  g i g j yij /nT .

Notation Needed 
for the AOV of 

a Completely 
Randomized Design 

With this notation, it is possible to establish the following algebraic 
identities. (Although we will use these results in later calculations for s2

W and s2
B, 

the proofs of these identities are beyond the scope of this text.) We can measure 
the variability of the nT  sample measurements yij about the overall mean y.. using 
the quantity 

TSS  a
t

i1
a
ni

j1

1
 
yij 2 y.. 2 2

This quantity is called the total sum of squares (TSS) of the measurements about 
the overall mean. The double summation in TSS means that we must sum the 
squared deviations for all rows (i) and columns (j) of the one-way classification. 

It is possible to partition the total sum of squares as follows: 

a
i, j

1
 
yij 2 y.. 2 2  a

i, j

1
 
yij 2 yi. 2 2 1 a

i

ni 1 yi. 2 y.. 2 2

The first quantity on the right side of the equation measures the variability of an 
observation yij about its sample mean yi.. Thus, 

SSW  a
i, j

1
 
yij 2 yi. 2 2  1n1 2 1 2s2

1 1 1n2 2 1 2s2
2 1 c1 1nt 2 1 2s2

t

is a measure of the within-sample variability. SSW is referred to as the within- 
sample sum of squares and is used to compute s2

W.
The second expression in the total sum of squares equation measures the 

variability of the sample means yi. about the overall mean y.. . This quantity, which 

total sum of squares 

within-sample 
sum of squares

TABLE 8.5
Summary of sample 

data for a completely 
randomized design

Population Data Mean

 1 y11 y12 y13 y14 y1.

 2 y21 y22 y23 y24 y2.

 3 y31 y32 y33 y34 y3.

 4 y41 y42 y43 y44 y4.

 5 y51 y52 y53 y54 y5.
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measures the variability between (or among) the sample means, is referred to as 
the sum of squares between samples (SSB) and is used to compute s2

B.

SSB  a
i

ni 1 yi. 2 y.. 2 2

Although the formulas for TSS, SSW, and SSB are easily interpreted, they 
are not easy to use for calculations. Instead, we recommend using a computer soft-
ware program. 

An analysis of variance for a completely randomized design with t popula-
tions has the following null and alternative hypotheses: 

H0:  m1  m2  m3  c mt (i.e., the t population means are equal)

 Ha:  At least one of the t population means differs from the rest.

The quantities s2
B and sW

2  can be computed using the shortcut formulas 

s2
B 

SSB
t 2 1

    s2
W 

SSW
nT 2 t

where t 2 1 and nT 2 t are the degrees of freedom for s2
B  and s2

W, respectively. 
Historically, people have referred to a sum of squares divided by its degrees of 

freedom as a mean square. Hence, s2
B is often called the mean square between sam-

ples and s2
W the mean square within samples. The quantities are the mean squares 

because they both are averages of squared deviations. There are only nT 2 t line-
arly independent deviations 1 yij 2 yi. 2  in SSW because g j 1 

yij 2 yi. 2  0 for each of 
the t samples. Hence, we divide SSW by nT 2 t and not nT. Similarly, there are only 
t 2 1 linearly independent deviations 1 yi. 2 y.. 2  in SSB because g i ni 1 yi. 2 y.. 2  0. 
Hence, we divide SSB by t 2 1.

The null hypothesis of equality of the t population means is rejected if 

F 
s2

B

s2
W

exceeds the tabulated value of F for the specified value of a, df1  t 2 1, and 
df2  nT 2 t.

After we complete the F test, we then summarize the results of the study 
in an analysis of variance table. The format of an AOV table is shown in Table 
8.6. The AOV table lists the sources of variability in the first column. The second 
column lists the sums of squares associated with each source of variability. We 
showed that the total sum of squares (TSS) can be partitioned into two parts, so 
SSB and SSW must add up to TSS in the AOV table. The third column of the table 
gives the degrees of freedom associated with the sources of variability. Again, we 
have a check; (t 2 1) 1 (nT 2 t) must add up to nT 21. The mean squares are found 
in the fourth column of Table 8.6, and the F test for the equality of the t population 
means is given in the fifth column. 

 sum of squares 
between samples

mean square

AOV table

TABLE 8.6
An example of an AOV  

table for a completely  
randomized design

  Sum of Degrees of 
Source  Squares Freedom Mean Square F Test

Between samples SSB t 2 1 s2
B  SSB/(t 21) s2

B /s2
W 

Within samples SSW nT 2 t s2
W   SSW / 1nT 2 t 2

Totals TSS nT 2 1
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EXAMPLE 8.1

A large body of evidence shows that soy has health benefits for most people. 
Some of these benefits come largely from isoflavones, plant compounds that have 
 estrogen-like properties. The amount of isoflavones varies widely depending on 
the type of food processing. A consumer group purchased various soy products 
and ran laboratory tests to determine the amount of isoflavones in each product. 
There were three major categories of soy products: cereals and snacks (1), energy 
bars (2), and veggie burgers (3). Five different products from each of the three 
 categories were selected, and the amount of isoflavones (in mg) was determined 
for an adult serving of the product. The consumer group wanted to determine if the 
average amount of isoflavones was different for the three sources of soy products. 
The data are given in Table 8.7. Use these data to test the research hypothesis of 
a  difference in the mean isoflavone levels for the three categories. Use a  .05.

TABLE 8.7
Isoflavone content from  

three sources of soy  

Source  Sample Sample Sample 
of Soy Isoflavone Content (mg) Sizes Means Variances

 1  3 17 12 10 4 5 9.20 33.7000
 2 19 10 9 7 5 5 10.00 29.0000
 3 25 15 12 9 8 5 13.80 46.7000

 Overall      15 11.00

Solution The null and alternative hypotheses for this example are

H0:   m1  m2  m3
Ha:  At least one of the three population means is different from the rest.

The sample sizes are n1  n2  n3  5, which yields nT  15. Using the sample 
means and sample variances, the sums of squares within and between are given 
here with 

y..  15y1. 1 5y2. 1 5y3. 2 /15  15 19.20 2 1 5 110.00 2 1 5113.80 2 2 /15  11.00

SSB  a
3

i1
ni 1yi. 2 y.. 2 2

 5 19.20 2 11.00 2 2 1 5 110.00 2 11.00 2 2 1 5 113.80 2 11.00 2 2  60.40

and

SSW  a
3

i1

1ni 2 1 2si
2  15 2 1 2 133.7 2 1 15 2 1 2 129.0 2 1 15 2 1 2 146.7 2

           437.60

Finally, TSS  SSB 1 SSW  60.40 1 437.60  498.00.
The AOV table for these data is shown in Table 8.8. The critical value of F  

s2
B /s2

W is 3.89, which is obtained from Table 8 in the Appendix for a  .05, df1  2, 
and df2  12. Because the computed value of F, 0.83, does not exceed 3.89, we fail to 
reject the null hypothesis of equality of the mean levels of isoflavones for the three 
categories of soy products. Thus, there is not significant evidence that the three 
 cate gories of soy products provide on the average different levels of isoflavones. 
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The p-value is computed to be p-value  1 2 pf (.83, 2, 12)  .4596.

TABLE 8.8
AOV Table for 

Example 8.1  

 Sum of Degrees of 
Source of Variation Squares Freedom Mean Square F Test

Between samples 60.40 2     60.40 /2  30.20 30.20 /36.47  0.83
Within samples 437 .60 12 437.60 /12  36.47 

Total 498.00 14

■

EXAMPLE 8.2 

A clinical psychologist wished to compare three methods for reducing hostility 
 levels in university students and used a certain test (HLT) to measure the degree 
of hostility. A high score on the test indicated great hostility. The psychologist used 
24 students who obtained high and nearly equal scores in the experiment. Eight 
were selected at random from among the 24 problem cases and were treated with 
method 1. Seven of the remaining 16 students were selected at random and treated 
with method 2. The remaining nine students were treated with method 3. All treat-
ments were continued for a one-semester period. Each student was given the HLT 
test at the end of the semester, with the results shown in Table 8.9. Use these 
data to perform an analysis of variance to determine whether there are differences 
among mean scores for the three methods. Use a  .05. 

TABLE 8.9
HLT test scores    Standard  Sample 

Method Test Scores Mean Deviation Size

 1 96 79 91 85 83 91 82 87  86.750 5.625 8
 2 77 76  74 73 78 71 80   75.571 3.101 7
 3 66 73 69 66 77 73 71 70 74 71.000 3.674 9

Solution The null and alternative hypotheses are 

H0:  m1  m2  m3

Ha:  At least one of the population means differs from the rest. 

For n1  8, n2  7, and n3  9, we have a total sample size of nT  24. Using the 
sample means given in the table, we compute the overall mean of the 24 data values: 

y..  a
3

i1
ni yi. /nT  18 186.750 2 1 7 175.571 2 1 9 171.000 2 2 /24  1,861.997 /24

  77.5832

Using this value along with the means and standard deviations in Table 8.9, we can 
compute the three sums of squares as follows: 

SSB  a
3

i1
ni 1 yi. 2 y.. 2 2  8 186.750 2 77.5832 2 2 1 7 175.571 2 77.5832 2 2

 1 9 171 2 77.5832 2 2  1,090.6311
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and

SSW  a
3

i1

1ni 2 1 2si
2  18 2 1 2 15.625 2 2 1 17 2 1 2 13.101 2 2 1 19 2 1 2 13.674 2 2

  387.1678

Finally, TSS  SSB 1 SSW  1,090.6311 1 387.1678  1,477.7989. The AOV table 
for these data is given in Table 8.10. 

TABLE 8.10
AOV table for data  

of  Example 8.2

Source SS df MS F p-value 

Between 1,090.6311 2 545.316 545.316/18.4366  29.58  ,.001  
  samples     
Within 387 .1678 21 18.4366 
  samples 

Total 1,477 .7989 23 

■

The critical value of F is obtained from Table 8 in the Appendix for a  .05, 
df1  2, and df2  21; this value is 3.47. Because the computed value of F is 29.58, 
which exceeds the critical value 3.47, we reject the null hypothesis of equality of 
the mean scores for the three methods of treatment. The p-value is computed to 
be p-value  1 2 pf (29.58, 2, 21)  .00000078. Thus, there is a very strong rejec-
tion of the null hypothesis. From the three sample means, we observe that the 
mean for method 1 is considerably larger than the means for methods 2 and 3. The 
researcher would need to determine whether all three population means differ or 
whether the means for methods 2 and 3 are equal. Also, we may want to place 
confidence intervals on the three method means and on their differences; this would 
provide the researcher with information concerning the degree of differences in the 
three methods. In the next chapter, we will develop techniques to construct these 
types of inferences. Computer output shown next has slightly different values due 
to rounding in our manual calculations. In the computer printout, note that the 
names for the sum of squares are not given as between and within. The between 
sum of squares is labeled by Model. The within sum of squares is  labeled as Error. 

General Linear Models Procedure

Class Level Information

Class Levels Values
METHOD 3 1 2 3

Number of observations in data set = 24

Dependent Variable: SCORE

Source DF Sum of Squares F Value Pr > F
Model 2 1090.61904762 29.57 0.0001
Error 21 387.21428571
Corrected Total 23 1477.833333333
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 8.3 The Model for Observations in a Completely 
Randomized Design 

In this section, we will consider a model for the completely randomized design 
(sometimes referred to as a one-way classification). This model will demonstrate 
the types of settings for which AOV testing procedures are appropriate. We can 
think of a model as a mathematical description of a physical setting. A model also 
enables us to computer-simulate the data that the physical process generates. 

We will impose the following conditions concerning the sample measure-
ments and the populations from which they are drawn: 

1. The samples are independent random samples. Results from one sam-
ple in no way affect the measurements observed in another sample. 

2. Each sample is selected from a normal population. 
3. The mean and variance for population i are, respectively, 

mi and s2
i  1i  1, 2, . . . , t 2 . The t variances are equal: 

s2
1  s2

2  c s2
t  s2.

Figure 8.4 depicts a setting in which these three conditions are satisfied. The 
population distributions are normal with the same standard deviation. Note that 
 populations III and IV have the same mean, which differs from the means of popu-
lations I and II. To summarize, we assume that the t populations are indepen-
dently normally distributed with different means but a common variance s2. 

We can now formulate a model (equation) that encompasses these three 
assumptions. Recall that we previously let yij denote the jth sample observation 
from population i.

yij  m 1 ti 1 eij

An initial interpretation of the model will be given next. However, we will later 
explain why this interpretation needs to be modified in order to obtain appropriate 
estimators of the parameters using the observed data.

One interpretation of the model is that yij, the jth sample measurement 
selected from population i, is the sum of three terms. The term m denotes the over-
all mean across all t populations—that is, the mean of the population consisting 

model
terms

FIGURE 8.4
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of the observations from all t populations. The term ti  denotes the effect of popu-
lation i on the differences in the t population means. The terms m and ti are 
unknown constants, which will be estimated from the data  obtained during the 
study or experiment. The term eij represents the random deviation of yij about the 
ith population mean, mi. The eijs are often referred to as error terms. The expres-
sion error is not to be interpreted as a mistake made in the experiment. Instead, 
the eijs model the random variation of the yijs about their mean mi. The term 
error simply refers to the fact that the observations from the t populations differ 
by more than just their means. We assume the eijs are independently normally 
distributed with a mean of 0 and a standard deviation of se. The independence 
condition can be interpreted as follows: The eijs are independent if the size of the 
deviation of the yij observation from mi in no way affects the size of the deviation 
associated with any other observation. 

Since yij is an observation from the ith population, it has mean mi. However, 
since the eijs are distributed with mean 0, the mean or expected value of yij, denoted 
by E(yij), is 

mi  E 1yij 2  E 1m 1 ti 1 eij 2  m 1 ti 1 E 1eij 2  m 1 ti

One problem with expressing the treatment means as mi  m 1 ti is that we then 
have an overparameterized model. This occurs because there are only t treatment 
means, m1, m2, . . . , mt, but we have t 1 1 parameters: m and t1, t2, . . . , tt  in the 
model. In order to obtain the least squares estimates, it is necessary to put con-
straints on this set of parameters. A widely used constraint is to set ti  0. Then we 
have exactly t parameters in our description of the t treatment means. However, 
this results in the following interpretation of the parameters:

m  mt    t1  m1 2 mt,    t2  m2 2 mt,   · · · ,   tt21  mt21 2 mt,    tt  0

Thus, for i  1, 2, · · · , t 2 1, ti is comparing mi to mt. This is the parametrization 
used by most software programs. The variance for each of the t populations are 
required to be s2

e. Finally, because the es are normally distributed, each of the t 
populations is normal. A summary of the assumptions for a one-way classification 
is shown in Table 8.11. 

The null hypothesis for a one-way analysis of variance is that m1  
m2  c mt. Using our model, this would be equivalent to the null hypothesis

H0:  t1  t2  c tt  0

If H0 is true, then all populations have the same unknown mean m. Indeed, many 
textbooks use this latter null hypothesis for the analysis of variance in a completely 
randomized design. The corresponding alternative hypothesis is 

Ha:  At least one of the tis differs from 0.

TABLE 8.11
Summary of some of 

the  assumptions for a 
completely randomized 

design

 Population Population Sample
Population Mean Variance Measurements 

1 m 1 t1 s2
e y11, y12, . . . , y1n1

2 m 1 t2 s2
e y21, y22, . . . , y2n2

A A A A

t m 1 tt s2
e yt1, yt2, . . . , ytnt
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In this section, we have presented a brief description of the model associated 
with the analysis of variance for a completely randomized design. Although some 
authors bypass an examination of the model, we believe it is a necessary part of an 
analysis of variance discussion. 

We have imposed several conditions on the populations from which the data 
are selected or, equivalently, on the experiments in which the data are  generated, 
so we need to verify that these conditions are satisfied prior to making inferences 
from the AOV table. In Chapter 7, we discussed how to test the “equality of vari-
ances’’ condition using the BFL test. The normality condition is not as critical as 
the equal variance assumption when we have large sample sizes unless the popula-
tions are severely skewed or have very heavy tails. When we have small sample 
sizes, the normality condition and the equal variance condition become more criti-
cal. This situation presents a problem because there generally will not be enough 
observations from the individual  population to test validly whether the normality 
or equal variance condition is satisfied. In the next section, we will discuss a tech-
nique that can at least partially overcome this problem. Also, some alternatives to 
the AOV will be presented in later sections of this chapter that can be used when 
the populations have unequal variances or have nonnormal distributions. As we 
discussed in Chapter 6, the most critical of the three conditions is that the data val-
ues are independent. This condition can be met by carefully conducting the studies 
or experiments so as to not obtain data values that are dependent. In studies 
involving randomly selecting data from the t populations, we need to take care 
that the samples are truly random and that the samples from one population are 
not dependent on the  values obtained from another population. In  experiments in 
which t treatments are randomly assigned to experimental units, we need to make 
sure that the treatments are truly randomly assigned. Also, the  experiments must 
be conducted so the experimental units do not interact with each other in a manner 
that could affect their responses. 

 8.4 Checking on the AOV Conditions 

The assumption of equal population variances and the assumption of normality of 
the populations have been made in several places in the text, such as for the t test 
when comparing two population means and now for the analysis of variance F test 
in a completely randomized design. 

Let us consider first an experiment in which we wish to compare t population 
means based on independent random samples from each of the populations. Recall 
that we assume we are dealing with normal populations with a common variance 
s2

e and possibly different means. We could verify the assumption of equality of the 
population variances using the BFL test of  Chapter 7. 

Several comments should be made here. Most practitioners do not  routinely 
run a test of equality of variances. Fortunately, as we  mentioned in Chapter 6, the 
assumption of homogeneity (equality) of population variances is less critical when 
the sample sizes are nearly equal; then the  variances can be markedly different, 
and the p-values for an analysis of variance will still be only mildly distorted. In 
extreme situations, where homogeneity of the population variances is a problem, a 
transformation of the data may help to stabilize the variances.Then inferences can 
be made from an analysis of  variance. 

The normality of the population distributions can be checked using normal 
probability plots or boxplots, as we discussed in Chapters 5 and 6, when the 

randomly assigned
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sample sizes are relatively large. However, in many experiments, the sample sizes 
may be as small as three to five observations from each population. In this case, 
the plots will not be a very reliable indication of whether the population distribu-
tions are  normal. By taking into consideration the model we introduced in the 
previous section, the evaluation of the normal condition will be evaluated using 
a residuals analysis. 

From the model, we have yij  m 1 ti 1 eij  mi 1 eij. Thus, we can write 
eij  yij 2 mi. Then, if the condition of equal variances is valid, the eijs are a ran-
dom sample from a normal population. However, mi is an unknown constant, but 
if we estimate mi with yi. and let 

eij  yij 2 yi.

then we can use the eijs to evaluate the normality assumption. Even when the indi-
vidual nis are small, we would have nT residuals, which would provide a sufficient 
number of values to evaluate the normality condition. We can plot the eijs in a 
boxplot or a normal probability plot to evaluate whether the data appear to have 
been generated from normal populations.

EXAMPLE 8.3 

Because many HMOs either do not cover mental health costs or provide only 
minimal coverage, ministers and priests often need to provide counseling to per-
sons suffering from mental illness. An interdenominational organization wanted 
to determine whether the clerics from different religions have different levels 
of awareness with respect to the causes of mental illness. Three random sam-
ples were drawn, one containing 10 Methodist ministers, a second containing 10 
Catholic priests, and a third containing 10 Pentecostal ministers. Each of the 30 
clerics was then examined, using a standard written test, to measure his or her 
knowledge about causes of mental illness. The test scores are listed in Table 8.12. 
Does there appear to be a significant difference in the mean test scores for the 
three religions? 

TABLE 8.12
Scores for clerics’ 

knowledge of mental 
illness 

Cleric Methodist Catholic Pentecostal 

  1 62 62 37 
  2 60 62 31 
  3 60 24 15 
  4 25 24 15 
  5 24 22 14 
  6 23 20 14 
  7 20 19 14 
  8 13 10 5 
  9 12 8 3
10 6 8 2
yi.  30.50 25.90 15.00
si 21.66 20.01 11.33 
ni 10 10 10 
Median(ỹ    i) 23.5 21 14 

residuals analysis
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Solution Prior to conducting an AOV test of the three means, we need to evalu-
ate whether the conditions required for AOV are satisfied. Figure 8.5 is a boxplot 
of the mental illness scores by religion. There is an indication that the data may be 
somewhat skewed to the right. Thus, we will evaluate the normality condition. We 
need to obtain the residuals eij  yij 2 yi.. For example, e11  y11 2 y1.  62 2 30.50  
31.50. The remaining eijs are given in Table 8.13.

FIGURE 8.5
Boxplots of awareness 
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TABLE 8.13 
Residuals eij for 

clerics’  knowledge of 
mental illness

Cleric Methodist Catholic Pentecostal

 1 31.5 36.1 22.0
 2 29.5 36.1 16.0
 3 29.5 21.9 0.0
 4  25.5 21.9 0.0
 5 26.5 23.9 21.0
 6 27 .5 25.9 21.0
 7 210.5 26.9 21.0
 8 217 .5 215.9 210.0
 9 218.5 217 .9 212.0
 10 224.5 217 .9 213.0

The residuals are then plotted in Figures 8.6 and 8.7. The boxplot in Figure 8.7 
displays three outliers out of 30 residuals. It is very unlikely that 10% of the data val-
ues are outliers if the residuals are in fact a random sample from a normal distribu-
tion. This is confirmed in the normal probability plot displayed in Figure 8.6, which 
shows a lack of concentration of the residuals about the straight line.  Furthermore, 
the test of normality has a p-value less than .001, which  indicates a strong departure 
from normality. Thus, we conclude that the data have nonnormal characteristics. 
In Section 8.6, we will provide an alternative to the F test from the AOV table, the 
Kruskal–Wallis test, which would be appropriate for this situation. 

The BFL test is conducted to check the condition of equality of the variances 
in the three populations. An examination of the formula for the BFL test reveals 
that once we make the conversion of the data from yij to zij  0 yij 2 ỹi 0 , where ỹi 
is the sample median of the ith data set, the BFL test is equivalent to the F test 
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from AOV applied to the zijs. Thus, we can simply use the formulas from AOV 
to compute the BFL test. The zijs are given in Table 8.14 using the medians from 
Table 8.12. 

FIGURE 8.6
Normal probability plot 
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TABLE 8.14 
Transformed data set, 

zij  |yij 2 ỹi|

Cleric Methodist Catholic Pentecostal

  1 38.5 41 23
  2 36.5 41 17
  3 36.5 3 1
  4 1.5 3 1
  5 0.5 1 0
  6 0.5 1 0
  7 3.5 2 0
  8 10.5 11 9
  9 11.5 13 11
10 17 .5 13 12
zi.  15.70 12.90 7 .40
si 15.80 15.57 8.29
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Using the sample means given in the table, we compute the overall mean of 
the 30 data values: 

z..  a
3

i1
nizi. /nT  310 115.70 2 1 10 112.90 2 1 10 17.40 2 4 /30  360 /30  12

Using this value along with the means and standard deviations in Table 8.14, we 
can compute the sum of squares as follows: 

 SSB  a
3

i1
ni 1zi. 2 z.. 2 2  10 115.70 2 12 2 2 1 10 112.90 2 12 2 2 1 10 17.40 2 12 2 2

 356.6

and

SSW  a
3

i1

1ni 2 1 2s2
i  110 2 1 2 115.80 2 2 1 110 2 1 2 115.57 2 2

 1 110 2 1 2 18.29 2 2  5,047.10

The mean squares are MSB  SSB/(t 2 1)  356.6/(3 2 1)  178.3 and MSW  
SSW/(nT 2 t)  5,047.10/(30 2 3)  186.9. Finally, we can next obtain the value of 
the BFL test statistic from L  MSB/MSW  178.3/186.9  .95. The critical value 
of L, using a  .05, is obtained from the F tables with df1  2 and df2  27. This 
value is 3.35, and, thus, we fail to reject the null hypothesis that the standard devia-
tions are equal. The p-value is greater than .25 because the smallest value in the  
F table with df1  2 and df2  27 is 1.46, which corresponds to a probability of 
0.25. In fact, p-value  1 2 pf(.95, 2, 27)  .399. Thus, we have a high degree of 
confidence that the three populations have the same variance. ■

In Section 8.6, we will present the Kruskal–Wallis test, which can be used 
when the populations are nonnormal but have identical distributions under the null 
hypothesis. This test requires, as a minimum, that the populations have the same 
variance. Thus, the Kruskal–Wallis test would not be appropriate for the situation 
in which the populations have very different variances. The next section will pro-
vide procedures for testing for differences in population means when the popula-
tion variances are unequal. 

 8.5 An Alternative Analysis: Transformations 
of the Data 

A transformation of the sample data is defined to be a process in which the meas-
urements on the original scale are systematically converted to a new scale of meas-
urement. For example, if the original variable is y and the variances associated 
with the variable across the treatments are not equal (heterogeneous), it may be 
necessary to work with a new variable such as Ëy, log y, or some other transformed 
variable.

How can we select the appropriate transformation? This is no easy task and 
often takes a great deal of experience in the experimenter’s area of application. 

transformation 
of data
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In  spite of these difficulties, we can consider several guidelines for choosing an 
 appropriate transformation.

Many times the variances across the populations of interest are heteroge-
neous and seem to vary with the magnitude of the population mean. For example, 
it may be that the larger the population mean, the larger the population variance. 
When we are able to identify how the variance varies with the population mean, 
we can define a suitable transformation from the variable y to a new variable yT. 
Three specific situations are presented in Table 8.15. 

The first row of Table 8.15 suggests that if y is a Poisson* random variable, 
the variance of y is equal to the mean of y. Thus, if the different populations cor-
respond to different Poisson populations, the variances will be heterogeneous pro-
vided the means are different. The transformation that will stabilize the variances 
is yT  !y. However, if the Poisson means are small (under 5), the transformation 
yT  !y 1 .375 is better.

EXAMPLE 8.4 

Marine biologists are studying a major reduction in the number of shrimp and com-
mercial fish in the Gulf of Mexico. The area in which the Mississippi River enters 
the gulf is one of the areas of greatest concern. The biologists hypothesize that 
nutrient-rich water, including mainly nitrogens from the farmlands of the Midwest, 
flows into the gulf, which results in rapid growth in algae that feeds zooplankton. 
Bacteria then feed on the zooplankton pellets and dead algae, resulting in a deple-
tion of the oxygen in the water. The more mobile marine life flees these regions, 
while the less mobile marine life dies from hypoxia. To monitor this condition, 
the mean dissolved oxygen contents (in ppm) of four areas at increasing distance 
from the mouth of the Mississippi were determined. A random sample of 10 water 
 samples was taken at a depth of 12 meters in each of the four areas. The sample 
data are given in Table 8.16. The biologists want to test whether the mean oxygen 
content is lower in those areas closer to the mouth of the Mississippi.

a. Run a test of the equality of the population variances with a  .05.
b. Transform the data if necessary to obtain a new data set in which the 

 observations have equal variances. 

* The Poisson random variable was introduced in Chapter 4. 

guidelines for 
selecting yT

TABLE 8.15 
Transformation to 

achieve uniform variance 

Relationship Between  Variance of yT

m and s2 yT (for a given k) 

s2  km yT  Ëy or Ëy 1 .375 1/4; (k  1)
  (when k  1, y may be
  Poisson variable)
s2  km2 yT = log y or log(y 1 1) 1; (k  1)
s2  kp(1 2 p) yT  sin21 1Ëy 2  1/4n; (k  1/n)
  (when k  1/n, y may be
  binomial variable)
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Solution
a. Figure 8.8 depicts the data in a set of boxplots. The data do not appear 

noticeably skewed or heavy-tailed. The BFL test is applied to the 
data and yields L  3.70 with a p-value of .0203. This implies strong 
evidence of a difference in the four population variances.

b. We next examine the relationship between the sample means yi. and 
sample variances s2

i .

 
s2

1

y1.
 .99    

s2
2

y2.
 .97    

s2
3

y3.
 1.06    

s2
4

y4.
 .97

 Thus, it would appear that s2
i  kmi with k < 1. From Table 8.15, 

the  suggested transformation is yT  Ëy 1 .375. The values of 
yT appear in Table 8.17 along with their means and standard 
deviations. Although the original data had heterogeneous vari-
ances, the sample variances are all approximately .25, as indicated in 
Table 8.17.

TABLE 8.16 
Mean dissolved oxygen 

contents (in ppm) at four  
distances from mouth 

 Distance to Mouth

 Sample 1 km 5 km 10 km 20 km 

  1 1 4 20 37
  2 5 8 26 30
  3 2 2 24 26
  4 1 3 11 24
  5 2 8 28 41
  6 2 5 20 25
  7 4 6 19 36
  8 3 4 19 31
  9 0 3 21 31
 10 2 3 24 33

Mean  y1.  2.2 y2.  4.6 y3.  21.2 y4.  31.4
Standard Deviation s1  1.476 s2  2.119 s3  4.733 s4  5.5220

FIGURE 8.8
Boxplots of 1–20 
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by solid circles)
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The second transformation indicated in Table 8.15 (s2  km2) is for an exper-
imental  situation in which the population variance is proportional to the square 
of the population mean or, equivalently, where s  m. That is, the logarithmic 
transformation is appropriate any time the coefficient of variation si /mi is constant 
across the populations of interest.

EXAMPLE 8.5

Arthritis is a very commonly occurring affliction. It is a major cause of lost work 
time and often results in serious disability. Of the many types of arthritis, the most 
common type is osteoarthritis. This condition is frequently due to wear and tear 
in the joints and is more likely to be found in people over 50. It is very painful in 
the weight-bearing joints, such as the knees and hips. Cartilage wears away on the 
bone ends, causing pain and swelling. Osteoarthritis may develop after an injury 
such as a bone fracture or a joint dislocation. In order to reduce the amount of 
time osteoarthritis patients are absent from work, it is important for them to have 
effective pain relief. An experiment was conducted to compare the effectiveness 
of three new analgesics: A1, A2, and A3. A clinic evaluated a large group of patients 
and identified 45 patients with a moderate level of pain. Fifteen of the 45 persons 
were then randomly assigned to one of the three analgesics. The patients were then 
placed on the therapies, and the percentage reduction in pain level was assessed 
for each patient. These values are recorded in Table 8.18.

a. Are there significant differences among the population variances for 
the three analgesics? Use a  .05.

b. Does it appear that the coefficient of variation is constant across the 
three therapies? If yes, then apply the log transformation to the data 
to try to stabilize the variances.

c. Compute the sample means and sample standard deviations for the 
transformed data. Did the transformation yield a stabilization of the 
variances?

coefficient of 
variation

TABLE 8.17
Transformation of data in 

Table 8.16: 
yT  Ëy 1 .375

 Distance to Mouth 

 Sample 1 km 5 km 10 km 20 km

 1 1.173 2.092 4.514 6.114
 2 2.318 2.894 5.136 5.511
 3 1.541 1.541 4.937 5.136
 4 1.173 1.837 3.373 4.937
 5 1.541 2.894 5.327 6.432
 6 1.541 2.318 4.514 5.037
 7 2.092 2.525 4.402 6.031
 8 1.837 2.092 4.402 5.601
 9 0.612 1.837 4.623 5.601
10 1.541 1.837 4.937 5.777

Mean 1.54 2.19 4.62 5.62
 Variance .24 .22 .29 .24

 ■
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TABLE 8.18
Data for percent 
reduction in pain

Subject A1 A2 A3

 1 3.0 1.8 1.3
 2 1.2 6.3 12.6
 3 1.0 5.2 10.0
 4 0.7 3.7 10.5
 5 1.1 5.4 10.8
 6 0.6 2.9 5.9
 7 1.2 6.0 12.1
 8 0.1 0.3 0.6
 9 0.7 3.6 18.6

10 1.9 9.3 18.7
11 0.6 2.8 5.5
12 0.0 0.0 0.0
13 1.6 8.1 18.2
14 4.0 19.9 22.3
15 0.1 0.3 0.6

Mean 1yi 2  1.19 5.04 9.85
St. Dev.(si) 1.097 4.97 7 .41
CV 1si / yi 2  .93 .99 .75

Solution
a. The BFL test for the hypothesis H0: s

2
A1

 s2
A2

 s2
A3

 was computed 
using Minitab. The results are given here. L  9.17 with p-value  
1 2 pf(9.17, 2, 42)  .000496. Thus, we reject H0 and conclude that 
the populations variances are different.

b. The coefficients of variation (CV) for the three analgesics are very 
nearly the same value; thus we will apply the log transformation to the 
data. The transformed data are shown in Table 8.19. Note: Because 
there are 0s in the data, the transformation yT  log(y 1 1) should be 
computed. These values are shown in Table 8.19.

TABLE 8.19
Natural logarithms of the 

data in Table 8.18

 Subject A1 A2 A3

 1 1.38629 1.02962 .83291
 2 .78846 1.98787 2.61007
 3 .69315 1.82455 2.39790
 4 .53063 1.54756 2.44235
 5 .74194 1.85630 2.46810
 6 .47000 1.36098 1.93152
 7 .78846 1.94591 2.57261
 8 .09531 .26236 .47000
 9 .53063 1.52606 2.97553
 10 1.06471 2.33214 2.98062
 11 .47000 1.33500 1.87180
 12 .00000 .00000 .00000
 13 .95551 2.20827 2.95491
 14 1.60944 3.03975 3.14845
 15 .09531 .26236 .47000

 Mean 1yi 2  .681 1.501 2.008 
St. Dev.(si) .455 .837 1.052
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c. The sample means and standard deviations for the transformed data 
are given in Table 8.19. The BFL test for the transformed data yields 
L  2.207 with a p-value  1 2 pf(2.207, 2, 42)  .122. Thus, we fail 
to reject H0 and conclude that the transformation has produced data 
in which the three populations  variances are approximately equal.

In Exercise 8.22, you will be asked to run an AOV test for differences in the mean 
pain reduction for both the transformed and the untransformed data to determine 
if the transformation resulted in a different conclusion concerning the  effectiveness 
of the three analgesics. ■

The third transformation listed in Table 8.15 (yT  arcsin Ëy) is particularly 
appropriate for data recorded as percentages or proportions. Recall that in Chap-
ter 4 we introduced the binomial distribution, where y designates the number of 
successes in n identical trials and p̂  y /n provides an estimate of p, the propor-
tion of experimental units in the population possessing the characteristic. In Chap-
ter 4, the  variance of p̂ was given by p 11 2 p 2 /n. Thus, if the response variable is 
p̂, the  proportion of successes in a random sample of n observations, then the vari-
ance of p̂ will vary depending on the values of p for the populations from which 
the  samples were drawn. See Table 8.20.

From Table 8.20, we observe that the variance of p̂ is symmetrical about 
p  .5. That is, the variance of p̂ for p  .7 and n  20 is .0105, the same value 
as for p  .3. The important thing to note is that if the populations have values 
of p in the vicinity of approximately .3 to .7, there is very little difference in the 
variances for p̂. However, the variance of p̂ is quite variable for either large or 
small values of p, and for these situations, we should consider the possibility of 
transforming the sample proportions to stabilize the variances. 

The transformation we recommend is arcsin !p̂ sometimes written as 
sin21 1!p̂2 ; that is, we are transforming the sample proportion into the angle 
whose sine is !p̂. Some experimenters express these angles in degrees, others in 
radians. For consistency, we will always express our angles in radians. Table 9 of 
the  Appendix provides arcsin computations for various values of p̂.

TABLE 8.20
Variance of p̂, the sample 

proportion, for several 
values of p and n  20 

Values of p p (1 2 p)/n Values of p p (1 2 p)/n

 .01 .0005 .99 .0005
 .05 .0024 .95 .0024
 .1 .0045 .90 .0045
 .2 .0080 .80 .0080
 .3 .0105 .70 .0105
 .4 .0120 .60 .0120
 .5 .0125 

EXAMPLE 8.6

A political action group conducted a national opinion poll to evaluate the voting 
public’s opinion concerning whether the new EPA regulations on air pollu-
tion were stringent enough to protect the public’s health. The group was also 
interested in determining if there were regional differences in the public’s 
opinion concerning air pollution. For this poll, the country was divided into 

yT 5 arcsin !y
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four geographical regions (NE, SE, MW, W). A random sample of 100 regis-
tered voters was obtained from each of six standard metropolitan statistical areas 
(SMSAs) located in each of the four regions. The data in Table 8.21 are the sam-
ple proportions, p̂, of people who thought the EPA standards were not stringent 
enough for the 24 SMSAs.

a. Is there a significant difference in the variability of the four region’s 
 proportion? Use a  .05.

b. Transform the data using yT  arcsin!p̂.
c. Compute the sample means and sample standard deviations for the 

transformed data. Did the transformation yield a stabilization of the 
variances?

TABLE 8.21
Sample proportions for 

the four regions
 

 Region

 SMSA NE SE MW W

 1 .84 .43 .57 .10
 2 .81 .35 .59 .12
 3 .78 .27 .63 .13
 4 .85 .40 .60 .15
 5 .85 .28 .56 .11
 6 .83 .33 .56 .11

Mean  .827 .343 .585 .120 
Standard Deviation .0273 .0638 .0274 .0179

Solution
a. The BFL test for the hypothesis H0: s

2
NE  s2

SE  s2
MW  s2

W  was 
 computed to be L  3.55 with p-value  .033. Thus, we reject H0 and 
conclude that at the a  .05 level there is significant evidence of a 
difference in the population variances.

b. Using a calculator, computer spreadsheet, or Table 9 in the Appen-
dix, the transformed data are shown in Table 8.22.

TABLE 8.22
Arcsin of the square root 

of the sample proportions

 Region

SMSA NE SE MW W

1 1.1593 .71517 .85563 .32175
2 1.1198 .63305 .87589 .35374
3 1.0826 .54640 .91691 .36886
4 1.1731 .68472 .88608 .39770
5 1.1731 .55760 .84554 .33807
6 1.1458 .61194 .84554 .33807

Mean 1.142 .625 .871 .353
Standard Deviation .0354 .0673 .0279 .0271
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c. We can observe that the standard deviations are more nearly alike 
than the standard deviations for the untransformed data. The BFL 
test for the hypothesis H0: s

2
NE  s2

SE  s2
MW  s2

W  was computed 
for the transformed data. The results are given here. L  2.44 with 
p-value  .094. Thus, we fail to reject H0 and conclude that at the 
a  .05 level there is not significant evidence of a difference in the 
 variances of the transformed proportions. ■

One comment should be made concerning the situation in which a sample 
proportion of 0 or 1 is observed. For these cases, we recommend substituting 1/4n 
and 1 2 (1/4n), respectively, as the corresponding sample proportions to be used 
in the calculations. 

A general procedure for determining the appropriate transformation to 
 stabilize the variances for the t treatment groups is the power transformation. The 
power transformation is discussed in the article “An Analysis of Transformations” 
(Box and Cox, 1964). The transformation is given by

yT  eyl

log y
for l 2 0
for l  0

The transformation includes as special cases the square root transformation,  l  1
2, 

and the natural logarithm, l  0. The Box–Cox method describes how to use the 
data to select the value of l such that the transformed data more nearly meet the 
requirements of constant variance and normality. The book Applied  Regression 
Analysis by Draper and Smith (1998) discusses in detail the Box–Cox family of 
transformations. This topic is also discussed in Chapter 13 when dealing with mul-
tiple regression.

In this section, we have discussed how transformations of data can alleviate 
the problem of nonconstant variances prior to conducting an analysis of variance. 
As an added benefit, the transformations presented in this section also (some-
times)  decrease the nonnormality of the data. Still, there will be times when the 
presence of severe skewness or outliers causes nonnormality that could not be 
eliminated by these transformations. Wilcoxon’s rank sum test (Chapter 6) can be 
used for  comparing two populations in the presence of nonnormality when work-
ing with two independent samples. For data based on more than two independent 
samples, we can address nonnormality using the Kruskal–Wallis test (Section 8.6). 
Note that these tests are also based on a transformation (the rank transformation) 
of the  sample data. 

 8.6 A Nonparametric Alternative: 
The Kruskal–Wallis Test

In Chapter 6, we introduced the Wilcoxon rank sum test for comparing two non-
normal populations. In this section, the rank sum test will be extended to a com-
parison of more than two populations. In particular, suppose that n1 observations 
are drawn at random from population 1, n2 from population 2, . . . , and nk from 
population k. We may wish to test the hypothesis that the k samples were drawn 
from identical distributions. The following test procedure, sometimes called the 
Kruskal–Wallis test, is then appropriate.

when p 5 0, 1

power transformation
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 H0: The k distributions are identical.
 Ha: Not all the distributions are the same.

 T.S.: H 
12

nT 1nT 1 1 2 ai

T 
2
i

ni

2 3 1nT 1 1 2

   where ni is the number of observations from sample i (i  1, 2, . . . , 
k), nT is the combined (total) sample size (i.e., nT  g i ni), and Ti  
denotes the sum of the ranks for the measurements in sample i 
after the combined sample measurements have been ranked

 R.R.:  For a specified value of a, reject H0 if H exceeds the critical value 
of x2 for a and df = k 2 1.

Note: When there are a large number of ties in the ranks of the sample mea-
surements, use

H r 
H

1 2 Cg j 1t3
j 2 tj 2 / 1n3

T 2 nT 2 D
where tj is the number of observations in the jth group of tied ranks.

H9

Extension of the 
Rank Sum Test for 

More Than Two 
Populations 

Figure 8.9 displays population distributions under the alternative hypotheses of 
the Kruskal–Wallis test. 

FIGURE 8.9
Four skewed population 
 distributions identical in 

shape but shifted I II III IV

0 10 20 30

0
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.10

.15

f(
y)

y, value of random variable

EXAMPLE 8.7 

Refer to Example 8.3, where we determined that the clerics’ test scores were not 
normally distributed. Thus, we will apply the Kruskal–Wallis test to the data set 
 displayed in Table 8.12. 
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Use the data to determine whether the three groups of clerics differ with 
 respect to their knowledge about the causes of mental illness. Use a  .05. 

Solution The research and null hypotheses for this example can be stated as  follows: 

Ha:   At least one of the three groups of clerics differs from the others 
with respect to knowledge about causes of mental illness. 

H0:   There is no difference among the three groups with respect to 
knowledge about the causes of mental illness (i.e., the samples of 
scores were drawn from identical populations). 

Before computing H, we must jointly rank the 30 test scores from lowest to 
highest. From Table 8.23, we see that 2 is the lowest test score, so we assign this 
cleric the rank of 1. Similarly, we give the scores 3, 5, and 6 the ranks 2, 3, and 
4,  respectively. Two clerics have a test score of 8, and because these two scores 
occupy the ranks 5 and 6, we assign each one a rank of 5.5—the average of the 
ranks 5 and 6. In a similar fashion, we can assign the remaining ranks to the test 
scores. Table 8.23 lists the 30 test scores and associated ranks (in parentheses).

TABLE 8.23
Scores for clerics’ 

 knowledge of mental 
 illness, Example 8.3

 

Cleric Methodist Catholic Pentecostal

 1 62 (29) 62 (29) 37 (25)
 2 60 (26.5) 62 (29) 31 (24)
 3 60 (26.5) 24 (21) 15 (13.5)
 4 25 (23) 24 (21) 15 (13.5)
 5 24 (21) 22 (18) 14 (11)
 6 23 (19) 20 (16.5) 14 (11)
 7 20 (16.5) 19 (15) 14 (11)
 8 13 (9) 10 (7)   5 (3)
 9 12 (8)   8 (5.5)   3 (2)
 10   6 (4)   8 (5.5)   2 (1) 

Sum of ranks 182.5 167 .5 115

Note from Table 8.23 that the sums of the ranks for the three groups of  clerics 
are 182.5, 167.5, and 115. Hence, the computed value of H is 

H 
12

30 130 1 1 2 a
1182.5 2 2

10
1

1167.5 2 2

10
1

1115 2 2

10
b 2 3 130 1 1 2

 
12
930

 13,330.625 1 2,805.625 1 1,322.5 2 2 93  3.24

Because there are groups of tied ranks, we will use H r  and compare its value 
to H. To do this, we form the 20 groups composed of identical ranks, shown in 
Table 8.24.

From this information, we calculate the quantity 

a
i

1t3
i 2 ti 2

n3
T 2 nT


123 2 2 2 1 133 2 3 2 1 123 2 2 2 1 123 2 2 2 1 133 2 3 2 1 123 2 2 2 1 133 2 3 2

303 2 30

 .0036
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TABLE 8.24
Ranked cleric data  

for Example 8.7

Rank Group ti Rank Group ti

1 1 1 15 11 1
2 2 1 16.5, 16.5 12 2
3 3 1 18 13 1
4 4 1 19 14 1
5.5, 5.5 5 2 21, 21, 21 15 3
7 6 1 23 16 1
8 7 1 24 17 1
9 8 1 25 18 1
11, 11, 11 9 3 26.5, 26.5 19 2
13.5, 13.5 10 2 29, 29, 29 20 3

Substituting this value into the formula for H r , we have 

H r 
H

12.0036


3.24
.9964

 3.25

Thus, even with more than half of the measurements involved in ties, H r  and H 
are nearly the same value. The critical value of the chi-square with a  .05 and 
df  k 2 1  2 can be found using Table 7 in the Appendix. This value is 5.991; 
we fail to reject the null hypothesis and conclude that there is no significant differ-
ence in the test scores of the three groups of clerics. It is interesting to note that 
the p-value for the Kruskal–Wallis test is 1 2 pchisq(3.25, 2)  .197, whereas the 
p-value from the AOV F test  applied to the original test scores was .168. Thus, even 
though the data did not have a normal distribution, the F test from AOV is robust 
against departures from  normality. Only when the data are extremely skewed or 
very heavily tailed do the Kruskal–Wallis test and the F test from AOV differ. ■

 8.7 RESEARCH STuDy: Effect of Timing on the 
Treatment of Port-Wine Stains with Lasers

As was discussed at the beginning of this chapter, port-wine stains are disfiguring 
birthmarks that can be treated with a flash-pumped pulsed-dye laser. However, 
physicians wanted to investigate which age was the most effective time to adminis-
ter the treatment. Younger patients tend to have thinner skin and smaller lesions, 
which may lead to a more effective treatment by the laser. A previous study found 
better results with early treatment, but the results were not unequivocally con-
firmed by a large number of similar studies. However, all of the studies were ret-
rospective in nature, and in none of the studies were objective measurements used 
to assess the results.

Defining the Problem
Therefore, it was determined that a prospective study was needed to assess 
whether treatment of a port-wine stain at a young age would yield better results 
than treatment with older patients. Furthermore, an objective measurement of the 
reduction in the difference in color between skin with the stain and the contralat-
eral healthy skin would need to be developed. In the paper “Effect of the Timing 
of Treatment of Port-Wine Stains with the Flash-Lamp-Pumped Pulsed-Dye Laser”  
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(vander Horst et al., 1998), the researchers considered the following issues relative 
to the most effective treatment:

1. What objective measurements should be used to assess the effec-
tiveness of the treatment in reducing the visibility of the port-wine 
stains?

2. How many different age groups should be considered for evaluating 
the treatment?

3. What type of experimental design would produce the most efficient 
comparison of the different treatments?

4. What are the valid statistical procedures for making the 
comparisons?

5. What types of information should be included in a final report to 
document the age groups for which the laser treatment was most 
effective?

Collecting the Data
One hundred patients, 31 years of age or younger, with a previously untreated port-
wine stain were selected for inclusion in the study. During the first consultation, 
the extent and location of the port-wine stain were recorded. Four age groups of 
25 patients each were determined for evaluating whether the laser treatment was 
more effective for younger patients. Enrollment in an age group ended as soon as 
25 consecutive patients had entered the group. A series of treatments was required 
to achieve optimal clearance of the stain. Before the first treatment, color slides 
were taken of each patient by a professional photographer in a studio under stand-
ardized conditions. The color of the skin was measured using a chromometer. The 
reproducibility of the color measurements was analyzed by measuring the same 
location twice in a single session before treatment. For each patient, subsequent 
color measurements were made at the same location. Treatment was discontinued 
if either the port-wine stain had disappeared or the three previous treatments had 
not resulted in any further lightening of the stain. The outcome measure of each 
patient was the reduction in the difference in color between the skin with the port-
wine stain and the contralateral healthy skin.

Eleven of the 100 patients were not included in the final analysis due to a 
 variety of circumstances that occurred during the study period. A variety of base-
line characteristics was recorded for the 89 patients: the sex of the patient, the 
surface area and location of the port-wine stain, and any additional medical con-
ditions that might have had implications for the effectiveness of the treatment. 
Researchers also recorded treatment characteristics such as the average number of 
visits, level of radiation exposure, number of laser pulses per visit, and occurrence 
of headaches after treatment. For all variables, there were no significance differ-
ences among the four age groups with respect to these characteristics.

Summarizing the Data
The two main variables of interest to the researchers were the difference in color 
between the port-wine stain and contralateral healthy skin before treatment 
and the improvement in this difference in color after a series of treatments. The 
 before-treatment differences in color are presented in Figure 8.10. The boxplots 
demonstrate there were not sizable differences in color among the four groups. 
This is important, since if the groups differed prior to treatment, then the  effect 
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of age group on the effectiveness of the treatment may have been masked by the 
preexisting differences.

The improvement after treatment in the differences in color between the 
stain and healthy skin for each of the patients is given in Table 8.25. (These values 
were simulated using the summary statistics given in the original paper.)

The summary statistics for the above data were provided in Table 8.3. 
Boxplots of the improvement in stain color for the four age groups are displayed 
in  Figure 8.2.

FIGURE 8.10
Boxplots of stain color 

by age group (means are 
indicated by circles)
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TABLE 8.25
Improvement in color 
of port-wine stains by 

age group
 
 

Patient 0–5 Years 6–11 Years 12–17 Years 18–31 Years

 1 9.6938 13.4081  10.9110 1.4352
 2 7 .0027 8.2520 10.3844 10.7740
 3 10.3249 12.0098 6.4080 8.4292
 4 2.7491 7 .4514 13.5611 4.4898
 5 .5637 6.9131 3.4523 13.6303
 6 8.0739 5.6594 9.5427 4.1640
 7 .1440 8.7352 10.4976 5.4684
 8 8.4572 .2510 4.6775 4.8650
 9 2.0162 8.9991 24.7156 3.0733
10 6.1097 6.6154 4.8656 12.3574
11 9.9310 6.8661 .5023 7 .9067
12 9.3404 5.5808 7 .3156 9.8787
13 1.1779 6.6772 10.7833 2.3238
14 1.3520 8.2279 9.7764 6.7331
15 .3795 .1883 3.6031 14.0360
16 6.9325 1.9060 9.5543 .6678
17 1.2866 7 .7309 5.3193 2.7218
18 8.3438 7 .9143 3.0053 2.3195
19 9.2469 1.8724 11.0496 1.6824
20 .7416 12.5082 2.8697 1.8150
21 1.1072 6.2382 .1082 5.9665
22  11.2425  .5041
23  6.8404  5.4484
24  11.2774 
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Analyzing the Data
The objective of the research study was to evaluate whether the treatment of  
 port-wine stains was more effective for younger than for older children. We 
observed in Figure 8.2 that two of the age groups had outliers but otherwise that 
the boxplots had boxes of nearly of the same width and had whiskers of generally 
the same length. The means and medians were of a similar size for each of the 
four age groups. Thus, the assumptions of AOV would appear to be satisfied. To 
confirm this observation, we computed the residuals and plotted them in a nor-
mal probability plot (see Figure 8.11). From this plot, we can observe that, with 
the exception of one data value, the points fall nearly on a straight line. Also, the 
p-value for the test of the null hypothesis that the data have a normal distribution 
is .130. Thus, there is a strong confirmation that the four populations of improve-
ments in skin color have normal distributions.

Next, we can check on the equal variance assumption by using the BFL test. 
For the BFL test, we obtain

L  1.05 with p-value  l 2 pf(1.05, 3, 85)  .3748

This implies there is not significant evidence that the four population variances 
differ. Based on the data, there is not significant evidence that the normality and 
equal variance conditions of the AOV procedure are violated. The condition of 
 independence of the data would be checked by discussing with the researchers 
the manner in which the study was conducted. The sequencing of treatment and 
the evaluation of the color of the stains should have been performed such that the 
determination of improvement in color of one patient would not in any manner 
 affect the determination of improvement in color of any other patient. The kinds 
of problems that may arise in this type of experiment and that can cause dependen-
cies in the data include equipment problems, technician biases, any relationships 
between patients, and other similar factors.

The research hypothesis is that the mean improvement in stain color after 
treatment is different for the four age groups:

H0: m1  m2  m3  m4  versus  Ha: At least one of the means differs from the rest.

FIGURE 8.11
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The computer output for the AOV table is given here.

One-way ANOVA: 0-5 Years, 6-11 Years, 12-17 Years, 18-31 Years

Source DF SS MS F P

Factor 3 108.0 36.0 1.95 0.128

Error 85 1572.5 18.5

Total 88 1680.5

S = 4.301  R-Sq = 6.43%  R-Sq(adj) = 3.12%

Individual 95% CIs For Mean Based on
Pooled StDev

Level         N   Mean  StDev ----+--------+--------+--------+-----

4.0 6.0 8.0 10.0

Pooled StDev = 4.301

0-5 Years
6-11 Years
12-17 Years
18-31 Years

21
24
21
23

4.999
7.224
7.757
5.682

3.916
3.564
5.456
4.147

(--------*--------)
(--------*--------)
(--------*--------)

(--------*--------)

----+--------+--------+--------+-----

From the output, the p-value for the F test is .128. Thus, there is not a significant 
difference in the mean improvements for the four groups. We can also compute 
95% confidence intervals for the mean improvements. The four intervals are 
provided in the computer output. They are computed using the pooled standard 
deviation, ŝ  !MSW  !19.7  4.44 with df  85. Thus, the intervals are of 
the form

yi. 6 t.025, 85 ŝ /!ni  yi. 6 11.99 2 14.44 2 /!ni

The four intervals are presented in Table 8.26.

Age Group yi. 95% C.I.

 0–5 4.999 (3.07, 6.93)
 6–11 7 .224 (5.42, 9.03)
 12–7 7 .760 (5.83, 9.69)
 18–31 5.682 (3.84, 7 .52)

TABLE 8.26
Confidence intervals  

for age groups

From these confidence intervals, we can compare the mean improvements in stain 
color for the four groups. The youngest age group has the smallest improvement, 
but its upper bound is greater than the lower bound for the age group having the 
greatest improvement. The problem with this type of  decision making is that the 
confidence intervals are not simultaneous confidence intervals, and, hence, we 
cannot attribute a level of certainty to our conclusions. In the next chapter, we will 
present simultaneous confidence intervals for the difference in treatment means 
and hence will be able to decide which pairs of treatments in fact are significantly 
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different. However, in our research study, we can safely conclude that all pairs 
of treatment means are not significantly different, since the AOV F test failed to 
reject the null hypothesis.

The researchers did not confirm the hypothesis that treatment of port-wine 
stains at an early age is more effective than treatment at a later age. The researchers 
did conclude that their results had implications for the timing of therapy in chil-
dren. Although facial port-wine stains can be treated effectively and safely early 
in life, treatment at a later age leads to similar results. Therefore, the age at which 
therapy is initiated should be based on a careful weighing of the anticipated benefit 
and the discomfort of treatment.

Reporting the Conclusions
We would need to write a report summarizing our findings of this prospective 
study of the treatment of port-wine stains. We would need to include the  following:

1. Statement of objective for study
2. Description of study design and data collection procedures
3. Discussion of why the results from 11 of the 100 patients were not 

 included in the data analysis
4. Numerical and graphical summaries of data sets
5. Description of all inference methodologies

	● AOV table and F test
	● t-based confidence intervals on means
	● Verification that all necessary conditions for using inference tech-

niques were satisfied
6. Discussion of results and conclusions
7. Interpretation of findings relative to previous studies
8. Recommendations for future studies
9. Listing of data sets

 8.8 Summary and Key Formulas

In this chapter, we presented methods for extending the results of Chapter 6 to 
include a comparison among t population means. An independent random sample 
is drawn from each of the t populations. A measure of the within-sample variability 
is computed as s2

W  SSW / 1nT 2 t 2 . Similarly, a measure of the between-sample 
variability is obtained as s2

B  SSB / 1t 2 1 2 .
The decision to accept or reject the null hypothesis of equality of the t popu-

lation means depends on the computed value of F  s2
B /s2

W. Under H0, both s2
B and 

s2
W estimate s2, the variance common to all t populations. In Chapter 14, it will 

be shown that under the alternative  hypothesis, s2
B estimates s2 1 u , where u  is a 

positive quantity, whereas s2
W still estimates s2. Thus, large values of F indicate a 

rejection of H0. Critical values for F are obtained from Table 8 in the Appendix for 
df1  t 2 1 and df2  nT 2 t. This test procedure, called an analysis of variance, is 
usually summarized in an analysis of variance (AOV) table. 

You might be puzzled at this point by the following: Suppose we  reject H0 
and conclude that at least one of the means differs from the rest. Which ones differ 
from the others? This chapter has not answered this question; Chapter 9 attacks 
this problem through procedures based on multiple comparisons. 
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In this chapter, we also discussed the assumptions underlying an analysis of 
variance for a completely randomized design. Independent random samples are 
 ab solutely necessary. The assumption of normality is least critical because we are 
 dealing with means and the Central Limit Theorem holds for reasonable  sample 
sizes.  The equal variance assumption is critical only when the sample sizes are 
markedly different; this is a good argument for equal (or nearly equal) sample 
sizes. A test for equality of variances makes use of the BFL test. 

Sometimes the sample data indicate that the population variances are differ-
ent. Then, when the relationship between the population mean and the population 
standard deviation is either known or suspected, it is convenient to transform the 
sample measurements y to new values yT to stabilize the population variances, 
using the transformations suggested in Table 8.15. These transformations include 
the square root, logarithmic, arcsin, and many others. 

The topics in this chapter are certainly not covered in exhaustive detail. 
However, the material is sufficient for training the beginning researcher to be 
aware of the assumptions underlying his or her project and to consider either 
 running an  alter native analysis (such as using a nonparametric statistical method, 
the Kruskal–Wallis test) when appropriate or applying a transformation to the 
sample data. 

Key Formulas

1. Analysis of variance for a com-
pletely randomized design

 SSB  a
i

ni 1yi. 2 y. . 2 2

SSW  a
i,j

1yij 2 yi. 2 2

  a
i

1ni 2 1 2s2
i

  TSS  a
i,j

1yij 2 y. . 2 2

  SSB 1 SSW

2. Model for a completely rand-
omized design

 yij  m 1 ti 1 eij

 where mi  m 1 ti

3. Conditions imposed on model:
 a.  The t populations have normal 

distributions
 b.  s2

1  c s2
t  s2

 c.  Data consist of t independent 
random samples

4. Check whether conditions are 
 satisfied:

 a.  Normality: Plots of residuals, 
eij  yij 2 yi.

 b.  Homogeneity of variance: BFL 
test

 c.  Independence: Careful review 
of how experiment or study was 
conducted

5. 100(1 2 a)% confidence intervals 
for population means mi

yi. 6 ta/2, nT2 t 
ŝ
!ni

 where ŝ  ËMSW

6. Kruskal–Wallis test (when 
 population distributions are very 
nonnormal)

H0:  The k population distribu-
tions are identical.

Ha:  The k population distribu-
tions are shifted from each 
other.

T.S. 
12

nT 1nT 1 1 2  a
k

i1

T 
2
i

ni

2 3 1nT 1 1 2
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 8.9 Exercises

 8.1 Introduction
 Med. 8.1  For the port-wine stains research study, answer the following:

 a. What are the populations of interest?
 b. What are some factors besides change in skin color that may be of interest to the 

 investigators?

 Med. 8.2  For the port-wine stains research study, do the following:
 a. Describe how the subjects in this experiment could have been selected so as to 

satisfy the randomization requirements.
 b. State several research hypotheses that may have been of interest to the researchers.

 8.2  A Statistical Test About More Than Two Population Means: 
An Analysis of Variance

 Theory 8.3  A number of new techniques for teaching reading have been proposed in the educational 
literature. A researcher designs the following study to evaluate three of these new methods along 
with the standard method, which has been used for a number of years. In a large school district, 
five elementary schools are selected for inclusion in the study. Four third-grade teachers are ran-
domly selected in each of the five schools, and the four reading techniques are randomly assigned 
to the teachers. The teachers participate in a 2-week workshop to learn the fine points of their 
assigned technique. The students in the 20 classrooms are given a standardized reading examina-
tion at the end of the semester, with the average score in each classroom used as the measure of 
the effectiveness of the teaching technique. Thus, there are five measurements of the effective-
ness of each of the four teaching techniques.

 a. What are the populations of interest in this study?
 b. The conclusions of this study can properly be inferred for what populations?
 c. Would it be appropriate to use the AOV F test to evaluate whether there is a 

difference in the average scores of the four teaching techniques?

 Theory 8.4  In Example 8.3, suppose the organization wanted to compare the mean test scores of Catho-
lic priests and Methodist ministers. Note that it appears based on the data that these two groups 
have the same variance. What is the gain in using a two-sample t-test having s2

W in the denomina-
tor as opposed to using the conventional pooled t test with s2

p, the average of the sample variances 
for the Catholic priests and Methodist ministers?

 Theory 8.5  Consider an experiment designed to compare four treatment means—m1, m2, m3, and m4—
using sample sizes of size n1, n2, n3, and n4 and sample variances s2

1, s2
2, s2

3, and s2
4.

 a. Suppose the sample sizes are the same: n1  n2  n3  n4. Show that s2
W is the 

average of the four sample variances: s2
W  (s2

1 1 s2
2 1 s2

3 1 s2
4)/4.

 b. Does this hold if the sample sizes are not equal? If not, why not just use the average?

 Ag. 8.6  A large laboratory has four types of devices used to determine the pH of soil samples. The 
laboratory wants to determine whether there are differences in the average readings given by 
these devices. The lab uses 24 soil samples having known pH in the study and randomly assigns 
six of the samples to each device. The soil samples are tested, and the response recorded for each 
sample is the difference between the pH reading of the device and the known pH of the soil. 
These values, along with summary statistics, are given in the following table.

 Sample

Device 1 2 3 4 5 6

A 2.307 2.294 .079 .019 2.136 2.324
B 2.176 .125 2.013 .082 .091 .459
C .137 2.063 .240 2.050 .318 .154
D 2.042 .690 .201 .166 .219 .407
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 a.  Based on your intuition, is there evidence to indicate any difference among the 
mean differences in pH readings for the four devices?

 b.  Run an analysis of variance to confirm or reject your conclusion in part (a).  
Use a  .05.

 c.  Compute the p-value of the F test in part (b).
 d.  What conditions must be satisfied for your analysis in parts (b) and (c) to be valid?
 e.  Suppose the 24 soil samples have widely different pH values. What problems may 

occur by simply randomly assigning the soil samples to the different devices?

 Ag. 8.7  It is conjectured that when fields are overgrazed by cattle there will be a substantial reduc-
tion in the available grass during the subsequent grazing season due to the compaction of the soil. 
A horticulturist at the state agricultural experiment station designs a study to evaluate the conjec-
ture. Twenty-one plots of land of nearly the same soil texture and suitable for grazing are selected 
for the study. Three grazing regimens selected for evaluation are randomly assigned to 7 plots 
each. After the 21 plots are subjected to the grazing regimens for four months, the researcher 
randomly selects 10 soil cores from each plot and measures the bulk density (g/cm3) in each soil 
core. The mean soil density of the 10 cores from each plot is given in the following table.

Grazing Regimen Soil Density (g/cm3 )
Continuous grazing 2.05 3.05 3.12 1.59 3.83 1.53 1.44
Three-week grazing, one-week no grazing 1.20 1.48 3.54 1.03 1.45 1.40 2.68
Two-week grazing, two-week no grazing 1.23 1.66 1. 70 1.29 1.26 1.05 2.35

 a. Do the grazing regimens appear to yield different degrees of effect on the amount 
of compacting in the soil? Justify your answer using an a  .05 test.

 b. Provide the level of significance of your test.
 c. Do any of the conditions necessary for conducting your test appear to be 

violated? Justify your answer.

 8.3 The Model for Observations in a Completely Randomized Design

 Theory 8.8  An experiment is designed to compare the means of four populations. Suppose the popula-
tion means are given as follows:

m1  18      m2  28      m3  7      m4  31

Using the relationship mi  m 1 ti with the constraint t4  0, compute the values of m, 
t1, t2, t3, and t4.

 Con. 8.9  Refer to Example 8.1.
 a. For the model yij  m 1 ti 1 eij, what are the values of t, n1, n2, and n3?
 b. Using the observed data, provide estimates of m, t1, t2, t3, and s without the 

constraint t3  0.
 c. Using the observed data, provide estimates of m, t1, t2, t3, and s with the 

constraint t3  0.
 d. Compare the differences in the two sets of estimates produced in parts (b) and (c).  

This illustrates the importance of knowing what constraints are imposed by 
software programs when estimates are contained in the output of an analysis.

 Con. 8.10  Refer to Example 8.4.
 a. For the model yij  m 1 ti 1 eij, what are the values of t, n1, n2, n3, and n4?
 b. Using the observed data, provide estimates of m, t1, t2, t3, and s with the 

constraint t4  0.

 Theory 8.11  In a study of five populations with five equal sample sizes of ni  20, the 100 data values 
produced a mean square within samples of s2

W  0. Without having access to the 100 data values, 
answer the following questions about the sample means and the residuals?

 a. Are the five sample means equal?
 b. What can be concluded about the 100 sample residuals: eij  yij 2 yi?
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 Con. 8.12  Refer to Example 8.1.
 a. Using the observed data, compute the 15 sample residuals:  eij  yij 2 yi. .
 b. Using the 15 residuals, verify that s2

W  1
12 g ij e

2
ij.

 c. Do the data indicate any violations in the conditions for conducting the AOV F test?

 Med. 8.13  Refer to Example 8.2.
 a. Demonstrate that s2

W is not the average of the three sample variances: s2
1, s

2
2, and s2

3.
 b. Do the data indicate any violations in the conditions for conducting the AOV 

F test?

 Med. 8.14  Refer to Example 8.6.
 a. Do the data indicate that the populations are not normally distributed?
 b. Do the transformed data appear to have a normal distribution?
 c. Does a transformation that produces data having equal variances guarantee that 

the transformed data will be normally distributed?

 Med. 8.15  Refer to Example 8.3.
 a. Do the data indicate that the populations are not normally distributed?
 b. Find a transformation of the data such that the transformed data appears to have 

a normal distribution.

 8.5 An Alternative Analysis: Transformations of the Data
 Env. 8.16  Refer to Example 8.4.

 a. Apply the AOV F test to the original measurements using a  .05.
 b. Apply the AOV F test to the transformed data using a  .05.
 c.  Did transforming the data alter your conclusion as to whether the oxygen content 

is  related to the distance to the mouth of the Mississippi River?

 Pol. Sci. 8.17  Refer to Example 8.6.
 a. Apply the AOV F test to the original measurements using a  .05.
 b. Apply the AOV F test to the transformed data using a  .05.
 c.  Did transforming the data alter your conclusion as to whether there is a difference 

in the four  geographical regions with respect to their opinion of the EPA regula-
tions on air pollution?

 Engin. 8.18  Refer to Example 7.8. The consumer testing agency was interested in evaluating whether 
there was a difference in the mean percentage increases in mpg of the three additives. In Example 
7.9, we showed that the data did not appear to have a normal distribution.

 a.  Apply the natural logarithm transformation to the data. Do the conditions for 
applying the AOV F test appear to hold for the transformed data?

 b.  Test for a difference in the means of the three additives using a  .05.

 Bio. 8.19  Refer to Exercise 7.18.
 a.  The biologist hypothesized that the mean weight of deer raised in a zoo would 

differ from the mean weight of deer raised either in the wild or on a ranch. Do the 
conditions necessary for applying the AOV F test appear to be valid?

 b.  If the conditions for the AOV F test are satisfied, then conduct the test to evaluate 
the  biologist’s claim. If not, then suggest a transformation, and conduct the test on 
the transformed data.

 Edu. 8.20  The use of computers as an instructional aid is widely advocated as a means to capture the 
attention of the current computer literate generation of students. A study was designed to assess 
the effectiveness of using computers as a supplement to the standard mode of instruction. Forty 
students in an alternative school were randomly assigned to one of four methods of teaching 
basic math skills. The four methods were lectures only (L), lectures with remedial text book assis-
tance (L /R), lectures with computer assistance (L/C), and computer instruction only (C). After a 
10-week instructional period, an exam evaluating basic math skills was taken by the students. The 
difference in the scores on this exam and on an exam given just prior to the 10-week instructional 
period for each student is given in the following table. A few of the students did not complete 
the program, thus producing an unequal number of students in the four modes of instruction.  
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The researchers want to determine which method of instruction produces the largest increase in 
test scores.

 Student

Method 1 2 3 4 5 6 7 8 9 10

 L 9 2 2 6 16 11 9 0 4 2
 L/R 5 2 3 11 16 11 3
 L/C 9 12 2 17 12 20 20 31 21
 C 17 12 26 1 47 27 28 10 20

 a. Which method of instruction appears to produce the largest gain in scores?
 b. Is there significant evidence of a difference in the mean gains for the four methods 

of instruction?
 c. Do the conditions for conducting statistical tests appear to be satisfied? Justify 

your conclusions with graphs/tests.
 d. What is the target population for this study?
 e. Do the data collected in this study allow inferences to the target population?

 Soc. 8.21  Refer to Exercise 3.55.
 a.  The state legislative committee in charge of allocations for food stamps wanted to 

determine if there was a difference in the mean food expenditures among the five 
family sizes. Do the conditions necessary for applying the AOV F test appear to 
be valid?

 b.  If the conditions for the AOV F test are satisfied, then conduct the test to evalu-
ate whether there is a difference in the five food expenditure means. If not, then 
suggest a transformation, and conduct the test on the transformed data.

  8.22  Refer to Example 8.5. In many situations in which the difference in variances is not too 
great, the results from the AOV comparisons of the population means of the transformed data 
are very similar to the results that would have been obtained using the original data. In these 
situations, the researcher is inclined to ignore the transformations because the scale of the trans-
formed data is not relevant to the researcher. Thus, confidence intervals constructed for the 
means using the transformed data may not be very relevant. One possible remedy for this prob-
lem is to construct confidence intervals using the transformed data and then perform an inverse 
transformation of the endpoints of the intervals. Then we would obtain a confidence interval with 
values having the same units of measurement as the original data.

 a.  Test the hypothesis that the mean hours of relief for patients from the three 
treatments differs using a  .05. Use the original data.

 b.  Place 95% confidence intervals on the mean hours of relief for the three treatments.
 c.  Repeat the analysis in parts (a) and (b) using the transformed data.
 d.  Comment on any differences in the results of the test of hypotheses.
 e.  Perform an inverse transformation on the endpoints of the intervals constructed 

in part (c). Compare these intervals to the ones constructed in part (b).

 8.6 A Nonparametric Alternative: The Kruskal–Wallis Test

 Engin. 8.23  In a 1996 article published in Technometrics, (Martz, Kvan, Abramson, 1996), the authors 
discuss the reliability of nuclear-power-plant emergency generators. To control the risk of damage 
to the nuclear core during accidents at nuclear plants, the reliability of emergency diesel genera-
tors (EDGs) to start on demand must be maintained at a very high level. At each nuclear power 
plant, there are a number of such generators. An overall measure of reliability is obtained by 
counting the number of times the EDGs successfully work when needed. The table here provides 
the number of successful demands for implementation of an EDG between each subsequent fail-
ure in an EDG for all the EDGs at each of seven nuclear power plants. A regulatory agency wants 
to determine if there is a difference in the reliabilities of the seven nuclear power plants.
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Plant ni Number of Times EDG Works

A 34 28 50 193 55 4 7 174 76 10 0 10 84 0 9 1 0 62
  26 15 226 54 46 128 4 105 40 4 273 164 7 55 41 26 6
B 15 2 11 75 6 1 12 4 6 64 3 0 3 1 20 78
C 17 142 110 3 273 54 32 3 40 23 30 17 7 12 6 12 7 5
D 8 64 29 1 3 8 29 4 60
E 12 139 21 214 67 174 1 9 2 119 237 110 71
F 7 18 108 9 8 17 88 28
G 10 0 6 0 16 1 58 13 36 33 19

 a.  Do the conditions necessary for conducting the AOV F test appear to be satisfied 
by these data?

 b.  Because the data are counts of the number of successes for the EDGs, the Poisson 
model may be an alternative to the normal-based analysis. Apply a  transformation 
to the data, and then apply the AOV F test to the transformed data.

 c.  As a second alternative analysis that has fewer restrictions, answer the agency’s 
question by applying the Kruskal–Wallis test to the reliability data.

 d.  Compare your conclusions to parts (a)–(c). Which of the three procedures 
provides the conclusion about which you feel most confident?

 Env. 8.24  Refer to Example 8.4.
 a.  Apply the Kruskal–Wallis test to determine if there is a difference in the  distri butions 

of oxygen content for the various distances to the mouth of the  Mississippi River.
 b. Does your conclusion differ from the conclusion reached in Exercise 8.16?

 Med. 8.25  Refer to Example 8.5.
 a.  Apply the Kruskal–Wallis test to determine if there is a difference in the distribu-

tions of pain reduction for the three analgesics.
 b. Does your conclusion differ from the conclusion reached in Exercise 8.22?

 Med. 8.26  Refer to Example 8.6. 
 a.  Apply the Kruskal–Wallis test to determine if there is a difference in the distribu-

tions of opinions across the four geographical regions.
 b. Does your conclusion differ from the conclusion reached in Exercise 8.17?

 Engin. 8.27  Wludyka and Nelson (1997) describe the following study. In the manufacture of soft contact 
lenses, a monomer is injected into a plastic frame, the monomer is subjected to ultraviolet light and 
heated (the time, temperate, and light intensity are varied), the frame is removed, and the lens is 
hydrated. It is thought that temperature can be manipulated to target the power (strength of the 
lens), so comparing the variability in power is of interest. The data are coded deviations from the 
target power using monomers from five different suppliers given below.

 Sample

Supplier 1 2 3 4 5 6 7 8 9

1 191.9 189.1 190.9 183.8 185.5 190.9 192.8 188.4 189.0
2 178.2 174.1 170.3 171.6 171.7 174.7 176.0 176.6 172.8
3 156.6 158.4 157 .7 154.1 152.3 161.5 158.1 150.9 156.9
4 125.8 132.4 132.2 133.0 133.2 125.9 132.9 142.6 135.5
5 218.6 208.4 187 .1 199.5 202.0 211.1 197 .6 204.4 206.8

 a. Do the suppliers appear to differ in their levels of variability? Use a  .05.
 b. Is there significant evidence of a difference in the mean deviations for the five 

suppliers? Use an a  .05 AOV F test.
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 c. Apply the Kruskal–Wallis test to evaluate differences in the distributions of the 
deviations for the five suppliers? Use a  .05.

 d. Suppose a difference in mean deviations of 20 units would have commercial con-
sequences for the manufacturer of the lenses. Does there appear to be a practical 
difference in the materials from the five suppliers?

 Ag. 8.28  The Agricultural Experiment Station of a university tested two different herbicides and 
their effects on crop yield. From 90 acres set aside for the experiment, the station used herbicide 
1 on a random sample of 30 acres and herbicide 2 on a second random sample of 30 acres; they 
used the remaining 30 acres as a control. At the end of the growing season, the yields (in bushels 
per acre) were as follows:

Herbicide 1 81.2 81.1 79.9 84.6 80.4 74.4 81.7 90.1 102.4 89.2
 92.0 91.7 75.9 95.1 76.1 83.0 88.0 80.5 73.6 80.4
 103.2 85.9 73.6 80.0 82.4 79.5 99.8 96.6 81.3 94.7
Herbicide 2 94.8 90.9 85.2 83.3 95.5 85.4 87 .1 89.6 83.7 88.7
 91.4 85.4 89.0 92.4 85.0 91.0 89.2 100.9 88.5 90.3
 87 .6 80.7 90.0 101.0 92.1 97 .9 92.5 88.8 89.4 100.1
Control 94.7 79.5 91.4 82.6 96.9 85.4 80.8 90.6 88.6 80.8
 78.1 82.5 93.5 83.1 90.5 89.2 82.0 84.1 90.1 84.5
 81.2 92.4 90.5 82.0 106.6 96.9 76.1 101.8 77 .5 88.8

 a.  Use these data to conduct a one-way analysis of variance to test whether there is a 
difference in the mean yields. Use a  .05. 

 b. Construct 95% confidence intervals on the mean yields mi. 
 c. Which of the mean yields appear to be different from the control? 

 Hort. 8.29  Researchers from the Department of Fruit Crops at a university compared four differ-
ent preservatives to be used in freezing strawberries. The researchers prepared the yield from a 
strawberry patch for freezing and randomly divided it into four equal groups. Within each group, 
they treated the strawberries with the appropriate preservative and packaged them into eight 
small plastic bags for freezing at 0°C. The bags in group I served as a control group, while those in 
groups II, III, and IV were assigned one of three newly developed preservatives. After all 32 bags 
of strawberries were prepared, they were stored at 0°C for a period of 6 months. At the end of this 
time, the contents of each bag were allowed to thaw and then rated on a scale of 1 to 10 points for 
discoloration. (Note that a low score indicates little discoloration.) The ratings are given here:

Group I 10 8 7 .5 8 9.5 9 7 .5 7

Group II 6 7 .5 8 7 6.5 6 5 5.5

Group III 3 5.5 4 4.5 3 3.5 4 4.5

Group IV 2 1 2.5 3 4 3.5 2 2

 a. Assess whether the conditions needed to use AOV techniques are satisfied with 
this data set. 

 b. Test whether there is a difference in the mean ratings using a  .05. 
 c. Place a 95% confidence interval on the mean rating for each of the groups.

  8.30  Refer to Exercise 8.29. In many situations in which the response is a rating rather than an 
actual measurement, it is recommended that the Kruskal–Wallis test be used. 

 a. Apply the Kruskal–Wallis test to determine whether there is a shift in the distri-
bution of ratings for the four groups. 

 b. Is the conclusion reached using the Kruskal–Wallis test consistent with the conclu-
sion reached in Exercise 8.29 using AOV? 
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 H.R. 8.31  Salary disputes and their eventual resolutions often leave both employers and employees 
embittered by the entire ordeal. To assess employee reactions to a recently devised salary 
and fringe benefits plan, the personnel department obtained random samples of 15 employees 
from each of three divisions in the company: manufacturing, marketing, and research. The 
personnel staff asked each employee sampled to respond (in confidence) to a series of ques-
tions. Several employees refused to cooperate, as reflected in the unequal sample sizes. The 
data are given here: 

Manufacturing 18.79 22.46 31.99 24.74 29.52 20.25 31.64
 28.66 27 .97 28.19 20.22 29.18
Marketing 27 .63 31.22 35.33 31.06 36.50 29.92 33.18
 37 .03 35.22 37 .89 23.01 37 .81 33.41 29.361
Research 26.64 28.90 32.05 26.54 27 .12 35.78 26.28
 31.90 25.70 25.44 33.41

The data given above are the average responses from the employees, with larger scores reflecting 
a higher degree of satisfaction with management.

 a. Write a model for this situation. Make sure to identify all the terms in your model.
 b. Based on the summary of the scored responses, is there significant evidence of 

a difference among the three divisions with respect to their levels of satisfaction 
with management?

 Ag. 8.32  Researchers record the yields of corn, in bushels per plot, for four different varieties of 
corn, A, B, C, and D. In a controlled greenhouse experiment, the researchers randomly assign 
each variety to 8 of 32 plots available for the study. The yields are listed here: 

A 2.5 3.6 2.8 2.7 3.1 3.4 2.9 3.5

B 3.6 3.9 4.1 4.3 2.9 3.5 3.8 3.7

C 4.3 4.4 4.5 4.1 3.5 3.4 3.2 4.6

D 2.8 2.9 3.1 2.4 3.2 2.5 3.6 2.7

 a. Write an appropriate statistical model. 
 b.  Perform an analysis of variance on these data, and draw your conclusions.  

Use a  .05. 

  8.33  Refer to Exercise 8.32. Perform a Kruskal–Wallis test (with a  .05), and compare your 
results to those in Exercise 8.32. 

 Edu. 8.34  Doing homework is a nightly routine for most school-age children. The article “Family 
Involvement with Middle-Grades Homework: Effects of Differential Prompting” (Balli, S. J., J. F. 
Wedman, and D. H. Demo, 1997), examines the question of whether parents’ involvement with 
their children’s homework is associated with improved academic performance. Seventy-four sixth 
graders and their families participated in the study. The students, similar in academic ability 
and background, were enrolled in one of three mathematics classes taught by the same teacher; 
researchers randomly assigned each class to one of the three treatment groups. 

Group I, student/family prompt: Students were prompted to seek assistance from a 
family member, and family members were encouraged to provide assistance to 
the students. 

Group II, student prompt: Students were prompted to seek assistance from a family 
member, but there was no specific encouragement of family members to provide 
assistance to the students. 
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Group III, no prompts: Students were not prompted to seek assistance from a 
family member nor were family members encouraged to provide assistance to 
the students. 

The researchers gave the students a posttest, with the results given here:

Treatment  Number of  Mean Posttest
Group Students  Score

Student/family prompt 22 68%
Student prompt 22 66%
No prompt 25 67%

The researchers concluded that higher levels of family involvement were not associated with 
higher student achievement in this study. 

 a. What is the population of interest in this study? 
 b. Based on the data collected, to what population can the results of this study be 

 attributed?
 c. What is the effective sample for each of the treatment groups; that is, how many 

 experimental units were randomly assigned to each of the treatment groups? 
 d. What criticisms would you have for the design of this study? 
 e. Suggest an improved design for addressing the research hypothesis that family 

 involvement improves student performance in mathematics classes. 

 Gov. 8.35  In a 1994 Senate subcommittee hearing, an executive of a major tobacco company testified 
that the accusation that nicotine was added to cigarettes was false. Tobacco company scientists 
stated that the amount of nicotine in cigarettes was completely determined by the size of the 
tobacco leaf, with smaller leaves having greater nicotine content. Thus, the variation in nicotine 
content in cigarettes occurred due to a variation in the size of the tobacco leaves and was not due 
to any additives placed in the cigarettes by the company. Furthermore, the company argued that 
the size of the leaves varied depending on the weather conditions during the growing season, 
over which they had no control. To study whether smaller tobacco leaves had a higher nicotine 
content, a consumer health organization conducted the following experiment. The major factors 
controlling leaf size are the temperature and the amount of water received by the plants during 
the growing  season. The experimenters created four types of growing conditions for tobacco 
plants. Condition A was average temperature and rainfall amounts. Condition B was lower than 
average  temperature and rainfall conditions. Condition C was higher than average temperature 
with lower than average rainfall.  Finally, condition D was higher than average temperature and 
rainfall. The scientists then planted 10 tobacco plants under each of the four conditions in a 
greenhouse where temperature and amount of moisture were carefully controlled. After growing 
the plants, the scientists recorded the leaf size and nicotine content, which are given here:

Plant A Leaf Size B Leaf Size C Leaf Size D Leaf Size

 1 27 .7619 4.2460 15.5070 33.0101
 2 27 .8523 14.1577 5.0473 44.9680
 3 21.3495 7 .0279 18.3020 34.2074
 4 31.9616 7 .0698 16.0436 28.9766
 5 19.4623 0.8091 10.2601 42.9229
 6 12.2804 13.9385 19.0571 36.6827
 7 21.0508 11.0130 17 .1826 32.7229
 8 19.5074 10.9680 16.6510 34.5668
 9 26.2808 6.9112 18.8472 28.7695
 10 26.1466 9.6041 12.4234 36.6952



8.9 exercises    443

Plant A Nicotine B Nicotine C Nicotine D Nicotine

 1 10.0655 8.5977 6.7865 9.9553
 2 9.4712 8.1299 10.9249 5.8495
 3 9.1246 11.3401 11.3878 10.3005
 4 11.3652 9.3470 9.7022 9.7140
 5 11.3976 9.3049 8.0371 10.7543
 6 11.2936 10.0193 10.7187 8.0262
 7 10.6805 9.5843 11.2352 13.1326
 8 8.1280 6.4603 7 .7079 11.8559
 9 10.5066 8.2589 7 .5653 11.3345
 10 10.6579 5.0106 9.0922 10.4763

 a.  Perform a one-way analysis of variance to test whether there is a significant differ-
ence in the average leaf sizes under the four growing conditions. Use a  .05.

 b.  What conclusions can you reach concerning the effect of growing conditions on 
the average leaf size? 

 c.  Perform a one-way analysis of variance to test whether there is a significant difference 
in the average nicotine contents under the four growing conditions. Use a  .05. 

 d.  What conclusions can you reach concerning the effect of growing conditions on 
the average nicotine content? 

 e.  Based on the conclusions you reached in parts (b) and (d), do you think the 
testimony of the tobacco companies’ scientists is supported by this experiment? 
Justify your  conclusions. 

  8.36  Do the nicotine content data in Exercise 8.35 suggest violations of the AOV conditions? If 
you determine that the conditions are not met, perform an alternative analysis, and compare your 
results to those of Exercise 8.35.

 Ag. 8.37  Scientists conducted an experiment to test the effects of five different diets on turkeys. They 
randomly assigned six turkeys to each of the five diet groups and fed them for a fixed period of time. 

 Group Weight Gained (pounds)

Control diet 4.1, 3.3, 3.1, 4.2, 3.6, 4.4
Control diet 1 level 1 of additive A 5.2, 4.8, 4.5, 6.8, 5.5, 6.2
Control diet 1 level 2 of additive A 6.3, 6.5, 7 .2, 7 .4, 7 .8, 6.7
Control diet 1 level 1 of additive B 6.5, 6.8, 7 .3, 7 .5, 6.9, 7 .0
Control diet 1 level 2 of additive B 9.5, 9.6, 9.2, 9.1, 9.8, 9.1

 a. Plot the data separately for each sample. 
 b. Compute y and s2 for each sample. 
 c. Is there any evidence of unequal variances or nonnormality? Explain. 
 d.  Assuming that the five groups were comparable with respect to initial weights of 

the turkeys, use the weight-gained data to draw conclusions concerning the differ-
ent diets. Use a  .05.

  8.38  Run a Kruskal–Wallis test for the data of Exercise 8.37. Do these results confirm what you 
concluded from an analysis of variance? What overall conclusions can be drawn? Use a  .05. 

 Hort. 8.39  Some researchers have conjectured that stem-pitting disease in peach tree seedlings might be 
related to the presence or absence of nematodes in the soil. Hence, weed and soil treatment using 
herbicides might be effective in promoting seedling growth. Researchers conducted an experiment 
to compare peach tree seedling growth with soil and weeds using with one of three treatments: 

A: Control (no herbicide) 
B: Herbicide with Nemagone 
C: Herbicide without Nemagone 



444 ChApteR 8 InfeRenCeS About MoRe thAn two populAtIon CentRAl VAlueS

The researchers randomly assigned 6 of the 18 seedlings chosen for the study to each treat-
ment  group. They treated soil and weeds in the growing areas for the three groups with the 
 appropriate herbicide. At the end of the study period, they recorded the height (in centimeters) 
for each seedling. Use the following sample data to run an analysis of variance for detecting 
 differences among the seedling heights for the three groups. Use a  .05. Draw your  conclusions. 

Herbicide A 66 67 74 73 75 64

Herbicide B 85 84 76 82 79 86

Herbicide C 91 93 88 87 90 86

  8.40  Refer to the data of Exercise 8.37. To illustrate the effect that an extreme value can have 
on conclusions from an analysis of variance, suppose that the weight gained by the fifth turkey in 
the level 2, additive B group was 15.8 rather than 9.8. 

 a. What effect does this have on the assumptions for an analysis of variance? 
 b.  With 9.8 replaced by 15.8, if someone unknowingly ran an analysis of variance, 

what conclusions would he or she draw? 

  8.41  Refer to Exercise 8.40. What happens to the Kruskal–Wallis test if you replace the value 9.8 
by 15.8? Might there be a reason to run both a Kruskal–Wallis test and an analysis of variance? 
Justify your answer.

 Engin. 8.42  A small corporation makes insulation shields for electrical wires using three different types 
of machines. The corporation wants to evaluate the variation in the inside diameter dimensions of 
the shields produced by the machines. A quality engineer at the corporation randomly  selects shields 
produced by each of the machines and records the inside diameter of each shield (in millimeters). 
She wants to determine whether the means and standard deviations of the three machines differ. 

Shield Machine A Machine B Machine C

 1 18.1 8.7 29.7
 2 2.4 56.8 18.7
 3 2.7 4.4 16.5
 4 7 .5 8.3 63.7
 5 11.0 5.8 18.9
 6   107 .2
 7   19.7
 8   93.4 
 9   21.6
 10   17 .8 

 a.  Conduct a test for the homogeneity of the population variances. Use a  .05.
 b.  Would it be appropriate to proceed with an analysis of variance based on the 

results of this test? Explain. 
 c.  If the variances of the diameters are different, suggest a transformation that may 

alleviate their differences, and then conduct an analysis of variance to determine 
whether the mean diameters differ. Use a  .05.

 d.  Compare the results of your analysis in part (c) to an analysis of variance on the 
original diameters. 

 e.  How could the engineer have designed her experiment differently if she knew that the 
variances of machine B and machine C were so much larger than that of  machine A? 

  8.43  The Kruskal–Wallis test is not as highly affected by unequal variances as the AOV test.  
Demonstrate this result by applying the Kruskal–Wallis test to both the original and the trans-
formed data and comparing the conclusions reached in this analysis for the data of  Exercise 8.42.



CHAPTER 9

Multiple 
Comparisons 

 9.1 Introduction and Abstract of Research Study

In Chapter 8, we introduced a procedure for testing the equality of t population 
means. We used the test statistic F  s2

B /s2
W  to determine whether the between- 

sample variability was large relative to the within-sample variability. If the 
 computed value of F for the sample data exceeded the critical value obtained from 
Table 8 in the Appendix, we rejected the null hypothesis H0: m1  m2  . . .  mt 
in favor of the alternative hypothesis 

Ha: At least one of the t population means differs from the rest.

Although rejection of the null hypothesis does give us some information 
 concerning the population means, we do not know which means differ from each 
other. For example, does m1 differ from m2 or m3? Does m3 differ from the average 
of m2, m4, and m5? Is there an increasing trend in the treatment means m1, . . . ,  mt? 
Multiple-comparison procedures and contrasts have been developed to answer 
questions such as these. Although many multiple-comparison procedures have 
been proposed, we will focus on just a few of the more commonly used methods. 
After studying these few procedures, you should be able to evaluate the results of 
most published material using multiple comparisons or to suggest an appropriate 
multiple-comparison procedure in an experimental situation.

A word of caution: It is tempting to analyze only those comparisons that 
 appear to be interesting after seeing the sample data. This practice has sometimes 
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been called data dredging or data snooping, and the confidence coefficient for a 
single comparison does not reflect the after-the-fact nature of the comparison. For 
example, we know from previous work that the interval estimate for the difference 
between two population means using the formula 

1y1 2 y2 2 6 ta/2sp

Å
1
n1

1
1
n2

has a confidence coefficient of 1 2 a. Suppose we had run an analysis of variance 
to test the hypothesis 

H0: m1  m2  m3  m4  m5  m6

for six populations but decided to compute a confidence interval for m1 and m2 only 
after we saw that the largest sample mean was y1. and the smallest was y2.. In this 
 situation, the confidence coefficient would not be 1 2 a as originally thought; that 
value applies only to a preplanned comparison, one planned before looking at the 
sample data.

One way to allow for data snooping after observing the sample data is to 
use a multiple-comparison procedure that has a confidence coefficient to cover all 
comparisons that could be done after observing the sample data. Some of these 
procedures are discussed in this chapter. 

The other possibility is to use data-snooping comparisons as a basis for 
generating exploratory hypotheses that must be confirmed in future experiments or 
studies. Here the data-snooping comparisons serve an exploratory, or hypothesis-
generating, role, and inferences would not be made based on the data snoop. Further 
experimentation would be done to confirm (or not) the hypothesis generated in the 
data snoop. 

Abstract of Research Study: Are Interviewers’ Decisions 
Affected by Different Handicap Types?
There are approximately 50 million people in the United States who report 
having a handicap. Furthermore, it is estimated that the unemployment rate of 
noninstitutionalized handicapped people between the ages of 18 and 64 is nearly 
double the unemployment rate of people with no impairment. Thus, it appears that 
people with disabilities have a more difficult time obtaining employment. One of 
the problems confronting people having a handicap may be a bias by employers 
during the employment interview.

The paper “Interviewers’ Decisions Related to Applicant Handicap Type 
and Rater Empathy” (Cesare et al., 1990), describes a study that examines these 
issues. The purposes of the study were to investigate whether different types of 
physical handicaps produce different levels of empathy in raters and to examine if 
interviewers’ evaluations are affected by the type of handicap of the person being 
interviewed.

A group of undergraduate students was randomly assigned to one of five 
 experimental conditions that simulated an employment interview with an applicant 
having one of five conditions: used a wheelchair, used Canadian crutches, was hard 
of hearing, had a leg amputated, or was nonhandicapped (control). The  researchers 
had a number of research questions, including the following:

 1.  Is there a difference in the average empathy scores of the student 
raters based on the type of condition viewed? (This research 
question could be answered using the analysis of variance 
procedures developed in Chapter 8.)

data dredging
data snooping

exploratory 
hypothesis generation



9.2 linear Contrasts     447

 2. Which pairs of handicap conditions produced different average 
qualification scores? (The research hypothesis for analysis of 
variance is that there is a difference in the five treatments, but it 
does not address which treatments are the same or different.)

 3. Is the average rating for hard-of-hearing applicants different from 
the average rating for applicants with mobility problems? (This 
research question involves comparing the average response of 
one treatment to the average responses of several treatments. 
We will define this comparison as a linear contrast in the next 
section.)

The researchers conducted the experiments and obtained the ratings of the appli-
cant qualifications from 70 raters. The data are summarized in Figure 9.1. The 
boxplots display somewhat higher qualification scores from the raters viewing 
the crutches condition. The mean qualification scores for the hard of hearing and 
amputee conditions were somewhat smaller than those of the control and wheel-
chair conditions.

In the following sections, we will develop the various methodologies needed to 
answer the questions such as the three we have posed above. These methodologies 
will then be applied to the ratings data in Section 9.8.

 9.2 Linear Contrasts 

Before developing several different multiple-comparison procedures, we need 
the following notation and definitions. Consider a completely randomized design 
where we wish to make comparisons among the t population means m1, m2, . . . , mt. 
These comparisons among t population means can be written in the form 

l  a1m1 1 a2m2 1 c1 atmt  a
t

i1
aimi

where the ais are constants satisfying the property thatgai  0. For example, if we 
wanted to compare m1 to m2, we would write the linear form 

l  m1 2 m2
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Note that a1  1, a2  21, a3  a4  c at  0, and g i ai  0. Similarly, we 
could compare the mean for population 1 to the average of the means for  populations 
2 and 3. Then l would be of the form 

l  m1 2
1m2 1 m3 2

2

where a1  1, a2  a3  21
2, a4  a5  c at  0, and g iai  0. 

We often write the contrasts with all the ais as integer values. We accom-
plish this by rewriting the ais with a common denominator and then multipling the 
ais by this common denominator. Suppose we have the following contrast in four 
treatment means: 

a1 
1
4
  a2 

21
6
  a3 

21
3
  a4 

1
4

The common denominator is 12, which we multiply by each of the ais, yielding 

a1  3  a2  22 a3  24 a4  3

The two contrasts yield equivalent comparisons concerning the differences 
in the ms, but the integer form is somewhat easier to work with in many of our 
 calculations. 

An estimate of the linear form l, designate  d by l̂ , is formed by replacing the 
mis in l with their corresponding sample means y i.. The estimate l̂  is called a linear 
contrast. 

l̂
linear contrast

l̂  a1y1. 1 a2y2. 1 c1 atyt. g i aiyi. is called a linear contrast among the t 
sample means and can be used to estimate l gi ai mi. The ais are constants 
satisfying the constraintgi ai  0.

DEFINITION 9.1

The variance of the linear contrast l̂  can be estimated as follows: 

V̂ 1l̂ 2  s2
W c a

2
1

n1
1

a2
2

n2
1 . . . 1

a2
t

nt

 d  s2
Wa

i

a2
i

ni

where ni is the number of sample observations selected from population i and s2
W 

is the mean square within samples obtained from the analysis of variance table for 
the completely randomized design. If all sample sizes are the same (i.e., all ni  n), 
then 

V̂ 1 l̂ 2 
s2

W

n a
i

a2
i

Many different contrasts can be formed among the t sample means. A special 
set of contrasts is defined next. 

V̂  (l)̂
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A set of contrasts is said to be mutually orthogonal if all pairs of contrasts in 
the set are orthogonal. 

EXAMPLE 9.1

Consider a completely randomized design for comparing t  4 populations means,  
m1, m2, m3, and m4, with sample sizes n1  5,  n2  4,  n3  6, and n4  5. Are the 
following contrasts orthogonal?

l̂1  y1 2 y3   l̂2  y2 2 y4

Solution We can rewrite the contrasts in the following form:

l̂1  y1 1 0 1y2 2 2 y3 1 0 1y4 2

l̂2  0 1 y1 2 1 y2 1 0 1y3 2 2 y4

Thus, we identify a1  1, a2  0, a3  21, a4  0 and b1  0, b2  1, b3  0, b4  
21. It is apparent that

a
4

i1

aibi

ni


11 2 10 2

5
1

10 2 11 2
4

1
121 2 10 2

6
1

10 2 121 2
5

  0

and, hence, the contrasts are orthogonal. ■

EXAMPLE 9.2

Consider a completely randomized design for comparing t  4 populations means, 
m1, m2, m3, and m4, with sample sizes n1  5, n2  4, n3  6, and n4  5. Are the fol-
lowing contrasts orthogonal?

l̂1  y1 2 y3
  l̂2  y1 1 y2 1 y3 2 3 1y4 2

Solution We can rewrite the contrasts in the following form:

l̂1  y1 1 0 1y2 2  2 y3 1 0 1y4 2
l̂2  y1 1 y2 1 y3 2 3 1y4 2

Thus, we identify a1  1, a2  0, a3  21, a4  0 and b1  1, b2  1, b3  1, b4  23. 
The evaluation of orthoganality is as follows

a
4

i1

aibi

ni


11 2 11 2

5
1

10 2 11 2
4

1
121 2 11 2

6
1

10 2 123 2
5


1
5

2
1
6


1
30

.

mutually orthogonal

DEFINITION 9.2 Two contrasts l̂1 and l̂2, where 

 l̂ 1 a
i

ai yi.   and   l̂ 2  a
i

bi yi.

are said to be orthogonal if 

 
a1b1

n1
1

a2b2

n2
1 . . . 1

atbt

nt

a
 t

i1

aibi

ni

 0

Note: If the sample sizes are the same, then the condition becomes 

 a1b1 1 a2b2 1 . . . 1 atbt a
t

i1
 ai bi  0
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Thus, the contrasts are not orthogonal. Note that if the sample sizes were all equal—
say, ni  5 for all i—then

a
4

i1

aibi

ni


11 2 11 2

5
1

10 2 11 2
5

1
121 2 11 2

5
1

10 2 123 2
5


1
5

2
1
5

 0

and the two contrasts would have been orthogonal. ■

The concept of orthogonality between linear contrasts is important because  
if two contrasts are orthogonal, then one contrast conveys no information about 
the other contrast. We will demonstrate that t 2 1 orthogonal contrasts can 
be formed using the t sample means, yi.s. These t 2 1 contrasts form a set of 
mutually orthogonal contrasts. (An easy way to remember t 2 1 is to refer to the 
number of degrees of freedom associated with the treatment (between-sample) 
source of variability in the AOV table.) In addition, it can be shown that the 
sums of squares for the t 2 1 contrasts will add up to the treatment (between-
sample) sum of squares. Mutual orthogonality is desirable because it leads to the 
independence of the t 2 1 sums of squares associated with the t 2 1 orthogonal 
contrasts. Thus, we can take the t 2 1 degrees of freedom associated with the 
treatment sum of squares that describe any differences among the treatment 
means and break them into t 2 1  independent explanations of how the treatment 
means may differ. We will now further develop these ideas and illustrate the 
concepts with an example. 

A sum of squares associated with a treatment contrast is calculated to indi-
cate the amount of variation in the treatment means that can be explained by 
that particular contrast. For each contrast l̂ g t

i1 aiyi., we can calculate a sum of 
squares associated with that contrast (SSC):

SSC 
1g v

i1aiyi 2 2

g v
i1 1a2

i /ni 2


1 l̂ 2 2

g v
i1 1a2

i /ni 2
When the sample sizes are equal, n1  n2  c nt  n, this formula simplifies to 

SSC 
n 1 l̂ 2 2

g t
i1a

2
i

Associated with each such sum of squares is 1 degree of freedom. Thus, we can 
 obtain t 2 1 orthogonal contrasts such that the sum of squares treatment, which 
has t 2 1 degrees of freedom, equals the total of the t 2 1 sum of squares  associated 
with each of the contrasts. The following example illustrates these  calculations.

EXAMPLE 9.3 

Various agents are used to control weeds in crops. Of particular concern is the 
overusage of chemical agents. Although effective in controlling weeds, these 
agents may also drain into the underground water system and cause health prob-
lems. Thus, several new biological weed agents have been proposed to eliminate 
the contamination problem present in chemical agents. Researchers conducted a 
study of biological agents to assess their effectiveness in comparison to the chemi-
cal weed agents. The study consisted of a control (no agent), two biological agents 
(Bio1 and Bio2), and two chemical agents (Chm1 and Chm2). Thirty 1-acre plots 
of land were planted with hay. Six plots were randomly assigned to receive one of 
the five treatments. The hay was harvested, and the total yield in tons per acre was 
recorded for each plot. The data are given in Table 9.1. 

t 2 1 contrasts
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Determine four orthogonal contrasts, and demonstrate that the total of the four 
sums of squares associated with the four contrasts equals the between-samples 
(treatment) sum of squares. 

Solution An analysis of variance was conducted on these data yielding the results 
summarized in the AOV table given in Table 9.2. 

TABLE 9.1
Summary statistics for  

Example 9.3

Agent 1 2 3 4 5

Type None Bio1 Bio2 Chm1 Chm2 

 yi.  1.175 1.293 1.328 1.415 1.500
 si  .1204  .1269  .1196  .1249  .1265
 ni 6 6 6 6 6

TABLE 9.2
AOV table for  

Example 9.3

Source  df SS MS F p-value

Treatment  4 .3648 .0912 5.96 .0016
Error 25 .3825 .0153

Total 29 .7473

From the AOV table, we have that SSTrt  .3648. We will now construct four 
 orthogonal contrasts in the five treatment means and demonstrate that SSTrt can 
be partitioned into four terms, each representing a 1 degree of freedom sum of 
squares associated with a particular contrast. Table 9.3 contains the coefficient and 
sum of squares for each of the four contrasts. 

TABLE 9.3
Sum of squares 

computations for weed 
control experiment 

Treatment 

 1(Cntrl) 2(Bio1) 3(Bio2) 4(Chm1) 5(Chm2)
Contrast a1 a2 a3 a4 a5 g5

i1a
2
i  l̂ SSCi 

Control vs. Agents 4 21 21 21 21  20 2.836 .2097
Biological vs. Chemical 0 1 1 21 21  4 2.294 .1297
Bio1 vs. Bio2 0 1 21 0 0  2 2.035 .0037
Chm1 vs. Chm2  0 0 0 1 21  2 2.085 .0217

 yi.  1.175 1.293  1.328  1.415  1.500    .3648

To illustrate the calculations involved in Table 9.3, we will compute the sum 
of squares associated with the first contrast, control versus agents. First, note that 
the contrast represents a comparison of the yield for the control treatment versus 
the average yield of the four active agents. We initially would have written this 
 contrast as 

l  m1 2
1m2 1 m3 1 m4 1 m5 2

4

  11 2  m1 1 a21
4

 bm2 1 a21
4

 bm3 1 a21
4

b  m4 1 a21
4

b  m5

However, we can multiply each coefficient by 4 and change the coefficients from 

a1  1    a2 
21
4

   a3 
21
4

    a4 
21
4

    a5 
21
4
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to
a1  4     a2  21     a3  21     a4  21   a5  21

Next, we calculate

a
5

i1
ai

2  14 2 2 1 121 2 2 1 121 2 2 1 121 2 2 1 121 2 2  20

and

l̂  14 2 11.175 2 1 121 2 11.293 2 1 121 2 11.328 2 1 121 2 11.415 2 1 121 2 11.500 2
 2.836

Finally, we can obtain the sum of squares associated with the contrast from 

SSC1 
1l̂ 2 2

g5
i1 1a2

i /ni 2


n 1l̂ 2 2

g5
i1a

2
i

 
6 12.836 2 2

20
 .2097

The remaining three sums of squares are calculated in a similar fashion. From 
Table 9.3, we thus obtain 

SSC1 1 SSC2 1 SSC3 1 SSC4  .2097 1 .1297 1 .0037 1 .0217  .3648  SSTrt ■

EXAMPLE 9.4

Refer to Example 9.3. Verify that the four contrasts in Table 9.3 are mutually 
 orthogonal.

Solution Identify the four contrasts in Table 9.3 by l̂ 1 is Control vs. Agents, l̂ 2 is 
Biological vs. Chemical, l̂ 3 is Bio1 vs. Bio2, and l̂ 4 is Chm1 vs. Chm2. Note that the 
sample sizes are equal, so we need to verify that gi1

5     ai bi  0 for the six pairs of 
contrasts. (See Table 9.4.) 

Contrast Verification of Orthogonality

l̂ 1 and l̂ 2 g i1
5     ai bi  14 2 10 2 1 121 2 11 2 1 121 2 11 2 1 121 2 121 2 1 121 2 121 2  0

l̂ 1 and l̂ 3 gi1
5     ai bi  14 2 10 2 1 121 2 11 2 1 121 2 121 2 1 121 2 10 2 1 121 2 10 2  0

l̂ 1 and l̂4 gi1
5     ai bi  14 2 10 2 1 121 2 10 2 1 121 2 10 2 1 121 2 11 2 1 121 2 121 2  0

l̂2 and l̂3 gi1
5     ai bi  10 2 10 2 1 11 2 11 2 1 11 2 121 2 1 121 2 10 2 1 121 2 10 2  0

l̂2 and l̂4 g i1
5      ai bi  10 2 10 2 1 11 2 10 2 1 11 2 10 2 1 121 2 11 2 1 121 2 121 2  0

l̂3 and l̂4 gi1
5     ai bi  10 2 10 2 1 11 2 10 2 1 121 2 10 2 1 10 2 11 2 1 10 2 121 2  0

TABLE 9.4
Verification of 
orthogonality

Example 9.3 illustrated how we can decompose differences in the treatment 
means into individual contrasts that represent various comparisons of the treat-
ment means. After defining the contrasts and obtaining their estimates and sums 
of squares, we need to determine which of the contrasts are significantly different 
from zero. A value of zero for a contrast would indicate that the difference in the 
means represented by the contrast does not exist. For example, if our contrast l1 
(control versus agents) was determined to be zero, then we would conclude that 
the average yield on plots assigned no agent (control) was equal to the average 
yield across all plots having one of the four agents. We will now present a test of 
the hypothesis that a contrast l  g t

i1aimi is different from zero. Our test will be 
a variation of the F test from AOV. Because the sum of squares associated with a 

  ■
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contrast has 1 degree of freedom, its mean square is the same as its sum of squares. 
The test statistic is simply 

F 
SSC

MSError


SSC
sW

2

The test procedure is summarized here. 

F Test for  Contrasts     H0:  l  a1m1 1 a2m2 1 . . . 1 atmt  0

    Ha:  l  a1m1 1 a2m2 1 . . . 1 atmt 2 0

  T.S.:  F 
SSC

MSError

R.R.:   For a specified value of a, reject H0 if F exceeds the tabled F value 
(Table 8 in the Appendix) for the specified a, df1  1, and df2  nT 2 t.

Check assumptions and draw conclusions. 

EXAMPLE 9.5 

Refer to Example 9.3. The researchers were very interested in determining 
whether the biological agents would perform as well as the chemical agents. Is 
there a significant difference between the control treatment and the four active 
agents for weed control with respect to their effect on average hay production? 
Test each of the four contrasts for significance. 

Solution From the table of summary statistics in Example 9.3, the sample stand-
ard deviations are nearly equal. Thus, we have very little reason to  suspect that the 
five population variances are unequal. The AOV table in Example 9.3 has a p-value 
of .0016. Thus, we have a very strong rejection of H0: m1  m2  m3  m4  m5. 
We thus conclude that there are significant (p-value  .0016) differences in the five 
treatment means. We can investigate the types of differences in these means using 
the four contrasts that we constructed in Example 9.3. The four test statistics are 
computed here with Fi  SSCi /MSError:

F1 
.2097
.0153

 13.71  F2 
.1297
.0153

 8.48  F3 
.0037
.0153

 0.24

F4 
.0217
.0153

 1.42

From Table 8 in the Appendix, with a  .05, df1  1, and df2  30 2 5  25, we 
obtain F.05, 1, 25  4.24. Thus, we conclude that contrasts l1 and l2 were significantly 
 different from zero but that contrasts l3 and l4 were not significantly different from 
zero. Using contrast l1, we could thus conclude that the mean yields from plots using 
a weed control agent were significantly higher than the mean yields from plots on 
which no agent was used. From contrast l2, we infer that the mean yields from fields 
using  biological agents for weed control would tend to be lower than the mean 
yields from those using chemical agents. However, we would need to investigate 
the size of the differences in the mean yields to determine whether the differences 
were of economical  importance rather than just statistically significantly different. 
If the differences were economically significant, the ecological gains from using the 
biological agents might justify their use in place of chemical agents. ■ 
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When we select contrasts for a study, the goal is not to obtain a set of 
 orthogonal contrasts that yield a decomposition of the sum of squares treatment 
into t 2 1 components. Rather, the goal is to obtain contrasts of the treatment 
means that will elicit a clear explanation of the pattern of differences in the treat-
ment means of most benefit to the researcher. The mutual orthogonality of the 
contrasts is somewhat of a fringe benefit of the selection process. For example, in 
the analysis of the weed agents, we may have also been interested in comparing the 
control treatment to the average of the two biological agents. This contrast would 
not have been orthogonal to several of the contrasts we had already designed. We 
could have still used this contrast and tested its significance using the experimental 
data. The choice of which contrasts to evaluate should be determined by the over-
all goals of the experimenter and not by orthogonality. 

One problem we do encounter when testing a number of contrasts is referred 
to as multiple comparisons. When we have tested several contrasts, each with a 
Type I error rate of a, the chance of at least one Type I error occurring during the 
several tests becomes somewhat larger than a. In the next section, we will address 
this difficulty. 

 9.3 Which Error Rate Is Controlled? 

An experimenter wishes to compare t population (treatment) means using m 
contrasts. Each of the m contrasts can be tested using the F test we introduced in 
the previous section. Suppose each of the contrasts is tested with the same value 
of a, which we will denote as aI, called the individual comparisons Type I error rate. 
Thus, we have an aI chance of making a Type I error on each of the m tests. We 
need to also consider the probability of falsely rejecting at least one of the m null 
hypotheses, called the experimentwise Type I error rate and denoted by aE. The 
value of aE takes into account that we are conducting m tests, each having an aI  
chance of making a Type I error. Now, if MSError has an infinite number of degrees 
of freedom (so the tests are independent), then when all m null hypotheses are true, 
the probability of falsely rejecting at least one of the m null hypotheses can be shown 
to be aE  1 2 11 2 aI 2m. Table 9.5 contains values of aE for various values of m 
and aI. We can observe from Table 9.5 that as the number of tests m increases for a 
given value of aI, the probability of falsely rejecting H0 on at least one of the m tests, 

individual  
comparisons  

Type I error rate

experimentwise  
Type I error rate 

TABLE 9.5
A comparison of the 

 experimentwise error rate,  
aE, for m independent 

 contrasts among t(t . m) 
 sample means

 aI, Probability of a
 Type I Error

m, Number of
 on an Individual Test

 Contrasts .10 .05 .01

1 .100 .050 .010 
2 .190 .097 .020 
3 .271 .143 .030 
4 .344 .185 .039 
5 .410 .226 .049 
.   .   .   .
.   .   .   .
.   .   .   .

10 .651 .401 .096 
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aE, becomes quite large. For example, if an experimenter wanted to compare t  20 
population means by using m  10 orthogonal contrasts, the probability of falsely 
rejecting H0 on at least one of the t tests could be as high as .401 when each individual 
test was performed with aI  .05.

In any practical problem, the degrees of freedom for MSError will not be 
infinite, and, hence, the tests will not be independent. Thus, the relationship between 
aE and aI  is not generally as described in Table 9.5. It is difficult to obtain an 
 expression equivalent to  aE  1 2 11 2 aI 2m for comparisons made with tests 
that are not independent. However, it can be shown that for most of the types of 
comparisons we will be making among the population means, the following upper 
bound exists for the experimentwise error rate: 

aE # 1 2 11 2 aI 2m

Thus, we know the largest possible value for aE when we set the value of aI  for 
each of the individual tests. Suppose, for example, that we wish the experiment-
wise error rate for m  8 contrasts among t  20 population means to be at most 
.05. What value of aI  must we use on the m tests to achieve an overall error rate 
of aE  .05? We can use the previous upper bound to determine that if we select 

aI  1 2 11 2 aE 2 1/m  1 2 11 2 .05 2 1/8  .0064 

then we will have aE # .05. The only problem is that this procedure may be very 
conservative with respect to the experimentwise error rate, and, hence, an inflated 
probability of Type II error may result. 

We will now consider a method that will work for any set of m tests and is 
much easier to apply in obtaining an upper bound on aE. The results of Table 9.5 
are disturbing when we are conducting a number of tests. The chance of making 
at least one Type I error may be considerably larger than the selected individual 
error rates. This could lead us to question significant results when they appear in 
our analysis of experimental results. The problem can be alleviated somewhat by 
controlling the experimentwise error rate aE rather than the individual error rate aI. 
We need to select a value of aI  that will provide us with an acceptable value for aE. 
The Bonferroni inequality provides us with a method for selecting aI  so that aE 
is bounded below a specified value. This inequality states that the overall Type I 
error rate  aE is less than or equal to the sum of the individual error rates for the 
m tests. Thus, when each of the m tests has the same individual error rate, aI , the 
Bonferroni inequality yields

aE # maI

If we wanted to guarantee that the chance of a Type I error was at most a, we could 
select 

aI 
a

m

for each of the m tests. Then

aE # maI  ma a

m
b  a

The experimentwise error rate is thus less than or equal to our specified value. Just 
as we mentioned earlier, this procedure may be very conservative with respect to 
the experimentwise error rate, and, hence, an inflated probability of Type II error 
may result.

Bonferroni inequality
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EXAMPLE 9.6 

Refer to Example 9.5, where we constructed m  4 contrasts (comparisons) among 
the t  5 treatment means. If we wanted to control the experimentwise error rate 
at a level of aE  .05, then we would take 

aI 
0.5
4

 .0125

The critical value for the F tests would be F.0125, 1, 25  7.24, which can be obtained 
using the R function q f(l 2.0125, 1, 25). We would then reject H0  if Fi  SSCi/MSError 
$  7.24. The Bonferroni critical value, 7.24, is much larger than F.05, 1, 25  4.24, the 

critical value obtained ignoring the impact of multiple testing. Thus, the  Bonferroni 
procedure will potentially lead to fewer contrasts being declared significantly 
 different from 0. From  Example 9.5, the four F ratios were 

F1  13.71   F2  8.48   F3  0.24   F4  1.42 

Using the Bonferroni procedure, we would declare contrast l1 and l2 significantly 
different from 0 because their F ratios are greater than 7.24. Using the Bonferroni 
test procedure, we are assured that the chance of  making at least one Type I error 
during the four tests is at most .05. Using a  .05 for each of the four procedures 
would not have allowed us to assess the exact probability of making a Type I error 
among the four comparisons. However, this value would have been considerably 
larger than .05, possibly as large as .20. ■

The Bonferroni procedure gives us a method for evaluating a small num-
ber of contrasts that were selected prior to observing the data, while preserving 
a  selected experimentwise Type I error rate. In some experimental settings, the 
researcher may want to test a large number of contrasts. A procedure proposed 
by Scheffé (1953) can be used to make all possible comparisons among t popula-
tion means. Scheffé’s procedure provides the selected experimentwise error rate 
for any number of contrasts, whereas the Bonferroni procedure only sets an upper 
bound on the experimentwise error rate.

 9.4 Scheffé’s S Method

The Scheffé procedure is a very general procedure that can be used to test the sig-
nificance of all possible contrasts among t population means, while maintaining the 
selected experimentwise error rate. Because the procedure can be applied to an 
unlimited number of contrasts, it is a very conservative procedure (less sensitive) 
than many other procedures for testing contrasts. The other procedures, which will 
be introduced later in this chapter, are developed for specific comparisons such 
as comparing all pairs of means or comparing t 2 1 treatments to a control. Thus, 
these procedures have a much smaller number of tests for which the experiment-
wise error rate needs to be controlled than the unlimited number being controlled 
by the Scheffé procedure. 
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EXAMPLE 9.7

Refer to Example 9.5. We defined four contrasts in the t  5 treatment means in 
an attempt to investigate the differences in the average hay production on fields 
treated with either the control or one of the four weed agents. Use the sample 
data and Scheffé’s procedure to determine which if any of the four contrasts are 
significantly different from zero. Use a  .05.

Solution The four contrasts of interest are given in Table 9.6 along with their 
 estimates. To illustrate the calculations involved in Table 9.6, we will compute the 
value of S for the first contrast, control vs. agents. To compute 

S  #V̂ 1l̂ 2  Ë 1t 2 1 2Fa, df1,
 df2

Scheffé’s S  Method 
for Multiple 

 Comparisons 

1. Consider any linear comparison among the t population means of the form 

l  a1m1 1 a2m2 1 . . . 1 atmt

  We wish to test the null hypothesis

H0 : l  0

  against the alternative

Ha :  l 2 0

2. The test statistic is

l̂  a1y1. 1 a2y2.  1
. . . 1 atyt.

3. Let

 S  #V̂ 1l̂ 2  Ë 1t 2 1 2Fa, df1,
 df2

where, from Section 9.2,

 
V̂ 1l̂ 2  s2

Wa
i

a2
i

ni

  t is the total number of population means and Fa, df1,
 df2

 is the upper-tail 
critical value of the F distribution for the specified value of a, with 
df1  t 2 1 and df2 the degrees of freedom for s2

W.
4. For a specified value of a, we reject H0 if | l̂ | . S.
5. The error rate that is controlled is an experimentwise error rate. If we consider 

all imaginable contrasts, the probability of observing an experiment with one 
or more contrasts falsely declared to be  significant is designated by a.

TABLE 9.6 Computations for Scheffé  procedure in weed control  experiment 

 Treatment

 Control Bio1 Bio2 Chm1 Chm2
Contrast a1 a2 a3 a4 a5 gai

2 /ni  l̂  V̂ 1 l̂ 2 S Conclusion

Control vs. agents 4 21 21 21 21 20/6 2.836 .0510 .750 Significant
Biological vs. chemical 0   1   1 21 21 4/6 2.294 .0102 .336 Not significant
Bio1 vs. Bio2 0   1 21   0   0 2/6 2.035 .0051 .237 Not significant
Chm1 vs. Chm2 0   0   0   1 21 2/6 2.085 .0051 .237 Not significant 
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we must first calculate V̂ 1 l̂ 2 . Using the formula 

V̂ 1 l̂ 2  sW
2  a

t

i1
 
ai

2

ni

with all samples sizes equal to 6 and s2
W  .0153, we have 

V̂ 1 l̂ 2  .0153a 14 2
2

6
1

1
6

1
1
6

1
1
6

1
1
6
b  .0153 

20
6

 .0510

From Table 8 in the Appendix for a  .05, df1  t 2 1  4, and df2  25 (the 
 degrees of freedom for s2

W 2 , F.05, 4, 25  2.76. The computed value of S is then

S  Ë.0510Ë4 12.76 2  1.2258 2 13.323 2  .750

Because the absolute value of l̂  is |2.836|  .836, which exceeds .750, we have 
significant evidence (a  .05) to indicate that the average hay production from 
the fields treated with a weed agent exceeds the average yield in the fields having 
no treatment for weeds. The calculations for the other three contrasts are summa-
rized in Table 9.6. Note that the value of S changes for the different contrasts. In 
our  example, the only contrast significantly different from zero was the first con-
trast. The remaining three contrasts were not significant at the a  .05 level. These 
conclusions are different from the conclusions we reached in Example 9.5, where 
we found that the second contrast was also significantly different from zero. The 
reason for the difference in the conclusions is that the Scheffé procedure controls 
the  experimentwise Type I error rate at level .05, whereas in Example 9.5 we only 
 control the individual comparison rate at level .05. ■

Scheffé’s method can also be used for constructing a simultaneous confidence 
interval for all possible (not necessarily pairwise) contrasts using the t treatment 
means. In particular, there is a probability equal to 1 2 a that all possible  compari-
sons of the form l  gaimi, wheregai  0, will be encompassed by intervals of the 
form 

1 l̂ 2 S, l̂ 1 S 2

 9.5 Tukey’s W Procedure

Tukey (1953) proposed a procedure that makes use of the Studentized range 
distribution. When more than two sample means are being compared, to test the 
largest and smallest sample means, we could use the test statistic 

ylargest 2 ysmallest

spË1 /n 

where n is the number of observations in each sample and sp is a pooled estimate 
of the common population standard deviation s. This test statistic is very similar 
to that for comparing two means, but it does not possess a t distribution. One rea-
son it does not is that we have waited to determine which two sample means (and 
hence population means) we would compare until we observed the largest and 
smallest sample means. This procedure is quite different from that of specifying 
H0: m1 2 m2  0, observing y1. and y2., and forming a t statistic. 

Scheffé’s confidence 
interval

Studentized range 
distribution
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The quantity 
ylargest 2 ysmallest

spË1 /n
follows a Studentized range distribution. We will not discuss the properties of this 
distribution but will illustrate its use in Tukey’s multiple-comparison procedure. 

Tukey’s W Procedure  1. Rank the t sample means. 
2. Two population means mi and mj are declared different if 

 0yi. 2 yj. 0 $ W 

where 

 
W  qa 1t, v 2  Å

sW
2

n

  sW
2  is the mean square within samples based on v degrees of freedom,  

qa 1t, v 2  is the upper-tail critical value of the Studentized range for 
comparing t different populations, and n is the number of observations in 
each sample. A discussion follows showing how to obtain values of qa 1t, v 2  
by referring to Table 10 in the Appendix or using the R function  
qtukey 11 2 a, t, v 2 . 

3. The error rate that is controlled is an experimentwise error rate. Thus,  
the probability of observing an experiment with one or more pairwise 
comparisons falsely declared to be significant is specified at a.

W

qa(t, v)

upper-tail  critical 
 value of the 

 Studentized range

experimentwise  
error rate

We can obtain values of qa 1t, v 2  from Table 10 in the Appendix. Values of 
v are listed along the left column of the table with values of t across the top row. 
Upper-tail values for the Studentized range are then presented for a  .05 and .01. 
For example, in comparing 10 population means based on 9 degrees of freedom 
for sW

2 , the .05 upper-tail critical value of the Studentized range is q.05(10, 9)  5.74.

EXAMPLE 9.8 

Refer to the data of Example 9.3. Use Tukey’s W procedure with a  .05 to make 
pairwise comparisons among the five population means. 

Solution Step 1 is to rank the sample means from smallest to largest, to produce 
the following table: 

Agent 1 2 3 4 5

yi.  1.175 1.293 1.328 1.415  1.500

For the experiment described in Example 9.3, we have 
     t  5 (we are making pairwise comparisons among five means)
    v  25 (sW

2  had degrees of freedom equal to dfError in the AOV)
 a  .05 (we specified aE, the experimentwise error rate at .05) 
 n  6 (there were six plots randomly assigned to each of the agents) 

We find in Table 10 of the Appendix that 
qa 1t, v 2  q.05 15, 25 2 < 4.158 

Alternatively, 
qtukey(.95, 5, 25)  4.153
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The absolute value of each difference in the sample means 0yi 2 yi 0  must then be 
compared to 

W  qa 1t, v 2  Å
s2

W

n
 4.153 Å

.0153
6

 .2097

Next, compute the difference in the sample means

ylargest 2 ysmallest

If this difference is greater than W, we declare the corresponding population 
means significantly different from each other. Next, we compute the difference in 
the sample means

y2nd largest 2 ysmallest

and compare the difference to W. We continue to compute differences with ysmallest

y3rd largest 2 ysmallest

and so on until we find either that all differences in the sample means involving 
ysmallest exceed W (and hence the corresponding population means are different) 
or that a difference in the sample means involving ysmallest is less that W. In the 
 latter case, we stop and make no further comparisons with ysmallest. For our data, 
comparisons with ysmallest, y1 yield the following results:

 Comparison Conclusion

 ylargest 2 ysmallest  y5. 2 y1.  .325 .W; proceed
y2nd largest 2 ysmallest  y4. 2 y1.  .240 .W; proceed
 y3rd largest 2 ysmallest  y3. 2 y1.  .153 ,W; stop 

To summarize our results we make the following diagram: 

Agent  1  2  3 4  5

Next, comparison with y2nd  smallest, which is y2., yields

 Comparison Conclusion 

y5. 2 y2.  .207 ,W; stop 

Agent  1  2  3  4  5 

Similarly, comparisons of y5. with y3. and y4. yield 

Agent  1  2  3  4  5
                         

Combining our results, we obtain 

Agent  1  2  3  4  5
         
             
              

which simplifies to

Agent  1  2  3  4  5
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All populations not underlined by a common line have population means that are 
significantly different from each other; that is, m4 and m5 are significantly different 
from m1. No other pairs of means are significantly different. ■

A limitation of Tukey’s procedure is the requirement that all the sample 
means be based on the same number of data values. Tukey (1953) and Kramer 
(1956) independently proposed an approximate procedure in the case of unequal 
sample sizes. In place of Tukey’s W, use 

W* 
qa 1t, v 2

Ë2 Ås2
wa

1
ni

1
1
nj
b

to compare population means mi and mj, where ni and nj are the corresponding 
sample sizes. This procedure, Tukey–Kramer, is approximate because aE # a, 
whereas when n1  n2  c  nt, aE  a.

Tukey’s procedure can also be used to construct confidence intervals for 
 comparing two means. Tukey’s procedure enables us to construct simultaneous 
confidence intervals for all pairs of treatment differences. For a specified a level 
from which we compute W, the overall probability is 1 2 a that all differences  
mi 2 mj will be included in an interval of the form 

1yi. 2 yj. 2 6 W

that is, the probability is 1 2 a that all the intervals 1yi. 2 yj. 2 6 W  include the 
 corresponding population differences mi 2 mj.

EXAMPLE 9. 9

Refer to Example 9.8. Construct 95% Tukey confidence intervals on the difference 
in all treatment means. 

Solution From Example 9.8, we have W  q.05$s2
W
n  4.153Î.0153

6  .2097. Thus, 
the confidence intervals for mi 2 mj will have the form 1 yi. 2 yj. 2 6 .2097. For  example, 
the 95% confidence interval for m3 2 m1 would be 1.328 2 1.175 6 .2097—that is,  
(2 .057, .363). The remaining confidence intervals are given in Table 9.7.

 Difference in Means 95% C.I. for Difference Difference in Means 95% C.I. for Difference

 m2 2 m1 (2.092, .328) m4 2 m2 (2.088, .332)
 m3 2 m1  (2.057, .363) m5 2 m2 (2.003, .417)
 m4 2 m1 (.030, .450) m4 2 m3 (2.123, .297)
 m5 2 m1 (.115, .535) m5 2 m3 (2.038, .382)
 m3 2 m2 (2.175, .245) m5 2 m4 (2.125, .295)

From Table 9.7, we can conclude that the only pairs of population means that are 
significantly different are (m4, m1) and (m5, m1). The confidence intervals for both 
pairs do not contain 0 whereas 0 is contained in the remaining eight confidence 
intervals. Recall that if 0 is contained in the confidence interval, then we cannot 
reject the null hypothesis H0 : mi 2 mj   0, the hypothesis that the treatment 
means mi and mj are equal. ■

simultaneous 
confidence interval

TABLE 9.7
Confidence intervals for 

Example 9.9
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 9.6 Dunnett’s Procedure: Comparison  
of Treatments to a Control

In many studies and experiments, the researchers will include a control treatment 
for comparison purposes. There are many types of controls, but generally the con-
trol serves as a standard to which the other treatments may be compared. For 
example, in many situations, the conditions under which the experiment is run may 
have such a strong effect on the response variable that generally effective treat-
ments will not produce a favorable response in the experiment. For example, if the 
insect population is too dense, most insecticides used at a reasonable level would 
not provide a noticeable reduction in the insect population. Thus, a control spray 
with no active ingredient would reveal the level of insects in the sprayed region. A 
second situation in which a control is useful is when the experimental participants 
generate a favorable response whenever any reasonable treatment is applied; 
this is referred to as the placebo effect. In this type of study or experiment, the 
participants randomly assigned to the control treatment are handled in exactly the 
same manner as the participants receiving active treatments. In most clinical tri-
als and experiments used to evaluate new drugs or medical treatments, a placebo 
treatment is included so as to determine the size of the placebo effect. Finally, a 
control may represent the current method or standard procedure to which any new 
procedures would be compared. 

In experiments in which a control is included, the researchers want to deter-
mine whether the mean responses for the active treatments differ from the mean 
response for the control. Dunnett (1955) developed a procedure for comparisons 
to a control that controls the experimentwise Type I error rate. This procedure 
compares each treatment mean to the mean for the control, yc, by comparing the 
 difference in the sample means, yi 2 yc, to the critical difference 

D  da 1k, v 2Å
2s2

W

n

where nc  n1  c nt21  n. The Dunnett procedure requires equal sample sizes, 
ni  nc. The values for da 1k, v 2  are given in Table 11 in the Appendix.  Dunnett 
(1964) describes adjustments to the values in Table 11 for the case of unequal ni. 
The comparison can be either one-sided or two-sided, as is summarized here. 

placebo effect

Dunnett’s Procedure 1. For a specified value of aE, Dunnett’s D value for comparing mi to mc, 
the control mean, is 

 
D  da 1k, v 2  Ç

2s2
W

n

  where n is the common sample size for the treatment groups (including  
the control); k  t 2 1 is the number of noncontrol treatments; a is the 
 desired  experimentwise error rate; s2

W is the mean square within samples; 
v is the degrees of freedom associated with s2

W; and da 1k, v 2  is the  critical 
Dunnett value (Table 11 of the Appendix). 

2. For the two-sided alternative Ha: mi 2mc, we declare mi different from mc if 

 |yi 2 yc| $ D
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EXAMPLE 9.10

Refer to the data of Example 9.3. Compare the two biological treatments and two 
chemical treatments to the control treatment using a  .05.

Solution We want to determine whether the biological and chemical treatments 
have increased hay production, so we will conduct one-sided comparisons with the 
control.

 1. From Example 9.3, we had s2
W  .0153 with df  25 and t  5 treat-

ments including the control treatment. The critical value of the  
Dunnett procedure is found in the one-sided portion of Table 11 in 
the Appendix with

  a  .05   k  5 2 1  4   v  25

  yielding d.05(4, 25)  2.28. Since nc  n2  n3  n4  n5  6, we have

   
D  da 1k, v 2Ç

2sW
2

n
 2.28 Ç

2 1.0153 2
6

 .163

2. We declare treatment mean mi greater than the control mean mc if 1yi 2 yc 2 $ .163. We can summarize the comparisons as shown in 
Table 9.8.

Treatment 1yi 2 yc 2  Comparison Conclusion

 Bio1 (1.293 2 1.175)  .118 , D  Not greater than control

 Bio2 (1.328 2 1.175)  .153 , D  Not greater than control

 Chm1 (1.415 2 1.175)  .240 . D  Greater than control

 Chm2 (1.500 2 1.175)  .325 . D  Greater than control

  where the value of da 1k, v 2  is the two-sided value in Table 11 in the 
 Appendix. 

3. For the one-sided alternative Ha: mi . mc, we declare mi greater than mc if 

 1yi 2 yc 2 $ D

  where the value of da 1k, v 2  is the one-sided value in Table 11 in the 
 Appendix. 

4. For the one-sided alternative Ha: mi , mc, we declare mi  less than mc if

 1yi 2 yc 2 #2D

  where the value of da 1k, v 2  is the one-sided value in Table 11 in the 
 Appendix. 

5. The Type I error rate that is controlled is an experimentwise error rate. Thus, 
the probability of observing an experiment with one or more  comparisons 
with the control falsely declared to be significant is  specified at a.

TABLE 9.8
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3. We conclude that using either of the biological agents would result in 
an average hay production not greater than the production obtained 
using no agent on the fields. Thus, at the a  .05 level, the biological 
agents are not effective in controlling weeds in the hay fields. How-
ever, the  average hay production using the chemical agents appears to 
be greater than the hay production on fields with no weed agents. ■

When the sample sizes are not equal, the Dunnett procedure does not 
 produce an experimentwise error rate equal to a. As noted earlier, Dunnett 
(1964) provided  adjust  ments to the values given in Table 11 in the Appendix for 
the unequal sample sizes.

 9.7 A Nonparametric Multiple-Comparison Procedure

The multiple-comparison procedures—Tukey’s W, Dunnett, and Scheffé’s S—
all are based on the condition that the data are random samples from normal 
distributions with equal variances. In a number of situations (for example, income, 
percentage, or survival data), the normality condition is not valid, or the sample 
sizes are so small that it is not possible to conduct the diagnostics to verify the 
 normality of the data. In a number of experiments, the recorded data are measured 
using an ordinal scale, and, hence, the relative ranks are the only meaningful 
measure, not the actual recorded measurements (for example, consumer rankings 
of products or tasters of new food products). In these types of situations, it is 
necessary to apply a procedure similar to the Wilcoxon rank sum test that is based 
on the ranks of the data. We will now describe a multiple-comparison procedure 
that is applicable when the data are not normally distributed.

The following procedure requires only that n1 observations be randomly 
 selected from population 1, n2 observations from population 2, . . . , and nt observa-
tions from population t. The t populations are identical except for possible differ-
ences in a shift parameter ti. Figure 8.9 demonstrates the type of situation in which 
this  procedure would be applicable. We wish to determine which pairs of popula-
tions have a difference in their shift parameters—that is, have ti different from tj. 
For the multiple-comparison procedures in the previous sections, these were the 
same conditions with the exception that we imposed the additional condition that 
all t populations have a normal distribution. In that case, ti equals mi. This is not 
neces sarily true for nonnormal distributions.

A Kruskal–Wallis–based nonparametric multiple-comparison procedure is 
summarized here.

Kruskal–Wallis Nonparametric Procedure:

 1. Perform a Kruskal–Wallis test of H0: t1  t2  c tt versus the 
 alternative hypothesis that at least one of the tis differs from the rest.

 2. If there is insufficient evidence to reject H0 using the Kruskal–Wallis 
test, declare there is not sufficient evidence to determine a difference 
in the t  populations and proceed no further.

 3. If H0 is rejected, calculate the t(t 2 l)/2 absolute differences 0Ri 2 Rj 0   
for i , j, where Ri denotes the mean of the ranks for the measurements 
in sample i after the measurements from all t samples have been 
 combined and then ranked from smallest to largest measurement.

 4. Two populations are declared different if

 0Ri 2 R j 0 $ KWij
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  where

 KWij  Çhaa
nT 1nT 1 1 2

12
b  a 1

ni

1
1
nj
b

  where nT  g i1
t      ni and ha is the critical value for the Kruskal–Wal-

lis test [Table A.12 in Hollander and Wolfe (1999)].
 5. As an alternative when the nj s are large, we can approximate the 

critical value with

 KWij <
qa 1t,` 2
Ë2 

 Å
nT 1nT 1 1 2

12
a 1

ni

1
1
nj
b

  where qa 1t,` 2  is the critical value of the Studentized range from 
Table 10 in the Appendix.

 6. The error rate that is controlled is an experimentwise error rate.

We will illustrate the application of the above procedure in the following example.

EXAMPLE 9.11

Of air pollutant gases, nitrogen dioxide is the most often encountered oxidant. 
 Scientists have determined that nitrogen dioxide causes pathological alterations 
in the lung consistent with the diagnosis of emphysema. The researchers exam-
ined the protective power of a number of enzyme-inducing agents against the 
action of nitrogen dioxide on enzymes in the lung. A portion of that study will be 
described here. Fifty-six rats were randomly assigned to one of four treatment 
groups:  control, 3-Methylcholanthrene (3-MC), allylisopropylacetamide (AIA), 
and p-aminobenzoic acid (PABA). In each experiment, the control and treat-
ment  animals were simultaneously exposed to nitrogen dioxide. The survival 
time  (minutes)—that is, the time from the start of exposure to nitrogen dioxide 
until death—was determined. These values are given in Table 9.9.

TABLE 9.9
Survival times (minutes) 

of rats under four 
treatments

Subject Control 3-MC AIA PABA

 1 70.212 410.808 97 .137 5.710
 2 261.467 341.398 11.972 154.340
 3 6.013 56.339 256.635 105.027
 4 115.512 117 .633 350.595 0.071
 5 13.735 194.180 202.081 146.306
 6 96.191 562.024 1.038 225.570
 7 66.245 925.114 69.371 155.321
 8 17 .058 910.929 27 .086 63.497
 9 349.469 37 .065 253.724 14.459
10 125.510 272.684 746.738 30.978
11 148.526 108.371 75.278 472.233
12 221.586 162.487 232.193 33.288
13 463.236 847 .685 427 .775 15.273
14 206.578 218.904 303.216 150.674
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The researchers wanted to determine if the three treatments increased the sur-
vival times of the rats. A residual analysis of the above data yielded the normal 
probability plot in Figure 9.2.

The data deviate significantly from a normal distribution. Thus, the Kruskal–
Wallis nonparametric procedure will be used to determine if any differences exist 
in the four treatments. The ranks of the data in the combined data set are given in 
Table 9.10.

Subject Control 3-MC AIA PABA

 1 18 48 21 3
 2 42 45 5 30
 3 4 14 41 22
 4 24 25 47 1
 5 6 33 34 27
 6 20 52 2 38
 7 16 56 17 31
 8 9 55 10 15
 9 46 13 40 7
 10 26 43 53 11
 11 28 23 19 51
 12 37 32 39 12
 13 50 54 49 8
 14 35 36 44 29

Mean 25.8 37 .8 30.1 20.4

The computed value of the Kruskal–Wallis statistic was H  8.55 with a p-value 
 .036. Thus, there was significant evidence of a difference in the distribution of 
 survival times for the four treatments. Next, we will compare the six pairs of treat-
ments to determine which pairs have significantly different shifts.

TABLE 9.10
Ranks of the survival 

times

FIGURE 9.2
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Because the sample sizes are relatively large, we will use the approximated 
method for computing the critical value for the multiple comparison:

KW <
qa 1t, ` 2

Ë2
 Å

nT 1nT 1 1 2
12

 a 1
ni

1
1
nj
b

where qa 1t, ` 2 q.05 14, ` 2  3.63, n1  n2  n3  n4 14, and nT  4 114 2  56. 
There fore, the critical value for all six comparisons is

KW <
3.63

Ë2
 Ç

56 156 1 1 2
12

 a 1
14

1
1
14

b  15.82

Thus, any pair of treatments having |Ri 2 Rj| $ 4.06  will be declared significantly 
different. The results of the six comparisons are summarized in Table 9.11.

Treatment Pair |Ri 2 Rj| Conclusion

Control vs 3-MC |25.8 2 37 .8|  12 Not significantly different
Control vs AIA |25.8 2 30.1|  4.3 Not significantly different
Control vs PABA |25.8 2 20.4|  5.4 Not significantly different
3-MC vs AIA |37 .8 2 30.1|  7 .7 Not significantly different
3-MC vs PABA |37 .8 2 20.4|  17 .4 Significantly different
AIA vs PABA |30.1 2 20.4|  9.7 Not significantly different

Thus, only one pair of treatments, 3-MC vs PABA, had significantly different 
survival times. ■

 9.8 ReseaRch study: are Interviewers’ decisions 
 affected by different handicap types?

There are approximately 50 million people in the United States who report 
having a handicap. Furthermore, it is estimated that the unemployment rate of 
noninstitutionalized handicapped people between the ages of 18 and 64 is nearly 
double the unemployment rate of people with no impairment. Thus, it appears that 
people with disabilities have a more difficult time obtaining employment. One of 
the problems confronting people having a handicap may be a bias by employers 
during the employment interview.

defining the Problem
The paper “Interviewers’ Decisions Related to Applicant Handicap Type and 
Rater Empathy” (Cesare et al., 1990), describes a study that examines these issues. 
The purposes of the study were to investigate whether different types of physical 
handicaps produce different levels of empathy in raters and to examine if inter-
viewers’ evaluations are affected by the type of handicap of the person being 
interviewed.

TABLE 9.11
Summary of the  

nonparametric  
multiple comparison
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Five simulated employment interviews were videotaped. In order to mini-
mize bias across videotapes, the same male actors (job applicant and interviewer) 
were used. Also, the same interview script, consisting of nine questions, was used 
in all five videotapes. The videotapes differed with respect to the type of appli-
cant disability, all of which were depicted as being permanent disabilities. The 
five conditions were as follows: wheelchair, Canadian crutches, hard of hearing, 
leg amputee, and nonhandicapped (control).

Collecting the Data
A group of undergraduate students was randomly assigned to one of five experi-
mental conditions that simulated an employment interview with an applicant 
 having one of five conditions: used a wheelchair, used Canadian crutches, was 
hard of hearing, had a leg amputated, or was nonhandicapped (control). Each 
participant in the study was asked to rate the applicant’s qualifications for a 
computer sales  position based on the questions asked during the videotaped 
interview. Prior to viewing the videotape, each participant completed the Hogan 
Empathy Scale. The researchers decided to have each participant view only one 
of the five videotapes. Based on the variability in scores of raters in previous 
studies, the researchers  decided they would require 14 raters for each videotape 
in order to obtain a  precise estimate of the mean rating for each of the five 
handicap conditions. Seventy  undergraduate students were selected to partici-
pate in the study, and 14 of them were randomly assigned to view each of the 
videotapes. After viewing the videotape, each participant rated the applicant 
on two scales: one an 11-item scale assessing the rater’s liking of the applicant 
and a second 10-item scale that assessed the rater’s evaluation of the applicant’s 
job qualifications. For each scale, the average of the individual items form an 
overall assessment of the  applicant. The researchers used these two variables 
to determine if different types of physical handicaps are reacted to differently 
by raters and to determine the  effect of rater empathy on evaluations of handi-
capped applicants.

Some of the questions that the researchers were interested in included the 
 following:

 1. Is there a difference in the average empathy scores of the  
70 raters?

 2. Do the raters’ average qualification scores differ across the five 
handicap conditions?

 3. Which pairs of handicap conditions produced different average 
qualification scores?

 4. Is the average rating for the control group (no handicap) greater 
than the average ratings for all types of handicapped applicants?

 5. Is the average qualification rating for the hard-of-hearing applicant 
 different from the average ratings for those applicants that had a 
mobility handicap.

 6. Is the average qualification rating for the “crutches” applicant 
different from the average rating of the applicant who was either  
an amputee or in a wheelchair.

 7. Is the average rating for the amputee applicant different from the 
average rating of the wheelchair applicant.
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Summarizing the Data
The researchers conducted the experiments and obtained the following data 
from the 70 raters of the applicants. The data in Table 9.12 are a summary of the 
empathy values. The data in Table 9.13 are the applicant qualification scores of 
the 70 raters for the five handicap conditions.

TABLE 9.12
Empathy values across 

the five handicap 
conditions

 Control Hard of Canadian One-Leg  
Condition (None) Hearing Crutches Amputee Wheelchair

Mean 21.43 22.71 20.43 20.86 19.86
St. Dev. 3.032 3.268 3.589 3.035 3.348

TABLE 9.13
Ratings of applicant  

qualification across the  
five handicap conditions

 Hard of    
Control Hearing Amputee Crutches Wheelchair

6.1 2.1 4.1 6.7 3.0
4.6 4.8 6.1 6.7 3.9
7 .7 3.7 5.9 6.5 7 .9
4.2 3.5 5.0 4.6 3.0
6.1 2.2 6.1 7 .2 3.5
2.9 3.4 5.7 2.9 8.1
4.6 5.5 1.1 5.2 6.4
5.4 5.2 4.0 3.5 6.4
4.1 6.8 4.7 5.2 5.8
6.4 0.4 3.0 6.6 4.6
4.0 5.8 6.6 6.9 5.8
7 .2 4.5 3.2 6.1 5.5
2.4 7 .0 4.5 5.9 5.0
2.9 1.8 2.1 8.8 6.2

TABLE 9.14 Descriptive statistics for  ratings

Descriptive Statistics for Case Study

Variable N Mean Median TrMean StDev SE Mean
Control 14 4.900 4.600 4.875 1.638 0.438
Hard of Hearing 14 4.050 4.100 4.108 1.961 0.524
Amputee 14 4.436 4.600 4.533 1.637 0.437
Crutches 14 5.914 6.300 5.925 1.537 0.411
Wheelchair 14 5.364 5.650 5.333 1.633 0.436

Variable Minimum Maximum Q1 Q3
Control 2.400 7.700 3.725 6.175
Hard of Hearing 0.400 7.000 2.175 5.575
Amputee 1.100 6.600 3.150 5.950
Crutches 2.900 8.800 5.050 6.750
Wheelchair 3.000 8.100 3.800 6.400

(The above data were simulated using the summary statistics of the ratings 
given in the paper.) A descriptive summary of these data is shown in Table 9.14.
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The qualification scores were plotted in Figure 9.1. The boxplots display 
somewhat higher qualification scores from the raters viewing the crutches con-
dition. The mean qualification scores for the hard-of-hearing and amputee 
 conditions were somewhat smaller than those of the control and wheelchair con-
ditions. The variabilities of the qualification scores were nearly the same for all 
five conditions.

Analyzing the Data
The objective of the study was to investigate whether an interviewer’s evalua-
tion of applicants for a job is affected by the physical handicap of the person 
being  interviewed. Prior to testing hypotheses and making comparisons among 
the five treatments, we need to verify that the conditions required for the tests 
and multiple-comparison procedures to be valid have been satisfied in this study.

We observed in Figure 9.1 that the boxplots were of nearly the same width 
with no outliers and with whiskers of nearly the same length. The means and 
medians for the five groups of applicants were similar in size. Thus, the assump-
tions of AOV would appear to be satisfied. To confirm this observation, we com-
puted the residuals and plotted them in a normal probability plot (see Figure 9.3).

From this plot, we can observe that, with the exception of two data values, the 
points fall nearly on a straight line. Also, the p-value for the test of the null  hypothesis 
that the data have a normal distribution is .387. Thus, there is a strong confirmation that 
the five populations of ratings of applicants’ qualifications have normal distributions.

Next, we can check on the equal variance assumption. From the summary 
statistics given in Table 9.14, we note that the standard deviations ranged from 
1.537 to 1.961. Thus, there is very little difference in the sample standard devia-
tions. To confirm this observation, we conduct a test of homogeneity of variance 
using the BFL test. We are testing the following:

H0: s1
2  s2

2  s3
2  s4

2  s5
2   versus   Ha: Variances are not all equal.

FIGURE 9.3
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The GLM Procedure

ANOVA TABLE FOR COMPARING AVERAGE RATINGS OVER 5 TYPES OF HANDICAPS

Dependent Variable: RATING
                                   Sum of
Source   DF        Squares   Mean Square  F Value  Pr > F
Model      4     30.4780000     7.6195000     2.68  0.0394
Error   65    185.0564286     2.8470220
Corrected Total  69    215.5344286    

Dunnett’s One-tailed t Tests for RATING

NOTE: This test controls the Type I experimentwise error for
comparisons of all treatments against a control.

Alpha       0.05
Error Degrees of Freedom      65
Error Mean Square        2.847022
Critical Value of Dunnett’s t          2.20298
Minimum Significant Difference         1.4049

Comparisons significant at the 0.05 level are indicated by ***.

  Difference
    HC     Between Simultaneous 95%
Comparison       Means Confidence  Limits

  R - C      1.0143 -Infinity   2.4192
  W - C      0.4643 -Infinity   1.8692
  A - C     -0.4643 -Infinity   0.9407
  H - C     -0.8500 -Infinity   0.5549

We compute a value of L  .405. The critical value is F.05, 4, 25  2.76. Thus, we fail 
to reject H0. Furthermore, we compute the p-value to be p-value  P(F4, 25 $ .405) 
 .803. Thus, we are confident that the condition of homogeneity of variance has 
not been violated in this study.

The condition of independence of the data would be checked by discussing 
with the researchers the manner in which the study was conducted. It would be 
important to make sure that the conditions in the room where the interview tape 
was viewed remained constant throughout the study so as to not introduce any 
distractions that could affect the raters’ evaluations. Also, the initial check that the 
empathy scores were evenly distributed over the five groups of raters assures us a 
difference in empathy levels did not exist in the five groups of raters prior to their 
evaluation of the applicants’ qualifications.

The research hypothesis is that the mean qualification ratings, mi s, differ over 
the five handicap conditions:

H0: m1  m2  m3  m4  m5

Ha: At least one of the means differs from the rest.

The computer output for the AOV table is given here. The following notation is 
used in the output: control (C), hard of hearing (H), amputee (A), crutches (R), 
and wheelchair (W).
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From the output, we see that the p-value for the F test is .0394. Thus, there 
is a significant difference in the mean ratings across the five types of handicaps. 
We next investigate what types of differences exist in the ratings for the groups. 
We make a comparison of the control (C) group to the four groups having handi-
caps—crutches (R), wheelchair (W), amputee (A), and hard of hearing (H)—
using the Dunnett procedure at the aE  .05 level. We use a one-sided test of 
whether any of the four handicap groups had a lower mean rating than did the 
control group:

H0: mi $ mC

Ha: mi , mC

We reach the conclusion that the mean rating for the control (no handicap) group 
is not significantly greater than the mean rating for any of the handicap groups. 
Next, we run a multiple procedure to determine which group pairs produced 
 different mean ratings. The analysis uses the Tukey procedure with a  .05, with 
the results displayed in the computer output. All handicap types with the same 
Tukey grouping letter have mean ratings that are not significantly different from 
each other. Thus, the mean rating from the applicant using crutches was signifi-
cantly higher than the mean rating for the applicant who was hard of hearing. 
No other pairs were found to be significantly different. To investigate the size of 
the differences in the pairs of rating means for the five handicap conditions, we 
 computed simultaneous 95% confidence intervals for the ten pairs of mean dif-
ferences using the Tukey procedure. The intervals are provided in the following 
 computer output.

Tukey’s Studentized Range (HSD) Test for RATING

NOTE: This test controls the Type I experimentwise error rate, but it
generally has a higher Type II error rate than REGWQ.

Alpha       0.05
Error Degrees of Freedom      65
Error Mean Square        2.847022
Critical Value of Studentized Range    3.96804
Minimum Significant Difference         1.7894

Means with the same letter are not significantly different.

Tukey
Grouping
                 Mean     N    HC

    A    5.9143    14    R
B   A    5.3643    14    W
B   A    4.9000    14    C
B   A    4.4357    14    A
B       4.0500    14    H

Dependent Variable: RATING

Contrast    DF    Contrast SS   Mean Square  F Value   Pr > F

Control vs. Handicap   1     0.01889286    0.01889286     0.01   0.9353
Hearing vs. Mobility   1    14.82148810   14.82148810     5.21   0.0258
Crutches vs. Amp.& Wheel  1     9.60190476    9.60190476     3.37   0.0709
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Finally, several contrasts were constructed to evaluate the remaining ques-
tions posed by researchers. The questions along with the corresponding contrasts 
are given in Table 9.15.

Question  Contrast

Control ratings vs. Handicap ratings 4mC 2 mR 2 mW 2 mA 2 mH

Hearing ratings vs. Mobility handicap ratings 0mC 2 mR 2 mW 2 mA 1 3mH

Crutches ratings vs. Amputee wheelchair ratings 0mC 1 2mR 2 mW 2 mA 1 0mH

From the computer output, we have p-values of .9353, .0258, and .0709 for testing 
the hypotheses:

H0: l  0   versus   Ha: l 2 0

We can use a Bonferroni procedure with aE  .05 to test the three sets of hypoth-
eses. The individual comparison rate is set at aI  aE /3  .05 /3  .0167. Thus, if 
the p-value for any one of the three F tests of the significance of the contrasts is 
less than .0167, we will declare that contrast to be significantly different from 0. 
Because the three p-values were .9353, .0258, and .0709, none of the three contrasts 
is significantly different from 0.

The only significant difference found in the five mean ratings was between 
the  applicant with a hearing handicap and the applicant using crutches. The 
researchers  discussed in detail in the article why this difference may have  occurred.

Reporting the Conclusions
We would need to write a report summarizing our findings of this study. We would 
need to include to following:

1. Statement of objective for study
2. Description of study design, how raters were selected, and how 

interviews were conducted

Tukey’s Studentized Range (HSD) Test for RATING

NOTE: This test controls the Type I experimentwise error rate.

Alpha       0.05
Error Degrees of Freedom      65
Error Mean Square        2.847022
Critical Value of Studentized Range    3.96804
Minimum Significant Difference         1.7894

Comparisons significant at the 0.05 level are indicated by ***.

           Difference
    HC   Between      Simultaneous 95%
Comparison      Means     Confidence Limits

  R - W    0.5500    -1.2394   2.3394
  R - C    1.0143    -0.7751   2.8037
  R - A    1.4786    -0.3108   3.2680
  R - H    1.8643     0.0749   3.6537  ***
  W - C    0.4643    -1.3251   2.2537
  W - A    0.9286    -0.8608   2.7180
  W - H    1.3143    -0.4751   3.1037
  C - A    0.4643    -1.3251   2.2537
  C - H    0.8500    -0.9394   2.6394
  A - H    0.3857    -1.4037   2.1751

TABLE 9.15
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3. Discussion of the generalizability of results from the study
4. Numerical and graphical summaries of data sets
5. Description of all inference methodologies

	 	 ● AOV table and F test
	 	 ●  multiple-comparison procedures, contrasts, and confidence intervals
	 	 ●  verification that all necessary conditions for using inference 

techniques were satisfied
6. Discussion of results and conclusions
7. Interpretation of findings relative to previous studies
8. Recommendations for future studies
9. Listing of data sets

 9.9 Summary and Key Formulas

We presented three multiple-comparison procedures (Bonferroni t test, Tukey’s 
W, and Scheffé’s S for making pairwise comparisons of t population means. Each 
of these procedures controls the experimentwise error rate. There are numerous 
other procedures, such as Fisher’s LSD and Newman–Kuels, that are more 
powerful; that is, these procedures will tend to declare more pairs of means to 
be different. However, these procedures do not control the experimentwise error 
rate, which results in uncertainty about the probability of Type I errors when using 
these procedures. For this reason, many statisticians would not recommend using 
either of these procedures.

A comparison of the three procedures discussed in this chapter can be made 
by considering the magnitude of the difference in the sample means, 0yi 2 yk 0 , 
needed to declare the population means, mi and mk, to be different. The larger the 
magnitude of the difference, the more conservative the procedure—that is, the less 
likely it is to declare a pair of population means to be different. To illustrate these 
comparisons, we will use the data from the five populations in Example 9.3.

In computing the critical magnitude of 0yi 2 yk 0  for the Bonferroni t test, we 
are considering 10 pairs of means. This would require using the upper 

a /2
10  percentile 

from the t distribution with df  n 2 t  25. Thus, the critical values for an a  .05 
Bonferroni t test would be

0yi 2 yk 0 $ t.0025, 25Çs2
Wa 1

ni

1
1
nk

b  3.0782Ç1.0153 2 a1
6

1
1
6
b  .2198

In computing the critical magnitude of 0yi 2 yk 0  for the Scheffé’s S, we are 
considering the differences in 10 pairs of means, which can be represented by the 
contrasts l  mi  mk· Thus, the five coefficients in the contrasts are three 0 s, 11, 
and 21. This leads to a critical value for the Scheffé’s S of

0yi 2 yk 0 $ Ås2
Wa 1

ni

1
1
nk

b  Ë 1t 2 1 2Fa, 
 t21,  n2 t

 Å 1.0153 2 a1
6

1
1
6
b  #15 2 1 2 12.7587 2  .2372

The critical value for the Tukey’s W was computed in Example 9.8 to be

0yi 2 yk 0 $ .2097

The value of the Tukey’s W is smaller than the value for the Bonferroni 
t test, which is smaller than the value for the Scheffé’s S. This will result in the 
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Tukey’s W procedure declaring as many or more pairs of means to be different 
than the Bonferroni t test and the Scheffé’s S procedure. The Tukey’s W 
procedure is the least conservative of the three procedures, while maintaining 
the specified level of experimentwise error rate, and would be the procedure 
used in most situations.

In those situations where the data are not from a normally distributed 
population, we presented a distribution-free procedure based on the Kruskal–
Wallis statistics. Thus, when encountering data that are measured on an ordinal 
scale, we do not need to compromise our normal-based procedure but can apply a 
procedure specifically designed for data based solely on their relative ranks.

Key Formulas

1. Tukey’s W procedure 

W  qa 1t, v 2  Å
s2

W

n

2. Tukey–Kramer W* procedure

W* 
qa 1t, v 2

Ë2 Ås2
wa

1
ni

1
1
nj
b

3. Dunnett’s procedure 

D  da 1k, v 2  Å
2s2

W

n

4. Scheffé’s S method 

S  #V̂1l̂ 2Ë 1t 2 1 2Fa, df1,
 df2

 

 where 

V̂ 1 l̂ 2  sW
2 a

ai
2

ni

5. Nonparametric procedure

KWij<
qa 1t, ` 2

Ë2 Ç
nT 1nT 1 1 2

12
 a 1
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 9.10 Exercises

 9.1 Introduction
 Soc. 9.1 In the research study concerning interviewers’ decisions:

 a. What are the populations of interest?
 b. What are some of the limitations of this study based on the participating subjects?

 Soc. 9.2 In the research study concerning interviewers’ decisions:
 a.  Describe how the subjects in this experiment could have been selected so as to 

satisfy the randomization requirements?
 b.  State several research hypotheses, other than those given in the abstract, that may 

have  been of interest to the researchers.

 9.2 Linear Contrasts
 Basic 9.3 In an experiment with t  4 populations means, consider the four linear combinations of 

those means.

l1   m1 2 3m2 1 m3 1 m4

l2   m1 1 m2 2 2m4

l3   m1 1 m2 1 m3 1 m4

l4   m1 1 m2 2 3m3 1 m4

 a. Which of the four linear combinations are contrasts?
 b. Which pairs of contrasts are orthogonal?
 c. Suppose we have two contrasts:

l1  m1 1 m2 1 m3 2 3m4  and  l2 
1
3

 m1 1
1
3

 m2 1
1
3

 m3 2 m4

Is testing H0 : l1  0 equivalent to testing H0 : l2  0? Justify your answer.
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 Basic 9.4 In an experiment with t  4 population means and sample sizes of n1  5, n2  6, n3  4, and 
n4  8, consider the four linear combinations of the sample means:

l̂ 1   y1 2 3y2 1 y3 1 y4

l̂ 2   y1 1 y2 2 2y4

l̂ 3   y1 1 y2 1 y3 1 y4

l̂ 4   y1 1 y2 2 3y3 1 y4

 a. Which of the four linear combinations are contrasts?
 b. Which pairs of contrasts are orthogonal?

 Soc. 9.5 In the abstract to the research study described earlier in this chapter, the researchers were 
interested in answering several questions concerning the difference in the raters’ reactions to 
various handicaps. For each of the following questions, write a contrast in the five condition mean 
ratings that would attempt to answer the researchers’ question.

 a.  Question 1: Is the average rating for the control (no handicap) group greater than 
the average ratings for all types of handicapped applicants?

 b.  Question 2: Is the average qualification rating for the hard-of-hearing applicant 
 different from the average ratings for those applicants that had a mobility handicap?

 c.  Question 3: Is the average qualification rating for the crutches applicant differ-
ent from the average rating of the applicant who was either an amputee or in a 
wheelchair?

 d.  Question 4: Is the average rating for the amputee applicant different from the 
average rating of the wheelchair applicant?

 Soc. 9.6 Refer to Exercise 9.5. For each pair of contrasts, determine if it is orthogonal:
 a. Question 1 and Question 2
 b. Question 1 and Question 3
 c. Question 1 and Question 4
 d. Question 2 and Question 3
 e. Question 2 and Question 4
 f. Question 3 and Question 4
 g. Are the four contrasts mutually orthogonal?

 Pol. Sci. 9.7 Refer to Example 8.6. The political action group was interested in determining regional 
differences in the public’s opinion concerning air pollution. Write a contrast in the four population 
means to answer each of the following questions.

 a.  Question 1: Is the proportion of people who thought the EPA’s standards are 
not stringent enough different for the people living in the East compared to the 
people living in the West?

 b.  Question 2: Is the proportion of people who thought the EPA’s standards are not 
stringent enough different for the people living in the Northeast compared to the 
people living in the other three regions?

 c.  Question 3: Is the proportion of people who thought the EPA’s standards are not 
stringent enough different for the people living in the Northeast compared to the 
people living in the Southeast?

 d. Simultaneously test if the three contrasts are different from 0 using an a  .05 test.
 e. Are the three contrasts mutually orthogonal?

 9.3 Which Error Rate Is Controlled?
 Basic 9.8 In a study of 10 new producers of iron supplements, nine contrasts in the mean iron level 

in the supplements were constructed by the quality control department for comparing various 
characteristics of the producers.

 a.  In order to achieve an experimentwise error rate of .05, what value should be 
selected for the value of aI?

 b.  What is the critical value for the F statistic for testing the nine contrasts if there 
were six samples of the supplement taken from each of the 10 producers?
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 Basic 9.9 In a study comparing the mean yield of nine formulations of a fertilizer, the researcher con-
structed eight contrasts for comparing various aspects of the nine formulations. The researcher 
had selected a value of .005 for aI in conducting each of the eight tests. Place an upper bound on 
the experimentwise error rate for the eight tests.

 Basic 9.10 In Exercise 9.8, the Bonferroni procedure was used to ensure an experimentwise error rate 
of .05; that is, the probability of one or more Type I errors in conducting the nine tests is at most .05. 
The Bonferroni procedure is labeled as a conservative procedure because the actual experiment-
wise error rate is most likely to be somewhat less than .05. This is a positive aspect of the procedure 
in that the chance of Type I errors is even less than specified. The old adage “There is no free lunch” 
applies in this situation. State some of the negative aspects of using the Bonferroni procedure.

Supplementary Exercises
 Soc. 9.11 Refer to Exercise 3.55.

 a.  Is the average of the mean expenditures of families with three or fewer members 
less than the average of the mean expenditures for families with four or more 
members? Use a  .05.

 b.  Which pairs of the five groups have significantly different mean expenditures? 
Use an experimentwise error rate of .05.

 Bio. 9.12 Refer to Exercise 7.18. The wildlife biologist was interested in determining if the mean 
weight of deer raised in a zoo would be lower than that of deer raised in a more uncontrolled 
environment—for example, raised either in the wild or on a ranch.

 a.  Use a multiple-comparison procedure to determine if the mean weight of the 
deer raised in the wild or on a ranch is significantly higher than the mean weight 
of deer raised in a zoo.

 b.  Write a linear contrast to compare the average weight of deer raised in a zoo or 
on a ranch to the mean weight of deer raised in the wild.

 c.  Test at the a  .05 level whether your contrast in part (b) is significantly 
different from zero. What conclusions can you draw from this test?

 Med. 9.13 Researchers conducted an experiment to compare the effectiveness of four new weight- 
 reducing agents to that of an existing agent. The researchers randomly divided a random sam-
ple of 50 males into five equal groups with preparation A1 assigned to the first group, A2 to 
the  second group, and so on. They then gave a prestudy physical to each person in the experi-
ment and told him how many pounds overweight he was. A comparison of the mean numbers of 
pounds overweight for the groups showed no significant differences. The researchers then began 
the study program, and each group took the prescribed preparation for a fixed period of time. The 
weight losses recorded at the end of the study period are given here:

A1 12.4 10.7 11.9 11.0 12.4 12.3 13.0 12.5 11.2 13.1
A2 9.1 11.5 11.3 9.7 13.2 10.7 10.6 11.3 11.1 11.7
A3 8.5 11.6 10.2 10.9 9.0 9.6 9.9 11.3 10.5 11.2
A4 12.7 13.2 11.8 11.9 12.2 11.2 13.7 11.8 12.2 11.7
S 8.7 9.3 8.2 8.3 9.0 9.4 9.2 12.2 8.5  9.9

 The standard (existing) agent is labeled agent S, and the four new agents are labeled A1, A2, A3, 
and A4. Run an analysis of variance to determine whether there are any significant differences among 
the five weight-reducing agents. Use a  .05. Do any of the AOV assumptions appear to be violated? 
What conclusions do you reach concerning the mean weight loss achieved using the five different 
agents? 

  9.14 Refer to Exercise 9.13. Determine the significantly different pairs of means using the 
Tukey’s W with a  .05. 

 Med. 9.15 Refer to Exercises 9.13 and 9.14.
 a.  Use a Bonferroni t test to determine which pairs of means are significantly 

different. Use aE  .05.
 b.  Use Scheffé’s S procedure to determine which pairs of means are significantly 

different. Use aE  .05.
 c.  Which of the three procedures determined the largest number of significantly 

different pairs of means? The fewest?
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  9.16 Refer to Exercise 9.13. The researcher wants to determine which of the new agents 
 produced a significantly larger mean weight loss in comparison to the standard agent. Use a  .05 
in making this determination. 

  9.17 Refer to Exercise 9.13. Suppose the new weight-loss agents were of the following form: 

A1: Drug therapy with exercise and counseling 
A2: Drug therapy with exercise but no counseling 
A3: Drug therapy with counseling but no exercise 
A4: Drug therapy with no exercise and no counseling 

Construct contrasts to make comparisons among the agent means that will address the following: 
 a.  Compare the mean for the standard agent to the average of the means for the 

four new agents. 
 b.  Compare the mean for the agents with counseling to those without counseling. 

(Ignore the standard.) 
 c.  Compare the mean for the agents with exercise to those without exercise. 

 (Ignore the standard.) 
 d. Compare the mean for the agents with counseling to the standard. 

  9.18 Refer to Exercise 9.17. Use a multiple-testing procedure to determine at the a  .05 level 
which of the contrasts is significantly different from zero. Interpret your findings relative to the 
researchers’ question about finding the most effective weight-loss method. 

 Ag. 9.19 Refer to Exercise 8.7.
 a.  Did continuous grazing result in a greater mean soil density than the grazing 

regimens in which there was a no grazing period?
 b.  How large a difference is there in the mean soil densities for the three grazing 

regimens?
  9.20 Refer to Exercise 8.28. 

 a.  Compare the mean yields of herbicide 1 and herbicide 2 to the control 
treatment. Use a  .05. 

 b. Should the procedure you used in part (a) be a one-sided or a two-sided proce-
dure? 
 c. Interpret your findings in part (a). 

  9.21 Refer to Exercise 8.31. 
 a.  Compare the mean scores for the three divisions using an appropriate multiple- 

comparison procedure. Use a  .05.
 b.  What can you conclude about the differences in mean scores and the nature of 

the  divisions from which any differences arise? 
 Ag. 9.22  The nitrogen contents of red clover plants inoculated with three strains of Rhizobium are 

given here: 

3DOK1 3DOK5 3DOK7

 19.4 18.2 20.7
 32.6 24.6 21.0
 27 .0 25.5 20.5
 32.1 19.4 18.8
 33.0 21.7 18.6
 20.8 20.1
  21.3

 a.  Is there evidence of a difference in the effects of the three treatments on the 
mean  nitrogen content? Analyze the data completely, and draw conclusions 
based on your analysis. Use a  .01. 

 b.  Was there any evidence of a violation in the conditions required to  conduct your 
analysis in part (a)? 
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 Vet. 9.23 Researchers conducted a study of the effects of three drugs on the fat content of the 
 shoulder muscles in labrador retrievers. They divided 80 dogs at random into four treatment 
groups. The dogs in group A were the untreated controls, while groups B, C, and D received one 
of three new heartworm medications in their diets. Five dogs randomly selected from each of the 
four groups received treatment for periods varying from 4 months to 2 years. The percentage of 
fat content of the shoulder muscles was determined and is given here. 

 Treatment Group

Examination Time A B C D

4 months 2.84 2.43 1.95 3.21
 2.49 1.85 2.67 2.20
 2.50 2.42 2.23 2.32
 2.42 2.73 2.31 2.79
 2.61 2.07 2.53 2.94

8 months 2.23 2.83 2.32 2.45
 2.48 2.59 2.36 2.49
 2.48 2.53 2.46 2.95
 2.23 2.73 2.04 2.05
 2.65 2.26 2.30 2.31

1 year 2.30 2.70 2.85 2.53
 2.30 2.54 2.75 2.73
 2.38 2.70 2.62 2.65
 2.05 2.81 2.50 2.84
 2.13 2.70 2.69 2.92

2 years 2.64 3.24 2.90 2.91
 2.56 3.71 3.02 2.89
 2.30 2.95 3.78 3.21
 2.19 3.01 2.96 2.89
 2.45 3.08 2.87 2.68

Mean 2.411 2.694 2.605 2.698

Under the assumption that conditions for an AOV were met, the researchers then computed an 
AOV to evaluate the difference in mean percentages of fat content for dogs under the four treat-
ments. The AOV computations did not takes into account the length of time on the medication. 
The AOV is given here. 

Source df SS MS F ratio p-value 

Treatments 3 1.0796 .3599 3.03 .0345
Error 76 9.0372 .1189
Totals 79 10.1168 

 a.  Is there a significant difference in the mean percentages of fat content in the four 
treatment groups? Use a  .05.

 b.  Do any of the three treatments for heartworm appear to have increased the 
mean percentage of fat content over the level in the control group? 

  9.24 Refer to Exercise 9.23. Suppose the researchers conjectured that the new medications 
caused an increase in fat content and that this increase accumulated as the medication was 
 continued in the dogs. How could we examine this question using the data given? 
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 Med. 9.25 The article “The Ames Salmonell/Microsome Mutagenicity Assay: Issues of Inference 
and Validation” [ Journal of American Statistical Association (1989) 84:651–661] discusses the 
importance of chemically induced mutation for human health and the biological basis for the 
primary in vitro assay for mutagenicity, the Ames Salmonell/microsome assay. In an Ames test, 
the  response obtained from a single sample is the number of visible colonies that result from 
plating approximately 108 microbes. A common protocol for an Ames test includes multiple 
samples at a control dose and four or five logarithmically spaced doses of a test compound. The 
following data are from one such experiment with 20 samples per dose level. The dose levels 
were mg/sample. 

 Dose Number of Visible Colonies yi. si
2

Control 11 13 14 14 15 15 15 15 16 17 17 18 18 19 20 21 22 23 25 27 17 .8 17 .5
 .3 39 39 42 43 44 45 46 50 50 50 51 52 52 52 55 61 62 63 67 70 51.7 81.0
 1.0 88 90 92 92 102 104 104 106 109 113 117 117 119 119 120 120 121 122 130 133 110.9 175.4
 3.0 222 233 251 251 253 255 259 275 276 283 284 294 299 301 306 312 315 323 337 340 283.5 1,131.5
 10.0 562 587 595 604 623 666 689 692 701 702 703 706 710 714 733 739 763 782 786 789 692.3 4,584.4

We want to determine whether there is an increasing trend in the mean number of colonies as the 
dose level increases. One method of making such a determination is to use a contrast with con-
stants ai determined in the following fashion.  Suppose the treatment levels are t values of a con-
tinuous variable x: x1, x2, . . . , xt. Let ai  xi 2 x and l̂  gaiyi. If l̂  is significantly different from 
zero and positive, then we state there is a positive trend in the mis. If l̂  is significantly different 
from zero and negative, then we state there is a negative trend in the mis. In this experiment, the 
dose levels are the treatments x1  0,  x2  .3,  x3  1.0,  x4  3.0, and x5  10.0 with x  2.86.  
Thus, the coefficients for the contrasts are a1  0 2 2.86  22.86, a2  0.3 2 2.86  22.56,  
a3  1.0 2 2.86  21.86, a4  3.0 22.86  1.14, and a5  10.0 2 2.86  1 7.14. We therefore 
need to evaluate the significance of the  following contrast in the treatment means given by 22.86yc

2 2.56y.3 2 1.86y1.0 1 0.14y3.0 1  7.14y10.0. If the contrast is significantly different from zero and 
is positive, we conclude that there is an  increasing trend in the dose means. 

 a. Test whether there is an increasing trend in the dose mean. Use a  .05.
 b.  Do there appear to be any violations in the conditions necessary to conduct the 

test in part (a)? If there are violations, suggest a method that would enable us to 
validly test whether the positive trend exists. 

  9.26 In the research study concerning the evaluation of interviewers’ decisions related to 
 applicant handicap type, the raters were 70 undergraduate students, and the same male actors, 
both job applicant and interviewer, were used in all the videotapes of the job interview. 

 a.  Discuss the limitations of this study in regard to using the undergraduate 
students as the raters of the applicant’s qualifications for the computer sales 
position. 

 b.  Discuss the positive and negative points of using the same two actors for all five 
interview videotapes. 

 c. Discuss the limitations of not varying the type of job being sought by the applicant. 

 Med. 9.27 The paper “The Effect of an Endothelin-Receptor Antagonist, Bosentan, on Blood Pressure 
in Patients with Essential Hypertension’’ [ The New England Journal of Medicine (1998)] discussed 
the contribution of bosentan to blood pressure regulation in patients with essential  hypertension. 
The study involved 243 patients with mild-to-moderate essential hypertension. After a placebo 
run-in period, patients were randomly assigned to receive one of four oral doses of bosentan 
(100, 500, or 1,000 mg once daily or 1,000 mg twice daily) or a placebo. The blood pressure was 
measured before treatment began and after a 4-week treatment period. The primary end point of 
the study was the change in blood pressure from the baseline obtained prior to treatment to the 
blood pressure at the conclusion of the 4-week treatment period. A summary of the data is given 
in the following table. 



9.10 exercises    481

 Blood Pressure Change 

 Placebo 100 mg 500 mg 1,000 mg 2,000 mg 

Diastolic pressure
 Mean 21.8 22.5 25.7 23.9 25.7
 Standard deviation 6.71 7 .30 6.71 7 .21 7 .30
Systolic pressure 
 Mean  20.9 22.5 28.4 210.3 210.3
 Standard deviation  11.40 11.94 11.40 11.80 11.94
Sample size 45 44 45 43 44

 a.  Which of the dose levels were associated with a significantly greater reduction in 
the diastolic pressure in comparison to the placebo? Use a  .05.

 b. Why was it important to include a placebo treatment in the study? 
 c.  Using just the four treatments (ignore the placebo), construct a contrast to test for 

an increasing linear trend in the size of the systolic pressure reductions as the dose 
levels are increased. See Exercise 9.25 for the method for creating such a contrast. 

 d.  Use Tukey’s W procedure to test for pairwise differences in the mean systolic 
blood pressure reductions for the four treatment doses. Use a  .05. 

 e.  The researchers referred to their study as a double-blind study. Explain the mean-
ing of this terminology. 

  9.28 Refer to Exercise 8.23.
 a.  Use a nonparametric procedure to compare the mean reliability of the seven 

plants.
 b.  Even though the necessary conditions are not satisfied, use the Tukey’s W proce-

dure to group the seven nuclear power plants based on their mean reliability.
 c.  Compare your results in part (b) to the groupings obtained in part (a).

 Engin. 9.29 Refer to Exercise 8.27 .
 a.  Use a nonparametric procedure to group the suppliers based on their mean 

 deviations. Use an experimentwise error rate of .05.
 b.  Use the Tukey’s W procedure to group the suppliers based on their mean 

deviations. Use an experimentwise error rate of .05.
 c.  Compare the two sets of groupings. Why is the nonparametric procedure more 

 appropriate in this situation?

 Hort. 9.30 Refer to Exercise 8.29.
 a.  Compare the mean discoloration scores of groups II, III, and IV to the control 

group. Use an experimentwise error rate of .05.
 b.  Use the Tukey’s W procedure to compare the mean discoloration scores of 

groups II, III, and IV. Use an experimentwise error rate of .05.
 c. Are there any inconsistencies in your conclusions in parts (a) and (b)?

 Hort. 9.31 Refer to Exercise 9.30.
 a.  Use a nonparametric procedure to compare the mean discoloration scores of 

groups II, III, and IV. Use an experimentwise error rate of .05.
 b.  Compare your results in part (a) to your conclusions from Exercise 9.30. Why is 

the Tukey’s W procedure more appropriate in this situation?
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 10.1 Introduction and Abstract of Research Study

Up to this point, we have been concerned primarily with sample data measured on 
a quantitative scale. However, we sometimes encounter situations in which levels of 
the variable of interest are identified by name or rank only and we are interested in 
the number of observations occurring at each level of the variable. Data  obtained 
from these types of variables are called categorical or count data. For  example, an 
item coming off an assembly line may be classified into one of three quality classes: 
acceptable, repairable, or reject. Similarly, a traffic study might require a count and 
classification of the type of transportation used by commuters along a major access 
road into a city. A pollution study might be concerned with the number of different 
alga species identified in samples from a lake and the number of times each species 
is identified. A consumer protection group might be  interested in the results of a 
prescription fee survey to compare prices of some common medications in different 
areas of a large city. 

categorical  
or count data
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In this chapter, we will examine specific inferences that can be made from 
 experiments involving categorical data. 

Abstract of Research Study: Does Gender Bias Exist  
in the Selection of Students for Vocational Education?
Although considerable progress has been made in recent years, barriers per-
sist for women in education. The American Civil Liberties Union (ACLU) has 
at its website several articles that advance the notion that gender bias contin-
ues in the determination of career education where girls are generally found in 
programs that educate them for the traditionally female (and low-wage) fields 
of child care, cosmetology, and health assistance, whereas boys are found in 
higher proportions in courses preparing them for high-wage plumbing, weld-
ing, and electrician jobs. In some  instances, this is the result of discriminatory 
steering by counselors and teachers, harassment by peers, and other forms of 
discrimination, which result from a failure to enforce governmental regula-
tions and laws. The data support the contention that women still fall behind 
men in earning doctorates and  professional degrees. While girls in high school 
are enrolled in nearly the same proportions as boys in high-level math and sci-
ence courses, they are less likely to earn postsecondary degrees in these topics 
and are particularly grossly underrepresented in the fields of engineering and 
computer science. The June 2002 report Title IX at 30, Report Card on Gender 
Equity by the National Coalition for Women and Girls in Education reveals 
that female students are steered away from advanced computer courses and 
are often not informed of opportunities to take technology-related courses. 
Even in the area of athletics, where the most  noticeable advancements for girls 
have occurred, male sports continue to receive more money than female sports 
at many colleges and universities.

These examples have been used to argue that there are continuing gender 
 inequities in education. Determining whether these differences in educational 
opportunities for boys and girls are due to gender discrimination is both legally 
and morally important. However, it is very difficult to demonstrate that discrimi-
nation has occurred using just the enrollment data for students in various high 
school vocational programs. The data sets and summary figures that illustrate these 
important issues are given in the last section of this chapter. They will  illustrate 
how aggregate data sets can often lead to misleading conclusions about important 
social issues.

 10.2 Inferences About a Population Proportion p

In the binomial experiment discussed in Chapter 4, each trial results in one of two 
outcomes, which we labeled as either a success or a failure. We designated p as 
the probability of a success and (1 2 p) as the probability of a failure. Then the 
probability distribution for y, the number of successes in n identical trials, is 

P 1 y 2 
n!

y! 1n 2 y 2 ! py 11 2 p 2n2y

The point estimate of the binomial parameter p is one that we would choose intu-
itively. In a random sample of n from a population in which the proportion of 
 elements classified as successes is p, the best estimate of the parameter p is the 
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sample proportion of successes. Letting y denote the number of successes in the n 
sample trials, the sample proportion is 

p̂ 
y
n

We observed in Section 4.13 that y possesses a mound-shaped probability distribu-
tion that can be approximated by using a normal curve when 

n $
5

min 1p, 1 2 p 2      1or, equivalently, np $ 5 and n 11 2 p 2 $ 5 2

In a similar way, the distribution of p̂  y /n can be approximated by a  normal 
distribution with a mean and a standard error as given here. 

mp̂  p

sp̂  Å
p 11 2 p 2

n

Mean and Standard 
Error of p̂

The normal approximation to the distribution of p̂ can be applied under the 
same condition as that for approximating y by using a normal distribution. In fact, 
the approximation for both y and p̂ becomes more precise for large n.

A confidence interval can be obtained for p using the methods of Chapter 5 
for m by replacing y with p̂ and sy with sp̂. A general 100(1 2 a)% confidence 
 interval for the binomial parameter is given here.

p̂ 6 za/2ŝp̂ or 1p̂2za/2ŝp̂ , p̂ 1 za/2ŝp̂ 2
where

p̂ 
y
n

    and     ŝp̂  Å
p̂ 11 2 p̂ 2

n

Confidence Interval  
for p with Confidence 
Coefficient of (1 2 a) 

EXAMPLE 10.1

Researchers in the development of new treatments for cancer patients often eval-
uate the effectiveness of new therapies by reporting the proportion of patients 
who survive for a specified period of time after completion of the treatment. A 
new  genetic treatment of 870 patients with a particular type of cancer resulted in 
330 patients surviving at least 5 years after treatment. Estimate the proportion of 
all patients with the specified type of cancer who would survive at least 5 years 
after being administered this treatment. Use a 90% confidence interval.

Solution For these data,

p̂ 
330
870

 .38

ŝp̂  Å
1.38 2 1.62 2

870
 .016



The confidence coefficient for our example is .90. Recall from Chapter 5 that we can 
obtain za/2 by looking up the z-value in Table 1 in the Appendix corresponding to 
an area of a/2. For a confidence coefficient of .90, the z-value corresponding to an 
area of .05 is 1.645. Hence, the 90% confidence interval on the proportion of cancer 
patients who will survive at least 5 years after receiving the new genetic treatment is 

.38 6 1.645 1.016 2    or   .38 6 .026  1.354, .406 2

The confidence interval for p just presented is the standard confidence inter-
val in most textbooks. It is often referred to as the Wald confidence interval. This 
confidence interval for p is based on a normal approximation to the binomial dis-
tribution. The rule that we specified in Chapter 4 was that both np and n(l 2 p) 
should be at least 5. However, recent articles have shown that even when this rule 
holds, the Wald confidence interval may not be appropriate. When the sample size 
is too small and/or p , .2 or p . .8, the Wald confidence interval for p will often 
be quite inaccurate. That is, the true level of confidence can be considerably lower 
than the nominal level, or the confidence interval can be considerably wider than 
necessary for the nominal level of confidence. These articles discuss how slight 
 adjustments to the Wald confidence interval can result in a considerable improve-
ment in its  performance.

The required adjustments to the traditional confidence interval for p 
involve moving p̂ slightly away from 0 and 1. This adjustment was first intro-
duced in a paper by Edwin Wilson in 1927 and involved a considerable amount 
of calculation. A recent modification to Wilson’s confidence interval that per-
forms nearly as well is contained in Agresti and Coull (1998). We will refer to 
this interval as the Wilson–Agresti–Coull (WAC) confidence interval. In the fol-
lowing, let y be the number of successes in n independent trials or the number 
of occurrences of an event in a random sample of n items selected from a large 
population.

 ■

Adjustments to y, n, and p̂:

y|  y 1 .5z2
a/2,     n

|  n 1 z2
a/2,     p

| 
y|

n|

WAC Confidence Interval for p:

p| 6 za/2Å
p| 11 2 p| 2

n|
 or  p| 2 za/2Å

p| 11 2 p| 2
n|

,  p| 1 za/2Å
p| 11 2 p| 2

n|

For a 95% confidence interval, the WAC interval is essentially add 2 to y and 
4 to n, and then apply the standard Wald formula.

WAC Confidence 
Interval for p  

with Confidence  
Coefficient of (1 2 a)

In the Agresti and Coull (1998) article, the authors state, “Our results suggest 
that (if one uses the WAC) interval, it is not necessary to present sample size rules  
1np . 5, n 11 2 p 2 . 5 2 , since . . . [the WAC confidence interval] behaves ade-
quately for practical application for essentially any n regardless of the value of 
p.” In the article by Brown, Cai, and DasGupta (2001), the authors recommend 
using the WAC confidence interval whenever n $ 40. When n , 40, the authors 
recommend the original Wilson confidence interval or a Bayesian-based proce-
dure. However, they further comment that even for small sample sizes, the WAC 
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confidence interval is much preferable to the standard Wald procedure. The fol-
lowing example will  illustrate the calculations involved in the WAC confidence 
interval.

EXAMPLE 10.2

The water department of a medium-sized city is concerned about how quickly its 
maintenance crews react to major breaks in the water lines. A random sample of 50 
requests for repairs is analyzed, and 43 of the 50 requests were responded to within 
24 hours. Construct a 95% confidence interval for the proportion p of requests for 
repair that are handled within 24 hours.

Solution Using the traditional method, the 95% confidence interval for p is com-
puted as follows:

p̂ 
43
50

 .86
    

and    ŝp̂  Å
.86 11 2 .86 2

50
 .0491

The confidence coefficient for this example is .95; therefore, the appropriate 
value for za/2  z.025  1.96. Hence, the Wald 95% confidence interval for p is

.86 6 1.96(.0491)  .86 6 .096  (.764, .956)

Using the WAC confidence interval, we need to compute

y|  y 1 .5z2
a/2  43 1 .5 11.96 2 2  44.9208

n|  n 1 z2
a/2  50 1 11.96 2 2  53.8416

and

p| 
y|

n|


44.9208
53.8416

 .8343

which yields the WAC 95% confidence interval for p:

q.8343 2 1.96 Å
.8343 11 2 .8343 2

53.8416
, .8343 1 1.96Å

.8343 11 2 .8343 2
53.8416

 r  1.735, .934 2

In this particular example, the traditional and WAC confidence intervals are not 
substantially different. However, as p approaches either 0 or 1, the difference in 
the two intervals can be substantial. ■

Another problem that arises in the estimation of p occurs when p is very 
close to 0 to 1. In these situations, the population proportion would often be esti-
mated to be 0 or 1, respectively, unless the sample size is extremely large. These 
estimates are not realistic, since they would suggest that either no successes or 
no failures exist in the population. Rather than estimating p using the formula p̂ 
given previously, adjustments are provided to prevent the estimates from being so 
 extreme. One of the proposed adjustments is to use 

p̂Adj. 
3
8

An 1 3
4 B

   when y  0

and
p̂Adj. 

An 1 3
8 B

An 1 3
4 B

    when y  n

When computing the confidence interval for p in those situations where 
y  0 or y  n, the confidence intervals using the normal approximation would 
not be valid. We can use the following confidence intervals, which are derived 
using the binomial distribution. 



EXAMPLE 10.3

A new PC operating system is being developed. The designer claims the new 
system will be compatible with nearly all computer programs currently being run 
on the Microsoft Windows operating system. A sample of 50 programs is run, and 
all 50 programs perform without error. Estimate p, the proportion of all Microsoft 
 Windows–compatible programs that would run without change on the new 
 operating system. Compute a 95% confidence interval for p. 

Solution If we used the standard estimator of p, we would obtain 

p̂ 
50
50

 1.0

Thus, we would conclude that 100% of all programs that are Microsoft  Windows– 
compatible programs would run without alteration on the new operating system. 
Would this conclusion be valid? Probably not, since we have only  investigated a 
tiny fraction of all Microsoft Windows–compatible programs. Thus, we will use the 
alternative estimators and confidence interval procedures. The point estimator 
would be given by 

p̂Adj. 
An 1 3

8 B
An 1 3

4 B


A50 1 3
8 B

A50 1 3
4 B

 .993

A 95% confidence interval for p would be 

1 1a/2 2 1/n, 1 2  1 1.05 /2 2 1/50, 1 2  1 1.025 2 .02, 1 2  1.929, 1.0 2
We would now conclude that we are reasonably confident (95%) a high proportion 
(between 92.9% and 100%) of all programs that are Microsoft Windows–compatible 
would run without alteration on the new operating system. ■

Keep in mind, however, that a sample size that is sufficiently large to satisfy 
the rule does not guarantee that the interval will be informative. It only judges 
the  adequacy of the normal approximation to the binomial—the basis for the 
confidence level. 

Sample-size calculations for estimating p follow very closely the procedures 
we developed for inferences about m. The required sample size for a 100(1 2 a)% 
confidence interval for p of the form p̂ 6 E (where E is specified) is found by 
 solving the expression 

za/2sp̂  E

for n. The result is shown here.

When y  0, the confidence interval is (0, 1 2 (a/2)1/n).

When y  n, the confidence interval is ((a/2)1/n, 1).

100(1 2 a)% 
Confidence Interval 

for p When y 5 0  
or y 5 n

n 
z2

a/2p
11 2 p 2
E2

Note: Since p is not known, either substitute an educated guess or use p  .5. 
Use of p  .5 will generate the largest possible sample size for the specified 
confidence interval width, 2E, and thus will give a conservative answer to the 
required sample size.

Sample Size  
Required for 

a 100(1 2 a)% 
Confidence Interval 

for p of the Form 
p̂ 6 E 
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EXAMPLE 10.4

The designer of the new operating system introduced in Example 10.3 has decided 
to conduct a more extensive study. She wants to determine how many programs to 
randomly sample in order to estimate the proportion of Microsoft Windows–com-
patible programs that would perform adequately using the new operating system. 
The  designer wants the estimator to be within .03 of the true proportion using a 
95% confidence interval as the estimator.

Solution The designer wants the 95% confidence interval to be of the form p̂ 6 .03. 
The sample size necessary to achieve this accuracy is given by

n 
z2

a/2p
11 2 p 2
E2

where the specification of 95% yields za/2  z.025  1.96 and E  .03. If we did not 
have any prior information about p, then p  .5 must be used in the formula, yielding

n 
11.96 2 2.5 11 2 .5 2

1.03 2 2  1,067.1

That is, 1,068 programs would need to be tested in order to be 95% confident that 
the estimate of p is within .03 of the actual value of p. The lower bound of the 
 estimate of p obtained in Example 10.3 was .929. Suppose the designer is not too 
confident in this value but fairly certain that p is greater than .80. Using p  .8 as 
a lower bound, then the value of n is given by

n 
11.96 2 2.8 11 2 .8 2

1.03 2 2  682.95

Thus, if the designer is fairly certain that the actual value of p is at least .80, then the 
required sample size can be greatly reduced, from 1,068 to 683. ■

A statistical test about a binomial parameter p is very similar to the large-
sample test concerning a population mean presented in Chapter 5. These results 
are summarized next, with three different alternative hypotheses along with their 
corresponding rejection regions. Recall that only one alternative is chosen for a 
particular problem.

H0: 1. p # p0  Ha: 1. p . p0 
 2. p $ p0 2. p , p0
 3. p  p0 3. p 2 p0

 T.S.: z 
p̂ 2 p0

sp̂

R.R.:  For a probability a of a Type I error 
 1.  Reject H0 if z . za.
 2.  Reject H0 if z , 2za.
 3.  Reject H0 if |z| . za/2.

Summary of a 
Statistical Test for  
p, p0 is Specified 



EXAMPLE 10.5

One of the largest problems on college campuses is alcohol abuse by under-
age students. Although all 50 states have mandated by law that no one under 
the age of 21 may possess or purchase alcohol, many college students report 
that alcohol is readily available. More problematic is that these same students 
report that they drink with one goal in mind—to get drunk. Universities are 
acutely aware of the problem of binge drinking, defined as consuming five or 
more drinks in a row three or more times in a 2-week period. An extensive 
survey of college students reported that 44% of U.S. college students engaged 
in binge drinking during the 2 weeks before the survey. The president of a large 
midwestern university stated publicly that binge drinking was not a problem on 
her campus of 25,000 undergraduate students. A service fraternity conducted a 
survey of 2,500 undergraduates attending the university and found that 1,200 of 
the 2,500 students had engaged in binge drinking. Is there sufficient evidence to 
indicate that the percentage of students engaging in binge drinking at the uni-
versity is greater than the percentage found in the national survey? Use a  .05 
and also place a 95% confidence interval on the percentage of binge drinkers 
at the university.

Solution Let p be the proportion of undergraduates at the university that binge 
drink. The hypotheses of interest are

   H0:  p # .44  versus  Ha:  p . .44

  T.S.:  z 
p̂ 2 p0

sp̂

R.R.:  For a  .05, reject H0 if z . 1.645.

From the survey data, calculate

p̂ 
1,200
2,500

 .48    and    sp̂  Å
1.44 2 11 2 .44 2

2,500
 .009928

Also,

np0  2,500 1.44 2  1,100 . 5  and  n 11 2 p0 2  2,500 11 2 .44 2  1,400 . 5

Thus, the large-sample z is valid, and we obtain

z 
p̂ 2 p0

sp̂


.48 2 .44
.009928

 4.00 . 1.645

Because the observed value of z exceeds the critical value 1.645, we conclude there is 
significant evidence that the percentage of students that participate in binge drinking 

  Note: Under H0,

sp̂  Å
p0 11 2 p0 2

n

Also, n must satisfy both np0 $ 5 and n(1 2 p0) $ 5.

Check assumptions and draw conclusions.
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exceeds the national percentage of 44%. The strength of the evidence is given by 
p-value  Pr[z . 4.00]  .00003. A 95% confidence interval for p is given by

n|  2,500 1 11.96 2 2  2,503.84              p| 
1,200 1 .5 11.96 2 2

2,503.84
 .4800

.48 6 1.96Å
.48 11 2 .48 2

2,503.84
 .48 6 .0196  1.46, .50 2

Thus, the percentage of binge drinkers at the university is, with 95% confidence, 
between 46% and 50%. ■

When either np0 , 5 or n(1 2 p0) , 5, the distribution of the test statistic 
z  p̂ 2 p0

sp̂
 will be skewed. Thus, the normal approximation will not provide accu-

rate values for the critical value or for the p-values. In these situations, an exact 
binomial test can be implemented.

In n trials of a binomial experiment, suppose we observe y successes. Our 
estimate of p is p̂  y /n. Now suppose we want to test hypotheses comparing the 
binomial proportion p to a claimed value p0. Our test statistic is Y, which has a 
binomial distribution with parameters n and p0. The following display will illustrate 
how to obtain the p-value for various tests of hypotheses.

Summary of the Binomial Test for p
H0:   1. p # p0 Ha:   1. p . p0

2. p $ p0 2. p , p0

3. p  p0 3. p ? p0

T.S. Y distributed binomial (n, p0):

 1. p-value  P(Y $ y)  1 2 P(Y # y 2 1)  1 2 pbinom(y 2 1, n, p0)
 2. p-value  P(Y # y)  pbinom(y, n, p0 )
 3a. If p̂ $ p0, then

 p-value  2P(Y $ y)  2(1 2 P(Y # y 2 1))  2(1 2 pbinom(y 2 1,  
n, p0))

 3b. If p̂ , p0, then
p-value  2P(Y # y)  2 pbinom(y, n, p0)

R.R.: In all three cases, reject H0 if p-value # a.

●● The value of pbinom(y, n, p0) can be calculated using formulas 
from Chapter 4 or from a software packages such as R.

Example 10.6

The public health department in a county with a large number of oil wells was been 
assigned the task of evaluating whether the wastewater from the oil wells has pol-
luted the water from private water wells near the drilling sites. In a preliminary 
study, a random sample of 15 oil wells was selected in the county. For each of the 
selected oil wells, a water well within .25 kilometers of the oil well is examined. In 4 
of the 15 wells, the level of endrocrine-disrupting chemicals was above the level that 
can cause interferences with the body’s normal hormonal function. These chemicals 
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are known to occur naturally in approximately 20% of water wells. Is there signifi-
cant evidence that more than 20% of the water wells near an oil well are contami-
nated with endrocrine-disrupting chemicals?

Solution Let p be the proportion of water wells near oil wells that are contami-
nated with endrocrine-disrupting chemicals. The hypotheses of interest are

H0: p # .20 versus Ha: p . .20

Note: np0  (15)(.2)  3 , 5. Thus, the normal-based z test would not be appro-
priate to test the hypotheses.

From the sampled wells, Y  4 of the 15 wells were contaminated. Under H0, 
Y has a binomial distribution with n  15 and p  p0  .2. Using the formula for 
computing binomial probabilities from Chapter 4, the p-value is computed to be

 p-value  P 1Y $ 4 2  1 2 P 1Y # 3 2
  1 2 3P 1Y  0 2 1 P 1Y  1 2 1 P 1Y  2 2 1 P 1Y  3 4
  1 2 3.0352 1 .1319 1 .2309 1 .2501 4  .3519

Alternatively, using the R binomial function, p-value  1 2 pbinom(3, 15, .2)  
.3518.

We can thus conclude that based on the small sample size, there is not significant 
evidence that more than 20% of the water wells near oil wells in this county are 
contaminated with endrocrine-disrupting chemicals even though p̂  4

15  .27 . .2.
A 95% confidence interval for p would be obtained as follows:

y|  4 1 .5 11.96 2 2  5.9208;  n|  15 1 11.96 2 2  18.8416;  p| 
5.9208
18.8416

 .3142

a.3142 2 1.96Å
.3142 11 2 .3412 2

18.8416
, .3142 1 1.96Å

.3142 11 2 .3412 2
18.8416

b  1.105, .524 2

The 95% confidence interval for the proportion of contaminated wells is very 
wide, which reflects the small sample size in the study. Even though there was not 
significant evidence in the observed data that more than 20% of water wells were 
contaminated, the 95% confidence interval induced the county to plan a much 
larger study. ■

 10.3 Inferences About the Difference Between  
Two Population Proportions, p1 2 p2

Many practical problems involve the comparison of two binomial parameters. 
 Social scientists may wish to compare the proportions of women who take 
advan-tage of prenatal health services in two communities representing different 
socio-economic backgrounds. A director of marketing may wish to compare the 
public awareness of a new product recently launched and that of a competitor’s  
product. 

For comparisons of this type, we assume that independent random samples are 
drawn from two binomial populations with unknown parameters designated by p1 
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and p2. If y1 successes are observed for the random sample of size n1 from popula-
tion 1 and y2 successes are observed for the random sample of size n2 from  population 
2, then the point estimates of p1 and p2 are the observed sample  proportions p̂1 and 
p̂2, respectively.

p̂1 
y1

n1
  and  p̂2 

y2

n2

This notation is summarized next. 

Notation for 
Comparing Two 

Binomial Proportions 

 Population

 1 2

Population proportion p1 p2

Sample size n1 n2

Number of successes y1 y2

Sample proportion p̂1 
y1

n1  
p̂2 

y2

n2  

Inferences about two binomial proportions are usually phrased in terms of 
their difference, p1 2 p2, and we use the difference in sample proportions, p̂1 2 p̂2,  
as part of a confidence interval or statistical test. The sampling distribution for 
p̂1 2 p̂2 can be approximated by a normal distribution with mean and standard 
error given by

mp̂1 2 p̂2
 p1 2 p2

and

sp̂1 2 p̂2
 Å

p1 11 2 p1 2
n1

1
p2 11 2 p2 2

n2

This approximation is appropriate if we apply the same requirements to both 
 binomial populations that we applied in recommending a normal approximation 
to a binomial (see Chapter 4). Thus, the normal approximation to the distribution 
of p̂1 2 p̂2 is appropriate if both nipi and ni(1 2 pi) are 5 or more for i  1, 2. 
Since p1 and p2 are not known, the validity of the approximation is determined by 
examining nip̂i and ni(1 2 p̂i) for i  1, 2. 

Confidence intervals and statistical tests about p1 2 p2 are straightforward 
and follow the format we used for comparisons using m1 2 m2. Interval estimation 
is summarized here; it takes the usual form, point estimate 6 z (standard error). 

rule for sample sizes

p̂1 2 p̂2 6 za/ 2 sp̂1 2p̂2

where

ŝp̂12 p̂2
 Å

p̂1 11 2 p̂1 2
n1

1
p̂2 11 2 p̂2 2

n2

100(1 2 a)% 
Confidence Interval 

for p1 2 p2



EXAMPLE 10.7 

A company test-markets a new product in the Grand Rapids, Michigan, and  Wichita, 
Kansas, metropolitan areas. The company’s advertising in the Grand Rapids area is 
based almost entirely on television commercials. In Wichita, the company spends a 
roughly equal dollar amount on a balanced mix of television, radio, newspaper, and 
magazine ads. Two months after the ad campaign begins, the company conducts 
surveys to determine consumer awareness of the product. 

TABLE 10.1
Survey data for example.  Grand Rapids Wichita

Number interviewed 608 527
Number aware 392 413

Calculate a 95% confidence interval for the regional difference in the proportions 
of all consumers who are aware of the product (as shown in Table 10.1).

Solution The sample awareness proportion is higher in Wichita, so let’s make 
 Wichita region 1.

p̂1  413 /527  .784   p̂2  392 /608  .645

The estimated standard error is 

ŝp̂12p̂2
 Å

1.784 2 1.216 2
527

1
1.645 2 1.355 2

608
 .0264

Therefore, the 95% confidence interval is 

1.784 2 .645 2 6 1.96 1.0264 2  1.087, .191 2
which indicates that somewhere between 8.7% and 19.1% more Wichita consumers 
than Grand Rapids consumers are aware of the product. ■

This confidence interval method is based on the normal approximation to 
the  binomial distribution. In Chapter 4, we indicated as a general rule that np̂ 
and n 11 2 p̂ 2  should both be at least 5 to use this normal approximation. For this 
confidence interval to be used, the sample size rule should hold for each sample. 

The reason for confidence intervals that seem very wide and unhelpful is 
that each measurement conveys very little information. In effect, each measure-
ment conveys only one “bit”: a 1 for a success or a 0 for a failure. For example, 
surveys of the compensation of chief executive officers of companies often give 
a manager’s age in years. If we replaced the actual age by a category such as 
“over 55 years old” versus “under 55,” we definitely would have far less informa-
tion. When there is  little information per item, we need a large number of items 
to get an adequate total amount of information. Wherever possible, it is better 
to have a genuinely numerical measure of a result rather than mere categories. 
When numerical measurement isn’t possible, relatively large sample sizes will be 
needed. 

Hypothesis testing about the difference between two population proportions 
is based on the z statistic from a normal approximation. The typical null hypoth-
esis is that there is no difference between the population proportions, though any 
specified value for p1 2 p2 may be hypothesized. The procedure is very much like 
a t test of the difference of means and is summarized next. 
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H0: 1. p1 2 p2 # 0   Ha: 1. p1 2 p2 . 0 
 2. p1 2 p2 $ 0 2. p1 2 p2 , 0
 3. p1 2 p2  0 3. p1 2 p2 2 0

T.S.: z 
1p̂1 2 p̂2 2

Å
p̂1 11 2 p̂1 2

n1
1

p̂2 11 2 p̂2 2
n2

 R.R.: 1. z . za.
 2.  z , 2za.

 3.  |z| . za/2.

Check assumptions and draw conclusions. 

Note: This test should be used only if n1p̂1,  n1 11 2 p̂1 2 , n2p̂2, and n2 11 2 p̂2 2  
are all at least 5.

Statistical Test for the 
Difference between 

Two Population 
Proportions

EXAMPLE 10.8

An educational researcher designs a study to compare the effectiveness of teaching 
English to non-English-speaking people by a computer software program and by 
the traditional classroom system. The researcher randomly assigns 125 students 
from a class of 300 to instruction using the computer. The remaining 175 students 
are instructed using the traditional method. At the end of a 6-month instructional 
period, all 300 students are given an examination with the results reported in 
Table 10.2. 

TABLE 10.2
Exam data for example

Exam Result Computer Instruction Traditional Instruction 

Pass  94 113
Fail  31  62

Total 125 175

Does instruction using the computer software program appear to increase the 
 proportion of students passing the examination in comparison to the pass rate 
using the traditional method of instruction? Use a  .05.

Solution Denote the proportion of all students passing the examination using the 
computer method of instruction and the traditional method of instruction by p1 
and p2, respectively. We will test the hypotheses

H0:   p1 2 p2 # 0

Ha:   p1 2 p2 . 0

We will reject H0 if the test statistic z is greater than z.05  1.645. From the data, we 
compute the estimates 

p̂1 
94
125

 .752  and  p̂2 
113
175

 .646



From these, we compute the test statistic to be 

z 
p̂1 2 p̂2

Å
p̂1 11 2 p̂1 2

n1
1

p̂2 11 2 p̂2 2
n2

 .752 2 .646

Å
.752 11 2 .752 2

125
1

.646 11 2 .646 2
175

 2.00

Since z  2.00 is greater than 1.645, we reject H0 and conclude that the obser-
vations support the hypothesis that the computer instruction results in a higher 
pass rate than the traditional approach. The p-value of the observed data is given by  
p-value  P(z $ 2.00)  .0228, using the standard normal tables. A 95% confidence 
interval on the effect size p1 2 p2 is given by

.752 2 .646 6 1.96Å
.752 11 2 .752 2

125
1

.646 11 2 .646 2
175

 .106 6 .104  1.002, .210 2

We are 95% confident that the proportion passing the examination is between .2% 
and 21% higher for students using computer instruction than those using the tradi-
tional approach. For our conclusions to have a degree of validity, we need to check 
whether the sample sizes were large enough. Now, n1p̂1  94, n1 11 2 p̂1 2  31,  
n2p̂2  113, and n2 11 2 p̂2 2  62; thus, all four quantities are greater than 5. 
Hence, the large-sample criterion would appear to be satisfied. ■

When at least one of the conditions—n1p̂1 $ 5, n1 11 2 p̂1 2 $ 5, n2p̂2 $ 5, or 
n2 11 2 p̂2 2 $ 5—for using the large-sample approximation to the distribution of 
the test statistic for comparing two proportions is invalid, the Fisher Exact test 
should be used.

The hypotheses to be tested are H0: p1 # p2 versus Ha: p1 . p2, where pis 
are the probabilities of “success” for populations i  l, 2. In developing a small-
sample test of hypotheses, we need to develop the exact probability distribution 
for the cell counts in all 2 3 2 tables having the same row and column totals as the 
2 3 2 table from the observed data (Table 10.3).

Fisher Exact test

TABLE 10.3
Cell counts in 2 3 2 table  Outcome

Population Success Failure Total

1 x n1 2 x n1

2 y n2 2 y n2

Total m n 2 m  n

For tables having the same row and column totals—n1, n2, m, and n 2 m—the value 
of x determines the counts for the remaining three cells because y  m 2 x.

When p1  p2, the probability of observing a particular value for x—that is, 
the probability of a particular table being observed—is given by

P 1x  k 2 
An1

k B A n2
m2k B

A n
m B

where

an1

k
b 

n1 1n1 2 1 2 1n1 2 2 2  c 1n1 2 k 1 1 2
k 1k 2 1 2 1k 2 2 2  c 1
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To test the difference in the two population proportions, the p-value of 
the test is the sum of these probabilities for outcomes at least as supportive the 
 alternative hypothesis as the observed table. For Ha: p1 . p2, we need to deter-
mine which other possible 2 3 2 tables would provide stronger support of Ha than 
the observed table. Given the marginal totals—n1, n2, m, and n 2 m—tables having 
larger x values will have larger values for p̂1 and hence provide stronger evidence 
in favor of p1 . p2.

The possible values of x are 0, 1, . . . , min(n1, m) and hence

p-value  P 3x $ k 4  a
min1n1,m2

jk

An1
j B A n2

m2j B
A n
m B

For the two-sided alternative, Ha: p1 2 p2, the p-value is defined as the sum of the 
probabilities of tables no more likely than the observed table. Thus, the p-value is 
the sum of the probabilities of all values of x  j for which P( j) # P(k), where k 
is the observed value of x. We will illustrate these calculations with the following 
example.

EXAMPLE 10.9

A clinical trial is conducted to compare two drug therapies for leukemia: P and PV. 
Twenty-one patients were assigned to drug P and 42 patients to drug PV. Table 10.4 
summaries the success of the two drugs:

TABLE 10.4
Outcomes of drug 

therapies

 Outcome

Drug Success Failure Total

PV 38  4 42
P 14  7 21

Total 52 11 63

Is there significant evidence that the proportion of patients obtaining a successful 
outcome is higher for drug PV than for drug P?

Solution First, we check the conditions for using the large-sample test:

n1p̂1  38 $ 5,   n1 11 2 p1 2  4 , 5,  n2p2  14 $ 5, n2 11 2 p2 2  7 . 5

Because one of the four conditions is violated, the large-sample test should not be 
applied.

The Fisher Exact test will be applied to this data set. First, we will compute 
the p-value for testing the hypotheses H0:  pP $ pPV  versus Ha:  pP ,  pPV . After 
obtaining the p-value, we will compare its value to a.

The probability of the observed table is

P 1x  38 2 
A42
38 B A21

14 B
A63
52 B

 .0211



Thus, the one-sided p-value is the sum of the probabilities for all tables having 38 or 
more successes:

p-value  P[x $ 38]  P(x  38) 1 P(x  39) 1 P(x  40) 1 P(x  41) 1 P(x  42)


A42
38 B A21

14 B
A63
52 B

1
A42
39 B A21

13 B
A63
52 B

1
A42
40 B A21

12 B
A63
52 B

1
A42
41 B A21

11 B
A63
52 B

1
A42
42 B A21

10 B
A63
52 B

 .02114 1 .00379 1 .00041 1 .00002 1 .00000  .02536

For all values of a # .025 then, the p-value  .02536 . a, so we conclude that there 
is not significant evidence that the proportion of patients obtaining a successful 
outcome is higher for drug PV than for drug P.

If the large-sample z test would have been applied to this data set, a value of 
z  2.119 would have been obtained with p-value  .017.  Thus, the z test and Fisher 
Exact test would have yielded contradictory conclusions for values of a in the 
range .017 , a , .025.

Many software packages have the Fisher Exact test as an option for testing 
hypotheses about two proportions. ■

The z test and the Fisher Exact test for comparing two proportions require 
that the two samples be independent. The McNemar test was developed for those 
studies in which proportions are dependent. Thus, it allows us to compare the 
values of two proportions that are dependent.

McNemar Test for Matched Pairs
In some situations, the information in a 2 3 2 contingency table is collected from 
experimental units for which two related responses are obtained. There are no 
longer n independent responses categorized into the four cells but rather a pair 
of responses from related units. For example, responses from the same individual 
at two different times (before and after an intervention) or from two individuals 
who are physically related (husband–wife or twins) or from body parts of the same 
experimental unit (right hand–left hand or right eye–left eye).

The data from a study involving matched pairs has the same form as the 
2 3 2 tables we discussed previously except now the response is recorded in such 
a manner that the pairing is identified. Table 10.5 is a typical summary of the data 
for this type of study.

The interpretation of the data in the table is as follows: n11 is the number of 
pairs with Yes for both responses, n21 is the number of pairs with Yes for response 
1 but No for response 2, n12 is the number of pairs with No for response 1 but Yes 
for response 2, n22 is the number of pairs with No for both responses.

The population of responses for all such pairs has proportions given in 
Table 10.6.
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 Response 1

Response 2 Yes No Total

Yes n11 n12 n1.

No n21 n22 n2.

Total n.1 n.2 n

TABLE 10.5
Sample counts

TABLE 10.6
Population proportions  Response 1

Response 2 Yes No Total

Yes p11  p12  p1.

No p21  p22  p2.

Total p.1  p.2    1
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The research question in this situation is whether the proportion of pairs respond-
ing Yes for response 1 is the same as the proportion of pairs responding Yes for 
response 2. The independent-samples z test and Fisher Exact test are not valid 
test statistics because the cell counts may be correlated due to pairing of the two 
responses. We want to test the hypotheses

H0:  p1.  p.1  versus  Ha:  p1. 2 p.1

or the corresponding one-sided hypotheses 

H0: p1. $ p.1 versus Ha: p1. , p.1

First, note that

p1. 2 p.1  1p11 1 p12 2 2 1p11 1 p21 2  p12 2 p21

Therefore, a test of the marginal homogeneity for the matched pairs H0: p1.  p.1 
is equivalent to a test of H0: p12  p21. That is, are the proportions of switches 
from Yes to No and from No to Yes equal?

When H0 is true, the expected values for the counts n12 and n21 should be 
equal. Let m  n12 1 n21 be the total count in the off-diagonal cells in Table 10.5. 
Under H0, the allocation of the m observations to the (1,2) and (2,1) cells is a 
binomial experiment with probability .5 for both of the cells. McNemar (1947) 
used the methodology of testing hypotheses about binomial proportions to derive 
the following test statistic.

Summary of the McNemar Test for Comparing  
Two Dependent Proportions
H0: 1. p1. # p.1  Ha: p1. . p.1

 2. p1. $ p.1  p1. , p.1

 3. p1.  p.1 p1. 2 p.1

Note that the above tests are equivalent to comparing p12 to 12. This lead McNemar 
to propose the following test statistics for large-sample values of m:

Case 1: Large-sample z test

When m  n12 1 n21 $ 20, the following z-test can be used.

z 
n12 2 n21

Ën12 1 n21

Let zc be the value of z computed from the data.

 1. Reject Ho if zc $ za with p-value  P 1z $ zc 2 .
 2. Reject Ho if zc # 2 za with p-value  P 1z # zc 2 .
 3. Reject Ho if 0 zc 0 $ za/ 2 with p-value  2P 1z $ 0 zc 0 2 .

Case 2: Exact binomial test

When m  n12 1 n21 , 20, the following binomial test can be used.
T.S. Y  distributed binomial 1m, .5 2
p-values:

 1. p-value  P 1Y $ n12 2  1 2 P 1Y # n12 2 1 2  12 pbinom 1n12 2 1,  m,  .5 2
 2. p-value  P 1Y # n12 2  pbinom 1n12, m, .5 2



 3a. If n12 , 1n12 1 n21 2 /2, then

p-value  2P 1Y # n12 2  2 pbinom 1n12, m, .5 2
 3b. If n12 . 1n12 1 n21 2 /2, then

p-value  2P 1Y $ n12 2   2 11 2 P 1Y # n12 2 1 2 2  2 11 2 pbinom 1n12 2 1, m, .5 2 2

 3c. If n12  1n12 1 n21 2 /2, then

p-value  1

R.R.: In all cases, reject Ho if p-value # a.

●● The value of pbinom 1y, m, .5 2  can be calculated using formulas 
from Chapter 4 or from a software package such as R.

The derivation of McNemar’s z test follows from the one-sample z test that 
was discussed earlier in this chapter. The test of H0: p1.  p.1 versus Ha: p1. 2 p.1 
is equivalent to testing H0: p12  .5 versus Ha: p12 2 .5. The following equivalence 
demonstrates the relationship between the one-sample z test and McNemar’s test 
statistics. The derivation uses m  n12 1 n21.

Z 
p̂12 2 .5

Å
1.5 2 11 2 .5 2

m



n12

m
2 .5

Å
1.5 2 11 2 .5 2

m


n12 2 .5m

Ë 1.5 2 11 2 .5 2m 
n12 2 n21

Ën12 1 n21

Taking into account the correlation between p̂1. and p̂.1, an approximate large-
sample 100 11 2 a 2% confidence interval on p1. 2 p.1 is

1p̂1. 2 p̂.1 2 6 Za/ 2Å
p̂1. 11 2 p̂1. 2 1 p̂.1 11 2 p̂.1 2 2 2 1p̂11p̂22 1 p̂12p̂21 2

n

which simplifies to

1p̂1. 2 p̂.1 2 6 Za/ 2 
1
nÅ 1n12 1 n21 2 2

1
n

 1n12 2 n21 2 2

Example 10.10

A case-control study was conducted in which the researchers were interested in 
determining if there was a relationship between diabetes and chronic circulatory 
problems. The 180 patients having chronic circulatory problems were matched by 
age, gender, occupation, and ethnicity with 180 patients without chronic circula-
tory problems. First, 180 pairs of subjects were then asked whether they had been 
diagnosed as having diabetes. The data are given in Table 10.7.

With Circulatory Problems

Without Circulatory Problems Diabetes No Diabetes Total

Diabetes 79 21 100
No Diabetes 39 41 80

Total 118 62 180

Table 10.7
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The 180 pairs of subjects in the study consist of four groups:

Group With Circulatory Problems Without Circulatory Problems Count

1 Diabetes - Y Diabetes - Y 79

2 Diabetes - Y Diabetes - N 39

3 Diabetes - N Diabetes - Y 21

4 Diabetes - N Diabetes - N 41

Is the proportion of Without Circulatory Problems patients having diabetes less 
than the proportion of With Circulatory Problems patients having diabetes?

Solution We want to test the research hypothesis that the proportion of Without 
Circulatory Problems patients having diabetes is less than the proportion of With 
Circulatory Problems patients having diabetes. That is, test the research hypoth-
esis Ha: p1. , p.1, or, equivalently, test Ha: p12 , p21.

From the data we have p̂1.  100 /180  .556 and p̂.1  118 /180  .656. There-
fore, p̂1. 2 p̂.1  .556 2 .656  2.1. The proportion of diabetic patients without 
circulatory problems is 10% less than the proportion of diabetic patients with 
circulatory problems. We want to next confirm this observation by applying the 
McNemar test to the data. Because n12 1 n21  21 1 39  60 $ 20, the large-
sample z test is appropriate.

Our decision would be to reject H0 if z # z.05  2 1.645. From the data, we 
have 

z 
n12 2 n21

Ën12 1 n21


21 2 39

Ë21 1 39
 22.324 , 21.645

The p-value of the test is p-value  P 1z , 2 2.324 2  .0101.

Our conclusion is to reject H0 and state there is significant evidence (p-value  
.0101) that the proportion of diabetes patients without circulatory problems is less 
than the proportion of diabetes patients with circulatory problems.

An approximate 95% confidence interval on p1. 2 p.1 is computed as follows:

1p̂1. 2 p̂.1 2 6 Za/ 2 

1
n

 Å 1n12 1 n21 2 2
1
n

 1n12 2 n21 2 2

a100
180

2
118
180

b 6 1.96  

1
180Å 121 1 39 2 2

1
180

 121 2 39 2 2

That is, 2.10 6.083  12.183, 2.017 2 .
Although the sample sizes were such that the large-sample test could be 

applied, we will illustrate the binomial version of the McNemar test next.
The p-value  P 3Y # 21 4 , where m  21 1 39  60 and Y  is Bin(60, .5). Thus,  

p-value  P 3Y # 21 4  0.0137 ,  .05, which implies that we should reject H0. 
Hence, our conclusion is the same as the conclusion from the z test with the excep-
tion being that the p-value from the binomial version of the McNemar test is 
slightly larger than the value from the z test. ■



10.4 Inferences About Several Proportions:Chi-Square goodness-of-Fit test      501

 10.4 Inferences About Several Proportions: 
Chi-Square Goodness-of-Fit Test 

We can extend the binomial sampling scheme of Chapter 4 to situations in which 
each trial results in one of k possible outcomes (k . 2). For example, a random 
sample of registered voters is classified according to political party (Republican, 
Democrat, Socialist, Green, Independent, etc.) or patients in a clinical trial are 
evaluated with respect to the degree of improvement in their medical condition 
(substantially improved, improved, no change, worse). This type of experiment 
or study is called a multinomial experiment and has the characteristics listed here. 

 1. The experiment consists of n identical trials. 
 2. Each trial results in one of k outcomes. 
 3. The probability that a single trial will result in outcome i is pi for i  1,  

2, . . . , k, and remains constant from trial to trial. (Note:gpi  1.)
 4. The trials are independent. 
 5. We are interested in ni, the number of trials resulting in outcome i.  

(Note:gni  n.)

The Multinomial 
Experiment 

The probability distribution for the number of observations resulting in each 
of the k outcomes, called the multinomial distribution, is given by the formula 

P 1n1, n2, . . . , nk 2 
n!

n1!n2! . . . nk!
 p1

n1
 p2

n2 c pk
nk

Recall from Chapter 4, where we discussed the binomial probability distribution, 
that 

n!  n 1n 2 1 2  c 1
and

0!  1

We can use the formula for the multinomial distribution to compute the 
probability of particular events. 

EXAMPLE 10.11

Previous experience with the breeding of a particular herd of cattle suggests that 
the probability of obtaining one healthy calf from a mating is .83. Similarly, the 
probabilities of obtaining zero or two healthy calves are, respectively, .15 and .02. A 
farmer breeds three dams from the herd; find the probability of obtaining  exactly 
three healthy calves. 

Solution Assuming the three dams are chosen at random, this experiment can be 
viewed as a multinomial experiment with n  3 trials and k  3 outcomes. These 
outcomes are listed in Table 10.8 with the corresponding probabilities.

multinomial  
distribution

Outcome Number of Progeny Probability, pi 

 1 0 .15
 2 1 .83 
 3 2 .02 

TABLE 10.8
Probabilities of progeny 

 occurrences
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Note that outcomes 1, 2, and 3 refer to the events that a dam produces zero, one, or 
two healthy calves, respectively. Similarly, n1, n2, and n3 refer to the number of dams 
producing zero, one, or two healthy progeny, respectively. To obtain exactly three 
healthy progeny, we must observe one of the following possible events. 

A:  c
1 dam gives birth to no healthy progeny: n1  1
1 dam gives birth to 1 healthy progeny:    n2  1
1 dam gives birth to 2 healthy progeny:   n3  1

B: 3 dams give birth to 1 healthy progeny:     •
n1  0
n2  3
n3  0

For event A with n  3 and k  3,

P 1n1  1, n2  1, n3  1 2 
3!

1!1!1!
1.15 2 1 1.83 2 1 1.02 2 1 > .015

Similarly, for event B,

P 1n1  0, n2  3, n3  0 2 
3!

0!3!0!
 1.15 2 0 1.83 2 3 1.02 2 0  1.83 2 3 > .572

Thus, the probability of obtaining exactly three healthy progeny from three dams is 
the sum of the probabilities for events A and B; namely, .015 1 .572  .587. ■

Our primary interest in the multinomial distribution is as a probability model 
underlying statistical tests about the probabilities p1, p2, . . . , pk.We will hypothesize 
specific values for the ps and then determine whether the sample data agree with the 
hypothesized values. One way to test such a hypothesis is to examine the observed 
number of trials resulting in each outcome and to compare this to the number we 
would expect to result in each outcome. For instance, in our previous example, we 
gave the probabilities associated with zero, one, and two progeny as .15, .83, and .02. 
In a sample of 100 mated dams, we would  expect to observe 15 dams that produce 
no healthy progeny. Similarly, we would expect to observe 83 dams that produce 
one healthy calf and 2 dams that produce two healthy calves. 

expected number of 
outcomes

In a multinomial experiment in which each trial can result in one of k 
outcomes, the expected number of outcomes of type i in n trials is npi, where 
pi is the probability that a single trial results in outcome i.

DEFINITION 10.1

In 1900, Karl Pearson proposed the following test statistic to test the speci-
fied probabilities: 

x2  a
i
c 1ni 2 Ei 2 2

Ei
d

where ni represents the number of trials resulting in outcome i and Ei represents 
the number of trials we would expect to result in outcome i when the hypoth-
esized probabilities represent the actual probabilities assigned to each outcome. 
Frequently, we will refer to the probabilities p1, p2, . . . , pk as cell probabilities, one 
cell corresponding to each of the k outcomes. The observed numbers n1, n2, . . . , nk  
corresponding to the k outcomes will be called observed cell counts, and the 
 expected numbers E1, E2, . . . , Ek will be referred to as expected cell counts.

cell probabilities

observed cell counts
expected cell counts
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Suppose that we hypothesize values for the cell probabilities p1, p2, . . . , pk. 
We can then calculate the expected cell counts by using Definition 10.1 to examine 
how well the observed data fit, or agree, with what we would expect to observe. 
Certainly, if the hypothesized p-values are correct, the observed cell counts, ni, 
should not deviate greatly from the expected cell counts, Ei, and the computed 
value of x2 should be small. Similarly, when one or more of the hypothesized 
cell probabilities are incorrect, the observed and expected cell counts will differ 
 substantially, making x2 large.

The distribution of the quantity x2 can be approximated by a chi-square 
 distribution provided that the expected cell counts, Ei, are fairly large. 

The chi-square goodness-of-fit test based on k specified cell probabilities will 
have k 2 1 degrees of freedom. We will explain why we have k 2 1 degrees of free-
dom at the end of this section. Upper-tail values of the test statistic 

x2  a
i
c 1ni 2 Ei 2 2

Ei
d

can be found in Table 7 in the Appendix. 
We can now summarize the chi-square goodness-of-fit test concerning k 

specified cell probabilities.

chi-square distribution 

The approximation of the sampling distribution of the chi-square goodness-
of-fit test statistic by a chi-square distribution improves as the sample size n becomes 
larger. The accuracy of the approximation depends on both the sample size n and 
the number of cells k. Cochran (1954) indicates that the approximation should be 
adequate if no Ei is less than 1 and no more than 20% of the Eis are less than 5.  
The values of n/k that provide adequate approximations for the chi-square 
goodness-of-fit test statistic tends to decrease as k increases. Agresti (2002) dis-
cusses situations in which the chi-squared approximation tends to be poor for 
studies having small observed cell counts even if the expected cell counts are mod-
erately large. Agresti concludes that it is hopeless to determine a single rule con-
cerning the  appropriate sample size to cover all cases. However, we recommend 
applying Cochran’s guidelines for determining whether the chi-square goodness-
of-fit test statistic can be adequately approximated with a chi-square distribution. 
When some of the Eis are too small, there are several alternatives. Researchers 
combine levels of the categorical variable to increase the observed cell counts. 
However, combining categories should not be done unless there is a natural way 

 H0: pi  pi0 for categories i  1, . . . , k, pi0 are specified  probabilities or 
proportions. 

 Ha: At least one of the cell probabilities differs from the hypothesized 
value. 

 T.S.: x2  a c 1ni 2 Ei 2 2

Ei
d

where ni is the observed number in category i and Ei  npi0 is the expected 
number under H0.

 R.R.: Reject H0 if x2 exceeds the tabulated critical value for the specified a 
and df  k 2 1. 

Check assumptions and draw conclusions.

Chi-Square  
Goodness-of-Fit Test
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to redefine the levels of the categorical variable that does not change the nature of 
the  hypothesis to be tested. When it is not possible to obtain observed cell counts 
large enough to permit the chi-squared approximation, Agresti (2002) discusses 
exact methods to test the hypotheses. Many software pakages include these exact 
tests as an option.

EXAMPLE 10.12

A laboratory is comparing a test drug to a standard drug preparation that is use-
ful in the maintenance of patients suffering from high blood pressure. Over many 
clinical trials at many different locations, the standard therapy was administered 
to patients with comparable hypertension (as measured by the New York Heart 
Association (NYHA) Classification). The lab then classified the responses to ther-
apy for this large patient group into one of four response categories. Table 10.9 lists 
the categories and percentages of patients treated using the standard preparation 
who have been classified in each category. 

TABLE 10.9
Results of clinical trials  

using the standard  
preparation 

Category  Percentage 

Marked decrease in blood pressure 50
Moderate decrease in blood pressure 25
Slight decrease in blood pressure 10
Stationary or slight increase in blood pressure 15

The lab then conducted a clinical trial with a random sample of 200 patients 
with high blood pressure. All patients were required to be listed according to the 
same hypertensive categories of the NYHA Classification as those studied under 
the standard preparation. Use the sample data in Table 10.10 to test the hypothesis 
that the cell probabilities associated with the test preparation are identical to those 
for the standard. Use a  .05.

TABLE 10.10
Sample data for  

example 

Category Observed Cell Counts

 1 120
 2  60
 3  10
 4  10

Solution This experiment possesses the characteristics of a multinomial experiment 
with n  200 and k  4 outcomes. 

Outcome 1:  A person’s blood pressure will decrease markedly after 
 treatment with the test drug.

Outcome 2:  A person’s blood pressure will decrease moderately after 
treatment with the test drug.

Outcome 3:  A person’s blood pressure will decrease slightly after 
treatment with the test drug.

Outcome 4:  A person’s blood pressure will remain stationary or 
increase slightly after treatment with the test drug. 



10.4 Inferences About Several Proportions:Chi-Square goodness-of-Fit test      505

The null and alternative hypotheses are then 

H0:  p1  .50, p2  .25, p3  .10, p4  .15

and

Ha:   At least one of the cell probabilities is different from the hypothesized 
value.

Before computing the test statistic, we must determine the expected cell 
numbers. These data are given in Table 10.11. 

TABLE 10.11
Observed and expected 

cell numbers for example 

  Observed Cell Expected Cell 
Category Number, ni  Number, Ei 

 1 120 200(.50)  100
 2  60 200(.25)  50
 3  10 200(.10)  20
 4  10 200(.15)  30

Because all the expected cell numbers are relatively large, we may calcu-
late the chi-square statistic and compare it to a tabulated value of the chi-square 
distribution. 

 x2  a
i
c 1ni 2 Ei 2 2

Ei
d

 
1120 2 100 2 2

100
1

160 2 50 2 2

50
1

110 2 20 2 2

20
1

110 2 30 2 2

30

  4 1 2 1 5 1 13.33  24.33

For the probability of a Type I error set at a  .05, we look up the value of the chi-
square statistic for a  .05 and df  k 2 1  3. The critical value from Table 7 in 
the Appendix is 7.815. 

R.R.: Reject H0 if x2 . 7.815. 

Conclusion: The computed value of x2 is greater than 7.815, so we reject the null 
hypothesis and conclude there is significant evidence that at least one of the cell 
probabilities differs from that specified under H0. Practically, it appears that a much 
higher proportion of patients treated with the test preparation falls into the mod-
erate and marked improvement categories. The p-value for this test is p , .001.  
(See Table 7 in the Appendix, or use R function 1 2 pchisq(24.33, 3)  .00002.) ■

Goodness-of-Fit of a Probability Model
In situations in which a researcher has count data—for example, number of a 
 particular insect on randomly selected plants or number of times a particular 
event occurs in a fixed period of time—the researcher may want to determine if a 
particular probability model adequately fits the data. Does a binomial or Poisson 
model provide a reasonable model for the  observed data? The measure of how 
well the data fit the model is the chi-square goodness-of-fit statistic:

x2  a
k

i1
c 1ni 2 Ei 2 2

Ei
d
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In the chi-square goodness-of-fit statistic, the quantity ni denotes the number of 
observations in cell i, and Ei is the expected number in cell i assuming the proposed 
model is correct. We will illustrate the procedures used to check the adequacy of a 
proposed probability model using the Poisson distribution.

There are two types of hypotheses. The first type of hypothesis has a com-
pletely specified model for the data. The hypothesis is that the data arise from 
a Poisson distribution with m  m0, where m0 is specified by the researcher. The 
 hypotheses being tested are

H0: Data arise from a Poisson model with m  m0.

Ha: Data do not arise from a Poisson model.

In this situation, the Eis are computed from a Poisson model with m  m0—that is, 
with n  n1 1 n2 1 . . . 1 nk and Ei  ni pi, where pi is the probability of an observa-
tion being in the ith cell computed using the Poisson distribution with m  m0. The 
p-value for the chi-square goodness-of-fit statistic is then obtained from Table 7 in 
the Appendix with df  k 2 1, where k is the number of cells.

The second null hypothesis of interest to many researchers is less specific.

H0: Data arise from a common Poisson model with m unspecified.

Ha: Data do not arise from a Poisson model.

In this situation, it is necessary to first estimate µ using the data prior to comput-
ing an estimate of Ei. We then have Êi  ni p̂i, where p̂is are obtained from a 
Poisson distribution with estimated parameter m̂. The p-value for the chi-square 
goodness-of-fit statistic is then obtained from Table 7 in the Appendix with 
df  k 2 2, where k is the number of cells. Note the difference in the degrees of 
freedom for the two measures of goodness-of-fit. For the null hypothesis with µ 
unspecified, it is necessary to reduce the degrees of freedom from k 2 1 to k 2 2 
because we must first  estimate the Poisson parameter m prior to obtaining the 
cell probabilities.

For both types of hypotheses, we compute a p-value for the chi-square statis-
tic and use this p-value to assess how well the model fits the data. Guidelines for 
 assessing the quality of the fit are given here.

Guidelines for Assessing Quality of Model Fit
●● p-value $ .25 1 Excellent fit
●● .15 # p-value , .25 1 Good fit
●● .05 # p-value , .15 1 Moderately good fit
●● .01 # p-value , .05 1 Poor fit
●● p-value , .01 1 Unacceptable fit

The following example will illustrate the fit of a Poisson distribution to a data set.

EXAMPLE 10.13

Environmental engineers often utilize information contained in the number of 
different alga species and the number of cell clumps per species to measure the 
health of a lake. Those lakes exhibiting only a few species but many cell clumps 
are classified as oligotrophic. In one such investigation, a lake sample was analyzed 
under a microscope to determine the number of clumps of cells per microscope 
field. These data are summarized here for 150 fields examined under a microscope. 
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Here yi denotes the number of cell clumps per field, and ni denotes the number of 
fields with yi cell clumps.

yi 0 1 2 3 4 5 6 $7
ni 6 23 29 31 27 13 8 13

Use a  .05 to test the null hypothesis that the sample data were drawn from a 
Poisson probability distribution.

Solution Before we can compute the value of x2, we must estimate the Poisson 
parameter m and then compute the expected cell counts. The Poisson mean m is 
 estimated by using the sample mean y. For these data,

y 
g iniyi

n


495
150

 3.3

Note that the sample mean was computed to be 3.3 by using all the sample data 
 before the 13 largest values were collapsed into the final cell.

The Poisson probabilities for y  0, 1, . . . , 7 or more can be found in Table 14 in the 
Appendix with m  3.3 or using the R function dpois(x, 3.3), where x  seq(0, 6, 1) 
and P( y $ 7)  1 2 ppois(6, 3.3). These probabilities are shown here.

yi 0 1 2 3 4 5 6 $ 7

P(yi) for m  3.3 .0369 .1217 .2008 .2209 .1823 .1203 .0662 .0509

The expected cell count Ei can be computed for any cell using the formula Ei  nP(yi). 
Hence, for our data (with n  150), the expected cell counts are as shown here.

yi 0 1 2 3 4 5 6 $7
Ei 5.54 18.26 30.12 33.14 27 .35 18.05 9.93 7 .63

Substituting these values into the test statistic, we have

 x2  a
i
c 1ni 2 Ei 2 2

Ei
d

 
16 2 5.54 2 2

5.54
1

123 2 18.26 2 2

18.26
1 c1

113 2 7.63 2 2

7.63
  7.02 with df  8 2 2  6

p-value  Pr 3x2
6 . 7.02 4  .319 (using R function 1 2 pchisq(7.02, 6)). Using Table 7 

in the Appendix, we can conclude only that .10 , p-value , .90. Thus, using p-value  
.319, we determine that the Poisson model provides an excellent fit to the data. ■

A word of caution is given here for situations in which we are considering this 
test procedure. As we mentioned previously, when using a chi-square statistic, we 
should have all expected cell counts fairly large. In particular, we want all Ei . 1 
and not more than 20% less than 5. In Example 10.11, if values of y $ 7 had been 
considered individually, the Es would not have satisfied the criteria for the use of x2.  
That is why we combined all values of y $ 7 into one category.

The assumptions needed for running a chi-square goodness-of-fit test are 
those associated with a multinomial experiment, of which the key ones are inde-
pendence of the trials and constant cell probabilities. Independence of the tri-
als would be violated if, for example, several patients from the same family in 
Example 10.10 were included in the sample because hypertension has a strong 
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hereditary component. The assumption of constant cell probabilities would be vio-
lated if the study were conducted over a period of time during which the standards 
of medical practice shifted, allowing for other “standard’’ therapies. 

The test statistic for the chi-square goodness-of-fit test is the sum of k terms, 
which is the reason the degrees of freedom depend on k, the number of categories, 
rather than on n, the total sample size. However, there are only k 2 1 degrees of free-
dom, rather than k, because the sum of the ni 2 Ei terms must be equal to n 2 n  0; 
k 2 1 of the observed minus expected differences are free to vary, but the last one 
(kth) is determined by the condition that the sum of the ni 2 Ei equals zero.

This goodness-of-fit test has been used extensively over the years to test 
 various scientific theories. Unlike previous statistical tests, however, the hypoth-
esis of interest is the null hypothesis, not the research (or alternative) hypothesis. 
Unfortunately, the logic behind running a statistical test does not hold. In the 
standard situation in which the research (alternative) hypothesis is the one of 
 interest to the scientist, we formulate a suitable null hypothesis and gather data to 
reject H0 in favor of Ha. Thus, we “prove’’ Ha by contradicting H0. 

We cannot do the same with the chi-square goodness-of-fit test. If a scien-
tist has a set theory and wants to show that sample data conform to or “fit’’ that 
theory, she wants to accept H0. From our previous work, there is the potential 
for committing a Type II error in accepting H0. Here, as with other tests, the 
calculation of b probabilities is difficult. In general, for a goodness-of-fit test, the 
potential for  committing a Type II error is high if n is small or if k, the number of 
categories, is large. Even if the expected cell counts Ei conform to our recommen-
dations, the probability of a Type II error could be large. Therefore, the results of a 
chi-square goodness-of-fit test should be viewed suspiciously. Don’t automatically 
accept the null hypothesis as fact given that H0 was not rejected. 

 10.5 Contingency Tables: Tests for Independence  
and Homogeneity

In Section 10.3, we showed a test for comparing two proportions. The data were 
simply counts of how many times we got a particular result in two samples. In 
this section, we extend that test. First, we present a single test statistic for testing 
whether several deviations of sample data from theoretical proportions could plau-
sibly have occurred by chance. 

When we first introduced probability ideas in Chapter 4, we started by using 
tables of frequencies (counts). At the time, we treated these counts as if they 
 represented the whole population. In practice, we’ll hardly ever know the com-
plete population data; we’ll usually have only a sample. When we have counts from 
a sample, they’re usually arranged in cross tabulations or contingency tables. In 
this section, we’ll describe one particular test that is often used for such tables, a 
chi-square test of independence. 

In Chapter 4, we introduced the idea of independence. In particular, we 
 discussed the idea that dependence of variables means that one variable has some 
value for predicting the other. With sample data, there usually appears to be some 
degree of dependence. In this section, we develop a x2 test that assesses whether 
the perceived dependence in sample data may be a fluke—the result of random 
variability rather than real dependence. 

First, the frequency data are to be arranged in a cross tabulation with r rows 
and c columns. The possible values of one variable determine the rows of the table, 

cross tabulations 
contingency tables 

dependence



10.5 Contingency tables: tests for Independence and homogeneity     509

and the possible values of the other determine the columns. We denote the popula-
tion proportion (or probability) falling in row i, column j as pij. The total  proportion 
for row i is pi. and the total proportion for column j is p.j. If the row and column 
proportions (probabilities) are independent, then pij  pi.p.j.

For example, the Centers for Disease Control and Prevention wants to 
 determine if the severity of a skin disease is related to the age of the patient. 
 Suppose that a patient’s skin disease is classified as moderate, mildly severe, 
or  severe. The patients are divided into four age categories. Table 10.12 con-
tains a set of proportions (pij) that exhibit independence between the severity 
of the disease and the age category in which the patient resides. That is, for 
each cell, pij  pi.p.j. For  example, the proportion of patients who have a severe 
case of the disease and fall in age category I is p31  .02. The proportion of all 
patients who have a severe case of the disease is p3.  .20 and the proportion of 
all patients who fall in age category I is p.1  .10. Independence holds for the 
(3,1) cell because p31  .02  (.20)(.10)  p3.p.1. Similar calculations hold for 
the other eleven cells, and we can thus conclude that severity of the disease and 
age are independent.

TABLE 10.12
Distribution of skin 

disease over age 
categories

 Age Category

Severity I II III IV All Ages

Moderate .05 .20 .15  .10    .50
Mildly severe .03 .12 .09  .06    .30
Severe .02 .08 .06  .04    .20

All severities  .10 .40 .30  .20  1.00

The null hypothesis for this x2 test is independence. The research hypothesis 
specifies only that there is some form of dependence—that is, that it is not true that 
pij  pi.p.j in every cell of the table. The test statistic is once again the sum over 
all cells of 

(Observed value 2 expected value)2/expected value 

The computation of expected values Eij under the null hypothesis is different for 
the independence test than for the goodness-of-fit test. The null hypothesis of 
 independence does not specify numerical values for the row probabilities pi. and 
column probabilities p.j, so these probabilities must be estimated by the row and 
column relative frequencies. If ni. is the actual frequency in row i, estimate pi. by 
p̂i.  ni. /n; similarly, p̂.j  n.j /n. Assuming the null hypothesis of independence is 
true, it follows that p̂ij  p̂i.p̂.j  1ni. /n 2 1n.j /n 2 . 

Under the hypothesis of independence, the estimated expected value in row i,  
column j is 

E ^ ij  np̂ij  n
1ni. 2
n

 
  
1n.j 2
n

 
1ni. 2 1n.j 2

n

the row total multiplied by the column total divided by the grand total.

estimated expected 
value

DEFINITION 10.2
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EXAMPLE 10.14

Suppose a random sample of 216 patients having the skin disease are classified into 
the four age categories, yielding the frequencies shown in Table 10.13.

TABLE 10.13
Results from random 

sample

 Age Category

Severity I II III IV All Ages

Moderate 15 32 18   5   70
Mildly severe   8 29 23 18   78
Severe   1 20 25 22   68

All severities  24 81 66 45 216

Calculate a table of E ^ ij values.

Solution For row 1, column 1, the estimated expected number of occurrences is

E ^ ij 
1row 1 total 2 1column 1 total 2

grand total


170 2 124 2
216

 7.78

Similar calculations for all cells yield the data shown in Table 10.14.

TABLE 10.14
Expected counts for 

example

 Age Category

Severity I II III IV All Ages

Moderate   7 .78 26.25 21.39 14.58 70.00
Mildly severe   8.67 29.25 23.83 16.25 78.00
Severe   7 .56 25.50 20.78 14.17 68.01

All severities 24.01 81.00 66.00 45.00 216.01

Note that the row and column totals in Table 10.13 equal (except for round-off 
error) the corresponding totals in Table 10.12. ■

  H0: The row and column variables are independent.
  Ha: The row and column variables are dependent (associated).

  T.S.: x2  a
i,j

1nij 2 E ^ ij 2 2 /E ^ ij

R.R.:  Reject H0 if x2 . x2
a, where x2

a cuts off area a in a x2 distribu-
tion with (r 2 1)(c 2 1) df; r  number of rows, c  number of 
columns.

Check assumptions and draw conclusions.

The test statistic is referred to as the Pearson x2 statistic.

x2 Test of  
Independence

The degrees of freedom for the x2 test of independence relate to the number 
of cells in the two-way table that are free to vary while the marginal totals remain 
fixed. For example, in a 2 3 2 table (2 rows, 2 columns), only one cell entry is free 

df for table
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to vary. Once that entry is fixed, we can determine the remaining cell entries by 
subtracting from the corresponding row or column total. In Table 10.14(a), we 
have indicated some (arbitrary) totals. The cell indicated by * could take any 
value (within the limits implied by the totals), but then all remaining cells would 
be  determined by the totals. Similarly, with a 2 3 3 table (2 rows, 3 columns), two 
of the cell entries, as indicated by *, are free to vary. Once these entries are set, 
we  determine the remaining cell entries by subtracting from the appropriate row 
or column total [see Table 10.14(b)]. In general, for a table with r rows and c col-
umns, (r 2 1)(c 2 1) of the cell entries are free to vary. This number represents the 
 degrees of freedom for the x2 test of independence. 

This chi-square test of independence is also based on an asymptotic approxi-
mation, which requires a reasonably large sample size. A conservative rule is that 
each E ^ ij must be at least 1 and no more than 20% of the E ^ ijs can be less than 5 
in order to obtain reasonably accurate p-values using the chi-square distribution. 
Standard practice when some of the E ^ ijs are too small is to combine those rows 
(or columns) with small totals until the rule is satisfied. Care should be taken in 
deciding which rows (or columns) should be combined so that the new table is of 
an  interpretable form. Alternatively, many software packages have an exact test 
that does not rely on the chi-square approximation.

EXAMPLE 10.15

Conduct a test to determine if the severity of the disease discussed in Example 10.14 
is independent of the age of the patient. Use a  .05, and obtain bounds on the  
 p-value of the test statistic.

Solution The null and alternative hypotheses are

H0: The severity of the disease is independent of the age of the patient.

Ha: The severity of the disease depends on the age of the patient.

The test statistic can be computed using the values of nij and E ^ ij from Example 10.12:

T.S.: x2  a
i, j

1nij 2 E ^ ij 2 2 /E ^ ij

  (15 2 7.78)2/7.78 1 (32 2 26.25)2/26.25

 1 (18 2 21.39)2/21.39 1 … 1 (22 2 14.17)2/14.17

  27.13

R. R.:  For df  (3 2 1)(4 2 1)  6 and a  .05, the critical value from Table 7 
in the Appendix is 12.59. Because x2  27.13 exceeds 12.59, H0 is 
 rejected. The p-value  Pr 3x2

6 . 27.13 4   .00014 using R. Based 
on the values in Table 7, we would conclude that p-value , .001.

TABLE 10.14
(a) One df in a 2 3 2 table; 
(b) two df in a 2 3 3 table

 Category B Total Category B Total

Category A *  16 Category A * *  51

   34     40

 Total 21 29 50 Total 28 41 22 91
   (a)    (b)
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Check the assumptions and draw conclusions: Since each of the estimated 
expected values E ^ ij exceeds 5, the chi-square approximation should be reason-
ably accurate. Thus, we can conclude that there is strong evidence in the data 
(p-value  .00014) that the severity of the disease is associated with the age of 
the patient. ■

There is an alternative x2 statistic called the likelihood ratio statistic that is 
often shown in computer outputs. It is defined as 

likelihood ratio x2  a
ij

nij 
ln 1nij / 1ni.n.j 2 2

where ni. is the total frequency in row i, n.j is the total frequency in column j, and 
ln is the  natural logarithm (base e  2.71828). Its value should also be compared 
to the x2 distribution with the same (r 2 1)(c 2 1) df. Although it isn’t at all 
obvious, this form of the x2 independence test is approximately equal to the 
Pearson form. There is some reason to believe that the Pearson x2 yields a bet-
ter approximation to table values, so we prefer to rely on it rather than on the 
likelihood ratio form. 

The only function of a x2 test of independence is to determine whether 
 apparent dependence in sample data may be a fluke, plausibly a result of random 
variation. Rejection of the null hypothesis indicates only that the apparent associa-
tion is not reasonably attributable to chance. It does not indicate anything about 
the strength or type of association.

The same x2 test statistic applies to a slightly different sampling procedure. 
An implicit assumption of our discussion surrounding the x2 test of independence is 
that the data result from a single random sample from the whole population. Often, 
separate random samples are taken from the subpopulations defined by the column 
(or row) variable. In the skin disease example (Example 10.12), the data might have 
resulted from separate samples (of respective sizes 24, 81, 66, and 45) from the four 
age categories rather than from a single random sample of 216  patients. 

In general, suppose the column categories represent c distinct subpopula-
tions. Random samples of size n1, n2, . . . , nc are selected from these subpopulations. 
The observations from each subpopulation are then classified into the r values 
of a categorical variable represented by the r rows in the contingency table. The 
research hypothesis is that there is a difference in the distribution of subpopulation 
units into the r levels of the categorical variable. The null hypothesis is that the set 
of r proportions for each subpopulation (p1j, p2j, . . . , prj) is the same for all j  1, 
2, . . . , c subpopulations. Thus, the null hypothesis is given by 

H0:  1p11, p21, . . . , pr1 2  1p12, p22, . . . , pr2 2  c 1p1c, p2c, . . . , prc 2
The test is called a test of homogeneity of distributions. The mechanics of the test 
of homogeneity and the test of independence are identical. However, note that 
the sampling scheme and conclusions are different. With the test of independ-
ence, we randomly select n units from a single population and classify the units 
with  respect to the values of two categorical variables. We then want to determine 
whether the two categorical variables are related to each other. In the test of 
 homogeneity of proportions, we have c subpopulations from which we randomly 
select n  n1 1 n2 1 . . . 1 nc units, which are classified according to the values of 
a single categorical variable. We want to determine whether the distribution of 
the subpopulation units to the values of the categorical variable is the same for all 
c subpopulations. 

likelihood ratio  
statistic

strength of association

test of homogeneity
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As we discussed in Section 10.4, the accuracy of the approximation of the 
sampling distribution of x2 by a chi-square distribution depends on both the sam-
ple size n and the number of cells k. Cochran (1954) indicates that the approxi-
mation should be adequate if no Ei is less than 1 and no more than 20% of the 
Eis are less than 5. Larntz (1978) and Koehler (1986) showed that x2 is valid with 
smaller sample sizes than is the likelihood ratio test statistic. Agresti (2002) com-
pares the nominal and actual a-levels for both test statistics for testing independ-
ence, for various sample sizes. The x2 test statistic appears to be adequate when 
n/k  exceeds 1. Again, we recommend applying Cochran’s guidelines for deter-
mining whether the chi-square test statistic can be adequately approximated with 
a chi-square distribution. When some of the Eijs are too small, there are several 
alternatives.  Researchers combine levels of the categorical variables to increase 
the observed cell counts. However, combining categories should not be done 
unless there is a natural way to redefine the levels of the categorical variables 
that does not change the nature of the hypothesis to be tested. When it is not 
possible to obtain observed cell counts large enough to permit the chi-squared 
approximation, Agresti (2002) discusses exact methods to test the hypotheses. 
For  example, the Fisher Exact test is used when both categorical variables have 
only two levels. 

EXAMPLE 10.16

Random samples of 200 individuals from major oil-producing and natural gas– 
producing states, 200 from coal states, and 400 from other states participate in a 
poll of attitudes toward five possible energy policies. Each respondent indicates the 
most preferred alternative from among the following: 

 1. Primarily emphasize conservation 
 2. Primarily emphasize domestic oil and gas exploration 
 3. Primarily emphasize investment in solar-related energy 
 4. Primarily emphasize nuclear energy development and safety 
 5. Primarily reduce environmental restrictions and emphasize coal- 

burning activities 

The results are as shown in Table 10.15. 

TABLE 10.15
Results of survey Policy Oil/Gas Coal Other

Choice States States States Total

1 50 59 161 270
2 88 20 40 148
3 56 52 188 296
4 4 3 5 12
5 2 66 6 74

Total 200 200 400 800

Execustat output also carries out the calculations. The second entry in each cell is 
its percentage in the column. 
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Conduct a x2 test of homogeneity of distributions for the three groups of states. 
Give the p-value for this test. 

Solution A test that the corresponding population distributions are different 
makes use of the expected values found in Table 10.16.

Crosstabulation
OilGas Coal Other Row

Total
07216195051

25.0 29.5 40.3 33.75

8410402882
44.0 10.0 10.0 18.50

69288125653
28.0 26.0 47.0 37.00

215344
2.0 1.5 1.3 1.50

4766625
1.0 33.0 1.5 9.25

Column 200 200 400 800
Total 25.00 25.00 50.00 100.00

Summary Statistics for Crosstabulation

Chi-square D.F. P Value

289.22 8 0.0000

Warning: Some table cell counts 5.

TABLE 10.16
Expected counts for  

survey data

Policy Oil/Gas Coal Other
Choice States States States 

1 67 .5 67 .5 135
2 37 37 74
3 74 74 148
4 3 3 6
5 18.5 18.5 37

We observe that the table of expected values has two Eijs that are less than 5. How-
ever, our guideline for applying the chi-square approximation to the test statistic 
is met because only 2/15  13% of the Eijs are less than 5 and all the values are 
greater than 1. The test procedure is outlined here: 

 H0: The column distributions are homogeneous. 

 Ha: The column distributions are not homogeneous. 

 T.S.: x2  a 1nij 2 E ^ ij 2 2 /E ^ ij

    (50 2 67.5)2/67.5 1 (88 2 37)2/37 1 . . . 1 (6 2 37)2/37

    289.22

 R.R.:  Because the tabled value of x2 for df  8 and a  .001 is 26.12, 
p-value is ,.001. Alternatively, use the R function p-value  1 2  
pchisq(289.22, 8) > 0 to many decimal places.
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Check assumptions and draw conclusions: Even recognizing the limited accuracy 
of the x2 approximations, we can reject the hypothesis of homogeneity at some 
very small p-value. Percentage analysis, particularly of state type for a given 
policy choice, shows dramatic differences; for instance, 1% of those living in 
oil/gas states favor policy 5 compared to 33% of those in coal states who favor 
policy 5. ■

The x2 test described in this section has a limited but important purpose. This 
test assesses only whether the data indicate a statistically detectable (significant) 
relation among various categories. It does not measure how strong the apparent 
relation might be. A weak relation in a large data set may be detectable (significant); 
a strong relation in a small data set may be nonsignificant. 

 10.6 Measuring Strength of Relation 

The x2 test we discussed in Section 10.5 has a built-in limitation. By design, the test 
answers only the question of whether there is a statistically detectable (significant) 
relation among the categories. It cannot answer the question of whether the rela-
tion is strong, interesting, or relevant. This is not a criticism of the test; no hypothe-
sis test can answer these questions. In this section, we discuss methods for assessing 
the strength of relation shown in cross-tabulated data. 

The simplest (and often the best) method for assessing the strength of a 
relation is simple percentage analysis. If there is no relation (that is, if complete 
independence holds), then percentages by row or by column show no relation. 
For example, suppose that a direct-mail company tests two different offers to see 
whether the response rates differ. Their results are shown in Table 10.17. 

To check the relation, if any, we calculate percentages of response for 
each offer. We see that (40/200) .20 (that is, 20%) respond to offer A and 
(80/400)  .20 respond to offer B. Because the percentages are exactly the 
same, there is no  indication of relation. Alternatively, we note that one-third 
of the Yes respondents and one-third of the No respondents were given offer 
A. Because these fractions are exactly the same, there is no indication of a 
statistical relation. 

Of course, it is rare to have data that show absolutely no relation in the 
sample. More commonly, the percentages by row or by column differ, suggesting 
some relation. For example, a firm planning to market a cleaning product com-
missions a market research study of the leading current product. The variables of 
interest are the frequency of use and the rating of the leading product. The data 
are shown in Table 10.18. 

TABLE 10.17
Direct-mail responses  Response

Offer Yes No Total

A 40 160 200
B 80 320 400

Total 120 480 600
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To assess if there is a relationship between the level of use and the rat-
ing of the product by the consumer, we will first calculate the chi-square test of 
independence. We  obtain x2  144.49 with df  (3 2 1)(3 2 1)  4. The p-value 
is computed as p-value  Pr[x 2 . 144.49] , .001, which would indicate strong 
evidence of a relationship between use and rating. The small p-value does not 
necessarily imply a strong relation; it could also be the result of a fairly weak rela-
tion but a very large sample size. We would next want to determine the type of 
relationship that may exist between use and rating. One natural analysis of these 
data takes the frequencies of use as given and looks at the ratings as functions of 
use. The analysis essentially looks at conditional probabilities of the rating factor 
given the level of the use factor. However, the analysis recognizes that the data 
are only a random  sample, not the actual population values. For example, when 
the level of use is rare, the best estimate of the probability that the user will select 
a rating value of fair is  determined using the formula

Pr [Rating  Fair given User  Rare]  
64
324

  .1975 (19.75%)

In a similar fashion, we compute

Pr [Rating  Good given User  Rare]  
123
324

  .3796

Pr [Rating  Excellent given User  Rare]  
137
324

  .4228

The corresponding proportions for occasional users are given by

Pr [Rating  Fair given User  Occasional]  
131
516

  .2539

Pr [Rating  Good given User  Occasional]  
256
516

  .4961

Pr [Rating  Excellent given User  Occasional]  
129
516

  .2500

For frequent users, the three proportions are

Pr [Rating  Fair given User  Frequent]  
209
425

  .4918

Pr [Rating  Good given User  Frequent]  
171
425

  .4024

Pr [Rating  Excellent given User  Frequent]  
45
425

  .1059

TABLE 10.18
Responses from market 

survey

 Rating 

Use Fair Good Excellent Total

Rare 64 123 137 324
Occasional 131 256 129 516
Frequent 209 171 45 425

Total 404 550 311 1,265
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The proportions (or percentages, if one multiplies by 100) for the ratings are quite 
different for the three types of users, as can be seen in Table 10.19.

Thus, there appears to be a relation between the use variable and the rat-
ings. The proportion of rare users giving the product an excellent rating is around 
42%, whereas 25% of occasional users and only about 11% of frequent users 
give the product an excellent rating. Thus, as usage of the product increases the 
proportion of users giving an excellent rating decreases. The opposite is true for 
a rating of fair. The combination of a very small value for the p-value and a siz-
able difference in the conditional frequencies for the ratings depending on the 
level of usage provides substantial evidence that a relation between user and 
rating exists.

Percentage analyses play a fundamentally different role than does the x2 test. 
The point of a x2 test is to see how much evidence there is that there is a relation, 
whatever the size may be. The point of percentage analyses is to see how strong 
the relation appears to be, taking the data at face value. The two types of analyses 
are complementary. 

Here are some final ideas about count data and relations: 

 1. A x2 goodness-of-fit test compares counts to theoretical probabilities 
that are specified outside the data. In contrast, a x2 independence 
test compares counts in one subset (one row, for example) to counts 
in other rows within the data. One way to decide which test is needed 
is to ask whether there is an externally stated set of theoretical 
probabilities. If so, the goodness-of-fit test is in order. 

 2. As is true of any significance test, the only purpose of a x2 test is 
to see whether differences in sample data might reasonably have 
arisen by chance alone. A test cannot tell you directly how large or 
important the difference is. 

 3. In particular, a statistically detectable (significant) x2 independ-
ence test does not necessarily mean a strong relation, nor does a 
nonsignificant goodness-of-fit test necessarily mean that the sample 
fractions are very close to the theoretical probabilities. 

 4. Looking thoughtfully at percentages is crucial in deciding whether 
the results show practical importance. 

 10.7 Odds and Odds Ratios 

Another way to analyze count data on qualitative variables is to use the concept 
of odds. This approach is widely used in biomedical studies and could be use-
ful in some market research contexts as well. The basic definition of odds is the 
ratio of the probability that an event happens to the probability that it does not 
happen. 

TABLE 10.19
Rating proportions from 

three types of users

 Rating 

Use  Fair  Good  Excellent

Rare  .1975  .3796  .4228
Occasional  .2539  .4961  .2500
Frequent  .4918  .4024  .1059
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If an event has probability 2/3 of happening, the odds are 2
3 /13  2. Usually, 

this is reported as “the odds of the event happening are 2 to 1.’’ Odds are used in 
horse racing and other betting establishments. The horse racing odds are given 
as the odds against the horse winning. Therefore, odds of 4 to 1 means that it is 4 
times more likely the horse will lose (not win) than not. Based on the odds, a horse 
with 4 to 1 odds is a better “bet” than, say, a horse with 20 to 1 odds. What about 
a horse with 1 to 2 odds (or, equivalently, .5 to 1) against winning? This horse is 
highly  favored because it is twice as likely (2 to 1) that the horse will win as not. 

In working with odds, just make certain what the event of interest is. Also 
it is easy to convert the odds of an event back to the probability of the event. For 
event A, 

P 1A 2 
odds of event A

1 1 odds of event A

Thus, if the odds of a horse (not winning) are stated as 9 to 1, then the probability 
of the horse not winning is 

Probability 1not winning 2 
9

1 1 9
 .9

Similarly, the probability of winning is 1 2 .9  .1. 
Odds are a convenient way to see how the occurrence of a condition changes 

the probability of an event. Recall from Chapter 4 that the conditional probability 
of an event A given another event B is 

P 1A|B 2  P 1A and B 2 /P 1B 2
The odds favoring an event A given another event B turn out after a little algebra 
to be 

P 1A|B 2
P 1not A|B 2 

P 1A 2
P 1not A 2  

P 1B|A 2
P 1B|not A 2

The initial odds are multiplied by the likelihood ratio, the ratio of the proba-
bility of the conditioning event given A to its probability given not A. If B is more 
likely to happen when A is true than when it is not, the occurrence of B makes the 
odds favoring A go up. 

EXAMPLE 10.17

Consider both a population in which 1 of every 1,000 people carries the HIV virus 
and a test that yields positive results for 95% of those who carry the virus and 
(false) positive results for 2% of those who do not carry it. If a randomly chosen 
person obtains a positive test result, should the odds of that person carrying the 
HIV virus go up or go down? By how much? 

Solution We certainly would think that a positive test result would increase the 
odds of carrying the virus. It would be a strange test indeed if a positive result 

Odds of an event A 
P 1A 2

1 2 P 1A 2DEFINITION 10.3
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 decreased the chance of having the disease! Take the event A to be “carries HIV’’ 
and the event B to be “positive test result.’’ 

Before the test is made, the odds of a randomly chosen person carrying HIV are

.001

.999
< .001

The occurrence of a positive test result causes the odds to change to 

P 1HIV|positive 2
P 1not HIV|positive 2 

P 1HIV 2
P 1not HIV 2  

P 1positive|HIV 2
P 1positive|not HIV 2 

.001

.999
 
.95
.02

 .0475

The odds of carrying HIV do go up given a positive test result—from about 
.001 (to 1) to about .0475 (to 1). ■

A closely related idea, widely used in biomedical studies, is the odds ratio. 
As the name indicates, it is the ratio of the odds of an event (for example, contract-
ing a certain form of cancer) for one group (for example, men) to the odds of the 
same event for another group (for example, women). The odds ratio is usually 
defined using conditional probabilities but can be stated equally well in terms of 
joint  probabilities. 

odds ratio

Odds Ratio of an Event for Two Groups 

If A is any event with probabilities P(A|group 1) and P(A|group 2), the odds 
ratio (OR) is 

OR 
P 1A|group 1 2 / 31 2 P 1A|group 1 2 4
P 1A|group 2 2 / 31 2 P 1A|group 2 2 4

The odds ratio equals 1 if the event A is statistically independent of group.

DEFINITION 10.4

We estimate the odds ratio in the following manner. Suppose we are investigating 
if there is a relation between the occurrence of a condition A and two groups. A 
random sample of n units is selected, and the number of units satisfying condition 
A are recorded for both groups, as displayed in Table 10.20.

The odds ratio compares the odds of the Yes proportion for group 1 to the 
odds of the Yes proportion for group 2. It is estimated from the observed data as

OR 
p1 / 11 2 p1 2
p2 / 11 2 p2 2


n11 /n12

n21 /n22


n11n22

n21n12

TABLE 10.20
Data for computing  

an odds ratio

 Condition A

 Yes  No  Total Proportion Yes

Group 1  n11 n12  n1.  p1  n11/n1.

Group 2  n21 n22 n2. p2  n21/n2.

Total  n.1 n.2 n 
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Inference about the odds ratio is usually done by way of the natural logarithm of 
the odds ratio. Recall that ln is the usual notation for the natural logarithm (base 
e  2.71828) and that ln(1)  0. When the natural logarithm of the odds ratio is 
 estimated from sampled data with a large value of n it has approximately a normal 
distribution with an  expected value equal to the natural logarithm of the popula-
tion odds ratio. Its standard error can be estimated by taking the square root of the 
sum of the reciprocals of the four counts in the above table.

Sampling Distribution of ln (OR)
For large sample sizes, the sampling distribution of the log odds ratio, ln(OR), is 
approximately normal with 

mln1OR2  ln ap1 / 11 2 p1 2
p2 / 11 2 p2 2

b

where p1 and p2 are the population proportions for the two groups, and

ŝln1OR2  Å
1

n11
1

1
n12

1
1

n21
1

1
n22

From the above results, we obtain an approximate 100(1 2 a) confidence interval 

for the population log odds ratio, ln ap1 / 11 2 p1 2
p2 / 11 2 p2 2

b :

1ln 1OR 2 2 za/ 2ŝln1OR2, ln 1OR 2 1 za/2ŝln1OR2 2

The above interval yields an approximate confidence interval for the population 
odds ratio by exponentiating the two endpoints of the interval. If this interval does 
not include an odds ratio 1.0, we conclude with 100(1 2 a) confidence that there is 
substantial evidence that the event A is related to the groups.

EXAMPLE 10.18

A study was conducted to determine if the level of stress in a person’s job affects 
his or her opinion about the company’s proposed new health plan. A random sam-
ple of 3,000 employees yields the responses shown in Table 10.21.

TABLE 10.21
Relationship between 

job stress and health plan 
opinion

 Employee Response

Job Stress  Favorable  Unfavorable  Total

Low 250     750  1,000
High 400  1,600  2,000

Total 650  2,350  3,000

Estimate the conditional probabilities of a favorable and an unfavorable response 
given the level of stress. Compute an estimate of the odds ratio of a favorable 
response for the two groups, and determine if type of response is related to level 
of stress.
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Solution The estimated conditional probabilities are given in Table 10.22.

The estimated odds ratio is 
.25 /.75

.2 /.8  1.333. We could have computed the value of 
OR directly without having to first compute the conditional probabilities:

OR 
1250 2 11,600 2
1400 2 1750 2  1.333

A value of 1.333 for the odds ratio indicates that the odds of a favorable response 
are 33.3% higher for employees in a low stress job than for employees with a high 
stress job. We will next compute a 95% confidence interval for the odds ratio and 
see if the confidence interval contains 1.0.

ln(OR)  ln(1.333)  0.2874 

and

ŝln1OR2  Î 1
n11

1 1
n12

1 1
n21

1 1
n22

 Î 1
250 1 1

750 1 1
400 1 1

1,600  Ë.0084583

  .0920

The 95% confidence interval for the odds ratio is obtained by first computing

1.2874 2 11.96 2 10.0920 2 , .2874 1 11.96 2 10.0920 2 2 ; that is, 10.1071, 0.4677 2
Exponentiating the endpoints then provides us with the confidence interval:

(e0.1071, e0.4677); that is, (1.113, 1.5963)

Because the 95% confidence interval for the odds ratio does not include an odds 
ratio of 1.0, we may conclude that there is a statistically detectable relation between 
opinion and level of stress. ■

The odds ratio is a useful way to compare two population proportions p1 and 
p2 and may be more meaningful than their difference (p1 2 p1) when p1 and p2 are 
small. For example, suppose the rate of reinfarction for a sample of 5,000 coronary 
bypass patients treated with compound 1 is p̂1  .05 and the corresponding rate 
for another sample of 5,000 coronary bypass patients treated with compound 2 is 
p̂2  .02. Then their difference, p̂1 2 p̂2  .03, may be less important and less 
 informative than the odds ratio. See Table 10.23. 

TABLE 10.22
Estimated conditional 

probabilities

 Employee Response

Job Stress  Favorable  Unfavorable  Total

Low  .25  .75  1.0
High  .20  .80  1.0

TABLE 10.23
Reinfarction counts for  

bypass patients

 Reinfarction?

 Yes No Total

Compound 1 250 (5%) 4,750 n1  5,000
Compound 2 100 (2%) 4,900 n2  5,000
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The reinfarction odds for compounds 1 and 2 are as follows: 

Compound 1 odds 
250 /5,000

4,750 /5,000


250
4,750

 .053

Compound 2 odds 
100 /5,000

4,900 /5,000


100
4,900

 .020

The corresponding odds ratio is .053/.020  2.65. Note that although the difference 
in reinfarction rates is only .033, having a reinfarction after treatment with com-
pound 1 is 2.65 times as likely as having a reinfarction following treatment with 
 compound 2. 

 10.8 Combining Sets of 2 3 2 Contingency Tables

In the previous section, we discussed the chi-square test of independence for 
 examining the dependence of two variables based on data arranged in a contin-
gency table. Suppose a pharmaceutical company is developing a drug product for 
the treatment of epilepsy. In each of several clinics, patients are assigned at random 
to either a placebo or the new drug and treated for a period of 2 months. At the 
end of the study, each patient is rated as either improved or not improved. If 100 
patients (50 per treatment group) are to be enrolled in a particular clinic and we 
observe 40 and 15 patients improved in the new drug and placebo groups, respec-
tively, the data could be displayed as shown in Table 10.24 and analyzed using the 

TABLE 10.24
Number (%) of patients 

 improved

 Improved Not Improved  Total

New drug  40 (80%)  10 50
Placebo  15 (30%) 35 50

chi-square  methods of the previous section. The null hypothesis of independence 
of the two classifications (treatment group and rating) could be  restated in terms of 
the proportions, p1 and p2, of improved patients for the two populations. The new 
H0 would be H0: p1 2 p2  0—namely, that there is no difference in the proportions 
of improved patients for the drug and placebo groups. Rejection of H0 using the 
 chi-square statistic from the test of independence test indicates that the population 
proportions are different for the two treatment groups.

This same scenario can be extended to more than one clinic, and we can 
 extend our test procedure to deal with a set of q clinics (q $ 2). For this situa-
tion, we would observe the sample percentages improved for the drug and pla-
cebo groups in each clinic; the data could be summarized using Table 10.25. 

TABLE 10.25
Summary table for a set 

of 2 3 2 contingency 
tables

Clinic  Improved Not Improved

1 Drug
 Placebo
2 Drug
 Placebo
 (
q Drug
 Placebo
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The test for comparing the drug and placebo proportions combines sample 
information across the separate contingency tables to answer the question of 
whether, on the average, the improvement rates are the same for the two treat-
ment groups. Before we do this, however, we need some additional notation, 
shown in Table 10.26.

Cochran (1954) proposed a test statistic for the hypothesis of no difference 
(on the average) for the improvement rates for a set of q 2 3 2 contingency 
tables. This same problem was addressed by Mantel and Haenszel (1959) and 
also  extended to cover a set of q 2 3 c contingency tables. For 2 3 2 tables, the 
Cochran– Mantel–Haenszel (CMH) statistic for testing the equality of the improve-
ment rates, on the average, can be written as

x2
MH 

e a
h
anh11 2

nh1.nh.1

nh..
b f

2

a
h

nh1.nh2.nh.1nh.2

n2
h.. 1nh.. 2 1 2

which follows a chi-square distribution with df  1. Let’s see how this works for a 
set of sample data.

EXAMPLE 10.19

The pharmaceutical study discussed previously was extended to three clinics. In 
each clinic, as patients qualified for the study and gave their consent to participate, 
they were assigned to either the drug or the placebo group according to a prede-
termined random code. Each clinic was to treat 50 patients per group. The study 
 results are summarized in Table 10.27. Use these data to test the null hypothesis of 

TABLE 10.26
General notation for a 

set of 2 3 2 contingency 
tables

 Response Category

 Table Treatment 1  2 Total

 1 1 n111 n112  n11.

  2  n121 n122 n12.

  Total  n1.1 n1.2 n1..

 2 1 n211 n212  n21.

  2  n221 n222 n22.

  Total  n2.1 n2.2 n2..

 o

 q 1 nq11 nq12 nq1.

  2  nq21 nq22 nq2.

 Total  nq.1 nq.2 nq..
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no difference in the improvement rates, on the average. Use the CMH chi-square 
statistic, and give the p-value for the test.

Solution The necessary row and column totals in each clinic are given in Table 10.27. 
The numerator of the CMH statistic is

 e a
h
anh11 2

nh1.nh.1

nh..
b f

2

 e a40 2
50 155 2

100
b 1 a35 2

50 155 2
100

b 1 a43 2
50 174 2

100
b f

2

  112.5 1 7.5 1 6 2 2  676

whereas the denominator is

a
h

nh1.nh2.nh.1nh.2

n2
h.. 1nh.. 2 1 2 

50 150 2 155 2 145 2
1100 2 2 199 2 1

50 150 2 155 2 145 2
1100 2 2 199 2 1

50 150 2 174 2 126 2
1100 2 2 199 2

  6.25 1 6.25 1 4.8586  17.3586

Substituting, we obtain

x2
MH 

676
17.3586

 38.9432

For df  1, this result is significant at the p , .001 level. As can be seen from the 
sample data, the drug-treated groups have consistently higher improvement rates 
than the placebo groups. ■

EXAMPLE 10.20

Sample data are not always as obvious and conclusive as those given in  Example 10.19. 
Use the revised sample data shown in Table 10.28 to conduct a CMH test. Give the 
p-value for your test and interpret your findings.

TABLE 10.27
Study results Clinic  Improved  Not Improved Total

1 Drug  40 (80%) 10 50

 Placebo  15 (30%) 35 50

 Total   55 45 100

2 Drug  35 (70%) 15 50

 Placebo  20 (40%) 30 50

 Total   55 45 100

3 Drug  43 (86%) 7 50

 Placebo  31 (62%) 19 50

 Total   74 26 100

Total   184 116 300
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Solution Using the row and column totals of Table 10.28, the numerator and 
 denominator of x2

MH can be shown to be 110.25 and 18.21, respectively. The CMH 
statistic is then

x2
MH  6.05

Based on df  1, this test result has a significance defined by p-value  .0139. We 
conclude that although the drug product did not have a higher improvement rate in 
all three clinics, the data combined across clinics indicate that, on the average, there 
is significant evidence (p-value  .0139) that the drug improvement rate is higher 
than the placebo rate. ■

Mantel and Haenszel also extended this test procedure to cover the situa-
tion in which we want a combined test based on sample data displayed in a set of  
q 2 3 c contingency tables. Returning to our example, suppose rather than having 
two  response categories (e.g., improved, not improved) we have c different cat-
egories (such as worse, same, slightly better, moderately better, completely well). 
For  these situations, it is possible to score the categories of the scale and run a 
 Mantel–Haenszel test based on the difference in mean scores for the two treat-
ment groups. Because the formulas become more involved, available statistical 
software programs are used to make the calculations.

 10.9 ReseaRch study: does Gender Bias exist in the 
selection of students for Vocational education?

In Section 10.1, we introduced some of the issues involved in gender bias. 

defining the Problem
The following questions would potentially be of interest to social scientists, civil 
rights advocates, and educators.

●● Does gender play a role in the acceptance of a student into vocational 
 education programs?

●● What are some of the factors that may explain an association 
between gender and acceptance rate?

TABLE 10.28
Revised study results Clinic   Improved  Not Improved  Total

1  Drug  35 (70%) 15 50
 Placebo  26 (52%) 24 50

 Total  61 39 100

2  Drug  28 (56%) 22 50
 Placebo  29 (58%) 21 50

 Total 57 43 100

3  Drug  37 (74%) 13 50
 Placebo  24 (48%) 26 50

 Total  61 39 100 
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●● How large a sample of students is needed to obtain substantial 
evidence of a bias or discrimination?

In this study, the researchers decided that they were initially interested in the 
overall acceptance and rejection rates for males and females in high school voca-
tional education programs. To eliminate some of the potentially confounding fac-
tors, they decided to use only large public schools in northeastern states. In order 
to determine a sample size for the study, the researchers provided the following 
specifications: They wanted to be 95% confident that the estimated proportion of 
rejected applications was within .015 of the proportion of rejections in the popula-
tion. Because school districts were reluctant to participate in the study, there was 
little insight with respect to what the population rejection rate would be. Thus, 
in calculating the sample size, a value of .50 (50%) was used. This yielded the 
 fol lowing large-sample calculation:

n 
1z2

.025 2 1.5 2 11 2 .5 2
1E 2 2 

11.96 2 1.5 2 11 2 .5 2
1.015 2 2  4,268.4

It was decided to take a random sample of 5,000 students in order to obtain the 
 desired degree of precision because a number of the students selected for the study 
might not have complete records.

Collecting the Data 
A random sample of 1,000 applicants for vocational education was selected from 
each of five major northeastern school districts. Each of the 5,000 records pro-
vided the type of program that was applied for and whether the student was 
 accepted or rejected for the program. The data were then summarized into tables 
and graphs.

Summarizing the Data
Table 10.29 and Figure 10.1 summarize the data. A random sample of 5,000 
high school students who have applied for vocational training is shown based 
on their gender and acceptance into the program. The cells contain the follow-
ing  information: count for each category, percentage of row, and percentage  
of  column.

TABLE 10.29
Vocational training data Accepted in Program

Gender No  Yes All

Female  963  433  1,396
 69.0%  31.0%  100.0%
 33.6%  20.3%    27 .9%

Male  1,906  1,698  3,604
 52.9%  47 .1%  100.0%
 66.4%  79.7%    72.1%

All  2,869  2,131  5,000
 57 .4%  42.6%  100.0%
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Analyzing the Data
From Figure 10.1, we can observe that female students have a much lower accept-
ance rate than do male students (31% versus 47.1%). To determine if this is a 
 statistically significant difference, we test the following hypotheses:

H0: Gender and acceptance are independent.

Ha: Gender and acceptance are associated.

Using a chi-square test of independence, we obtain x2  106.6 with df  1 and 
p-value  Pr[x2

1 . 106.6] , .0001. Thus, there is strong evidence of an association 
between gender and acceptance into vocational education programs. To further 
explore this association, we note that the odds ratio of acceptance for males to 
 acceptance for females is given by

OR 
male odds

female odds


1,698 /1,906
433 /963


.8909
.4496

 1.98

with a 95% confidence interval of (1.67, 2.36). Thus, the odds of a male student 
being accepted into a vocational education program are nearly twice the odds of a 
female student. This is strong evidence of a bias in favor of male students.

The term bias is defined as an association between the acceptance or rejection 
decision and the gender of the applicant, which is very unlikely to have occurred 
just by chance. In order to validly use the odds ratio and chi-square tests of inde-
pendence to support a conclusion of a bias, it is necessary for a couple of assump-
tions to hold. Bickel, Hammel, and O’Connell (1975) have a detailed discussion of 
these assumptions. Basically, assumption 1 is that male and female applicants for 
vocational education do not differ with respect to any attribute that is legitimately 
pertinent to their acceptance into a vocational education program. Assumption 2 
is that the gender ratios of applicants to the various vocational education programs 
are not strongly associated with any other factors that are used in the  ac ceptance 
decision methodology.

The researchers had decided to limit their study to only the four largest 
 vocational education programs: plumbing, nursing, cosmetology, and welding. The 
aggregated data may be misleading due to the imbalance in the number of applicants 
by gender for the four programs. This could be a possible violation of  assumption 2.  

FIGURE 10.1
Acceptance percentages  

by gender
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That is, the gender ratios are associated with the type of vocational program. 
Table 10.30 and Figure 10.2 will examine the data separately for each of the four 
 programs.

Figure 10.2 has consolidated the data across four major types of programs. 
Two of the programs are traditional male programs and two are traditional female 
programs. An analysis of the information about the types of programs the stu-
dents applied for yields a more complete picture of the acceptance rates. The 5,000 
 applications are broken out by the type of vocational program applied for by the 
students.

Figure 10.2 displays the above data by plotting the percentages of acceptance 
and rejection within each level of gender and vocation. The pattern is much more 

TABLE 10.30
Expanded vocational  

training data

Vocation Gender Accepted Frequency

Plumbing Male Yes 848
Welding Male Yes 585
Nursing Male Yes 229
Cosmetology Male Yes 36

Plumbing Male No 519
Welding Male No 343
Nursing Male No 462
Cosmetology Male No 582

Plumbing Female Yes 148
Welding Female Yes 28
Nursing Female Yes 217
Cosmetology Female Yes 40

Plumbing Female No 31
Welding Female No 13
Nursing Female No 404
Cosmetology Female No 515

All   5,000

FIGURE 10.2
Acceptance rate by  

vocation and gender
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complex than what was observed in Figure 10.1. In the aggregated data, females 
had a much lower acceptance rate than males (31.0% to 47.1%). However, when 
we  examine the data by type of vocational program, we find that females have a 
higher percentage of acceptance than males in plumbing (82.7% versus 62.0%) and 
 welding (68.3% versus 63.0%) with similar acceptance percentages in cosmetology 
(7.2% versus 5.8%) and nursing (34.9% versus 33.1%). These results  appear to be 
impossible. Is this another case of deception through the manipulation of numbers 
by way of statistical methodology? There is no deception. This is an example of a 
lurking variable that confounds the association between gender and acceptance into 
the vocational education program. This type of data set has occurred often in the 
literature and is referred to as Simpson’s Paradox.

The problem in the analysis of the aggregate data is that there is a violation 
of assumption 2. That is, the gender ratios are strongly associated with another 
factor that may be important in the study. In this study, the gender of the applicant 
is strongly associated with the type of vocational program. Table 10.31 displays 
the numbers and percentages of applicants by gender and type of program. 
The  percentage of female applicants to the plumbing and welding programs is 
much lower than the corresponding percentages for males. A chi-square test of 
 independence between the factors gender and type of program yields x2  940.3 
with df  3 and p-value , .0001. Thus, there is strong evidence of an association 
between gender and type of vocational program. This association is the underlying 
factor that has distorted the results shown in the analysis of the aggregated data.

TABLE 10.31
Aggregated data for types  

of training

 Type of Program

Gender  Cosmetology  Nursing  Plumbing  Welding  All

Female  555  621  179  41  1,396
 47 .3%  47 .3%  11.6%  4.2%  27 .9%

Male  618  691  1,367  928  3,604
 52.7%  52.7%  88.4%  95.8%  72.1%

All  1,173  1,312  1,546  969  5,000

The data will now be analyzed separately for each of the four programs, and then 
an overall analysis using the Cochran–Mantel–Haenszel test statistic will be done. 
These results are summarized in Table 10.32.

Analyzing the Data Separately for Each Program
(a) Vocational Program—Cosmetology:

Accepted in Program

Gender  No  Yes  All

Female  515  40  555
 92.8%  7.2%  100.0%

Male  582  36  618
 94.2%  5.8%  100.0%

All  1,097  76  1,173
 93.5%  6.5%  100.0%

TABLE 10.32
Acceptance rates by 

gender and vocation 
program
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 a. x2  .922 with df  1 and p-value  .337
 b. OR  .80 with a 95% confidence interval of (.50, 1.27)

(b) Vocational Program—Nursing:

Accepted in Program

Gender  No  Yes  All

Female  404  217  621
 65.1%  34.9%  100.0%

Male  462  229  691
 66.9%  33.1%  100.0%

All  866  446  1,312
 66.0%  34.0%  100.0%

 a. x2  .474 with df  1 and p-value  .491
 b. OR  .92 with a 95% confidence interval of (.73, 1.16)

(c) Vocational Program—Plumbing:

Accepted in Program

Gender  No  Yes  All

Female  31  148  179
 17 .3%  82.7%  100.0%

Male  519  848  1,367
 38.0%  62.0%  100.0%

All  550  996  1,546
 35.6%  64.4%  100.0%

 a. x2  29.44 with df  1 and p-value , .0001
 b. OR  .34 with a 95% confidence interval of (.23, .51)

(d) Vocational Program—Welding:

Accepted in Program

Gender  No  Yes  All

Female  13  28  44
 31.7%  68.3%  100.0%

Male  343  585  928
 37 .0%  63.0%  100.0%

All  356  613  969
 36.7%  63.3%  100.0%

 a. x2  .466 with df  1 and p-value  .495
 b. OR  .79 with a 95% confidence interval of (.40, 1.55)
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The Cochran–Mantel–Haenszel statistic with a continuity correction yields a 
value of 14.29 with a p-value  .00016. This would indicate that there is an asso-
ciation between gender and acceptance into a vocational education program. We 
can further analyze this association by examining each of the four programs indi-
vidually. We observe that the confidence intervals for the odds ratios for three of 
the four programs contain 1.0. Only in the plumbing program does there appear 
to be a large difference in the acceptance rates for males and females. What can 
we conclude about a gender bias in the  selection process for vocational education 
programs?

Communicating the Results
In the aggregate analysis, there was strong evidence that males had a much 
higher acceptance rate than females. When examining the four programs indi-
vidually, the acceptance rate for females is higher than males in all four pro-
grams. This apparent contradiction occurs because there are large differences in 
the proportions of applicants by gender for the four programs. These differences 
would not have yielded such a large difference in the aggregate acceptance rate 
except for the fact that it was much more difficult for both genders to obtain 
acceptance in two of the programs (nursing and cosmetology). The overall 
acceptance rates were 34.0% for nursing and 6.5% for cosmetology, whereas 
the overall acceptance rates were 64.4% for plumbing and 63.3% for welding. 
This difference in acceptance rates is then magnified by the fact that the propor-
tions of females who applied for admission were much lower than those of males 
in the programs having the higher acceptance rates. Thus, there appears to be 
a bias against female acceptance into vocational education programs when in 
fact females have higher acceptance rates in all four programs. When examining 
complex and socially difficult questions, it is very important that all factors of 
 importance be included in the analysis in order to not reach an incorrect con-
clusion. Bickel, Hammel, and O’Connell (1975) provide much more in-depth 
analysis of this type of data.

 10.10 Summary and Key Formulas

In this chapter, we dealt with categorical data. Categorical data on a single vari-
able arise in a number of situations. We first examined estimation and test pro-
cedures for a population proportion (p) and for two population proportions 
(p1 2 p2) based on independent samples. The extension of these procedures to 
comparing several population proportions (more than two) gave rise to the chi-
square goodness-of-fit test.

Two-variable categorical data problems were discussed using the chi-
square tests for independence and for homogeneity based on data displayed 
in an r 3 c contingency table. Fisher Exact test was introduced for analyzing 
2 3 2 tables in which the expected counts are less than 5. The Cochran–Man-
tel–Haenszel test extends the chi-square test for independence to q sets of 
2 3 2 tables. 

Finally, we discussed odds and odds ratios, which are especially useful in bio-
medical trials involving binomial proportions. 
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Key Formulas

 1. Confidence interval for p

p| 6 za/2ŝp|

  where

 p| 
y|

n|
, y|  y 1 .5z2

a/
 

2,

 n|  n 1 z2
a/2, and

 ŝp|  Å
p| 11 2 p| 2

n|

 2. Sample size required for a  
100(1 2 a)% confidence interval  
of the form p̂ 6 E 

n 
z2

a/2p
11 2 p 2
E2

   (Hint: Use p  .5 if no estimate is 
available.)

 3. Statistical test for p

T.S.: z 
p̂ 2 p0

sp̂

  where

sp̂  Å
p0 11 2 p0 2

n
 4. Confidence interval for p1 2 p2

p̂1 2 p̂2 6 za/2 ŝp̂12p̂2

  where
ŝp̂12p̂2

 Å
p̂1 11 2 p̂1 2

n1
1

p̂2 11 2 p̂2 2
n2

 5. Statistical test for p1 2 p2

 Case 1:  Independent proportions 
(min(n1p̂1, n1 11 2 p̂1 2 , 
n2p̂2, n2 11 2 p̂2 2 2 $ 5)

 T.S.: z 
p̂1 2 p̂2

ŝp̂12p̂2

 where

ŝp̂12p̂2
 Å

p̂1 11 2 p̂1 2
n1

1
p̂2 11 2 p̂2 2

n2

 Case 2: Independent proportions 
(min(n1p̂1, n1 11 2 p̂1 2 , n2p̂2,  
n2 11 2 p̂2 2 2 , 5)

 T.S.: Fisher Exact test

Case 3: Correlated proportions  
(n12 1 n21 . 20 2

 McNemar test

 T.S.: z 
n12 2 n21

Ën12 1 n21

 Case 4: Correlated proportions 
1n12 1 n21 # 20 2

 T.S.: McNemar test—using binomial 
distribution

 6. Multinomial distribution

P(n1, n2, . . . , nk)


n!

n1!n2! . . . nk!
 pn

11pn
22 . . . pn

kk

 7. Chi-square goodness-of-fit test 

T.S.: x2  a
i
c 1ni 2 Ei 2 2

Ei
d

 where
Ei  npi0

 8. Chi-square test of independence 

T.S.:  x2  a
i,j

c
1nij 2 Eij 2 2

Eij
d

 where

Eij 
1row i total 2 1column j total 2

n

 9. Odds of event A 
P 1A 2

1 2 P 1A 2
  a in a binomial situation, odds of

  a success 
p

11 2 p 2 b
 10. Odds ratio for binomial situation, 

two groups

Odds for group 1
Odds for group 2


p1 / 11 2 p1 2
p2 / 11 2 p2 2

 11. Cochran–Mantel–Haenszel 
 statistic

x2
MH 
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 10.11 Exercises

 10.2 Inferences About a Population Proportion p
 Basic 10.1 For each of the following values for p̂ and n, compute a 99% confidence interval for the 

population proportion p using both the standard large-sample procedure and the WAC adjusted 
procedure. Comment on whether the WAC adjustment was needed.

 a. n  20, p̂  .35
 b. n  35, p̂  .80
 c. n  50, p̂  .34
 d. n  100, p̂  .12

 Basic 10.2 For each of the following values for p̂ and n, compute a 95% confidence interval for the 
population proportion p using both the standard large-sample procedure and the WAC adjusted 
procedure. Comment on whether the WAC adjustment was needed.

 a. n  20, p̂  .35
 b. n  35, p̂  .80
 c. n  50, p̂  .34
 d. n  100, p̂  .12

 Basic 10.3 For each of the following values for p̂ and n, compute a 95% confidence interval for the 
population proportion p using both the standard large-sample procedure and the WAC adjusted 
procedure. Comment on whether the WAC adjustment was needed.

 a. n  12, p̂  .50
 b. n  25, p̂  .20
 c. n  40, p̂  .125
 d. n  100, p̂  .05

 Basic 10.4 A random sample of 1,200 units is randomly selected from a population. If there are 732 
successes in the 1,200 draws,

 a. Construct a 95% confidence interval for p.
 b. Construct a 99% confidence interval for p.
 c. Explain the difference in the interpretation of the two confidence intervals.

 Soc. 10.5 A public opinion polling agency plans to conduct a national survey to determine the 
proportion p of people who would be willing to pay a higher per kilowatt hour fee for their electricity 
provided the electricity was generated using ecologically friendly methods such as solar, wind, or nuclear. 
How many people must be included in the poll to estimate the population proportion within .04 of the 
population value using a 95% confidence interval. Consider two separate situations:

 a. Suppose the polling agency has no previous information about the population 
proportion.

 b. Suppose the polling agency is fairly certain that the population proportion is less 
than 30%.

 c. Why are the sample sizes so different for the two situations?

 Soc. 10.6 There has been a considerable underfunding of the national Highway Trust Fund over the 
last 20 years, which has resulted in a dramatic decline in the maintenance of the nation’s roads 
and bridges. An organization representing highway construction companies is planning a nation-
wide survey to estimate the proportion p of people who would support an increase in the gasoline tax. 
How large a sample is needed to obtain an estimate of p to within .02 using a 99% confidence interval. 
Consider two separate situations:

 a. Suppose the organization has no idea of the value of p.
 b. Suppose the organization is fairly certain the value of p is greater than 75%.

 Med. 10.7 The test for screening donated blood for the presence of the AIDS virus was developed 
in the 1980s. It is designed to detect antibodies, substances produced in the body of donors carrying 
the virus; however, it is not 100% accurate. The developer of the test claimed that the test would pro-
duce fewer than 5% false positives and fewer than 1% false negatives. In order to evaluate the accuracy 
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of the test, 1,000 persons known to have AIDS and 10,000 persons known to not have AIDS were given 
the test. The following results were tabulated:

True State of Patient

Test Result Has Aids Does Not Have Aids Total 

Positive test 993 591 1,584
Negative test 7 9,409 9,416

Total 1,000 10,000 11,000

 a. Place a 99% confidence interval on the proportion of false positives produced by 
the test.

 b. Is there substantial evidence (a  .01) that the test produces less than 5% false 
positives.

 Med. 10.8 Refer to Exercise 10.7.
 a. Place a 99% confidence interval on the proportion of false negatives produced by 

the test.
 b. Is there substantial evidence (a  .01) that the test produces less than 2% false 

negatives.
 c. Which of the two types of errors, false positives or false negatives, do you think is 

more crucial to public safety. Explain your reasoning.

 Med. 10.9 Refer to Exercises 10.7 and 10.8. Although the accurate determination of the proportions 
of false positives and false negatives produced by an important medical test is important, the 
probabilities of the following two events are of greater interest. In the following two questions, 
you may assume that the point estimators of false positives and false negatives are the correct 
values of these probabilities. The prevalence of the AIDS virus in the population of people who 
donate blood is thought to be around 2%.

 a. Suppose a person goes to a clinic and donates blood and the test of the AIDS virus 
results in a positive test result. What is the probability that the person donating blood 
actually is carrying the AIDS virus?

 b. Suppose a person goes to a clinic and donates blood and the test of the AIDS virus 
results in a negative test result. What is the probability that the person donating 
blood does not have the AIDS virus?

 Med. 10.10 In a study of self-medication practices, a random sample of 1,230 adults completed a 
 survey. The survey reported that 441 of the persons had a cough or cold during the past month 
and 260 of these individuals said they had treated the cough or cold with an over-the-counter 
(OTC) remedy. The data are summarized next.

Respondents reporting cough or cold 441
Respondents using an OTC remedy 260

Respondents using specific class of OTC remedy: 
 Pain relievers 110
 Cold capsules 57
 Cough remedies 44
 Allergy remedies 9
 Liquid cold remedies 35
 Nasal sprays 4
 Cough drops 13
 Sore-throat lozenges 9
 Room vaporizers 4
 Chest rubs 9
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 a. Provide a graphical display of the above data using percentages. Do your 
percentages add to 100%? Why or why not?

 b. Based on the above data, for what classes of OTC remedies could you validly obtain 
a 95% confidence interval for the corresponding population proportion p?

 Edu. 10.11 An administrator at a university with an average enrollment of 55,000 students wants 
to estimate the proportion of students who would support an increase in the student activity fee. 
This increase would be used to fund a $450 million renovation of the campus football stadium. How 
many students would need to be selected if the administrator wants to be 99% confident that the sample 
estimator is within .05 of the proportion for the whole campus.

 Bio. 10.12 An entomologist is studying a new tick species that may be the carrier of the pathogen 
associated with lyme disease. She designs a study to estimate prevalence of the pathogen in the 
tick. She examines 100 ticks randomly selected in the study region during a period of the year 
when ticks have been known to be infected with the pathogen in other regions of the country. The 
examination of the 100 ticks finds none of the ticks are infected with the pathogen.

 a. Provide the entomologist with an estimate of the proportion of ticks of this species 
that are carrying the pathogen.

 b. Construct a 95% confidence interval for the proportion of ticks of this species that 
are carrying the pathogen.

 c. The prevalence of the lyme-associated pathogen in the black-legged tick is 2%. 
Is the prevalence in the new species of tick less than the prevalence in the black-
legged tick? Use a  .01.

 Bus. 10.13 The sales manager for a very exclusive brand of automobile declares that, after his staff 
had completed a new training program, less than 10% of their clients were dissatisfied with the 
service obtained at the dealership. The owner of the dealership hires a marketing firm to evaluate 
this claim. In a random sample of 40 customers, only 5 of the 40 customers were dissatisfied with 
the dealerships service.

 a. Is there significant evidence that the sales manager’s claim is supported by the data? 
Use a .05.

 b. Place a 95% confidence interval on the proportion of customers who are dissatis-
fied with the service in their encounters with the staff at the dealership.

 Med. 10.14 Chronic pain is often defined as pain that occurs constantly and flares up frequently, is 
not caused by cancer, and is experienced at least once a month for a 1-year period of time. Many 
articles have been written about the relationship between chronic pain and the age of the patient. 
In a survey conducted on behalf of the American Chronic Pain Association in 2004, a random cross 
section of 800 adults who suffer from chronic pain found that 424 of the 800 participants in the 
survey were above the age of 50.

 a. Would it be appropriate to use a normal approximation in conducting a statistical 
test of the research hypothesis that over half of persons suffering from chronic 
pain are over 50 years of age?

 b. Using the data in the survey, is there substantial evidence (a  .05) that more 
than half of persons suffering from chronic pain are over 50 years of age?

 c. Place a 95% confidence interval on the proportion of persons suffering from 
chronic pain that are over 50 years of age.

 Pol. Sci. 10.15 National public opinion polls are often based on as few as 1,500 persons in a random 
sampling of public sentiment on issues of public interest. These surveys are often done in  person 
because the response rate for a mailed survey is very low and telephone interviews tend to reach a 
larger proportion of older persons than would be represented in the public as a whole. Suppose a 
random sample of 1,500 registered voters was surveyed about energy  issues.

 a. If 230 of the 1,500 responded that they would favor drilling for oil in national 
parks, estimate the proportion p of registered voters who would favor drilling for 
oil in  national parks. Use a 95% confidence interval.

 b. How many persons must the survey include to have 95% confidence that the sam-
ple proportion is within .01 of p?

 c. A congressman has claimed that over half of all registered voters would support 
drilling in national parks. Use the survey data to evaluate the congressman’s claim. 
Use a  .05.
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 10.3 Inferences About the Difference Between  
Two Population Proportions, p1 2 p2

 Basic 10.16 A random sample of 250 observations is taken from population A, which has 30% of 
its population living in poverty: pA  .3. A second random sample of size 350 is taken indepen-
dently taken from population B, which has 15% of its population living in poverty: pB  .15.

 a. What are the mean and standard deviation of the difference in the sample propor-
tions, p̂A 2 p̂B?

 b. Describe the shape of the sampling distribution of the difference in the sample 
proportions, p̂A 2 p̂B?

 c. Is it appropriate to use the normal approximation to the sampling distribution of 
the difference in the sample proportions, p̂A 2 p̂B?

 Basic 10.17 Refer to Exercise 10.16. Assuming that equal sample sizes will be taken from the two popu-
lations, how large a sample should be taken from each of the populations to obtain a 99% confi-
dence interval for pA 2 pB with a width of at most .02? (Hint: Use p̂A  .3 and p̂B  .15 from 
Exercise 10.16.

 Bus. 10.18 A large retail lawn care dealer currently provides a 2-year warranty on all lawn mowers 
sold at its stores. A new employee suggested that the dealer could save money by just not offering 
the warranty. To evaluate this suggestion, the dealer randomly decides whether or not to offer 
the warranty to the next 50 customers who enter the store and express an interest in purchasing 
a lawnmower. Out of the 25 customers offered the warranty, 10 purchased a mower as compared 
to 4 of 25 not offered the warranty.

 a. Place a 95% confidence interval on p1 2 p2, the difference in the proportions of 
customers purchasing lawnmowers with and without the warranty.

 b. Test the research hypothesis that offering the warranty will increase the propor-
tion of customers who will purchase a mower. Use a  .05.

 c. Are the conditions for using a large-sample test to answer the question in part (b) 
satisfied? If not, apply an exact procedure.

 d. Based on your results from parts (a) and (b), should the dealer offer the warranty?

 Bus. 10.19 An advertising agency is considering two advertisements for a major client. One of the 
advertisements is in black and white, and the other is in color. A market research firm randomly 
selects 50 male and 50 female customers of the client to evaluate the two advertisements. The 
firm finds that 39 of the 50 males prefer the color advertisement, whereas 46 of the 50 females 
preferred the color advertisement.

 a. Place a 95% confidence on the difference in the proportions of males and females 
that prefer the color advertisement.

 b. Does the confidence interval indicate that there is a significant difference in the 
proportions? Use a  .05.

 c. Are the conditions for using a large-sample test to answer the question in part (b) 
satisfied? If not, apply an exact procedure.

 d. Based on your results from parts (a) and (b), should the advertisement firm use 
different advertisements for male and female customers?

 Med. 10.20 Biofeedback is a treatment technique in which people are trained to improve their 
health by using signals from their own bodies. Specialists in many different fields use biofeedback 
to help their patients cope with pain. A study was conducted to compare a biofeedback treatment 
for chronic pain with an NSAID medical treatment. A group of 2,000 newly diagnosed chronic 
pain patients were randomly assigned to receive to one of the two treatments. After 6 weeks of 
treatments, the pain levels of the patients were assessed with the following results:

 Significant Reduction in Pain

Treatment  Yes No Total

Biofeedback  560 440 1,000
NSAID  680 320 1,000

Total 1,240 760 2,000



10.11 Exercises    537

 a. For both treatments, place 95% confidence intervals on the proportions of patients 
who experienced a significant reduction in pain.

 b. Is there significant evidence (a  .05) of a difference in the two treatments relative 
to the proportions of patients who experienced a significant reduction in pain?

 c. Place a 95% confidence interval on the difference in the two proportions.

 Ag. 10.21 Sludge is a dried product remaining from processed sewage and is often used as a fer-
tilizer on agriculture crops. If the sludge contains a high concentration of certain heavy metals, 
such as nickel, the nickel may reach such a concentration in the crops that it becomes a danger 
to the consumer of the crops. A new method of processing sewage has been developed, and an 
experiment is conducted to evaluate its effectiveness in removing heavy metals. Sewage of a 
known concentration of nickel is treated using both the new and the old methods. One hundred 
tomato plants were randomly assigned to pots containing sewage sludge processed by one of the 
two methods. The tomatoes harvested from the plants were evaluated to determine if the nickel 
was at a toxic level. The results are as follows:

 Level of Nickel

Treatment  Toxic  Nontoxic  Total

New  5  45  50
Old 9 41  50

Total  14 86  100

 a. For both treatments, place 95% confidence intervals on the proportions of plants 
that would have a toxic level of nickel.

 b. Is there significant evidence (a  .05) that the new treatment would produce a lower 
proportion of plants having a toxic level of nickel compared to the old treatment?

 c. Use the Fisher Exact test to test the research hypothesis that the new treatment 
would produce a lower proportion of plants having a toxic level of nickel compared 
to the old treatment. Compare your conclusions with the conclusions reached in 
part (b).

 d. Place a 95% confidence interval on the difference in the two proportions.

 Pol. Sci. 10.22 A political scientist is studying the impact of a political debate between candidates for 
governor in a small western state. The scientist wants to evaluate the proportion of registered 
votes who switch their preference after viewing the debate. The following table contain the data 
from 75 registered voters.

Preference 
Before Debate

Preference After Debate

Candidate A Candidate B

Candidate A  28 13
Candidate B  6 28

 a. Test whether there was a shift away from candidate A after the debate. Use a  .05. 
Carefully state your conclusion.

 b. Construct a 95% confidence interval for the change after the debate in the 
proportion of registered voters preferring candidate A.

 Engin. 10.23 An article by Chen and Chen (1995) compared the quality of two speech recognition 
systems. A benchmark of 2000 words was submitted to both the generalized minimal distortion seg-
mentation (GMDS) system and the continuous density hidden Markov model (CDHMM). The follow-
ing table contains the results of the performance of the two systems, the number of words correctly and 
incorrectly identified.
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CDHMM

GMDS Correct Incorrect

Correct  1,921  58
Incorrect  16  5

 a. Are the proportions of correct identifications by the two systems correlated or 
independent? Justify your answer.

 b. Test whether the proportions of correct identifications differ for the two systems. 
Use a  .05. Carefully state your conclusion in terms of the population parameters.

 c. Construct a 95% confidence interval for the difference in the two systems 
proportions of correct identifications.

 Soc. 10.24 The question of whether the sexual orientation of the mother has an impact on the 
sexual identity of her children was addressed in an article by Golombok and Tasker (1996). 
Twenty-five children of lesbian mothers and a control group of 21 children of heterosexual single 
mothers were interviewed in their early twenties concerning their sexual orientation. The results 
of the interviews are given in the following table. Data were unavailable for 1 male child; thus, 
orientation is reported on only 20 children of heterosexual single mothers.

Child’s Orientation

Mother’s Orientation Nonheterosexual Heterosexual

Lesbian 2 23
Heterosexual 0 20

 a. What is the populations of interest in this study?
 b. Is the proportion of young adults identifying themselves as nonheterosexual 

higher for lesbian mothers than for heterosexual mothers? Use a  .05.
 c. Construct a 95% confidence interval on the difference in the two proportions 

of young adults who identify themselves as being heterosexual in their sexual 
orientation.

 10.4 Inferences About Several Proportions:  
Chi-Square Goodness-of-Fit Test

 Basic 10.25 List the characteristics of a multinomial experiment.
 Basic 10.26 How does a binomial experiment relate to a multinomial experiment?
 Basic 10.27 Under what conditions is it appropriate to use the chi-square goodness-of-fit test for the 

proportions in a multinomial experiment? What qualification(s) might one have to make if the 
sample data do not yield a rejection of the null hypothesis?

 Basic 10.28 What restrictions are placed on the sample size n in order to appropriately apply the 
chi-square goodness-of-fit test?

 Bus. 10.29 The quality control department of a motorcycle company classifies new motorcycles 
according to the number of defective components per motorcycle at an initial inspection. An 
improvement to the production process has been implemented, and, hopefully, there will be a change 
from the historical defective distribution: p1  .80, p2  .10, p3  .05, p4  .03, and p5  .02. A 
random sample of 300 motorcycles produced under the new system is classified as follows:

Number of Defectives Number of Motorcycles, ni

0  238
1  32
2  12
3  13

4 or more  5
Total  300

  At the a  .05 level, does there appear to be a change in the historical proportions of defectives?
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 Bus. 10.30 Refer to Exercise 10.29.
 a. Place 95% confidence intervals on the proportions of the production falling into 

the five classifications.
 b. Do the confidence intervals support the conclusion reached in Exercise 10.29?
 c. Why may the conclusion reached using the confidence intervals differ from the 

conclusion reached in Exercise 10.29?
 Soc. 10.31 The data in the following table from the book A Handbook of Small Data Sets (Hand 

et al., 1993, p. 36) document the starting positions of the winning horses in 144 races. The starting 
position listed as 1 is the position of the horse in the starting gate closest to the inside rail of the track, 
and position 8 is farthest from the rail. Racing officials contend that starting position has no effect on the 
chance of winning the race.

Starting position 1 2 3 4 5 6 7 8

Number of winners 29 19 18 25 17 10 15 11

 a. What is the population of interest?
 b. Do the data support the racing officials’ contention?

 Soc. 10.32 The article “Positive Aspects of Caregiving” ( Research on Aging (2004) 26:429–453) 
describes a study that assessed how caregiving to Alzheimer’s patients impacted the caregivers. 
Most people would generally think that family members who provide daily care to parents and 
spouses with Alzheimer’s disease would tend to be negatively impacted by their role as caregiver. 
The study asked 1,229 caregivers to respond to the following statement: “Caregiving enabled me 
to develop a more positive attitude toward life.” The following responses were reported:

 a. Provide a graphical display of the data that illustrates potential differences in the 
 percentages in the five cells.

 b. Is there significant evidence that the proportions are not equally dispersed over 
the five possible responses? Use a  .05.

 c. Based on the graph in part (a) and your conclusions from part (b), does provid-
ing care to Alzheimer’s patients have generally a positive or negative impact on 
caregivers?

 Soc. 10.33 Organizations interested in making sure that accused persons have a trial of their peers 
often compare the distribution of jurors by age, education, and other socioeconomic variables. 
One such study in a large southern county provided the following information on the ages of 
1,000 jurors and the age distribution countywide.

 Response 

 Disagree  Disagree    Agree  Agree   
 a Lot a Little No Opinion  a Little  a Lot Total

Number  166  116  171  234  542  1,229
% of total  13.5  9.4 13.9 19.2 44.1 100

 Age

 21–40  41–50  51–60  Over 60  Total

Number of jurors  399 231  158  212  1,000
Age % countywide  42.1  22.9  15.7  19.3    100

 a. Display the above data using appropriate graphs.
 b. Is this significant evidence of a difference between the age distribution of jurors 

and the countywide age distribution?
 c. Does there appear to be an age bias in the selection of jurors?
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 Soc. 10.34 Refer to Exercise 10.33. The following information displays the education distribution 
of 1,000 jurors and the education distribution countywide.

 Education Level 

 Elementary Secondary  College Credits  College Degree  Total

Number of jurors 278 523 98 101 1,000
Education % countywide  39.2  40.5 9.1 11.2 100

 a. Display the above data using appropriate graphs.
 b. Is this significant evidence of a difference between the education distribution of 

 jurors and the countywide education distribution?
 c. Does there appear to be bias in the selection of jurors with respect to the educa-

tion level of jurors?

 Bus. 10.35 A researcher obtained a sample of 125 security analysts and asked each analyst to select 
four stocks on the New York Stock Exchange that were expected to outperform the Standard 
and Poor’s Index over a 3-month period. One theory suggests that the securities analysts would 
be expected to do no better than chance. Hence, the number of correct guesses from the four 
 selected stocks for any analyst would have a binomial distribution with n  4 and p  .5 yield 
probabilities, as shown here:

 Number Outperforming

 0  1 2 3 4

Multinomial probabilities (pi)  .0625  .25  .375  .25  .0625

  The number of analysts’ selections that outperformed the Standard and Poor’s Index are given 
here:

 Number Outperforming

 0  1  2  3  4  Total

Frequency 3  23  51  39  9  125

  Do the data support the contention that the analysts’ performance is different from just randomly 
selecting four stocks?

 Hist. 10.36 A study examining bomb hits in South London during World War II is documented in 
the following table from the book A Handbook of Small Data Sets (Hand et al., 1993, p. 232). 
The bomb hits were recorded in the 576 grids in a map of a region in South London. The study 
contended that certain areas were less likely to be hit with a bomb because of certain geographi-
cal features. If the bomb hits were purely random, a Poisson model would produce the number 
of hits per grid.

Number of bomb hits 0 1 2 3 4 5 6 7 Total

Number of grids 229 211 93 35 7 0 0 1 576

 a. Does the distribution of bomb hits appear to be random across this region of 
South London?

 b. State the null and research hypotheses for this study in terms of pi, the probability 
of i bomb hits in a grid.
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 Engin. 10.37 Nylon bars were tested for brittleness. Each of 280 bars was molded under similar con-
ditions and was tested by placing a fixed stress at specified locations on the bar. Assuming that each 
bar has uniform composition, the number of breaks on a given bar should be Poisson distributed with 
an unknown a rate of breaks, l, appearing per square inch of bar. The following table summarizes the 
number of breaks found on the 280 bars:

Breaks/bar 0 1 2 3 4 5 Total

Frequency 121 110 38 7 3 1 280

 a. Use a goodness-of-fit test to assess whether the data appear to be from a Poisson 
model.

 b. What is the population of interest in this study?

 Bio. 10.38 A genetics experiment on the characteristics of tomato plants provided the following 
data on the number of offspring expressing four phenotypes.

Phenotype Tall, cut-leaf Dwarf, cut-leaf Tall, potato-leaf Dwarf, potato-leaf Total

Frequency 926 293 288 104 1,611

 a. The researcher wants to determine if there is substantial evidence that the tomato 
plants deviate from the current theory that the four phenotypes will appear in the 
proportion 9:3:3:1. Use a  .05.

 b. What is the population of interest in this study?

 Bio. 10.39 Entomologists study the distribution of insects across agricultural fields. A study of fire 
ant hills across pasture lands is conducted by dividing pastures into 50-meter squares and count-
ing the number of fire ant hills in each square. The null hypothesis of a Poisson distribution for 
the counts is equivalent to a random distribution of the fire ant hills over the pasture. Rejection of 
the hypothesis of randomness may occur due to one of two possible alternatives. The distribution 
of fire ant hills may be uniform—that is, the same number of hills per 50-meter square—or the 
distribution of fire ants may be clustered across the pasture. A random distribution would have 
the variance in counts equal to the mean count, s2  m. If the distribution is more uniform than 
random, then the distribution is said to be underdispersed, s2 , m. If the distribution is more 
clustered than random, then the distribution is said to be overdispersed, s2 . m. The number of 
fire ant hills was recorded on one hundred 50-meter squares. In the data set, yi is the number of fire 
ant hills per square, and ni denotes the number of 50-meter squares with yi ant hills.

yi 0 1 2 3 4 5 6 7 8 9 12 15 20

ni 2 6 8 10 12 15 13 12 10 6 3 2 1
 a. Estimate the mean and variance of the number of fire ant hills per 50-meter 

square; that is, compute y and s2 using the formulas from Chapter 3.
 b. Do the fire ant hills appear to be randomly distributed across the pastures? Use a chi-

square test of the adequacy of the Poisson distribution to fit the data using a  .05.
 c. If you reject the Poisson distribution as a model for the distribution of fire ant 

hills, does it appear that fire ant hills are more clustered or uniformly distributed 
across the pastures?

 10.5 Contingency Tables: Tests for Independence and Homogeneity 
 H.R. 10.40 The recruitment director for a large engineering firm categorizes universities based on 

their rankings by U.S. News as most desirable, desirable, adequate, or undesirable for purposes  
of hiring the engineering graduates from the universities. The director reviews the performance 
records of 156 engineers employed by the firm for 1–2 years. The following table cross-classifies the annual 
performance ratings of the engineers with the universities from which they earned their BS degrees.

Performance Rating of Employee

University Type Outstanding Average Poor

Most desirable 21 20 4
Desirable 4 26 36
Adequate 13 7 2
Undesirable 10 7 6
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 a. What is the population of interest represented by the data in the above table?
 b. Can the director conclude that there is a relationship between the university type 

and the performance rating of the employee?
 c. Are the conditions for applying your test in part (b) satisfied?

 H.R. 10.41 Refer to Exercise 10.40. Suppose the recruitment director is preparing a presentation for 
upper management to recommend new hiring practices of the firm.

 a. Provide a graph of the data in Exercise 10.40.
 b. Comment on the results from Exercise 10.40 in terms of do whether hiring practices 

over the past 1–2 years appear to be successful. If not, suggest some changes.
 Gov. 10.42 The fire department in a large city is examining its promotion policy to assess if there is 

the potential for an age discrimination lawsuit. A random sample of 248 promotion decisions over 
the past 5 years yields the following information.

Age at Promotion Decision

Promotion Decision Under 30 30–39 40–49 50 or Older

Promoted  9 29 34 12
Not promoted 41 39 46 38

 a. Provide a graph of the promotion information.
 b. Is the promotion decision for the fireman related to the age of the fireman?  

Use a  .05.
 c. What is the population to which your conclusion in part (b) is applicable?
 d. What are some other variables, besides age, that needed to be addressed in an age 

discrimination analysis?
 Gov. 10.43 Refer to Exercise 10.42. Suppose that the initial analysis of the age discrimination had 

included only two levels of age, as contained in the following table.

Age at Promotion Decision

Promotion Decision 39 or younger 40 or Older

Promoted 38 46
Not promoted 80 84

 a. Is the age of the fireman related to whether or not the fireman is promoted? Use 
a  .05.

 b. Is your conclusion concerning age discrimination different from your conclusion 
using the data in Exercise 10.42?

 Ag. 10.44 Integrated Pest Management (IPM) adopters apply significantly less insecticides and 
fungicides than nonadopters among grape producers. The paper “Environmental and Economic 
Consequences of Technology Adoption: IPM in Viticulture” [Agricultural Economics (2008) 
18:145–155] contained the following adoption rates for the six states that account for most of 
the U.S. production. A survey of 712 grape-producing growers asked whether or not the growers 
were using an IPM program on the farms.

 State

 Cal. Mich. New York Oregon Penn. Wash. Total

IPM adopted 39 55 19 22 24 30 189
IPM not adopted 92 69 114 88 83 77 523

Total 131 124 133 110 107 107 712

 a. Provide a graphical display of the data.
 b. Is there significant evidence that the proportions of grape farmers who have 

adopted IPM are different across the six states?
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 Ag. 10.45 Refer to Exercise 10.44. Suppose that the grape farmers in the states of California, Mich-
igan, and Washington were provided with information about the effectiveness of IPM by the 
county agents, whereas the farmers in the remaining states were not.

 a. Is there significant evidence that providing information about IPM is associated 
with a higher adoption rate?

 b. Discuss why or why not your conclusion in part (b) provides justification for 
expanding the program for county agents to discuss IPM with grape farmers to 
other states.

 Soc. 10.46 Social scientists have produced convincing evidence that parental divorce is negatively 
associated with the educational success of their children. The paper “Maternal Cohabitation 
and Educational Success” [Sociology of Education (2005) 78:144–164] describes a study that 
addresses the impact of cohabiting mothers on the success of their children in graduating from 
high school. The following table displays the educational outcome by type of family for 1,168 
children.

 a. Display the above data in a graph to demonstrate any differences in the proportions 
of high school graduates across family types.

 b. Is there significant evidence that the proportions of students who graduate from 
high school are different across the various family types?

 Soc. 10.47 Refer to Exercise 10.46. For those students living within a stepparent family, does cohabi-
tation appear to affect high school graduation rates?

 10.6 Measuring Strength of Relation
 H.R. 10.48 Refer to Exercise 10.40. Provide a description of the relationship between the four types 

of universities and the performance ratings of the newly hired engineers.
 Gov. 10.49 Refer to Exercise 10.42. Describe the relationship between the ages of the firemen at 

promotion and the promotion decisions.
  10.50 Refer to Exercise 10.44. Describe the type of relationship that exists between the vari-

ous states and the proportions of farms at which an IPM program was adopted.
  10.51 Refer to Exercise 10.46. Describe the type of relationship that exists between the family 

types and the proportions of students who graduated from high school.

 10.7 Odds and Odds Ratios
 Med. 10.52 A food-frequency questionnaire is used to measure dietary intake. The respondent 

specifies the number of servings of various food items he or she consumed over the previous 
week. The  dietary cholesterol is then quantified for each respondent. The researchers were inter-
ested in assessing if there was an association between dietary cholesterol intake and high blood 
pressure. In a large sample of individuals who had completed the questionnaire, 250 persons with 
a high  dietary cholesterol intake (greater than 300 mg/day) were selected, and 250 persons with a 
low  dietary cholesterol intake (less than 300 mg/day) were selected. The 500 selected participants 
had their  medical histories taken and were classified as having normal or high blood pressure. 
The data are given here.

 Type of Family

 Two-Parent Single-Parent Stepparent 

High Schl. Grad.  Always Divorce No Cohab. With Cohab. Total

Yes 407 61 231 124 193 1,016
No   45 16  29  11  51   152

Total 452 77 260 135 244 1,168
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 a. Compute the difference in the estimated risks of having high blood pressure 1p̂1 2 p̂2 2  
for the two groups (low versus high dietary cholesterol intake).

 b. Compute the estimated relative risks of having high blood pressure ap̂1

p̂2
b  for the two 

groups (low versus high dietary cholesterol intake).
 c. Compute the estimated odds ratio of having high blood pressure for the two groups 

(low versus high dietary cholesterol intake).
 d. Based on your results from parts (a)–(c), how do the two groups compare?

 H.R. 10.53 Refer to Exercise 10.52.
 a. Compare the low and high dietary cholesterol intake groups relative to their risks 

of having high blood pressure. Use a  .05.
 b. Place a 95% confidence interval on the odds ratio of having high blood pressure 

for low cholesterol intake to having high blood pressure for high cholesterol in-
take. Based on the confidence interval, what can you conclude about the odds of 
having high blood pressure for the two groups?

 c. Are your conclusions from parts (a) and (b) consistent?

 Safety 10.54 The article “Who Wants Airbags” [Chance (2005 18:3–16] discusses whether air bags 
should be mandatory equipment in all new automobiles. From National Highway Traffic Safety 
Administration (NHTSA) data, the authors obtained the following information about fatalities 
and the usage of air bags and seat belts. All passenger cars sold in the United States starting in 
1998 are required to have air bags. The NHTSA estimates that air bags had saved 10,000 lives as 
of January 2004. The authors examined accidents in which there was a harmful event (personal 
or property) and from which at least one vehicle was towed. After some screening of the data, 
they  obtained the following results. (The authors detail in their article the types of screening of 
the data that was done.)

 Blood Pressure

Dietary Cholesterol  High  Low  Total

High 159    91  250
Low   78  172  250

Total 237  263  500

 a. Calculate the odds of being killed in a harmful-event car accident for vehicles with 
and without air bags. Interpret the two odds.

 b. Calculate the odds ratio of being killed in a harmful-event car accident with and 
without air bags. What does this ratio tell you about the importance of having air 
bags in a vehicle?

 c. Is there significant evidence of a difference between vehicles with and without 
air bags relative to the proportions of persons killed in harmful-event vehicle 
accidents? Use a  .05.

 d. Place a 95% confidence interval on the odds ratio. Interpret this interval.

  10.55 Refer to Exercise 10.54. The authors also collected information about accidents concerning 
seat belt usage. The article compared fatality rates for occupants using seat belts properly with 
those for occupants not using seat belts. The data are given here.

 Air Bag Installed

 Yes  No  Total

Killed  19,276  27,924  47,200
Survived  5,723,539  4,826,982  10,550,521

Total  5,742,815  4,854,906  10,597,721
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 a. Calculate the odds of being killed in a harmful-event car accident for vehicle 
occupants who were using seat belts and those who were not using seat belts. 
Interpret the two odds.

 b. Calculate the odds ratio of being killed in a harmful-event car accident with and 
without seat belts being used properly. What does this ratio tell you about the im-
portance of using seat belts?

 c. Is there significant evidence of a difference between vehicles with and without 
proper seat belt usage relative to the proportions of persons killed in a harmful-
event vehicle accident? Use a  .05.

 d. Place a 95% confidence interval on the odds ratio. Interpret this interval.

  10.56 Refer to Exercises 10.54 and 10.55. Which of the two safety devices appears to be more 
effective in preventing a death during an accident? Justify your answer using the information 
from the previous two exercises.

  10.57 Refer to Exercises 10.54 and 10.55. To obtain a more accurate picture of the impact of 
air bags on preventing deaths, it is necessary to account for the effect of occupants using both seat 
belts and air bags. If the occupants of the vehicles in which air bags are installed are more likely 
to be also wearing seat belts, then it is possible that some of the apparent effectiveness of the air 
bags is in fact due to the increased usage of seat belts. Thus, one more 2 3 2 table is necessary: 
the table displaying a comparison of proper seat belt usage for occupants with air bags available 
and for occupants without air bags available. Those data are given here.

 Seat Belt Usage

 Seat Belt  No Seat Belt Total

Killed  16,001  31,199  47,200
Survived  7,758,634  2,791,887  10,550,521

Total  7,774,635  2,823,086  10,597,721

 Seat Belt Usage

Air Bags  Seat Belt  No Seat Belt  Total

Yes  4,871,940     870,875    5,742,815 
No 2,902,694  1,952,211    4,854,905 

Total  7,774,634  2,823,086  10,597,720 

 a. Is there significant evidence of an association between air bag installation and the 
proper usage of seat belts? Use a  .05

 b. Provide justification for your results in part (a).

  10.58 With reference to the information provided in Exercises 10.54, 10.55, and 10.57, there 
was one more question of interest to the researchers. If people in cars with air bags are more 
likely to be wearing seat belts, then how much of the improvement in fatality rates with air bags is 
really due to seat belt usage? The harmful-event fatalities were then classified  according to both 
availability of air bags and seat belt usage. The data are given here.

 Seat Belt Usage

Air Bags  Seat Belt  No Seat Belt Total

Yes    8,626  10,650  19,276
No   7,374  20,550  27,924

Total  16,000  31,200  47,200
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 a. Use the information in the previous table and the data from Exercise 10.57 to 
compute the fatality rates for the four air bag and seat belt combinations.

 b. Describe the confounding effect of seat belt usage on the effect of air bags on 
reducing fatalities.

Supplementary Exercises
 Engin. 10.59 The police department supplies its officers with a flashlight that contains four batteries. 

The company that manufacturers the flashlights is required to verify the reliability of the batteries 
that are included in the flashlight when it is shipped to the police department. The quality control depart-
ment states that at most 15% of its batteries are defective. The four batteries were inspected in a random 
sample of 300 flashlights, and the numbers of defective batteries are listed in the following table.

Number of defective batteries 0 1 2 3 4 Total

Frequency 100 126 60 13 1 300

 a. Estimate p, the probability that a battery is defective. (Hint: What is the total 
number of batteries in the 300 flashlights?)

 b. Place a 95% confidence interval on p.
 c. Is there strong evidence to refute the claim that at most 15% of its batteries are 

defective?

 Engin. 10.60 Refer to Exercise 10.59.
 a. Does a binomial model with n  4 and p  .15, where p is the probability that an 

individual battery is defective, appear to fit the above data? (Hint: Let D   number 
of defective batteries in a flashlight:

  pk  P(D  k)  4
k! 14 2 k 2 ! 1.15 2k 1.85 2 42k  dbinom 1k, 4, .15 2 2

 b. Let p̂ be the estimate of p from Exercise 10.59. Does a binomial model with n  4 
and p̂ appear to fit the above data?

  10.61 Another study from the book A Handbook of Small Data Sets (Hand et al., 1993) 
describes the family structure in the  Hutterite Brethren, a religious group that is essentially a 
closed population with nearly all  marriages involving members of the group. The researchers 
were interested in studying the  offsprings of such families. The following data list the distribution 
of sons in families with seven children.

 a. Test the hypothesis that the number of sons in a family of seven children follows a 
binomial distribution with p  .5. Use a  .05.

 b. Suppose that p is unspecified. Evaluate the general fit of a binomial distribution. 
Using the p-value from your test statistic, comment on the adequacy of using a 
binomial model for this situation.

 c. Compare your results from parts (a) and (b).

  10.62 An entomologist was interested in determining if Colorado potato beetles were 
 randomly distributed over a potato field or if they tended to appear in clusters. The field was 
gridded into evenly spaced squares, and counts of the beetle were conducted. The following data 
give the number of squares in which various numbers of beetles were observed. If the appearance 
of the potato beetle is random, a Poisson model should provide a good fit to the data.

 Number of Sons

 0 1   2   3  4   5 6 7
Frequency 0 6 14 25 21 22 9 1

 Number of Beetles

     0     1   2   3 4 5 or more Total
Number of squares 678 227 56 28 8 14 1,011
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 a. The average number of beetles per square is 0.5. Does the Poisson distribution 
provide a good fit to the data?

 b. Based on your results in part (a), do Colorado potato beetles appear randomly 
across the field?

 Ag. 10.63 A retail computer dealer is trying to decide between two methods for servicing custom-
ers’ equipment. The first method emphasizes preventive maintenance; the second emphasizes 
quick response to problems. The dealer serves samples of customers by one of the two methods 
in a random fashion. After 6 months, the dealer finds that 171 of 200 customers serviced by the 
first method are very satisfied with the service as compared to 155 of 200 customers served by the 
second method.

 a. Test the research hypothesis that the population proportions of very satisfied 
customers are different for the two methods. Use a  .05. Carefully state your 
conclusion.

 b. Compute a confidence interval for the difference in the proportions. Does the 
confidence interval provide the same conclusion about the difference in propor-
tions as your test in part (a)? Justify your answer.

 Engin. 10.64 To evaluate the difference in the reliabilities of cooling motors for PCs from two suppliers, 
an accelerated life test is performed on 50 motors randomly selected from the warehouses of the 
two suppliers. Supplier A’s motors are considerably more expensive in comparison to the motors 
of supplier B. Of the motors from supplier A, 37 were still running at the end of the test period, 
whereas only 27 of the 50 motors from supplier B were still running at the end of the test period.

 a. Is there significant evidence that supplier A’s motors are more reliable than 
supplier B’s motors? Use a  .05.

 b. Use the Fisher Exact test to test the research hypothesis that supplier A’s motors 
are more reliable than supplier B’s motors. Compare your conclusion with the 
conclusion reached in part (a).

 c. Calculate 95% confidence intervals for the proportions of motors that passed the 
test for each supplier and for the difference in the two proportions. Interpret the 
results carefully in terms of the reliability of the two suppliers’ motors.

 Bio. 10.65 A research entomologist is interested in evaluating a new chemical formulation for pos-
sible use as a pesticide for controlling fire ants. She decides to compare its performance relative 
to the most widely used pesticide on the market, AntKiller. Each of the pesticides is applied to 
100 containers of fire ants. The new pesticide successfully killed all the fire ants within 2 hours of 
application in 65 of the 100 containers. Of the 100 containers treated with AntKiller, only 59 had 
all fire ants killed.

 a. Is there significant evidence that the proportion of containers successfully treated 
by the new formulation is greater than the proportion successfully treated by 
AntKiller? Use a .05.

 b. Use the Fisher Exact test to test the research hypothesis that the proportion of con-
tainers successfully treated by the new formulation is greater than the proportion 
successfully treated by AntKiller? Use a  .05. Compare your conclusion to the 
conclusion reached in part (a).

 c. Place a 95% confidence interval on the difference in the two proportions. 
 d. Based on the results in parts (a)–(c), can the entomologist claim that she has 

shown that the new formulation is more effective than AntKiller?

 Ag. 10.66 A new treatment is developed for controlling aphid infestation in sorghum. In order 
to assess the effectiveness of the treatment, 100 sorghum plants were treated, and 100 sorghum 
plants were left untreated. The 200 plants were then exposed to aphids, and 1 week later the 
plants were classified into three categories of infestation, as given in the following table.

Level of Infestation

Treatment Leaf Infestation Stem Infestation No Infestation

Treated 11 29 60
Control 37 39 24
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 a. Provide a graph to compare the difference in infestations between the treatment 
and control.

 b. Do the levels of infestation differ between the treatment and control plants?  
Use a  .05.

 c. What are the populations to which your conclusion in part (b) is applicable?
 d. Place 95% confidence intervals on the probabilities of infestation for both the 

treatment and the control plants.

 Bus. 10.67 Three different television commercials are advertising an established product. The 
 commercials are shown separately to theater panels of consumers; each consumer views only one 
of the possible commercials and then states an opinion of the product. Opinions range from 1 
(very favorable) to 5 (very unfavorable). The data are as follows.

 Opinion

Commercial 1 2 3 4 5 Total

 A 32   87 91 46 44 300
 B 53 141 76 20 10 300
 C 41   93 67 36 63 300

 Total 126 321 234 102 117 900

 a. Calculate expected frequencies under the null hypothesis of independence.
 b. How many degrees of freedom are available for testing this hypothesis?
 c. Is there evidence that the opinion distributions are different for the various 

commercials? Use a  .01.

 Bus. 10.68 Refer to Exercise 10.67 Provide a description of the relationship between the three 
types of commercials and the opinions of panels of consumers.

 Ag. 10.69 A study was conducted to compare two anesthetic drugs for use in minor surgery using 
45 men who were similar in age and physical condition. The two drugs were applied on the right 
and left ankles of each patient, and after a fixed period of time, the doctor recorded whether or 
not the ankle remained anesthetized. Data from the 45 patients are recorded below:

Drug 2 Response

Drug 1 Response Remains Anesthetized Not Anesthetized

Remains Anesthetized 12 10
Not Anesthetized  9 14

 a. Is there significant evidence of a difference in the effectiveness of the two drugs. 
Use a  .05.

 b. Place a 95% confidence on the difference in the effectiveness of the two drugs.

 Med. 10.70 A study reported in Meehan et al. (2013) was conducted to determine whether athletes 
had sustained previous undiagnosed concussions. A total of 731 patients met the inclusion criteria 
and were enrolled during the study period. Of these, 227 patients (31%) were unable to answer the ques-
tions that were used to determine if they had a previously undiagnosed concussion. An additional 18 
were removed for incomplete or inaccurate data. Thus, 486 patients were included in the final analysis 
with a mean age of 15.5 years (with a standard deviation of 3.5 years). Most participants (63%) were 
male. The athletes playing a given sport at the time of the current injury were then classified according 
to the sport they participated in and whether or not they had a previously undiagnosed concussion.

Sport of Current Injury

Previous Unreported 
Concussion Football Ice Hockey Soccer Basketball Lacrosse

Yes 32 25 20 13  7
No 66 58 49 31 24
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 a. Is the proportion of athletes having a previously unreported concussion related to 
the sport in which they participated?

 b. What are the populations to which your conclusion in part (a) is applicable?

 Med. 10.71 Refer to Exercise 10.70. Provide a description of the relationship between the sport 
the athlete was participating in and whether the athlete had sustained a previously unreported 
concussion.

 Bus. 10.72 A legal software firm has created a more comprehensive but also more complex version 
of the software used by counties to manage their court systems. The company selected a few 
current customers to beta test the new software. Each of the persons who used the old software 
was evaluated using a survey and then assigned a rating to reflect his or her level of sophistica-
tion in terms of using software. The ratings are basic user, moderately complex user, and highly 
complex user. After using the new software for a few weeks, the individual users then responded 
with a level of preference of the new software compared to the current version of the software. 
The levels were strong preference for current version, moderate preference for current version, 
no preference, moderate preference for new version, and strong preference for new version. The 
data for the 190 current users of the software are given in the following table.

Sophistication  
of User

Preference of User

Strong Curr. Mod. Curr. No Prefer. Mod. New Strong New

Basic  32  28  17  12  4
Moderate complex  10  16  20  10  8
Highly complex  2  4  5  8  14

 a. Is there evidence of a significant relationship between sophistication of the user 
and level of preference? Use a  .05.

 b. Describe the relationship between sophistication of the user and level of 
preference (if any).

 Bus. 10.73 A large used-book store randomly selected 1,000 of its customers and asked them to 
complete a survey about their satisfaction with the the merchandise in the store. The follow-
ing data are from the 224 customers who returned the survey. Although the survey requested a 
considerable amount of information, the store was most interested in the frequency of purchases 
(number of books purchased in past 3 months) and the customer’s rating of the adequacy of book 
selection in the store. The data from the 224 surveys are given in the following table.

Frequency  
of Purchases

Adequacy of Selection

Poor Average Good Excellent

1 3  4 37 44
2 2  6 30 28
3 3  8 16 19
4 or more 2 12  5  5

 a. Is there evidence of a significant relationship between frequency of purchases and 
adequacy of selection? Use a  .05.

 b. Describe the relationship between frequency of purchases and adequacy of selec-
tion (if any).

 Bus. 10.74 Refer to Exercise 10.73.
 a. Were the conditions necessary to perform the test in Exercise 10.73 satisfied?
 b. If the conditions were not satisfied, perform an alternative analysis by combining 

some of the categories.
 c. Compare the conclusion obtained from the test in Exercise 10.73 to the conclusion 

from part (b).
 d. What are some of the issues with using your conclusions when only 21.5% of the 

customers responded to the survey?
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 Bus. 10.75 Refer to Exercise 10.73. For each of the four levels of frequency of purchase, compute 
the proportion of customers in each of the four adequacy of selection categories. Describe the 
trends in the proportions across the adequacy of selection categories. What differences do you 
see in the four trends?

 Bus. 10.76 A major bank surveyed a random sample of 398 employees to determine whether they 
preferred having an HMO or a traditional fee-for-service medical benefit plan. The survey cat-
egorized the employees by age and medical plan preference, with the outcomes given below.

No Dependents Covered

Age of  
Employee

Medical Plan Preference

Strong HMO Modest HMO Neutral Modest For Fee Strong For Fee

20–29 13 17 8 2 1
30–39  6 11 3 2 3
40–49  5  2 3 1 1
50–59  4  5 1 0 2
60 or older  5  3 2 3 2

1 or More Dependents Covered

Age of 
Employee

Medical Plan Preference

Strong HMO Modest HMO Neutral Modest For Fee Strong For Fee

20–29  3 0  3  7  3
30–39  5 9 10 22 21
40–49 13 6 21 24 25
50–59  1 7 11  9 13
60 or older  4 1 52  8 15

  Combine the two groups of employees and answer the following questions.
 a. Is there evidence of a significant relationship between the age of the employee 

and medical plan preference? Use a  .05.
 b. Describe the relationship between the age of the employee and medical plan 

preference (if any).

 Bus. 10.77 Refer to Exercise 10.76. There may be an indirect relation between employee age and 
medical plan preference: Age might be related to whether an employee has dependents covered, 
and whether dependents are covered might be related to medical plan preference.

 a. Is there evidence of a significant relationship between the age of the employee and 
whether the employee has dependents covered by a plan? Use a  .05.

 b. Is there evidence of a significant relationship between strength of preference for 
a medical plan and whether the employee has dependents covered by a plan? 
Use a  .05.

 c. Finally, separately for the two groups of employees, test if there is evidence of a 
significant relationship between the age of the employee and preference for a 
medical plan? Use a  .05.

 d. Based on the analyses in parts (a)–(c), what are your conclusions about the rela-
tionships among the age of the employee, medical plan preference, and whether 
dependents are covered by a plan?

 Bio. 10.78 A carcinogenicity study was conducted to examine the tumor potential of a drug prod-
uct scheduled for initial testing in humans. A total of 300 rats (150 males and 150 females) was 
studied for a 6-month period. At the beginning of the study, 100 rats (50 males, 50 females) 
were randomly assigned to the control group, 100 (50 males, 50 females) to the low-dose group, 
and the remaining 100 (50 males, 50 females) to the high-dose group. On each day of the 6-month 
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period, the rats in the control group received an injection of an inert solution, whereas those in 
the drug groups received an injection of the solution plus drug. The sample data are shown in the 
accompanying table. 

 Number of Tumors 

Rat Group One or More None

Control 10 90
Low dose 14  86
High dose 19 81 

 a. Conduct a test of whether there is a significant difference in the proportions of 
rats having one or more tumors for the three treatment groups with a  .05. 

 b. Does there appear to be a drug-related problem regarding tumors for this drug 
product? That is, as the dose is increased, does there appear to be an increase in 
the proportion of rats with tumors? 

 Bus. 10.79 Refer to Exercise 10.78.
 a. Compare the odds of a tumor appearing for each of the three rat groups.
 b. Place a 95% confidence interval on the odds ratio of a tumor appearing for the 

control group to appearing for the low-dose group.
 c. Place a 95% confidence interval on the odds ratio of a tumor appearing for the 

control group to appearing for the high-dose group.
 d. Place a 95% confidence interval on the odds ratio of a tumor appearing for the 

low-dose group to appearing for the high-dose group.
 e. What are your conclusions about the impact of the drug product on tumor 

appearance?

 Soc. 10.80 A sociological study was conducted to determine whether there is a relationship be-
tween the length of time blue-collar workers remain in their first job and the amount of their 
education. From union membership records, a random sample of persons was classified. The data 
are shown here.

Years on
 Years of Education

First Job 0–4 5–9 10–12 13 or more

 0–2  5 21 30 33
 3–5 15 35 40 30
 6–8 22 16 15 30
 9 or more 28 10  8 10

 a. Test the research hypothesis that the variable “years on first job’’ is related to the 
variable “years of education.’’

 b. Give the level of significance for the test. 
 c. Draw your conclusions using a  .05. 

 Psy. 10.81 Two researchers at Johns Hopkins University studied the use of drug products in the 
 elderly. Patients in a recent study were asked the extent to which physicians counseled them with 
regard to their drug therapies. The researchers found the following: 

●● 25.4% of the patients said their physicians did not explain what the drug was 
 supposed to do. 

●● 91.6% indicated they were not told how the drug might “bother’’ them. 
●● 47.1% indicated their physicians did not ask how the drug “helped’’ or “bothered’’ 

them after therapy was started. 
●● 87 .7% indicated the drug was not changed after discussion of how the therapy 

was “helping” or “bothering” them.
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 a. Assume that 500 patients were interviewed in this study. Summarize each of these 
results using a 95% confidence interval. 

 b. Do you have any comments about the validity of any of these results? 

 Med. 10.82 People over the age of 40 years tend to notice changes in their digestive systems that 
alter what and how much they can eat. A study was conducted to see whether this observa-
tion applies across different ethnic segments of our society. Random samples of Anglo-Saxons, 
Germans, Latin Americans, Italians, Spaniards, and African Americans were obtained. The data 
from this survey are summarized here: 

 Sample Size Responding 
 (60 of Each Group Number Reporting Altered 
Ethnic Group Were Contacted) Digestive System

Anglo-Saxon 55  7
German 58  6
Latin American 52 34
Italian 54 38
Spanish 30 20
African American 49 31

 a. Does it appear that there may be a bias due to the response rates? 
 b. Compare the rates (pis) for the Anglo-Saxon and German groups using a 95% 

confidence  interval. 

  10.83 Refer to Exercise 10.82. There seem to be two distinct rates—those around 12% and 
those around 70%. Combine the sample data for the first two groups and for the last four groups. 
Use these data to test the hypotheses H0: p1 2 p2 $ 0 versus Ha: p1 2 p2 , 0. Here, p1 corre-
sponds to the population rate for the first combined group, and p2 is the corresponding propor-
tion for the second combined group. Give the p-value for your test. 

 Bus. 10.84 The following data give the observed frequencies of errors per page of unread page 
proofs for a sample of 40 pages from a certain journal publisher. 

Errors/Page Observed Frequencies 

 0 5
 1 9
 2 5
 3 7
 4 4
 5 2
 6 3
 7 2
 8 1
 9 0
 10 2 

Conduct a test to determine whether the errors per page follow a Poisson distribution with 
a mean rate of 3.2. Use a  .10. 

 Hort. 10.85 An entomologist was interested in studying the infestion of adult European red mites on 
apple trees in a Michigan orchard. She randomly selected 50 leaves from each of 10 similar apple 
trees in the orchard, examined the leaves, and recorded the number of mites on each of the 500 
leaves. As a part of a larger study, she wanted to simulate the distribution of mites on the trees in 
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the orchard. Thus, the Poisson distribution was suggested as a possible model. Based on the data 
given here, does the Poisson distribution appear to be a plausible model for the concentration of 
European red mites on apple trees? 

Mites per leaf 0 1 2 3 4 5 6 7

Frequency 233 127 57 33 30 10 7 3

  10.86 A sample of 1,200 individuals arrested for driving under the influence of alcohol was 
 obtained from police records. The research recorded the gender, socioeconomic status (from 
 occupation information), and number of previous alcohol-related arrests. These data are shown 
here:

  Separately for each socioeconomic status group, answer the following questions.
 a. Is there significant evidence of a difference between males and females with 

 respect to the number of previous alcohol-related arrests?
 b. Compute the odds of having a previous alcohol-related arrest for both males and 

females. Interpret these values.
 c. Compute the odds ratio of having a previous alcohol-related arrest for males vesus 

females, and place a 95% confidence interval on the odds ratio. Interpret the interval.
 d. Compare the results for the three socioeconomic statuses.

  10.87 Run the Mantel–Haenszel test for the above data and interpret your results.
  10.88 A study was conducted to determine the relationship between annual income and num-

ber of children per family. Compute percentages for each of the income categories; then run a 
chi-square test of independence and draw conclusions. Use a  .10.

Socioeconomic  Number of Previous 
Status  Alcohol-Related Arrests  Male  Female

 0 110 130
Low  1 or more   90   70

 0 105 101
Medium 1 or more  95  99

 0  90  80
High  1 or more  110 120

 
Number of

 
Annual Income

  Children 
Region per Family  ,$20,000  $$20,000

East  # 2 children  38 67
 .2 children  220 125

South  # 2 children  25 78
 .2 children  120 77

West  # 2 children  36 66
 .2 children  95 103

  Separately for each region, answer the following questions.
 a. Is there significant evidence of an association between annual income and number 

of children?
 b. Compute the odds ratio of having more than two children for low-income versus 

high-income families, and place a 95% confidence  interval on the odds ratio.
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 c. Interpret the odds ratio.
 d. Compare your results in parts (a)–(c) for the three regions.

  10.89 Run the Mantel–Haenszel test for the previous data, and interpret your results.
  10.90 Faculty members at a number of universities were classified according to their political 

ideology (left or right) and according to their academic tolerance (low, medium, or high).

Political
  Academic Tolerance

Ideology  Low  Medium  High

Left  36  44  84
Right  95  64  42

 a. Is there significant evidence of an association between political ideology and 
 academic tolerance?

 b. Display the data as a graph.
 c. Describe the relation between political ideology and academic tolerance.



 11.1 Introduction and Abstract of Research Study

The modeling of the relationship between a response variable and a set of 
 explanatory variables is one of the most widely used of all statistical techniques. We 
refer to this type of modeling as regression analysis. A regression model  provides 
the user with a functional relationship between the response variable and explana-
tory variables that allows the user to determine which of the explanatory variables 
have an effect on the response. The regression model allows the user to explore 
what happens to the response variable for specified changes in the  explanatory 
variables. For example, financial officers must predict future cash flows based on 
specified values of interest rates, raw material costs, salary  increases, and so on. 
When designing new training programs for employees, a company would want 
to study the relationship between employee efficiency and explanatory variables 
such as the results from employment tests, experience on similar jobs, educational 
background, and previous training. Medical researchers attempt to determine the 
factors that have an effect on cardiorespiratory  fitness. Forest scientists study the 
relationship between the volume of wood in a tree and the tree’s diameter at a 
specified height and its taper.

The basic idea of regression analysis is to obtain a model for the functional 
relationship between a response variable (often referred to as the dependent 
 variable) and one or more explanatory variables (often referred to as the inde-
pendent variables). Regression models have a number of uses.

1. The model provides a description of the major features of the data 
set. In some cases, a subset of the explanatory variables will not 
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affect the response variable, and, hence, the researcher will not have 
to measure or control any of these variables in future studies. This 
may result in significant savings in future studies or experiments.

2. The equation relating the response variable to the explanatory vari-
ables produced from the regression analysis provides estimates of 
the response variable for values of the explanatory variables not 
observed in the study. For example, a clinical trial is designed to 
study the response of a subject to various dose levels of a new drug. 
Because of time and budgetary constraints, only a limited number of 
dose levels are used in the study. The regression equation will pro-
vide estimates of the subjects’ response for dose levels not included 
in the study. The accuracy of these estimates will depend heavily on 
how well the final model fits the observed data.

3. In business applications, the prediction of future sales of a product is 
crucial to production planning. If the data provide a model that has a 
good fit in relating current sales to sales in previous months, predic-
tion of sales in future months is possible. However, a crucial element 
in the accuracy of these predictions is that the business conditions 
during which model-building data were collected remain fairly stable 
over the months for which the predictions are desired.

4. In some applications of regression analysis, the researcher is seeking 
a model that can accurately estimate the values of a variable that is 
difficult or expensive to measure using explanatory variables that 
are inexpensive to measure and obtain. If such a model is obtained, 
then in future applications it is possible to avoid having to obtain 
the values of the expensive variable by measuring the values of the 
inexpensive variables and using the regression equation to estimate 
the values of the expensive variable. For example, a physical fitness 
center wants to determine the physical well-being of its new clients. 
Maximal oxygen uptake is recognized as the single best measure of 
cardiorespiratory fitness, but its measurement is expensive. There-
fore, the director of the fitness center would want a model that 
provides accurate estimates of maximal oxygen uptake using easily 
measured variables such as weight, age, heart rate after a 1-mile walk, 
time needed to walk 1 mile, and so on.

We can distinguish between prediction (reference to future values) and 
 explanation (reference to current or past values). Because of the virtues of hind-
sight, explanation is easier than prediction. However, it is often clearer to use the 
term prediction to include both cases. Therefore, in this book, we sometimes blur 
the distinction between prediction and explanation. 

For prediction (or explanation) to make much sense, there must be some con-
nection between the variable we’re predicting (the dependent variable) and the 
variable we’re using to make the prediction (the independent variable). No doubt, if 
you tried long enough, you could find 30 common stocks whose price changes over 
a year have been accurately predicted by the won–lost percentage of the 30 major 
league baseball teams on the fourth of July. However, such a prediction is absurd 
because there is no connection between the two variables. Prediction  requires a 
unit of association; there should be an entity that  relates the two variables. With 
time-series data, the unit of association may simply be time. The variables may 
be measured at the same time period, or for genuine prediction, the independent 

prediction versus 
explanation

unit of association
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variable may be measured at a time period before the dependent variable. For 
cross-sectional data, an economic or physical entity should connect the variables. If 
we are trying to predict the change in market share of various soft drinks, we should 
consider the promotional activity for those drinks, not the advertising for various 
brands of spaghetti sauce. The need for a unit of association seems obvious, but 
many predictions are made for situations in which no such unit is evident.

In this chapter, we consider simple linear regression analysis, in which there 
is a single given independent variable x and the equation for predicting a depend-
ent variable y is a linear function of that independent variable. Suppose, for exam-
ple, that the director of a county highway department wants to predict the cost of a 
resurfacing contract that is up for bids. We could reasonably predict the costs to be 
a function of the road miles to be resurfaced. A reasonable first attempt is to use 
a linear production function. Let y  total cost of a project in thousands of dollars, 
x  number of miles to be resurfaced, and ŷ  total predicted cost, also in thou-
sands of dollars. The prediction equation ŷ  2.0 1 3.0x (for example) is a  linear 
equation. The constant term, such as the 2.0, is the intercept term and is  interpreted 
as the predicted value of y when x  0. In the road-resurfacing example, we may 
 interpret the intercept as the fixed cost of beginning the project. The coefficient of 
x, such as the 3.0, is the slope of the line, the predicted change in y when there is a 
one-unit change in x. In the road-resurfacing example, if two projects differed by 
1 mile in length, we would predict that the longer project would cost 3 (thousand 
dollars) more than the shorter one. In general, we write the prediction equation as 

ŷ  b̂0 1 b̂1x

where b̂0 is the intercept and b̂1 is the slope. See Figure 11.1. 
The basic idea of simple linear regression is to use data to fit a prediction line 

that relates a dependent variable y and a single independent variable x. The first 
assumption in simple regression is that the relation is in fact linear. According to 
the assumption of linearity, the slope of the equation does not change as x changes. 
In the road-resurfacing example, we assume that there would be no (substantial) 
economies or diseconomies from projects of longer mileage. There is little point 
in using simple linear regression unless the linearity assumption makes sense (at 
least roughly).

Linearity is not always a reasonable assumption on its face. For example, 
if we tried to predict y  number of drivers that are aware of a car dealer’s mid-
summer sale using x  number of repetitions of the dealer’s radio commercial, 
the  assump tion of linearity means that the first broadcast of the commercial leads 
to no greater an increase in aware drivers than the thousand-and-first broadcast. 
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(You’ve heard commercials like that.) We strongly doubt that such an assumption 
is valid over a wide range of x-values. It makes far more sense to us that the effect 
of repetition would diminish as the number of repetitions got larger, so a straight-
line prediction wouldn’t work well. 

Assuming linearity, we would like to write y as a linear function of x: y  
b0 1 b1x. However, according to such an equation, y is an exact linear function of 
x; no room is left for the inevitable errors (deviation of actual y-values from their 
predicted values). Therefore, corresponding to each y, we introduce a random 
error term ei and assume the model 

y  b0 1 b1x 1 e

We assume the random variable y to be made up of a predictable part (a linear 
function of x) and an unpredictable part (the random error ei). The coefficients b0 
and b1 are interpreted as the true, underlying intercept and slope. The error term e 
includes the effects of all other factors, known or unknown. In the road-resurfacing 
project, unpredictable factors such as strikes, weather conditions, and equipment 
breakdowns would contribute to e, as would factors such as hilliness or prerepair 
condition of the road—factors that might have been used in prediction but were 
not. The combined effects of unpredictable and ignored factors yield the random 
error terms e.

For example, one way to predict the gas mileage of various new cars (the 
 dependent variable) based on their curb weight (the independent variable) would 
be to assign each car to a different driver, say, for a 1-month period. What unpre-
dictable and ignored factors might contribute to prediction error? Unpredictable 
(random) factors in this study would include the driving habits and skills of the 
drivers, the type of driving done (city versus highway), and the number of stop-
lights encountered. Factors that would be ignored in a regression analysis of mile-
age and weight would include engine size and type of transmission (manual versus 
automatic). 

In regression studies, the values of the independent variable (the xi values) 
are usually taken as predetermined constants, so the only source of randomness 
is the ei terms. Although most economic and business applications have fixed xi 
 values, this is not always the case. For example, suppose that xi is the score of an 
applicant on an aptitude test and yi is the productivity of the applicant. If the data 
are based on a random sample of applicants, xi (as well as yi) is a random variable. 
The question of fixed versus random in regard to x is not crucial for regression 
studies. If the xis are random, we can simply regard all probability statements as 
conditional on the observed xis.

When we assume that the xis are constants, the only random portion of 
the model for yi is the random error term e i. We make the following formal 
assumptions. 

Formal assumptions of regression analysis: 

1. The relation is in fact linear, so that the errors all have expected values of 
zero: E 1ei 2  0 for all i. 

2. The errors all have the same variance: Var 1ei 2  s2 for all i.
3. The errors are independent of each other. 
4. The errors are all normally distributed; ei is normally distributed for all i.

DEFINITION 11.1

random  
error term
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These assumptions are illustrated in Figure 11.2. The actual values of the 
 dependent variable are distributed normally with mean values falling on the 
 regression line and the same standard deviation at all values of the independent 
variable. The only assumption not shown in the figure is independence from one 
measurement to another. 

These are the formal assumptions, made in order to derive the significance 
tests and prediction methods that follow. We can begin to check these assumptions 
by looking at a scatterplot of the data. This is simply a plot of each (x, y) point, with 
the independent variable value measured on the horizontal axis and the dependent 
variable value measured on the vertical axis. Look to see whether the points basi-
cally fall around a straight line or whether there is a definite curve in the  pattern. 
Also look to see whether there are any evident outliers falling far from the general 
pattern of the data. A scatterplot is shown in part (a) of Figure 11.3.

There are a number of nonparametric smoothers, which will sketch a curve 
through data without necessarily assuming any particular model. If such a smoother 
yields something close to a straight line, then linear regression is reasonable. One 
such method is called LOWESS (locally weighted scatterplot smoother). Roughly, 
a smoother takes a relatively narrow “slice” of data along the x axis, calculates 
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a  line that fits the data in that slice, moves the slice slightly along the x axis, 
 recalculates the line, and so on. Then all the little lines are connected in a smooth 
curve. The width of the slice is called the bandwidth; this may often be controlled in 
the  computer program that does the smoothing. The plain scatterplot (Figure 11.3a) 
is shown again (Figure 11.3b) with a LOWESS curve through it. The scatterplot 
shows a curved relation; the LOWESS curve confirms that  impression. 

Another type of scatterplot smoother is the spline fit. It can be understood 
as taking a narrow slice of data, fitting a curve (often a cubic equation) to the slice, 
moving to the next slice, fitting another curve, and so on. The curves are calculated 
in such a way as to form a connected, continuous curve. 

Many economic relations are not linear. For example, any diminishing 
 returns pattern will tend to yield a relation that increases—but at a decreasing rate. 
If the scatterplot does not appear linear, by itself or when fitted with a LOW-
ESS curve, it can often be “straightened out” by a transformation of either the 
independent variable or the dependent variable. A good statistical computer pack-
age or a spreadsheet program will compute such functions as the square root of 
each value of a variable. The transformed variable should be thought of as simply 
 another variable. 

For example, a large city dispatches crews each spring to patch potholes 
in its streets. Records are kept of the number of crews dispatched each day and 
the  number of potholes filled that day. A scatterplot of the number of potholes 
patched and the number of crews dispatched and the same scatterplot with a 
LOWESS curve through it are shown in Figure 11.4. The relation is not linear. 
Even without the LOWESS curve, the decreasing slope is obvious. That’s not 
surprising; as the city sends out more crews, they will be using less effective work-
ers, the crews will have to travel farther to find holes, and so on. All these reasons 
suggest that diminishing returns will occur. 

We can try several transformations of the independent variable to find a 
 scatterplot in which the points more nearly fall along a straight line. Three com-
mon transformations are square root, natural logarithm, and inverse (1 divided 
by the variable). We applied each of these transformations to the pothole repair 
data. The results are shown in Figures 11.5a–c with LOWESS curves. The square 
root transformation (a) and inverse transformation (c) didn’t really give us a 
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FIGURE 11.4  Scatterplots for pothole data
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straight line. The  natural logarithm (b) worked very well, however. Therefore, 
we would use LnCrew as our independent variable. 

Finding a good transformation often requires trial and error. Following are 
some suggestions to try for transformations. Note that there are two key features 
to look for in a scatterplot. First, is the relation nonlinear? Second, is there a 
 pattern of increasing variability along the y (vertical) axis? If there is, the assump-
tion of constant variance is questionable. These suggestions don’t cover all the 
possibilities but do include the most common problems. 

FIGURE 11.5
Scatterplots with 

transformed predictor
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Steps for choosing a transformation: 

1. If the plot indicates a relation that is increasing but at a decreasing rate 
and if variability around the curve is roughly constant, transform x using 
a square root, logarithm, or inverse transformation. 

2. If the plot indicates a relation that is increasing at an increasing rate and 
if variability is roughly constant, try using both x and x2 as  predictors. 
Because this method uses two variables, the multiple  regression methods 
of the next two chapters are needed. 

3. If the plot indicates a relation that increases to a maximum and then 
 decreases and if variability around the curve is roughly constant, again 
try using both x and x2 as predictors. 

4. If the plot indicates a relation that is increasing at a decreasing rate 
and if variability around the curve increases as the predicted y-value 
 increases, try using y2 as the dependent variable. 

5. If the plot indicates a relation that is increasing at an increasing rate 
and if variability around the curve increases as the predicted y-value 
 increases, try using ln(y) as the dependent variable. It sometimes may 
also be helpful to use ln(x) as the independent variable. Note that a 
change in a natural logarithm corresponds quite closely to a percentage 
change in the original variable. Thus, the slope of a transformed variable 
can be interpreted quite well as a percentage change.

DEFINITION 11.2

The plots in Figure 11.6 correspond to the descriptions given in Definition 11.2.
There are symmetric recommendations for the situations where the relation is 

 decreasing at a decreasing rate (use Step 1 or Step 4 transformations) or where the 
 relation is decreasing at an increasing rate (use Step 2 or Step 5 transformations).

FIGURE 11.6
Plots corresponding to 
steps in Definition 11.2
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EXAMPLE 11.1

An airline has seen a very large increase in the number of free flights used by 
 participants in its frequent flyer program. To try to predict the trend in these 
flights in the near future, the director of the program assembled data for the last 
72 months. The dependent variable y is the number of thousands of free flights; 
the independent variable x is the month number. A scatterplot with a LOWESS 
smoother, done using Minitab, is shown in Figure 11.7. What transformation is 
suggested?

FIGURE 11.7
Frequent flyer free flights 
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Solution The pattern shows flights increasing at an increasing rate. The LOWESS 
curve is definitely turning upward. In addition, variation (up and down) around the 
curve is increasing. The points around the high end of the curve (on the right, in 
this case) scatter much more than the ones around the low end of the curve. The 
 increasing variability suggests transforming the y-variable. A natural logarithm (ln) 
transformation often works well. Minitab computed the logarithms and replotted 
the data, as shown in Figure 11.8. The pattern is much closer to a straight line, and 
the scatter around the line is much closer to  constant. 

FIGURE 11.8
Result of logarithm 

 transformation
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We will have more to say about checking assumptions in Chapter 12. For a simple 
regression with a single predictor, careful checking of a scatterplot, ideally with a 
smooth curve fit through it, will help avoid serious blunders. 

Once we have decided on any mathematical transformations, we must esti-
mate the actual equation of the regression line. In practice, only sample data 
are available. The population intercept, slope, and error variance all have to be 
 esti mated from limited sample data. The assumptions we made in this section allow 
us to make inferences about the true parameter values from the sample data. ■
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Abstract of Research Study: Two Methods for Detecting E. coli

The case study in Chapter 7 described a new microbial method for the detection 
of E. coli, the Petrifilm HEC test. The researchers wanted to evaluate the agree-
ment of the results obtained using the HEC test with results obtained from an elab-
orate laboratory-based procedure, hydrophobic grid membrane filtration (HGMF). 
The HEC test is easier to inoculate, more compact to incubate, and safer to handle 
than conventional procedures. However, prior to using the HEC procedure, it was 
 necessary to compare the readings from the HEC test to the readings from the 
HGMF procedure obtained on the same meat sample to determine whether the two 
 pro cedures were yielding the same readings. If the readings  differed but an equation 
could be obtained that could closely relate the HEC reading to the HGMF read-
ing, then the researchers could calibrate the HEC readings to predict what readings 
would have been obtained using the HGMF test procedure. If the HEC test results 
were unrelated to the HGMF test procedure results, then the HEC test could not 
be used in the field in detecting E. coli. The necessary regression analysis to answer 
these questions will be given at the end of this chapter.

 11.2 Estimating Model Parameters 

The intercept b0 and slope b1 in the regression model 

y  b0 1 b1x 1 e

are population quantities. We must estimate these values from sample data. The 
error variance s2

e is another population parameter that must be estimated. The 
first regression problem is to obtain estimates of the slope, intercept, and variance; 
we discuss how to do so in this section. 

The road-resurfacing example of Section 11.1 is a convenient illustration. 
Suppose the following data for similar resurfacing projects in the recent past are 
available. Note that we do have a unit of association: The connection between a 
particular cost and mileage is that they’re based on the same project. 

Cost yi (in thousands of dollars): 6.0 14.0 10.0 14.0 26.0 
Mileage xi (in miles): 1.0  3.0  4.0  5.0  7 .0

A first step in examining the relation between y and x is to plot the data as 
a scatterplot. Remember that each point in such a plot represents the (x, y) coor-
dinates of one data entry, as in Figure 11.9. The plot makes it clear that there is 
an imperfect but generally increasing relation between x and y. A straight-line 
relation appears plausible; there is no evident transformation with such limited 
data. 

The regression analysis problem is to find the best straight-line prediction. 
The most common criterion for “best” is based on squared prediction error. We 
find the equation of the prediction line—that is, the slope b̂1 and intercept b̂0 that 
minimize the total squared prediction error. The method that accomplishes this 
goal is called the least-squares method because it chooses b̂0 and b̂1 to minimize 
the quantity:

a
i

1 yi 2 ŷi 2 2  a
i

Cyi 2 1 b̂0 1 b̂1xi 2 D2

least-squares method
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The prediction errors are shown on the plot of Figure 11.10 as vertical devia-
tions from the line. The deviations are taken as vertical distances because we’re 
trying to predict y-values and errors should be taken in the y direction. For these 
data, the least-squares line can be shown to be ŷ  2.0 1 3.0x; one of the devia-
tions from it is indicated by the smaller brace. For comparison, the mean y  14.0 
is also shown; deviation from the mean is indicated by the larger brace. The least-
squares principle leads to some fairly long computations for the slope and inter-
cept. Usually, these computations are done by computer. 

The least-squares estimates of slope and intercept are obtained as follows: 

b̂1   
Sxy

Sxx

  and   b̂0  y 2 b̂1x

where 

Sxy  a
i

1xi 2 x 2 1 yi 2 y 2     and    Sxx   a
i

1xi 2 x 2 2

Thus, Sxy is the sum of x deviations times y deviations, and Sxx is the sum of x 
deviations squared.

DEFINITION 11.3

FIGURE 11.9
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For the road-resurfacing data, n  5 and 

a xi  1.0 1 . . . 1 7.0  20.0

so x  20.0
5  4.0. Similarly, 

a yi  70.0

so y  70.0
5  14.0.

Also,

Sxx  a 1xi 2 x 2 2

  11.0 2 4.0 2 2 1 c1 17.0 2 4.0 2 2

  20.00

and 

Sxy  a 1xi 2 x 2 1yi 2 y 2
  11.0 2 4.0 2 16.0 2 14.0 2 1 c1 17.0 2 4.0 2 126.0 2 14.0 2
  60.0

Thus, 

b̂1 
60.0
20.0

 3.0 and b̂0  14.0 2 13.0 2 14.0 2  2.0

From the value b̂1  3, we can conclude that the estimated average increase in 
cost for each additional mile is $3,000. 

EXAMPLE 11.2 

Data from a sample of 10 pharmacies are used to examine the relation between 
prescription sales volume and percentage of prescription ingredients purchased 
directly from the supplier. The sample data are shown in Table 11.1.

TABLE 11.1
Data for Example 11.2

 Sales Volume, y % of Ingredients
Pharmacy (in $1,000s) Purchased Directly, x

 1   25 10
 2   55 18
 3   50 25
 4   75 40
 5 110 50
 6 138 63
 7   90 42
 8   60 30
 9   10   5
10 100 55
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a. Find the least-squares estimates for the regression line ŷ  b̂0 1 b̂1x. 
b. Predict sales volume for a pharmacy that purchases 15% of its 

prescription ingredients directly from the supplier.
c. Plot the (x, y) data and the prediction equation ŷ  b̂0 1 b̂1x.
d. Interpret the value of b̂1 in the context of the problem. 

Solution

a. The equation can be calculated by virtually any statistical computer 
package; for example, here is abbreviated Minitab output: 

Regression Analysis: Sales versus PurchDirect

Analysis of Variance

 Source DF Adj SS Adj MS F-Value P-Value
 Regression 1 13231.0 13231.0 162.56 0.000
 Error 8 651.1 81.4
 Total 9 13882.1
 
 Model Summary

       S R-sq R-sq(adj) R-sq(pred)
 9.02171 95.31% 94.72% 92.32%
 
 Coefficients

 Term Coef SE Coef T-Value P-Value VIF
 Constant 4.70 5.95 0.79 0.453
 PurchDirect 1.970 0.155 12.75 0.000 1.00

 Regression Equation:  Sales = 4.70 + 1.970 PurchDirect 

  To see how the computer does the calculations, you can obtain the 
least-squares estimates from Table 11.2.

TABLE 11.2
Calculations for obtaining 

least-squares estimates

 y x y 2 y x 2 x  (x 2  x)(y 2  y) (x 2 x)2

 25 10 246.3 223.8 1,101.94 566.44 
 55 18 216.3 215.8 257 .54 249.64 
 50 25 221.3 28.8 187 .44 77 .44 
 75 40 3.7 6.2 22.94 38.44 
 110 50 38.7 16.2 626.94 262.44 
 138 63 66.7 29.2 1,947 .64 852.64 
 90 42 18.7 8.2 153.34 67 .24 
 60 30 211.3 23.8 42.94 14.44 
 10 5 261.3 228.8 1,765.44 829.44 

 100 55 28.7 21.2 608.44 449.44 

Total  713 338 0 0 6,714.60 3,407 .60 
Mean  71.3 33.8

Sxx  a 1x 2 x 2 2  3,407.6

Sxy  a 1x 2 x 2 1y 2 y 2  6,714.6
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Substituting into the formulas for b̂0 and  b̂1,

b̂1 
Sxy

Sxx

  
6,714.6
3,407.6

 1.9704778     rounded to 1.97

b̂0  y 2 b̂1x  71.3 2 1.9704778 133.8 2  4.6978519    rounded to 4.70

b. When x  15%, the predicted sales volume is ŷ  4.70 1 1.97 115 2   
34.25 (that is, $34,250).

c. The (x, y) data and prediction line are plotted in Figure 11.11. 
d. From b̂1  1.97, we conclude that if a pharmacy would increase by 

1% the percentage of ingredients purchased directly, then the esti-
mated    increase in average sales volume would be $1,970. 

FIGURE 11.11
Sample data and least-
squares prediction line
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EXAMPLE 11.3

In Chapter 3, we discussed a study that related the crime rate in a major city to the 
number of casino employees in that city. The study was attempting to associate an 
increasing crime rate with increasing levels of casino gambling, which is reflected 
in the number of people employed in the gambling industry. Use the information 
in Table 3.18 to calculate the least-squares estimates of the intercept and slope of 
the line relating crime rate to number of casino employees. Use the Minitab output 
below to confirm your calculations.

Solution From Table 3.18, we have the following summary statistics for the crime 
rate y (number of crimes per 1,000 population) and the number of casino  employees 
x (in thousands):

x 
318
10

 31.80,  y 
27.85

10
 2.785

Sxx  485.60,  Syy  7.3641,  Sxy  55.810

Thus,

b̂1 
55.810
485.60

 .11493     and     b̂0  2.785 2 1.11493 2 131.80 2  2.8698

 ■
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The Minitab output is given here

Regression Analysis: CrimeRate versus NumEmployees

Analysis of Variance

Source          DF  Adj SS  Adj MS  F-Value  P-Value
Regression       1  6.4142  6.4142    54.03    0.000
Error            8  0.9498  0.1187
Total            9  7.3641

Model Summary

       S    R-sq  R-sq(adj)  R-sq(pred)
0.344566  87.10%     85.49%      81.84%

Coefficients

Term            Coef  SE Coef  T-Value  P-Value   VIF
Constant      -0.870    0.509    -1.71    0.126
NumEmployees  0.1149   0.0156     7.35    0.000  1.00

Regression Equation:  CrimeRate = -0.870 + 0.1149 NumEmployees

From the previous output, the values calculated are the same as the values 
from Minitab. We would interpret the value of the estimated slope b̂1  .1149 
as follows. For an increase of 1,000 employees in the casino  industry, the aver-
age crime rate would increase .115. It is important to note that these types of 
social relationships are much more complex than this simple relationship. Also, 
it would be a major mistake to place much credence in this type of conclusion 
because of all the other factors that may have an effect on the crime rate. ■

The estimate of the regression slope can potentially be greatly affected by 
high leverage points. These are points that have very high or very low values of 
the independent variable—outliers in the x direction. They carry great weight in 
the  estimate of the slope. A high leverage point that also happens to correspond 
to a y outlier is a high influence point. It will alter the slope and twist the line 
badly. 

A point has high influence if omitting it from the data will cause the regres-
sion line to change substantially. To have high influence, a point must first have 
high leverage and must, in addition, fall outside the pattern of the remaining 
points. Consider the two scatterplots in Figure 11.12. In plot (a), the point in the 
upper left corner is far to the left of the other points; it has a much lower x-value 
and therefore has high leverage. If we drew a line through the other points, the 
line would fall far below this point, so the point is an outlier in the y direction as 
well. Therefore, it also has high influence. Including this point would change the 
slope of the line greatly. In contrast, in plot (b), the y outlier point corresponds 
to an x-value very near the mean, having low leverage. Including this point would 
pull the line upward, increasing the intercept, but it wouldn’t increase or decrease 
the slope much at all. Therefore, it does not have great influence. 

A high leverage point indicates only a potential distortion of the equa-
tion. Whether or not including the point will “twist’’ the equation depends on 
its influence (whether or not the point falls near the line through the remaining 
points). A point must have both high leverage and an outlying y-value to qualify as 
a high influence point.

high leverage point

high influence point
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Mathematically, the effect of a point’s leverage can be seen in the Sxy term, 
which enters into the slope calculation. One of the many ways this term can be 
 written is 

Sxy  a 1xi 2 x 2yi

We can think of this equation as a weighted sum of y-values. The weights are large 
positive or negative numbers when the x-value is far from its mean and has high 
leverage. The weight is almost 0 when x is very close to its mean and has low 
leverage. 

Most computer programs that perform regression analyses will calculate one 
or another of several diagnostic measures of leverage and influence. We won’t try 
to summarize all of these measures. We only note that very large values of any of 
these measures correspond to very high leverage or influence points. The distinc-
tion between high leverage (x outlier) and high influence (x outlier and y outlier) 
points is not universally agreed upon yet. Check the program’s documentation to 
see what definition is being used. 

The standard error of the slope b̂1 is calculated by all statistical packages. 
 Typically, it is shown in output in a column to the right of the coefficient column. 
Like any standard error, it indicates how accurately one can estimate the correct 
population or process value. The quality of estimation of b̂1 is influenced by two 

diagnostic measures 

FIGURE 11.12
High versus low influence
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quantities: the error variance s2
e and the amount of variation in the independent 

variable Sxx:

sb̂1


se

!Sxx

The greater the variability se of the y-value for a given value of x, the larger 
the value of sb̂1. Sensibly, if there is high variability around the regression line, it is 
difficult to  estimate that line. Also, the smaller the variation in x-values (as measured 
by Sxx), the larger the value of sb̂1. The slope is the predicted change in y per unit 
change in x; if x changes very little in the data, so that Sxx is small, it is difficult to 
estimate the rate of change in y accurately. If the price of a brand of diet soda has not 
changed for years, it is obviously hard to estimate the change in quantity demanded 
when price changes. The standard error of the estimated intercept b̂0 is influenced by 
n, naturally, and also by the size of the square of the sample mean, x 

2 , relative to Sxx.

sb̂0
 se Å

1
n

1
x 

2

Sxx

The intercept is the predicted y-value when x  0; if all the xi are, for instance, 
large positive numbers, predicting y at x  0 is a huge extrapolation from the actual 
data. Such extrapolation magnifies small errors, and the standard error of b̂0 is 
large. The ideal situation for estimating b̂0 is when x  0. 

To this point, we have considered only the estimates of intercept and slope. 
We also have to estimate the true error variance s2

e. We can think of this quan-
tity as “variance around the line’’ or as the mean squared prediction error. The 
estimate of s2

e is based on the residuals yi 2 ŷi, which are the prediction errors 
in the sample. The estimate of s2

e based on the sample data is the sum of squared 
residuals divided by n 2 2, the degrees of freedom. The estimated variance is often 
shown in computer output as MSE(Error) or MS(Residual). Recall that MS stands 
for “mean square’’ and is always a sum of squares divided by the appropriate 
degrees of freedom: 

s2
e 

g i 1 
yi 2 ŷi 2 2

n 2 2


SS 1Error 2
n 2 2

In the computer output for Example 11.3, SS(Error) is shown to be 0.9498.
Just as we divide by n 2 1 rather than by n in the ordinary sample variance 

s2 (in Chapter 3), we divide by n 2 2 in s2
e, the estimated variance around the line. 

The reduction from n to n 2 2 occurs because in order to estimate the variability 
around the regression line, we must first estimate the two parameters, b0 and b1, to 
obtain the estimated line. The effective sample size for estimating s2

e is thus n 2 2. 
In our definition, s2

e is undefined for n  2, as it should be. Another argument is 
that dividing by n 2 2 makes s2

e an unbiased estimator of s2
e. In the computer out-

put of Example 11.3, n 2 2  10 2 2  8 is shown as DF (degrees of freedom) for 
Error and s2

e  0.1187 is shown as MS for Error. 
The square root se of the sample variance is called the sample standard devi-

ation around the regression line, the standard error of estimate, or the residual 
standard deviation. Because se estimates se, the standard deviation of yi, se esti-
mates the standard deviation of the population of y-values associated with a given 
value of the independent variable x. The output in Example 11.3 labels se as S with 
S  0.344566.

residuals

residual standard 
deviation
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Like any other standard deviation, the residual standard deviation may be 
interpreted by the Empirical Rule. About 95% of the prediction errors will fall 
within 62 standard deviations of the mean error; the mean error is always 0 in the 
least-squares regression model. Therefore, a residual standard deviation of 0.345 
means that about 95% of prediction errors will be less than 62(0.345)  60.690. 

The estimates b̂0, b̂1, and se are basic in regression analysis. They specify 
the regression line and the probable degree of error associated with y-values for a 
given value of x. The next step is to use these sample estimates to make inferences 
about the true parameters. 

EXAMPLE 11.4

Forest scientists are concerned with the decline in forest growth throughout the 
world. One aspect of this decline is the possible effect of emissions from coal-fired 
power plants. The scientists in particular are interested in the pH level of the soil 
and the resulting impact on tree growth retardation. The scientists study various 
forests that are likely to be exposed to these emissions. They measure various 
 aspects of growth associated with trees in a specified region and the soil pH in the 
same region. The forest scientists then want to determine impact on tree growth as 
the soil becomes more acidic. An index of growth retardation is constructed from 
the various measurements taken on the trees with a high value indicating greater 
retardation in tree growth. A higher value of soil pH indicates a more acidic soil. 
Twenty tree stands that are exposed to the power plant emissions are selected 
for  study. The values of the growth retardation index and average soil pH are 
recorded in Table 11.3.

TABLE 11.3
Forest growth retardation 

data

Stand Soil pH Grow Ret Stand Soil pH Grow Ret

   1 3.3 17 .78 11 3.9 14.95
   2 3.4 21.59 12 4.0 15.87
   3 3.4 23.84 13 4.1 17 .45
   4 3.5 15.13 14 4.2 14.35
   5 3.6 23.45 15 4.3 14.64
   6 3.6 20.87 16 4.4 17 .25
   7 3.7 17 .78 17 4.5 12.57
   8 3.7 20.09 18 5.0 7 .15
   9 3.8 17 .78 19 5.1 7 .50
 10 3.8 12.46 20 5.2 4.34

The scientists expect that as the soil pH increases within an acceptable range, 
the trees will have a lower growth retardation index value.

Using the above data and Minitab, do the following:

a. Examine the scatterplot and decide whether a straight line is a rea-
sonable model.

b. Identify least-squares estimates for b0 and b1 in the model y  b0 1 
b1x 1 e, where y is the index of growth retardation and x is the soil 
pH.

c. Predict the growth retardation for a soil pH of 4.0.
d. Identify se, the sample standard deviation about the regression line.
e. Interpret the value of b̂1.
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Regression Analysis: GrowthRet versus SoilPh

Analysis of Variance

Source         DF  Adj SS   Adj MS  F-Value  P-Value
Regression      1  385.28  385.276    52.01    0.000
Error          18  133.33    7.407
Total          19  518.61

Model Summary

      S    R-sq  R-sq(adj)  R-sq(pred)
2.72162  74.29%     72.86%      68.59%

Coefficients

Term       Coef  SE Coef  T-Value  P-Value   VIF
Constant  47.48     4.43    10.72    0.000
SoilPh    -7.86     1.09    -7.21    0.000  1.00

Regression Equation:   GrowthRet = 47.48 - 7.86 SoilPh

Solution

a. A scatterplot drawn by the Minitab package is shown in Figure 11.13. 
The data appear to fall approximately along a downward-sloping line. 
There does not appear to be a need for using a more complex model.

FIGURE 11.13
Scatterplot of growth 

retardation versus soil pH
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b. The output shows the coefficients twice, with differing numbers of 
digits. The estimated intercept (constant) is b̂0  47.48, and the esti-
mated slope (Soil pH) is b̂1  27.86. Note that the negative slope 
corresponds to a downward-sloping line.

c. The least-squares prediction when x  4.0 is

ŷ  47.48 2 7.86 14.0 2  16.04

d. The standard deviation around the fitted line (the residual standard 
deviation) is shown as S  2.72162.

e. From b̂1  27.86, we conclude that for a one-unit increase in soil 
pH, there is an estimated decrease of 7.86 in the average value of the 
growth retardation index. ■
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 11.3 Inferences About Regression Parameters 

The slope, intercept, and residual standard deviation in a simple regression model 
are all estimates based on limited data. As with all other statistical quantities, they 
are affected by random error. In this section, we consider how to allow for that 
 random error. The concepts of hypothesis tests and confidence intervals that we 
have applied to means and proportions apply equally well to regression summary 
figures. 

The t distribution can be used to make significance tests and confidence inter-
vals for the true slope and intercept. One natural null hypothesis is that the true 
slope b1 equals 0. If this H0 is true, a change in x yields no predicted change in y, 
and it follows that x has no value in predicting y. We know from the previous sec-
tion that the sample slope b̂1 has the expected value b1 and standard error 

sb̂1
 seÅ

1
Sxx

In practice, se is not known and must be estimated by se, the residual stand-
ard  deviation. In almost all regression analysis computer outputs, the estimated 
 standard error is shown next to the coefficient. A test of this null hypothesis is 
given by the t statistic 

t 
b̂1 2 b1

estimated standard error 1 b̂1 2


b̂1 2 b1

seË1 /Sxx

The most common use of this statistic is shown in the following summary. 

Hypotheses:
  Case 1.  H0: b1 # 0  versus  Ha: b1 . 0 
  Case 2.  H0: b1 $ 0  versus  Ha: b1 , 0 
  Case 3.  H0: b1  0  versus  Ha: b1 ? 0 

T.S.: t 
b̂1 2 0

se /ËSxx

R.R.: For df  n 2 2 and Type I error a, 
  1. Reject H0 if t . ta. 
  2. Reject H0 if t , 2ta. 
  3. Reject H0 if |t| . ta/2. 

Check assumptions and draw conclusions. 

All regression analysis outputs show this t-value.

Summary of a 
Statistical Test for b1 

In most computer outputs, this test is indicated after the standard error and 
labeled as T-Value or T STATISTIC. Often, a p-value is also given, which elimi-
nates the need for looking up the t-value in a table. 

EXAMPLE 11.5

Use the computer output of Example 11.4 to locate the value of the t statistic for 
testing H0: b1  0 in the tree growth retardation example. Give the observed level 
of significance for the test.

t test for b1
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Solution From the Minitab output, the value of the test statistic is t  27.21. 
The p-value for the two-tailed alternative Ha: b1 ? 0, labeled as P, is .000. In fact, 
the  value is given by p-value  2P(t . 7 .21)  2(1 2 pt(7.21, 18))  .00000104, 
which indicates that the value given on the computer output should be interpreted 
as p-value , .0001. Because the value is so small, we can reject the hypothesis that 
tree growth retardation is not associated with soil pH. ■

EXAMPLE 11.6 

The following data show the mean ages of executives of 15 firms in the food 
industry and the previous year’s percentage increases in earnings per share of 
the firms. Use the Minitab output shown to test the hypothesis that executive age 
has no predictive value for change in earnings. Should a one-sided or two-sided 
alternative be used? 

Mean age x: 38.2 40.0 42.5 43.4 44.6 44.9 45.0 45.4
Change, earnings per share y: 8.9 13.0 4.7 22.4 12.5 18.4 6.6 13.5
 x: 46.0 47 .3 47 .3 48.0 49.1 50.5 51.6 
 y: 8.5 15.3 18.9 6.0 10.4 15.9 17 .1

Regression Analysis: ChgEarn versus MeanAge

Analysis of Variance

Source         DF   Adj SS  Adj MS  F-Value  P-Value
Regression      1   71.055  71.055     2.24    0.158
Error          13  412.602  31.739
Total          14  483.657

Model Summary

      S    R-sq  R-sq(adj)  R-sq(pred)
5.63371  14.69%      8.13%       0.00%

Coefficients

Term       Coef  SE Coef  T-Value  P-Value   VIF
Constant  -17.0     18.9    -0.90    0.384
MeanAge   0.617    0.413     1.50    0.158  1.00

Regression Equation:  ChgEarn = -17.0 + 0.617 MeanAge

Solution In the model y  b0 1 b1x 1 e, the null hypothesis is H0: b1  0. The 
myth in American business is that younger managers tend to be more aggressive 
and harder driving, but it is also possible that the greater experience of the older 
executives leads to better decisions. Therefore, there is a good reason to choose 
a two-sided research hypothesis, Ha: b1 ? 0. The t statistic is shown in the output 
column marked T, reasonably enough. It shows t  1.50, with a (two-sided) p-value 
of .158. There is not enough evidence to conclude that there is any relation between 
age and change in earnings. 

In passing, note that the interpretation of b̂0 is rather interesting in this 
example; it would be the predicted change in earnings of a firm with the mean age 
of its managers equal to 0. Obviously, predictions should not be made at such small 
values for mean age. ■
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It is also possible to calculate a confidence interval for the true slope. This is 
an excellent way to communicate the likely degree of inaccuracy in the estimate of 
that slope. The confidence interval once again is simply the estimate plus or minus 
a t table value times the standard error. 

ab̂1 2 ta/2se Å
1

Sxx

,  b̂1 1 ta/2se Å
1

Sxx
b

The required degrees of freedom for the table value ta/2 are n 2 2, the error df.

Confidence Interval 
for Slope b1

EXAMPLE 11.7

Compute a 95% confidence interval for the slope b1 using the output from 
Example 11.4.

Solution In the output, b̂1  27.86, and the estimated standard error of b̂1 is 
shown in the column labeled SE Coef as 1.09. Because n is 20, there are 20 2 2  
18 df for error. The required table value for a/2  .05/2  .025 is 2.101. The corre-
sponding confidence interval for the true value of b1 is then

27.86 6 2.101(1.09)  or  210.15 to 25.57

The predicted decrease in growth retardation for a one-unit increase in soil pH 
ranges from 210.15 to 25.57. The large width of this interval is mainly due to the 
small sample size. ■

There is an alternative test, an F test, for the null hypothesis of no predictive 
value. It was designed to test the null hypothesis that all predictors have no value 
in predicting y. This test gives the same result as a two-sided t test of H0: b1  0 in 
simple linear regression; to say that all predictors have no value is to say that the 
(only) slope is 0. The F test is summarized next.

 H0: b1  0
 Ha: b1 ? 0

 T.S.: F 
SS 1Regression 2 /1
SS 1Error 2 / 1n 2 2 2 

MS 1Regression 2
MS 1Error 2

 R.R.: With df1  1 and df2  n 2 2, reject H0 if F . Fa.
 Check assumptions and draw conclusions.

SS(Regression) is the sum of squared deviations of predicted y-values from the 
y mean. SS(Regression)  g 1 ŷi 2 yi 2 2. SS(Error) is the sum of squared devia-
tions of actual y-values from predicted y-values. SS(Error)  g 1 ŷi 2 yi 2 2.

F Test for H0: b1 5 0

Virtually all computer packages calculate this F statistic. In Example 11.3, the 
output shows F  54.03 with a p-value given by 0.000 (in fact, using R, p-value  
1 2 pf(54.03, 1, 8)  .00008). Again, the hypothesis of no predictive value can be 
rejected. It is always true for  simple linear regression problems that F  t2; in the 
example, 54.03  (7.35)2, to within round-off error. The F and two-sided t tests are 
equivalent in simple linear  regression; they serve different purposes in multiple 
regression. 
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EXAMPLE 11.8 

For the output of Example 11.4, use the F-test for testing H0: b1  0. Show that 
t2  F for this data set.

Solution The F statistic is shown in the output as 52.01, with a p-value of .000 
 (indicating the actual p-value is something less than .0005). Using a computer 
 program, the actual p-value is .00000104. Note that the t statistic is 27.21 and 
t2  (27.21)2  51.984, which equals the F value, to within round-off error. ■

A confidence interval for b0 can be computed using the estimated standard 
error of b̂0 as

ŝ b̂0
  se Å

1
n

1
x2

Sxx

b̂0 6  ta/2 se Å
1
n

1
x2

Sxx

The required degrees of freedom for the table value of ta/2 are n 2 2, the error df.

Confidence Interval 
for Intercept b0

In practice, this parameter is of less interest than the slope. In particular, 
there is often no reason to hypothesize that the true intercept is zero (or any other 
particular value). Computer packages almost always test the null hypothesis of 
zero slope, but some don’t bother with a test on the intercept term. 

 11.4 Predicting New y-Values Using Regression

In all the regression analyses we have done so far, we have been summarizing and 
making inferences about relations in data that have already been observed. Thus, 
we have been predicting the past. One of the most important uses of regression is 
trying to forecast the future. In the road-resurfacing example, the county highway 
director wants to predict the cost of a new contract that is up for bids. In a regres-
sion relating the change in systolic blood pressure for a specified dose of a drug, the 
doctor will want to predict the change in systolic blood pressure for a dose level not 
used in the study. In this section, we discuss how to make such regression predic-
tions and how to determine prediction intervals that will convey our uncertainty in 
these predictions.

There are two possible interpretations of a y prediction based on a given x. 
Suppose that the highway director substitutes x  6 miles in the regression equa-
tion ŷ  2.0 1 3.0x and gets ŷ  20. This can be interpreted as either 

 “The average cost E(y) of all resurfacing contracts for 6 miles of road will be 
$20,000.” 

or

 “The cost y of this specific resurfacing contract for 6 miles of road will be 
$20,000.” 
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The best-guess prediction in either case is 20, but the plus or minus factor 
 differs. It is easier to estimate an average value E(y) than predict an individ-
ual y-value, so the plus or minus factor should be less for estimating an aver-
age. We discuss the plus or minus range for estimating an average first, with the 
understanding that this is an intermediate step toward solving the specific-value 
problem. 

In the mean-value estimating problem, suppose that the value of x is known. 
Because the previous values of x have been designated x1, . . . , xn, call the new 
value xn 1 1. Then ŷ n11  b̂0 1 b̂1xn11 is used to predict E(yn 1 1).  Because b̂0 and
b̂1 are unbiased, ŷ n11 is an unbiased predictor of E(yn+1). The standard error of 

the  estimated value can be shown to be 

seÅ
1
n

1
1xn11 2 x 2 2

Sxx

Here Sxx is the sum of squared deviations of the original n values of xi; it can be 
 calculated from most computer outputs as 

a se

standard error 1 b̂1 2
b

2

Again, t tables with n 2 2 df (the error df) must be used. The usual approach to 
forming a confidence interval—namely, estimate plus or minus t (standard error)—
yields a confidence interval for E(yn 1 1). Some of the better statistical computer 
packages will calculate this confidence interval if a new x-value is specified without 
specifying a corresponding y.

aŷn11 2  ta/2seÅ
1
n

1
1xn11 2 x 2 2

Sxx

, ŷn11 1  ta/2seÅ
1
n

1
1xn11 2 x 2 2

Sxx
b

The degrees of freedom for the tabled t distribution are n 2 2.

Confidence Interval 
for E(Yn 1 1)

For the tree growth retardation study in Example 11.4, the computer out-
put displayed here shows the estimated value of the average growth retardation, 
E(yn 1 1), to be 16.0385 when the soil pH is x  4.0. The corresponding 95% confi-
dence interval on E(yn 1 1) is 14.76 to 17.32.

Prediction for GrowthRet

Regression Equation:   GrowthRet = 47.48 - 7.86 SoilPh

Variable  Setting

SoilPh          4

    Fit    SE Fit         95% CI              95% PI
16.0385  0.609181   (14.7586, 17.3183)  (10.1791, 21.8979

The plus or minus term in the confidence interval for E(yn 1 1)  depends on 
the sample size n and the standard deviation around the regression line, as one 
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might expect. It also depends on the squared distance of xn 1 1 from x (the mean of 
the  previous xi values) relative to Sxx. As xn 1 1 gets farther from x, the term 

1xn11 2 x 2 2

Sxx

gets larger. When xn 1 1 is far away from the other x-values, so that this term is 
large, the prediction is a considerable extrapolation from the data. Small errors 
in  estimating the regression line are magnified by the extrapolation. The term 
1xn11 2 x 2 2 /Sxx could be called an extrapolation penalty because it increases with 
the degree of extrapolation. 

Extrapolation—predicting the results at independent variable values far from 
the data—is often tempting and always dangerous. Using it requires an  assumption 
that the relation will continue to be linear far beyond the data. By definition, you 
have no data to check this assumption. For example, a firm might find a negative 
correlation between the number of employees (ranging between 1,200 and 1,400) 
in a quarter and the profitability in that quarter: The fewer the  employees, the 
greater the profit. It would be spectacularly risky to conclude from this fact that 
cutting the number of employees to 600 would vastly improve profitability. (Do 
you suppose we could have a negative number of employees?) Sooner or later, 
the declining number of employees must adversely affect the business, so that 
profitability turns downward. The extrapolation penalty term actually understates 
the risk of extrapolation. It is based on the assumption of a linear  relation, and that 
assumption gets very shaky for large extrapolations. 

The confidence and prediction intervals also depend heavily on the assump-
tion of constant variance. In some regression situations, the variability around the 
line increases as the predicted value increases, violating this assumption. In such a 
case, the confidence and prediction intervals will be too wide where there is rela-
tively little variability and too narrow where there is relatively large variability. A 
scatterplot that shows a “fan’’ shape indicates nonconstant variance. In such a case, 
the confidence and prediction intervals are not very accurate. 

EXAMPLE 11.9

For the data of Example 11.4, and the following Minitab output from that data,  obtain 
a 95% confidence interval for E(yn 1 1) based on an assumed value for xn 1 1 of 6.5. 
Compare the width of the interval to one based on an assumed value for xn 1 1 of 4.0.

Prediction for GrowthRet

Regression Equation:   GrowthRet = 47.48 - 7.86 SoilPh

Variable  Setting

SoilPh          4

    Fit    SE Fit        95% CI              95% PI
16.0385  0.609181  (14.7586, 17.3183)  (10.1791, 21.8979)

Variable  Setting

SoilPh        6.5

     Fit   SE Fit         95% CI               95% PI
-3.60962  2.76491  (-9.41847, 2.19924)  (-11.7605, 4.54128)  XX

XX denotes an extremely unusual point relative to
predictor levels used to fit the model.

extrapolation penalty
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Solution For xn 1 1  4.0, the estimated value is equal to 16.0385. The confidence 
interval is shown as 14.7586 to 17.3183. For xn 1 1  6.5, the estimated value is 
23.60962 with a confidence interval of 29.41847 to 2.19924. The second interval 
has a width 11.62, much larger than the first interval’s width of 2.56. The value of 
xn 1 1  6.5 is far outside the range of x data; the  extrapolation penalty makes the 
interval very wide compared to the width of  intervals for values of xn 1 1 within the 
range of the observed x data. ■

Usually, the more relevant forecasting problem is that of predicting an indi-
vidual yn 1 1 value rather than E(yn 1 1). In most computer packages, the interval for 
predicting an individual value is called a prediction interval. The same best-guess 
ŷ n11 is used, but the forecasting plus or minus term is larger when predicting yn 1 1 
than estimating E(yn 1 1). In fact, it can be shown that the plus or minus forecasting 
error using ŷ n11 to predict yn 1 1 is as follows.

aŷn11 2  ta/2se Å1 1
1
n

1
1xn11 2 x 2 2

Sxx

, ŷn11 1  ta/2seÅ1 1
1
n

1
1xn11 2 x 2 2

Sxx
b

The degrees of freedom for the tabled t distribution are n 2 2.

Prediction Interval 
for yn 1 1

In the growth retardation example, the corresponding prediction limits for 
yn 1 1 when the soil pH x  4 are 10.1791 to 21.8979 (see the output in Example 11.9). 
The 95% confidence intervals for E(yn 1 1) and the 95% prediction intervals for 
yn 1 1 are plotted in Figure 11.14; the inner curves are for E(yn 1 1), and the outer 
curves are for yn 1 1.

The only difference between estimation of a mean E(yn 1 1) and prediction of 
an individual yn 1 1 is the term 11 in the standard error formula. The presence of 

prediction interval
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this extra term indicates that predictions of individual values are less accurate than 
estimates of means. The extrapolation penalty term still applies, as does the warn-
ing that it understates the risk of extrapolation. 

 11.5 Examining Lack of Fit in Linear Regression 

In our study of linear regression, we have been concerned with how well a linear 
 regression model y  b0 1 b1x 1 e  fits—but only from an intuitive standpoint. 
We could examine a scatterplot of the data to see whether it looked linear, and we 
could test whether the slope differed from 0; however, we had no way of testing 
to see whether a model containing terms such as b2x

2, b3x
3, and so on. would be 

a more  appropriate model for the relationship between y and x. This section will 
outline situations in which we can test whether y  b0 1 b1x 1 e is an appropriate 
model.

Pictures (or graphs) are always a good starting point for examining lack of 
fit. First, use a scatterplot of y versus x. Second, a plot of residuals yi 2 ŷ i versus 
 predicted values ŷi may give an indication of the following problems: 

1. Outliers or erroneous observations. In examining the residual plot, 
your eye will naturally be drawn to data points with unusually high 
(in  absolute value) residuals. 

2. Violation of the assumptions. For the model y  b0 1 b1x 1 e, 
we have assumed a linear relation between y and the dependent 
variable x, as well as independent, normally distributed errors with a 
constant  variance. 

The residual plot for a model and data set that has none of these apparent prob-
lems would look much like the plot in Figure 11.15. Note from this plot that there 
are no extremely large residuals (and hence no apparent outliers) and there is no 
trend in the residuals to indicate that the linear model is inappropriate. When a 
model containing terms such as b2x

2, b3x
3, and so on. is more appropriate, a resid-

ual plot more like that shown in Figure 11.16 would be observed.

FIGURE 11.15
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A check of the constant variance assumption can be addressed in the y versus 
x scatterplot or in a plot of the residuals 1yi 2 ŷ i 2  versus xi. For example, a  pattern 
of residuals as shown in Figure 11.17 indicates homogeneous error  variances across 
values of x; Figure 11.18 indicates that the error variances increase with increasing 
values of x. 

The question of independence of the errors and normality of the errors is 
 addressed later in Chapter 13. We illustrate some of the points we have learned so 
far about residuals by way of an example. 

EXAMPLE 11.10

The manufacturer of a new brand of thermal panes examined the amount of heat 
loss by random assignment of three different panes to each of the three outdoor 
temperature settings being considered. For each trial, the window temperature was 
controlled at 68°F and 50% relative humidity.

TABLE 11.4
Heat loss data  Outdoor

Temperature (°F) Heat Loss

 20 86, 80, 77
 30 78, 84, 75
 40 78, 69, 76
 50 62, 53, 57
 60 33, 38, 43

a. Plot the data. 
b. Fit the linear regression model y  b0 1 b1x 1 e, and test H0: b1  0 

(give the p-value for your test).

FIGURE 11.17
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Regression Analysis: HeatLoss versus Temperature

Analysis of Variance

Source         DF  Adj SS   Adj MS  F-Value  P-Value
Regression      1  3477.6  3477.63    63.74    0.000
Error          13   709.3    54.56
  Lack-of-Fit   3   490.0   163.32     7.45    0.007
  Pure Error   10   219.3    21.93
Total          14  4186.9

Model Summary

      S    R-sq  R-sq(adj)  R-sq(pred)
7.38658  83.06%     81.76%      76.95%

Coefficients

Term           Coef  SE Coef  T-Value  P-Value   VIF
Constant     109.00     5.72    19.05    0.000
Temperature  -1.077    0.135    -7.98    0.000  1.00

Regression Equation:   HeatLoss = 109.00 - 1.077 Temperature

Fits and Diagnostics for All Observations

Obs  HeatLoss    Fit   Resid  Std Resid
  1     86.00  87.47   -1.47      -0.22
  2     80.00  87.47   -7.47      -1.13
  3     77.00  87.47  -10.47      -1.58
  4     78.00  76.70    1.30       0.19
  5     84.00  76.70    7.30       1.04
  6     75.00  76.70   -1.70      -0.24
  7     33.00  44.40  -11.40      -1.73
  8     38.00  44.40   -6.40      -0.97
  9     43.00  44.40   -1.40      -0.21
 10     78.00  65.93   12.07       1.69
 11     69.00  65.93    3.07       0.43
 12     76.00  65.93   10.07       1.41
 13     62.00  55.17    6.83       0.98
 14     53.00  55.17   -2.17      -0.31
 15     57.00  55.17    1.83       0.26
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c. Compute ŷi  and yi 2 ŷi  for the 15 observations. Plot yi 2 ŷi 
versus ŷi.

d. Does the constant variance assumption seem reasonable? 

Solution The computer output shown here can be used to address the four parts 
of this example. 

a. The scatterplot of heat loss versus temperature certainly shows a 
downward trend, and there is evidence of curvature as well. 

b. The linear regression model seems to fit the data well, and the test of 
H0: b1  0 is significant with a p-value  1 2 pt(19.05, 13) , .0001. 
However, is this the best model for the data?

c. The plot of residuals 1yi 2 ŷi 2 against the fitted values ŷi is similar 
to Figure 11.16, suggesting that we may need additional terms in our 
model. 

d. It is clear from the original scatterplot and the residual plot that the 
constant variance condition appears to be valid. ■

How can we test for the apparent lack of fit of the linear regression model in 
Example 11.10? When there is more than one observation per level of the inde-
pendent variable, we can conduct a test for lack of fit of the fitted model by parti-
tioning SS(Error) into two parts, one pure experimental error and the other lack 
of fit. Let yij denote the response for the jth observation at the ith level of the 
independent variable. Then, if there are ni observations at the ith level of the inde-
pendent variable, the quantity 

a
j

1yij 2 yi 2 2

provides a measure of what we will call pure experimental error. This sum of 
squares has ni 2 1 degrees of freedom. 
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Similarly, for each of the other levels of x, we can compute a sum of squares 
due to pure experimental error. The pooled sum of squares 

SSPexp  a
ij

1yij 2 yi 2 2

called the sum of squares for pure experimental error, has g i 1ni 2 1 2  degrees of 
freedom. With SSLack representing the remaining portion of SS(Error), we have 

SS 1Error 2 

SSPexp

due to pure
experimental

error

 SSLack

   1   due to lack
to fit

If SS(Error) is based on n 2 2 degrees of freedom in the linear regression model, 
then SSLack will have df  n 2 2 2g i 1ni 2 1 2 .

Under the null hypothesis that our model is correct, we can form independ-
ent estimates of s2

e, the model error variance, by dividing SSPexp and SSLack by 
their respective degrees of freedom; these estimates are called mean squares and 
are  denoted by MSPexp and MSLack, respectively. 

The test for lack of fit is summarized here.

 H0: A linear regression model is appropriate.
 Ha: A linear regression model is not appropriate.

 T.S.: F 
MSLack

MSPexp

  where

  MSexp 
SSPexp

g i 1ni 2 1 2 
g ij 1yij 2 yi 2 2

g i 1ni 2 1 2
  and

  MSLack 
SS 1Error 2 2 SSPexp

n 2 2 2 g 1n1 2 1 2
 R.R.:  For a specified value of a, reject H0 (the adequacy of the model) if 

the computed value of F exceeds the table value for df1  n 2 2 2 
g i(ni 2 1) and df2  g i 1n1 2 1 2 .

Conclusion: If the F test is significant, this indicates that the linear regression 
model is inadequate. A nonsignificant result indicates that there is insufficient 
evidence to suggest that the linear regression model is  inappropriate. 

A Test for Lack of Fit 
in Linear Regression

EXAMPLE 11.11

Refer to the data of Example 11.10. Conduct a test for lack of fit of the linear 
 regression model. 

Solution The contributions to experimental error for the  differential levels of x 
are given in Table 11.5. 

mean squares
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TABLE 11.5
Pure experimental error 

 calculation

 Contribution to Pure 
 Experimental Error 

Level of Temp.  yi g ij 1 
yij 2 yi 2  ni 2 1 

20 81.00 42.00 2
30 79.00 42.00 2
40 74.33 44.66 2
50 57 .33 40.66 2
60 38.00 50.00 2

Total   219.32 10

Summarizing these results, we have 

SSPexp  a
ij

1yij 2 yi 2 2  219.32  with  df2  10

The calculation of SSPexp can be obtained by using the one-way ANOVA 
command in a software package. Using the theory from Chapter 8, designate the 
levels of the independent variable x as the levels of a treatment. The sum of squares 
error from this output is the value of SSPexp. This concept is illustrated using the 
output from Minitab given here.

One-way ANOVA: HeatLoss versus Temperature

Factor         Levels         Values
Temperature       5     20, 30, 40, 50, 60

Analysis of Variance

Source       DF  Adj SS  Adj MS  F-Value  P-Value
Temperature   4  3967.6  991.90    45.22    0.000
Error        10   219.3   21.93

Note that the value of sum of squares error from the ANOVA is exactly the value 
that was computed above. Also, the degrees of freedom are given as 10, the same 
as in our calculations.

The output shown for Example 11.10 gives SS(Error)  709.3; hence, by 
subtraction, 

SSLack  SS(Error) 2 SSPexp  709.3 2 219.32  489.98

The sum of squares due to pure experimental error has g i 1ni 2 1 2  10 degrees of 
freedom; it therefore follows that with n  15, SSLack has n 2 2 2g i 1ni 2 1 2  3 
 degree of freedom. We find that 

MSPexp 
SSPexp

10


219.32
10

 21.93

and 

MSLack 
SSLack

3


489.98
3

 163.33
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The F statistic for the test of lack of fit is 

F 
MSLack

MSPexp


163.33
21.93

 7.45

Using df1  3, df2  10, and a  .05, we will reject H0 if F $ F.05, 3, 10  3.71. 
Because the computed value of F exceeds 3.71, we reject H0 and conclude 

that there is significant lack of fit for a linear regression model with p-value  1 2 
pf(7.45, 3, 10)  .0066. The scatterplot shown in Example 11.10 confirms that the 
model should be nonlinear in x.

The computer output from Example 11.10 confirms our calculations. ■

To summarize: In situations for which there is more than one y-value at one 
or more levels of x, it is possible to conduct a formal test for lack of fit of the linear 
regression model. This test should precede any inferences made using the fitted 
 linear regression line. If the test for lack of fit is significant, some higher-order 
polynomial in x may be more appropriate. A scatterplot of the data and a residual 
plot from the linear regression line should help in selecting the appropriate model. 
More information on the selection of an appropriate model will be discussed along 
with multiple regression in Chapters 12 and 13. 

If the F test for lack of fit is not significant, proceed with inferences based on 
the fitted linear regression line. 

 11.6 Correlation

Once we have found the prediction line ŷ  b̂0 1 b̂1x, we need to measure how 
well it predicts actual values. One way to do so is to look at the size of the residual 
standard deviation in the context of the problem. About 95% of the prediction 
 errors will be within 6 2se. For example, suppose we are trying to predict the yield 
of a chemical process, where yields range from .50 to .94. If a regression model had 
a residual standard deviation of .01, we could predict most yields within 6 .02—
fairly accurate in context. However, if the residual standard deviation was .08, we 
could predict most yields within 6 .16, which is not very impressive given that the 
yield range is only .94 2 .50  .44. This approach, though, requires that we know 
the context of the study well; an alternative, more general approach is based on the 
idea of correlation. 

Suppose that we compare the squared prediction errors for two prediction 
methods: one using the regression model and the other ignoring the model and 
always predicting the mean y-value. In the road-resurfacing example of Section 
11.2, if we are given the mileage values xi, we could use the prediction equation 
ŷ i  2.0 1 3.0xi to predict costs. The deviations of actual values from predicted 
values, the residuals, measure prediction errors. These errors are summarized by 
the sum of squared residuals, SS(Error)  g 1yi 2 ŷ i 2 2, which is 44 for these data. 
For comparison, if we were not given the xi values, the best squared error  predictor 
of y would be the mean value y  14, and the sum of squared prediction errors 
would, in this case, beg i 1yi 2 y 2 2  SS(Total)  224. The proportionate reduction 
in error would be 

SS 1Total 2 2 SS 1Error 2
SS 1Total 2 

224 2 44
224

 .804
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In words, use of the regression model reduces squared prediction error by 80.4%, 
which indicates a fairly strong relation between the mileage to be resurfaced and 
the cost of resurfacing. 

This proportionate reduction in error is closely related to the correlation 
coefficient of x and y. A correlation measures the strength of the linear relation 
 between x and y. The stronger the correlation is, the better x predicts y, using 
ŷ  b̂0 1 b̂1x.

Given n pairs of observations (xi, yi), we compute the sample correlation r as 

ryx 
g 1xi 2 x 2 1 yi 2 y 2

!Sxx Syy


Sxy

!Sxx Syy

where Sxy and Sxx are defined as before and 

Syy  a
i

1 yi 2 y 2 2  SS 1Total 2

In the road-resurfacing example, Sxy  60, Sxx  20, and Syy  224, yielding

ryx 
60

Ë 120 2 1224 2  .896

Generally, the correlation ryx is a positive number if y tends to increase as x 
 increases; ryx is negative if y tends to decrease as x increases; and ryx is zero if there 
is no relation between changes in x and changes in y or if there is a nonlinear rela-
tion such that patterns of increase and decrease in y (as x increases) cancel each 
other. 

Figure 11.19 illustrates four possible situations for the values of r. In 
Figure 11.19(d), there is a strong relationship between y and x, but r < 0. This is a 
 result of symmetric positive and negative nearly linear relationships canceling each 

correlation coefficient

x

y

(a) r > 0
x

y

(b) r < 0

x

y

(c) r  0
x

y

(d) r  0

FIGURE 11.19 
Interpretation of r
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other. When r  0, there is not a “linear” relationship between y and x. However, 
higher-order (nonlinear) relationships may exist. This situation illustrates the 
 importance of plotting the data in a scatterplot. In Chapter 12, we will develop 
techniques for modeling nonlinear relationships between y and x. 

EXAMPLE 11.12

In a study of the reproductive success of grasshoppers, an entomologist collected a 
sample of 30 female grasshoppers. She recorded the number of mature eggs produced 
and the body weight of each of the females (in grams). The data are given here:

Number of 
eggs, y

Weight of female, x 
(in grams)

Number of 
eggs, y

Weight of female, x 
(in grams)

27 2.1 75 3.6 
32 2.3 84 3.6 
39 2.4 77 3.7 
48 2.5 83 3.7 
59 2.9 76 3.7 
67 3.1 82 3.8 
71 3.2 75 3.9 
65 3.3 78 4.0 
73 3.4 77 4.3 
67 3.4 75 4.4 
78 3.5 73 4.7 
72 3.5 71 4.8 
81 3.5 70 4.9 
74 3.6 68 5.0 
83 3.6 65 5.1

A scatterplot of the data is displayed in Figure 11.20. Based on the scatterplot 
and an examination of the data, determine if the correlation should be positive 
or negative. Also, calculate the correlation between the number of eggs produced 
and the weight of the female.

20

80

2.5
Female body weight (grams)
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5.53.0 3.52.0 5.04.0 4.5
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90FIGURE 11.20
Eggs produced versus 

female body weight

TABLE 11.6
Grasshopper egg data
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Solution Note that as the females’ weight increases from 2.1 to 5.1, the number of 
eggs produced first increases and then for the last few females decreases. Therefore, 
the correlation is generally positive. Thus, we would expect the correlation coeffi-
cient to be a positive number.

The calculation of the correlation coefficient involves the same calculations 
needed to compute the least-squares estimates of the regression coefficients with 
one added sum of squares Sxy:

 a
30

i1
xi  109.5 1 x  3.65,        a

30

i1
yi  2,605 1 y  68.8333

 Sxx   a
30

i1

1xi 2 x 2 2

   12.1 2 3.65 2 2 1 12.3 2 3.65 2 2 1 c1 15.1 2 3.65 2 2  17.615

 Syy  a
30

i1

1yi 2 y 2 2

  127 2 68.8333 2 2 1 132 2 68.8333 2 2 1 c1 165 2 68.8333 2 2

   6,066.1667

 Sxy  a
30

i1

1xi 2 x 2 1yi 2 y 2

   12.1 2 3.65 2 127 2 68.8333 2
 1 12.32 3.652 132 2 68.83332 1 c1 15.12 3.652 1652 68.83332  

   198.05 

 rxy 
198.05

Ë 117.615 2 16,066.1667 2  0.606

The correlation is indeed a positive number. ■

Correlation and regression predictability are closely related. The proportion-
ate reduction in error for regression we defined earlier is called the coefficient of 
determination. The coefficient of determination is simply the square of the correla-
tion coefficient, 

r2
yx 

SS 1Total 2 2 SS 1Error 2
SS 1Total 2

which is the proportionate reduction in error. In the resurfacing example, ryx  
.896 and r2

yx  .803.
A correlation of zero indicates no predictive value in using the equation 

y  b̂0 1 b̂1x; that is, one can predict y as well without knowing x as one can 
knowing x. A correlation of 1 or 21 indicates perfect predictability—a 100% 
 reduction in error attributable to knowledge of x. A correlation coefficient should 
routinely be interpreted in terms of its squared value, the coefficient of determina-
tion. Thus, a correlation of 2.3, say, indicates only a 9% reduction in squared 
 prediction error. Many books and most computer programs use the equation 

SS 1Total 2  SS 1Error 2 1 SS 1Regression 2

coefficient of 
determination
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where

SS 1Regression 2  a
i

1 ŷi 2  y 2 2

Because the equation can be expressed as SS(Error)  11 2 r2
yx 2SS(Total), it

follows that SS(Regression)  r2
yxSS(Total), which again says that regression on

x explains a proportion r2
yx of the total squared error of y. 

EXAMPLE 11.13

For the grasshopper data in Example 11.12, compute SS(Total), SS(Regression), 
and SS(Error).

Solution SS(Total)  Syy, which we computed to be 6,066.1667 in Example 11.13. 
We also found that ryx  0.606, so r2

xy  10.606 2 2  0.367236. Using the fact that 
SS(Regression)  r2

yx SS(Total), we have

SS(Regression)  (0.367236) (6,066.1667)  2,227.7148.

From the equation SS(Error)  SS(Total) 2 SS(Regression), we obtain

SS(Error)  6,066.1667 2 2,227.7148  3,838.45

Note that r2
yx  1.606 2 2  0.37 indicates that a regression line predicting the 

number of eggs as a linear function of the weight of the female grasshopper would 
explain only about 37% of the variation in the number of eggs laid. This suggests 
that weight of the female is not a good predictor of the number of eggs. An exami-
nation of the scatterplot in Figure 11.20 shows a strong relationship between x and 
y, but the relationship is extremely nonlinear. A linear equation in x does not pre-
dict y very well, but a nonlinear equation would provide an excellent fit. ■

What values of ryx indicate a “strong” relationship between y and x? 
Figure 11.21 displays 15 scatterplots obtained by randomly selecting 1,000 pairs 
(xi, yi) from 15 populations having bivariate normal distributions with correlations 
ranging from 20.99 to 0.99. We can observe that unless |ryx| is greater than 0.6 
there is very little trend in the plot.

The sample correlation ryx is the basis for estimation and significance test-
ing of the population correlation ryx. Statistical inferences are always based on 
 assumptions. The assumptions of regression analysis—linear relation between x 
and y and constant variance around the regression line, in particular—are also 
 assumed in correlation inference. In regression analysis, we regard the x-values 
as predetermined constants. In correlation analysis, we regard the x-values as 
randomly selected (and the regression inferences are conditional on the sampled 
x-values). If the xs are not drawn randomly, it is possible that the correlation 
estimates are biased. In some texts, the additional assumption is made that the 
x-values are drawn from a normal population. The inferences we make do not 
depend crucially on this normality assumption. 

The most basic inference problem is potential bias in the estimation of ryx. A 
problem arises when the x-values are predetermined, as often happens in  regression 
analysis. The choice of x-values can systematically increase or decrease the sample 
correlation. In general, a wide range of x-values tends to increase the magnitude 
of the correlation coefficient and a small range to decrease it. This  effect is shown 
in Figure 11.22. If all the points in this scatterplot are included, there is an obvious, 

assumptions for 
correlation inference
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strong correlation between x and y. Suppose, however, we consider only x-values 
in the range between the dashed vertical lines. By eliminating the outside parts of 
the scatter diagram, the sample correlation coefficient (and the coefficient of deter-
mination) are much smaller. Correlation coefficients can be  affected by systematic 
choices of x-values; the residual standard deviation is not  affected systematically, 
although it may change randomly if part of the x range changes. Thus, it is a good 
idea to consider the residual standard deviation se and the magnitude of the slope 
when you decide how well a linear regression line  predicts y. 

EXAMPLE 11.14

The personnel director of a small company designs a study to evaluate the reliabil-
ity of an aptitude test given to all newly hired employees. She randomly selects 12 
employees that have been working for at least 1 year with the company and from 
their work records determines a productivity index ( y) for each of the 12. The goal 
is to assess how strongly productivity correlates with the aptitude test (x).

y:  41  39  47  51  43  40  57  46  50  59  61  52
x:  24  30  33  35  36  36  37  37  38  40  43  49

Is the correlation larger or smaller if we consider only the six values with largest 
x-values?

Simple Regression Analysis

Linear model: y = 20.5394 + 0.775176*x

Table of Estimates

Standard t P
Estimate Error Value Value

Intercept 20.5394 10.7251 1.92 0.0845
Slope 0.775176 0.289991 2.67 0.0234

R–squared = 41.68%
Correlation coeff. = 0.646
Standard error of estimation = 5.99236

File subset has been turned on, based on x>=37.

Simple Regression Analysis

Linear model: y = 44.7439 + 0.231707*x

Table of Estimates

Standard t P
Estimate Error Value Value

Intercept 44.7439 24.8071 1.80 0.1456
Slope 0.231707 0.606677 0.38 0.7219

R–squared = 3.52%
Correlation coeff. = 0.188
Standard error of estimation = 6.34357

Solution For all 12 observations, the output shows a correlation coefficient of 
.646; the residual standard deviation is labeled as the standard error of estimation, 
5.992. For the six highest x scores, shown as the subset having x greater than or 
equal to 37, the correlation is .188 and the residual standard deviation is 6.344. In 
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going from all 12 observations to the 6 observations with the highest x-values, the 
correlation has decreased drastically, but the residual standard deviation has hardly 
changed at all. ■

Just as we could run a statistical test for bi, we can do it for ryx. 

Hypotheses:
 Case 1.  H0: ryx # 0 versus Ha: ryx . 0
 Case 2.  H0: ryx $ 0 versus Ha: ryx , 0
 Case 3.  H0: ryx  0 versus Ha: ryx 2 0

 T.S.: t  ryx 
Ën 2 2

Ë1 2 r 2
yx

 R.R.: With n 2 2 df and Type I error probability a,
  1.  t . ta.
  2. t , 2ta.
  3.  |t| . ta/2.

Check assumptions and draw conclusions.

Summary of a 
Statistical Test for ryx

We tested the hypothesis that the true slope is zero (in predicting tree growth 
retardation from soil pH) in Example 11.5; the resulting t statistic was 27.21. For 
those n = 20 stands, we can calculate ryx as 2.862 and r2

yx as .743. Hence, the cor-
relation t statistic is 

2.862Ë18

Ë1 2 .743
 27.21

An examination of the formulas for r and the slope b̂1 of the least-squares 
equation

ŷ  b̂0 1 b̂1x

yields the following relationship: 

b̂1 
Sxy

Sxx


Sxy

ËSxx 
SyyÅ

Syy

Sxx

 ryxÅ
Syy

Sxx

Thus, the t tests for a slope and for a correlation give identical results; it does not 
matter which form is used. It follows that the t test is valid for any choice of x-values. 
The bias we mentioned previously does not affect the sign of the correlation. 

EXAMPLE 11.15

Perform t tests for the null hypothesis of zero correlation and zero slope for the 
data of Example 11.14 (all observations). Use an appropriate one-sided alternative.

Solution First, the appropriate Ha ought to be ryx . 0 (and therefore b1 . 0). It 
would be nice if an aptitude test had a positive correlation with the productivity 
score it was predicting! In Example 11.14, n  12, ryx  .646, and 

t 
.646Ë12 2 2

Ë1 2 1.646 2 2
 2.68
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Because this value falls between the tabled t-values for df  10, a  .025 (2.228) 
and for df  10, a  .01 (2.764), the p-value lies between .010 and .025. Hence, H0 
may be rejected. Using R, p-value  2(1 2 pt(2.68, 10))  .0231.

The t statistic for testing the slope b1 is shown in the output of Example 11.14 
as 2.67, which equals (to within round-off error) the correlation t statistic, 2.68. The 
p-value  .0234. ■

The test for a correlation provides an interesting illustration of the differ-
ence between statistical significance and statistical importance. Suppose that a 
psychologist has devised a skills test for production-line workers and tests it on 
a huge sample of 40,000. If the sample correlation between test score and actual 
productivity is .02, then 

t 
.02Ë39,998

Ë1 2 1.02 2 2
 4.0

We would reject the null hypothesis at any reasonable a level, so the correlation 
is “statistically significant.’’ However, the test accounts for only (.02)2  .0004 of 
the squared error in skill scores, so it is almost worthless as a predictor. Remember, 
the rejection of the null hypothesis in a statistical test is the conclusion that the 
sample results cannot plausibly have occurred by chance if the null hypothesis is 
true. The test itself does not address the practical significance of the result. Clearly, 
for a sample size of 40,000, even a trivial sample correlation like .02 is not likely 
to occur by mere luck of the draw. However, there is no practically meaningful 
relationship between these test scores and productivity scores in this example.

In most situations, it is also of interest to obtain confidence limits on ryx to 
assess the uncertainty in its estimation when using the sample correlation coef-
ficient, ryx.

A 100(1 2 a/2) confidence interval for ryx is given by

ae2z1 2 1
e2z1 1 1

,  
e2z2 2 1
e2z2 1 1

b

where

z 
1
2

 lna
1 1 ryx

1 2 ryx
b

z1  z 2
za/2

Ën 2 3
 

z2  z 1
za/2

Ën 2 3

and za/2 is obtained from Table 1 in the Appendix.

Confidence Interval 
for the Correlation 

Coefficient ryx

The above confidence interval requires that the n pairs (xi, yi) have a bivari-
ate normal distribution or that n is fairly large.
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EXAMPLE 11.16

Use the data in Example 11.12 to place a 95% confidence interval on the correla-
tion between the number of mature eggs and the weight of the female grasshopper.

Solution From the data in Example 11.12, n  30,  ryx  .606, and the value of za/2 
 z.025  1.96. Next, compute Fisher’s transformation of ryx:

z 
1
2

 lna
1 1 ryx

1 2 ryx
b 

1
2

 lna1 1 .606
1 2 .606

b  .70258

z1  z 2
za/2

Ën 2 3
 .70258 2

1.96

Ë30 2 3
 .32538

z2  z 1
za/2

Ën 2 3
 .70258 1

1.96

Ë30 2 3
 1.07978

The 95% confidence interval for ryx is given by

ae2z1 2 1
e2z1 1 1

,  
e2z2 2 1
e2z2 1 1

b  ae21.325382 2 1

e21.325382 1 1
,  

e211.079782 2 1

e211.079782 1 1
b  1.314, .793 2

With 95% confidence, we would estimate that the correlation coefficient is between 
.314 and .793, whereas the point estimator ryx was given as .606. The width of the 
95% confidence interval reflects the uncertainty in using ryx as an estimator of the 
correlation coefficient when the sample size is small. ■

The correlation coefficient, ryx, assesses the linear association between two 
variables x and y. In some circumstances, one or both of these variables will not be 
numerical but will be ordinal, in which case the value of ryx cannot be computed. 
In other cases, the distribution of the x and y may be highly skewed—that is, very 
nonnormal in distribution. In both of these situations, the significance of the corre-
lation cannot be assessed using rxy. An approach for assessing monotonic associa-
tion between two variables is to use the Spearman rank correlation coefficient, rs. 
The rank correlation measures whether y increases (or decreases) with increases 
in x, even in those situations where the relation between y and x is not necessarily 
linear.

The Spearman rank correlation coefficient is computed by first ranking the 
values of x and the values of y and then computing the ordinary correlation coef-
ficient for the data set consisting of the ranks.

EXAMPLE 11.17

A corporation examined the relationship between the profit for its 12 product lines 
($10,000) and the overall quality assessment of the 12 products (scale of 0 to 100). 
The data is given in the following table.

Profit 2.5 6.2 3.1 4.6 7 .3 4.5 6.1 11.6 10.0 14.2 16.1 19.5
Quality assessment 50 57 61 68 77 80 82 85 89 91 95 99

a. Plot the data. Is profit linearly related to quality?
b. Compute the Spearman rank correlation coefficient.

Spearman rank 
correlation coefficient
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Solution 

a. A plot of the data reveals that as quality increases there is a general 
increase in profit, but it is not linear.
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Scatterplot of Profits vs Quality Assessment

b. To compute Spearman’s rank correlation coefficient, rs, first we need 
to replace the data values with their ranks, determined separately for 
each of the variables.

Profit ranks 1 6 2 4 7 3 5 9 8 10 11 12
Quality assessment ranks 1 2 3 4 5 6 7 8 9 10 11 12

Let y denote the ranks on profits and x denote the ranks on quality 
assessment. The computation of rs follows the same steps as we used 
in computing the ordinary correlation coefficient, r. Thus, we need to 
compute Sxx, Syy, and Sxx, yielding the following values:

Sxx  a
12

i1

1xi 2 x 2 2  a
12

i1

1xi 2 6.5 2 2  143

Syy  a
12

i1

1yi 2 y 2 2  a
12

i1

1yi 2 6.5 2 2  143

Sxy  a
12

i1

1xi 2 x 2 1yi 2 y 2  a
12

i1

1xi 2 6.5 2 1yi 2 6.5 2  125

Hence, the Spearman rank correlation coefficient is computed as 
follows.

rs 
Sxy

ËSxx Syy


125

Ë 1143 2 1143 2  .874
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The values of the Spearman rank correlation coefficient range from 21 
to 1. The value rs  .874 would indicate a strong relationship between 
profit and quality of the product. ■

 11.7 ReseaRch study: two Methods for 
detecting E. coli

The research study in Chapter 7 described a new microbial method for the detec-
tion of E. coli, the Petrifilm HEC test. The researchers wanted to evaluate the 
agreement of the results obtained using the HEC test with the results obtained 
from an elaborate laboratory-based procedure, hydrophobic grid membrane fil-
tration (HGMF). The HEC test is easier to inoculate, more compact to incubate, 
and safer to handle than conventional procedures. However, prior to using the 
HEC procedure, it was necessary to compare the readings from the HEC test to 
the readings from the HGMF procedure obtained on the same meat sample. This 
would determine whether the two procedures were yielding essentially the same 
readings. If the readings differed but an equation could be obtained that could 
closely relate the HEC reading to the HGMF reading, then the researchers could 
calibrate the HEC readings to predict what readings would have been obtained 
using the HGMF test procedure. If the HEC test results were unrelated to the 
HGMF test procedure results, then the HEC test could not be used in the field in 
detecting E. coli.

designing data collection
We described in Chapter 7 Phase One of the experiment. Phase Two of the study 
was to apply both procedures to artificially contaminated beef. Portions of beef 
trim were obtained from three Holstein cows that had tested negative for E. coli. 
Eighteen portions of beef trim were obtained from the cows and then contami-
nated with E. coli. The HEC and HGMF procedures were applied to a portion 
of each of the 18 samples. The two procedures yielded E. coli concentrations in 
transformed metric (log10 CFU/ml). The data consisted of 18 pairs of observations 
and are given in Table 11.7.

Managing the data
The researchers would next prepare the data for a statistical analysis following 
the steps described in Section 2.5 of the textbook. They would need to carefully 

TABLE 11.7
Data for research study RUN  HEC  HGMF  RUN  HEC  HGMF

1  .50  .42  10  1.20  1.25
2  .06  .20  11  .93  .83
3  .20  .42  12  2.27  2.37
4  .61  .33  13  2.02  2.21
5  .20  .42  14  2.32  2.44
6  .56  .64  15  2.14  2.28
7  2.82  2.82  16  2.09  2.69
8  .67  1.06  17  2.30  2.43
9  1.02  1.21  18  2.10  1.07
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review the experimental procedures to make sure that each pair of meat samples 
was nearly identical so as not to introduce any differences in the HEC and HGMF 
readings that were not part of the differences in the two procedures. During such 
a review, procedural problems during run 18 were discovered, and this pair of 
observations was excluded from the analysis.

Analyzing the Data
The researchers were interested in determining if the two procedures yielded 
measures of E. coli concentrations that were strongly related. The scatterplot of 
the experimental data is given in Figure 11.23.

A 45° line was placed in the scatterplot to display the relative agreement 
between the readings from the two procedures. If the plotted points fell on this line, 
then the two procedures would be in complete agreement in their determination of 
E. coli concentrations. Although the 17 points are obviously highly correlated, they 
are not equally scattered about the 45° line; 14 of the points are below the line, with 
only three points above the line. Thus, the researchers would like to determine an 
equation that would relate the readings from the two procedures. If the two read-
ings from the two procedures can be accurately related using a regression equation, 
the researchers would be able to predict the reading of the HGMF procedure given 
the HEC reading on a meat sample. This would enable them to compare E. coli 
concentrations obtained from meat samples in the field using the HEC procedure 
to the readings obtained in the laboratory using the HGMF procedure.

The researchers were interested in assessing the degree to which the HEC 
and HGMF procedures agreed in determining the level of E. coli concentrations in 
meat samples. We will first obtain the regression relationship, with HEC serving as 
the dependent variable and HGMF as the independent variable, since the HGMF 
procedure has a known reliability in determining E. coli concentrations.
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The computer output for analyzing the 17 pairs of E. coli concentrations is 
given here along with a plot of the residuals.

Dependent Variable: HEC HEC-METHOD

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 14.22159 14.22159 441.816 0.0001
Error 15 0.48283 0.03219
C Total 16 14.70442

Root MSE 0.17941 R-square 0.9672
Dep Mean 1.07471 Adj R-sq 0.9650
C.V. 16.69413

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 –0.023039 0.06797755 –0.339 0.7394
HGMF 1 0.915685 0.04356377 21.019 0.0001
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The R2 value of .9672 indicates a strong linear relationship between HEC and 
HGMF concentrations. An examination of the residual plots does not indicate the 
necessity for higher-order terms in the model or for heterogeneity in the variances. 
The least-squares equation relating HEC to HGMF concentrations is given here.

HEC  2.023 1 .9157 * HGMF

Thus, we can assess whether there is an exact relationship between the two meth-
ods of determining E. coli concentrations by testing the hypotheses

H0: b0  0 and b1  1 versus Ha: b0 2 0 and /or b1 2 1

x
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If H0 were accepted, then we would have a strong indication that the relationship
HEC  0 1 1 * HGMF was valid. That is, HEC and HGMF were yielding 
 es sentially the same values for E. coli concentrations. From the output, we have 
a p-value  .7394 for testing H0: b0  0, and we can test H0: b1  1 using the test 
 statistic

t 
b̂1 2 1
SE 1 b̂12


.915685 2 1
.04356377

 21.935

The p-value of the test statistic is p-value  Pr(|t15| $ 1.935)  .0721. In order to 
 obtain an overall a value of .05, we evaluate the hypotheses of H0: b0  0 and 
H0: b1  1 individually using a  .025; that is, we reject an individual hypoth-
esis if its p-value is less than .025. Because the p-values are .7394 and .0721, we 
fail to  reject  either null hypothesis and conclude that the data do not support 
the  hypothesis that HEC and HGMF are yielding significantly different E. coli 
 concentrations.

Even though HEC and HGMF are not yielding exactly the same determina-
tions, by solving the regression equation for HGMF in terms of HEC, the value of 
HGMF could be predicted from the value of HEC: 

HGMF  (HEC 1 .023)/.9157  .025 1 1.092HEC

Figure 11.24 contains the regression equation relating HEC to HGMF along with 
95% confidence and prediction lines. Using the prediction lines, a 95% prediction 
interval can be determined for the predicted value of HGMF for a given value of 
HEC. The procedure involves drawing a horizontal line at the level of the speci-
fied value of HEC. Next, the intersections of the the horizontal line with the 95% 
prediction lines are projected to the HGMF axis. The two points on the HGMF 
axis would be the 95% prediction interval for HGMF for the given value of HEC. 
For example, if HEC  .5, then the corresponding values on the HGMF axis are 
.16 and 1.04. We can then conclude that when HEC  .5, a 95% prediction interval 
for the values of HGMF would be (.16, 1.04).
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 11.8 Summary and Key Formulas

This chapter introduces regression analysis and is devoted to simple regression, 
using only one independent variable to predict a dependent variable. The basic 
questions involve the nature of the relation (linear or curved), the amount of 
variability around the predicted value, whether that variability is constant over 
the range of prediction, how useful the independent variable is in predicting the 
dependent variable, and how much to allow for sampling error. The key concepts 
of the chapter include the following: 

1. The data should be plotted in a scatterplot. A smoother such as 
LOWESS or a spline curve is useful in deciding whether a relation is 
nearly linear or is clearly curved. Curved relations can often be made 
nearly linear by transforming either the independent variable or the 
dependent variable or both. 

2. The coefficients of a linear regression are estimated by least squares, 
which minimizes the sum of squared residuals (actual values minus 
predicted values). Because squared error is involved, this method is 
sensitive to outliers.

3. Observations that are extreme in the x (independent variable) direc-
tion have high leverage in fitting the line. If a high leverage point 
also falls well off the line, it has high influence, in that removing the 
observation substantially changes the fitted line. A high influence 
point should be omitted if it comes from a different population than 
the remainder. If it must be kept in the data, a method other than 
least squares should be considered. 

4. Variability around the line is measured by the standard deviation of 
the residuals. This residual standard deviation may be interpreted 
using the Empirical Rule. The residual standard deviation some-
times increases as the predicted value increases. In such a case, try 
transforming the  dependent variable. 

5. Hypothesis tests and confidence intervals for the slope of the line 
(and, less interestingly, the intercept) are based on the t distribution. 
If there is no relation, the slope is 0. The line is estimated most accu-
rately if there is a wide range of variation in the x-variable. 

6. The fitted line may be used to forecast at a new x-value, again using 
the t distribution. This forecasting is potentially inaccurate if the new 
x-value is extrapolated beyond the support of the observed data. 

7. A standard method of measuring the strength of relation is the 
coefficient of determination, the square of the correlation. This 
measure is  diminished by nonlinearity or by an artificially limited 
range of x variation.

One of the most important uses of statistics for managers is prediction. A 
manager may want to forecast the cost of a particular contracting job given the size 
of that job, to forecast the sales of a particular product given the current rate of 
growth of the gross national product, or to forecast the number of parts that will be 
produced given a certain size workforce. The statistical method most widely used 
in making predictions is regression analysis. 

In the regression approach, past data on the relevant variables are used to 
develop and evaluate a prediction equation. The variable that is being predicted 
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by this equation is the dependent variable. A variable that is being used to make 
the prediction is an independent variable. In this chapter, we discuss regression 
methods involving a single independent variable. In Chapter 12, we extend these 
methods to multiple regression, the case of several independent variables. 

A number of tasks can be accomplished in a regression study: 

1. The data can be used to obtain a prediction equation. 
2. The data can be used to estimate the amount of variability or uncer-

tainty around the equation. 
3. The data can be used to identify unusual points far from the 

predicted value, which may represent unusual problems or 
opportunities. 

4. Because the data are only a sample, inferences can be made about 
the true (population) values for the regression quantities. 

5. The prediction equation can be used to predict a reasonable range of 
values for future values of the dependent variable. 

6. The data can be used to estimate the degree of correlation between 
de-pendent and independent variables, a measure that indicates how 
strong the relation is. 

Key Formulas

1. Least-squares estimates of slope 
and intercept 

b̂1 
Sxy

Sxx

and

b̂0  y 2 b̂1x

where

Sxy  a
i

1xi 2 x 2 1yi 2 y 2

and

Sxx  a
i

1xi 2 x 2 2

2. Estimate of s2
e 

s2
e 

g i 1 
yi 2 ŷi 2 2

n 2 2

  
SS 1Error 2

n 2 2

3. Statistical test for b1

  H0: b1  0 (two-tailed)

T.S.: t 
b̂1

se /!Sxx

4. Confidence interval for b1

b̂1 6
 
ta/2  

se Å
1

Sxx

5. F test for b1

H0: b1  0 (two-tailed)

T.S.:  F 
MS 1Regression 2

MS 1Error 2
6. Confidence interval for E(yn 1 1)

ŷn11 6
 
ta/2 se Å

1
n

1
1xn11 2 x 2 2

Sxx

7. Prediction interval for yn 1 1

ŷn11 6
 
ta/2 se Å1 1

1
n

1
1xn11 2 x 2 2

Sxx

8. Test for lack of fit in linear 
regression

T.S.: F 
MSLack

MSPexp

 where

MSPexp 
SSPexp

g i 1ni 2 1 2

       
g ij 1yij 2 yi 2 2

g i 1ni 2 1 2
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 11.9 Exercises

 11.2 Estimating Model Parameters

 Basic 11.1 Plot the data shown here in a scatterplot, and sketch a line through the points.

x 4 9 14 19 24 29 34 39 43

y 4 18 23 22 37 38 47 50 64

 Basic 11.2 Refer to Exercise 11.1.
 a.  Plot the equation ŷ  .51 1 1.38x in the scatterplot produced in Exercise 11.1. 

Comment on how close this line is to the line you fitted through the points.
 b. Use the equation ŷ  .51 1 1.38x to predict y for x  20.

 Basic 11.3 Use the data given here to answer the following questions.

x 7 12 14 22 27 33 37 39 42 49 53 61

y 10.6 16.8 23.3 12.5 91.7 67 .7 130.7 110.3 147 .3 138.3 142.6 151.4

 a. Plot the data values in a scatter diagram.
 b. Sketch a straight line through the points.
 c. Use your sketched line to predict the value of y when x  40.

 Basic 11.4 Refer to Exercise 11.3.
 a. Determine the least-squares prediction equation.
 b. Use the least-squares prediction equation to predict y when x  40.
 c. Compare your prediction from part (b) to your prediction from Exercise 11.3.

 Basic 11.5 Refer to the Exercise 11.4.
 a. Use the least-squares prediction equation to predict y when x  100.
 b. Comment on the validity of this prediction.

 Basic 11.6 Use the output from Minitab for these data to answer the following questions.

x 20 36 50 80 95 121 85 63 98 108

y 32 75 87 152 195 274 184 123 136 203

 a. Plot the data on a scatterplot.
 b.  Locate the least-squares prediction from the output given here, and draw the 

 regression line in the scatterplot.

 and

MSLack 
SS 1Error 2 2 SSPexp

1n 2 2 2 2 g i 1ni 2 1 2
 9. Correlation coefficient 

ryx 
Sxy

ËSxxSyy

b̂1Å
Sxx

Syy

 10. Coefficient of determination

r2
yx 

SS 1Total 2 2 SS 1Error 2
SS 1Total 2

 11. Confidence interval for ryx

ae2z1 2 1
e2z1 1 1

,  
e2z2 2 1
e2z2 1 1

b
 12. Statistical test for ryx

  H0:  ryx  0 (two-tailed)

 T.S.:  t  ryx 
Ën 2 2

Ë1 2 r 2
yx

 13.  Spearman rank correlation 
coefficient

 rs 
Sxy

ËSxx Syy

where x and y are ranks
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 c.  Does the predicted equation seem to represent the data adequately?
 d. Predict y when x  77.

Minitab Output:

Regression Analysis: y versus x

Analysis of Variance

Source      DF  Adj SS   Adj MS  F-Value  P-Value
Regression   1   40627  40626.9    64.56    0.000
  x          1   40627  40626.9    64.56    0.000
Error        8    5034    629.3
Total        9   45661

Model Summary

      S    R-sq  R-sq(adj)  R-sq(pred)
25.0850  88.98%     87.60%      82.69%

Coefficients

Term       Coef  SE Coef  T-Value  P-Value   VIF
Constant   -9.7     20.9    -0.46    0.657
x         2.060    0.256     8.04    0.000  1.00

Regression Equation:  y = -9.7 +2.060x

Fits and Diagnostics for All Observations

Obs      y    Fit  Resid  Std Resid
  1   32.0   31.5    0.5       0.02
  2   75.0   64.5   10.5       0.49
  3   87.0   93.4   -6.4      -0.28
  4  152.0  155.2   -3.2      -0.13
  5  195.0  186.1    8.9       0.38
  6  274.0  239.6   34.4       1.66
  7  184.0  165.5   18.5       0.78
  8  123.0  120.1    2.9       0.12
  9  136.0  192.3  -56.3      -2.44  R
 10  203.0  212.9   -9.9      -0.44

R  Large residual

 Ag. 11.7 A food processor was receiving complaints from its customers about the firmness of its 
canned sweet potatoes. The firm’s research scientist decided to conduct an experiment to 
 determine if adding pectin to the sweet potatoes might result in a product with a more desira-
ble firmness. The experiment was designed using three concentrations of pectin (by weight)— 
1%, 2%, and 3%—and a control with 0%. The processor packed 12 cans with sweet potatoes 
with a 25% (by weight) sugar solution. Three cans were randomly assigned to each of the 
pectin concentrations with the appropriate percentage of pectin added to the sugar syrup. The 
cans were sealed and placed in a 25°C environment for 30 days. At the end of the storage time, 
the cans were opened, and a firmness determination was made for the contents of each can. 
These appear below:

Pectin concentration 0%  1%  2%  3%

Firmness reading 46.90, 50.20, 51.30  56.48, 59.34, 62.97 67 .91, 70.78, 73.67 68.13, 70.85, 72.34

 a.  Let x denote the pectin concentration of the sweet potatoes in a can and y denote 
the firmness reading following the 30 days of storage at 25°C. Plot the sample data 
in a scatter diagram.
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 b.  Obtain the least-squares estimates for the parameters, and plot the least-squares 
line on your scatter diagram.

 c.  Does firmness appear to be in a constant increasing relation with pectin 
concentration?

 d.  Predict the firmness of a can of sweet potatoes treated with a 1.5% concentration 
of pectin (by weight) after 30 days of storage at 25°C.

 Basic 11.8 An online retailer needs to manage the amount of time needed to select the ordered items 
and assemble them for shipping. In order to assess the amount of time his assemblers devote to 
this task, the retailer takes a random sample of 100 orders and records the number of items in 
each order (Noltems) and the time needed to assemble the shipment.

NoItems 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3
Time 4.8 14.7 13.7 9.5 2.4 11.8 10.5 12.0 14.3 16.4 17 .9 14.5 16.7 20.1 16.8

NoItems 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5
Time 20.8 26.8 12.9 13.0 15.4 10.8 20.3 22.3 20.0 21.9 20.7 20.9 19.9 17 .1 19.1

NoItems 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7
Time 17 .2 18.1 17 .9 12.9 19.6 27 .9 22.2 23.2 17 .5 15.3 21.8 17 .9 20.1 18.9 29.3

NoItems 7 8 8 8 8 8 8 9 9 9 9 9 10 10 10
Time 21.5 26.5 28.2 25.1 26.1 28.2 22.3 21.8 25.5 24.4 18.1 26.7 24.6 30.1 21.5

NoItems 10 10 10 11 11 11 11 12 12 12 12 14 14 15 16
Time 25.2 28.2 22.6 31.3 27 .2 28.8 29.7 34.3 27 .9 29.7 28.7 34.6 38.0 28.0 37 .0

NoItems 17 18 18 18 19 20 21 22 23 24 25 25 25 26 27
Time 32.5 39.5 39.0 37 .0 35.5 38.3 44.0 39.6 42.3 34.6 44.9 47 .4 49.2 45.8 44.0

NoItems 27 30 30 31 37 39 40 41 45 46
Time 46.1 42.9 48.3 46.0 48.2 54.7 49.9 55.4 57 .1 52.4

 a. Plot the data on a scatterplot.
 b. Fit a least-squares line to the data, and comment on the degree of fit to the data.
 c.  Fit a regression model with the square root of Noltems as the explanatory 

 variable.
 d. Which model produced a better fit to the data?
 e.  Predict the amount of time needed to assemble a package containing 13 items 

using both models. Was there much difference in your predictions?

 Engin. 11.9 A manufacturer of cases for sound equipment requires that holes be drilled for metal 
screws. The drill bits wear out and must be replaced; there is expense not only in the cost of 
the bits but also in the cost of lost production. Engineers varied the rotation speed of the drill 
and measured the lifetime y (thousands of holes drilled) of four bits at each of five speeds x. 
The data were:

x 60 60 60 60 80 80 80 80 100 100
y 4.6 3.8 4.9 4.5 4.7 5.8 5.5 5.4 5.0 4.5
x 100 100 120 120 120 120 140 140 140 140
y 3.2 4.8 4.1 4.5 4.0 3.8 3.6 3.0 3.5 3.4

 a.  Create a scatterplot of the data. Does there appear to be a relation? Does it 
 appear to be linear?

 b.  Is there any evident outlier? If so, does it have high influence?
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 Engin. 11.10 Refer to Exercise 11.9.

Regression Analysis: Lifetime versus DrillSpeed

The regression equation is
Lifetime = 6.03 – 0.0170 DrillSpeed

Predictor        Coef   SE Coef       T      P
Constant       6.0300    0.5195   11.61  0.000
DrillSpeed  –0.017000  0.004999   –3.40  0.003

S = 0.632368   R-Sq = 39.1%   R-Sq(adj) = 35.7%

Analysis of Variance

Source          DF       SS       MS      F      P
Regression       1   4.6240   4.6240  11.56  0.003
Residual Error  18   7.1980   0.3999    
Total           19  11.8220

Unusual Observations

Obs  DrillSpeed  LifeTime    Fit  SE Fit  Residual  St Resid
  2          60     3.800  5.010   0.245    –1.210    –2.08R

R denotes an observation with a large standardized residual.

 a. Find the least-squares estimates of the slope and intercept in the output.
 b.  What does the sign of the slope indicate about the relation between the speed of 

the drill and bit lifetime?
 c.  Compute the residual standard deviation. What does this value indicate about the 

fitted regression line?

 Engin. 11.11 Refer to the data of Exercise 11.9.
 a.  Use the regression line of Exercise 11.10 to calculate predicted values for x  60, 

80, 100, 120, and 140.
 b.  For which x-values are most of the actual y-values larger than the predicted 

y-values? For which x-values are most of the actual y-values smaller than the 
 predicted y-values? What does this pattern indicate about whether there is a lin-
ear relation between the drill speed and the lifetime of the bit?

 c.  Suggest a transformation of the data to obtain a linear relation between the lifetime 
of the bit and the transformed values of the drill speed.

 11.3 Inferences About Regression Parameters

 Ag. 11.12 Refer to the data of Exercise 11.7.
 a. Calculate a 95% confidence interval for b1.
 b. What is the interpretation of H0: b1  0 in Exercise 11.7?
 c. Test the hypotheses H0: b1  0 versus Ha: b1 ? 0.
 d. Determine the p-value of the test of H0: b1  0.

 Ag. 11.13 Refer to the data of Exercise 11.7.
 a. Calculate a 95% confidence interval for b0.
 b. What is the interpretation of H0: b0  0 for the problem in Exercise 11.7?
 c. Test the hypotheses H0: b0  0 versus Ha: b0 ? 0.
 d. Determine the p-value of the test of H0: b0  0.

 Ag.  11.14 Refer to Exercise 11.7. Perform a statistical test of the null hypothesis that there is no 
 linear relationship between the concentration of pectin and the firmness of canned sweet  potatoes 
after 30 days of storage at 25°C. Give the p-value for this test and draw conclusions.
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 Bus. 11.15 Refer to the data of Exercise 11.8.
 a. Calculate a 95% confidence interval for b1.
 b. What is the interpretation of H0: b1  0 in Exercise 11.8?
 c. What is the natural research hypothesis Ha for the problem in Exercise 11.8?
 d. Do the data support the research hypothesis from part (c) at a  .05?

 Bus. 11.16 Refer to the data of Exercise of 11.8.
 a. Calculate a 95% confidence interval for b0.
 b. What is the interpretation of H0: b0  0 for the problem in Exercise 11.8?
 c. Test the hypotheses H0: b0  0 versus Ha: b0 ? 0.
 d. Determine the p-value of the test of H0: b0  0.

 Bus.  11.17 Refer to Exercise 11.8. Perform a statistical test of the null hypothesis that there is no 
linear relationship between the time needed to select the ordered items and the number of items 
in the order. Give the p-value for this test, and draw conclusions.

 Bio.  11.18 The extent of disease transmission can be affected greatly by the viability of  infectious 
organisms suspended in the air. Because of the infectious nature of the disease under study, 
the viability of these organisms must be studied in an airtight chamber. One way to do this is to 
disperse an aerosol cloud, prepared from a solution containing the  organisms, into the chamber. 
The biological recovery at any particular time is the  percentage of the total number of organisms 
suspended in the aerosol that are viable. The data in the accompanying table are the biological 
recovery percentages computed from 13 different aerosol clouds. For each of the clouds, recovery 
percentages were  determined at different times. 

 a. Plot the data. 
 b.  Since there is some curvature, try to linearize the data using the log of the 

 biological recovery.

  

Cloud Time, x (in minutes) Biological Recovery (%) 

1 0  70.6
2 5  52.0
3 10  33.4
4 15  22.0
5 20  18.3
6 25  15.1
7 30  13.0
8 35  10.0
9 40  9.1

10  45  8.3
11  50  7 .9
12  55  7 .7
13  60  7 .7

 Bio.  11.19 Refer to Exercise 11.18. 
 a.  Fit the linear regression model y  b0 1 b1x 1 e, where y is the log biological 

recovery percentage.
 b. Compute an estimate of se. 
 c. Identify the standard errors of b̂ 0 and b̂ 1.

 Bio.  11.20 Refer to Exercise 11.18. Conduct a test of the null hypothesis that b1  0. Use a  .05. 

 Bio.  11.21 Refer to Exercise 11.18. Place a 95% confidence interval on b0, the mean log biological 
recovery percentage at time zero. Interpret your findings. (Note: E(y)  b0 when x  0.)

 Med.  11.22 Athletes are constantly seeking measures of the degree of their cardiovascular fitness 
prior to a major race. Athletes want to know when their training is at a level that will produce 
a peak performance. One such measure of fitness is the time to exhaustion from running on a 
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treadmill at a specified angle and speed. The important question is then “Does this measure of 
cardiovascular fitness translate into performance in a 10-km running race?” Twenty experienced 
distance runners who professed to be at top condition were evaluated on the treadmill and then 
had their times recorded in a 10-km race. The data are given here.

Treadmill time (minutes) 7 .5  7 .8  7 .9  8.1  8.3  8.7  8.9  9.2  9.4  9.8
10-km time (minutes)  43.5  45.2  44.9  41.1  43.8  44.4  38.7  43.1  41.8  43.7

Treadmill time (minutes)  10.1  10.3  10.5  10.7  10.8  10.9  11.2  11.5  11.7  11.8
10-km time (minutes)  39.5  38.2  43.9  37 .1  37 .7  39.2  35.7  37 .2  34.8  38.5

 a. Plot the data in a scatterplot. 
 b. Fit a regression model to the data. Does a linear model seem appropriate?
 c. Obtain the estimated linear regression model ŷ   ̂b0 1 ^  b1 .

  11.23 Refer to the data of Exercise 11.22.
 a. Estimate s2

e.
 b. Estimate the standard error of b̂1.
 c. Place a 95% confidence interval on b1.
 d. Test the hypothesis that there is a linear relationship between the amount of time 

needed to run a 10-km race and the time to exhaustion on a treadmill. Use a  .05.

  11.24 The focal point of an agricultural research study was the relationship between when 
a crop is planted and the amount of crop harvested. If a crop is planted too early or too late 
farmers may fail to obtain optimal yield and hence not make a profit. An ideal date for planting 
is set by the researchers, and the farmers then record the number of days either before or after 
the designated date. In the following data set, D is the deviation (in days) from the ideal plant-
ing date, and Y is the yield (in bushels per acre) of a wheat crop:

D  211  210 29  28  27  26  24  23  21  0
Y  43.8  44.0  44.8  47 .4  48.1  46.8  49.9  46.9  46.4  53.5

D  1  3  6  8  12  13  15  16  18  19
Y  55.0  46.9  44.1  50.2  41.0  42.8  36.5  35.8  32.2  33.3

 a.  Plot the above data. Does a linear relation appear to exist between yield and 
 deviation from the ideal planting date?

 b.  Plot yield versus absolute deviation from the ideal planting date. Does a linear 
 relation seem more appropriate in this plot than the plot in part (a)?

  11.25 Refer to Exercise 11.24. Fit a regression model relating yield to the absolute deviation 
from the ideal planting date, that is, x  |D|.

 a.  Compute the estimated linear regression model ŷ  b̂0 1 b̂1x .
 b. Estimate s2

e.
 c. Estimate the standard error of b̂1.
 d. Place a 95% confidence interval on b1.
 e.  Test the hypothesis that there is a linear relationship between yield per acre and 

absolute deviation from the ideal planting date. Use a  .05.

  11.26  Refer to Exercise 11.24.
 a. For this study, would it make sense to give any physical interpretation to b0?
 b.  Place a 95% confidence interval on b0, and give an interpretation to the interval 

relative to this particular study.
 c. Test the hypotheses H0: b0  0 versus Ha: b0 2 0. Does this test have any practi-

cal importance in this particular study?

 Bus. 11.27 A firm that prints automobile bumper stickers conducts a study to investigate the relation 
between the direct cost of producing an order of bumper stickers (TOTCOST) and the number 
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of stickers (RunSize, in 1,000s of stickers) in a particular order. The data are given in the 
following table.

RunSize  2.6  5.0  10.0  2.0  .8  4.0  2.5  .6  0.8  1.0
TOTCOST  230  341  629  187  159  327  206  124  155  147

RunSize  2.0  3.0  .4  .5  5.0  20.0  5.0  2.0  1.0  1.5
TOTCOST  209  247  135  125  366  1,146  339  208  150  179

RunSize  .5  1.0  1.0  .6  2.0  1.5  3.0  6.5  2.2  1.0
TOTCOST  128  155  143  131  219  171  258  415  226  159

 a.  Plot a scatterplot of the data. Do you detect any difficulties with using a 
 linear regression model? Can you find any blatant violations of the regression 
 assumptions?

 b. Compute the estimated regression line.
 c. Estimate the residual standard deviation.
 d. Construct a 95% confidence interval for the true slope.
 e. What are the interpretations of the intercept and slope in this study?

  11.28  Refer to Exercise 11.27.
 a. Test the hypothesis H0 : b0  0 using a t test with a  .05.
 b. Determine the p-value for this test, and interpret its value.

  11.29 Refer to Exercise 11.27.
 a. Compute the value of the F statistic and the associated p-value.
 b.  How do the p-values for this F statistic and the t test of Exercise 11.28 compare? 

Why should this relation hold?

 11.4 Predicting New y-Values Using Regression

 Bio. 11.30  Refer to Exercise 11.18. Using the least-squares line obtained in Exercise 11.18 

   ŷ  b̂0 1  b̂ 1x

 estimate the mean log biological recovery percentage at 30 minutes using a 95% confidence 
 interval.

 Bio. 11.31 Use the data from Exercise 11.18 to complete the following.
 a.  Construct a 95% prediction interval for the log biological recovery percentage at 

30 minutes.
 b. Compare your results to the confidence interval on E(y) from Exercise 11.30.
 c. Explain the different interpretation for the two intervals.

 Engin. 11.32 A chemist is interested in determining the weight loss y of a particular compound as a 
function of the amount of time the compound is exposed to the air. The data in the following table 
give the weight losses associated with n  12 settings of the independent variable, exposure time.

 Weight Loss and Exposure Time Data

 Weight Loss, y  Exposure Time Weight Loss, y  Exposure Time
 (in pounds) (in hours) (in pounds) (in hours)

 4.3 4 6.6 6
 5.5 5 7 .5 7
 6.8 6 2.0 4
 8.0 7 4.0 5
 4.0 4 5.7 6
 5.2 5 6.5 7
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 a. Determine the least-squares prediction equation for the model

  y  b0 1 b1x 1 e.

 b. Test H0: b1 # 0; give the p-value for Ha: b1 . 0, and draw conclusions.

 Engin. 11.33 Refer to Exercise 11.32.
 a. Determine the 95% confidence bands for E(y) when 4 # x # 7.
 b. Determine the 95% prediction bands for y, 4 # x # 7.
 c.  Distinguish between the meaning of the confidence bands and the prediction 

bands in parts (a) and (b).

 Engin. 11.34 Refer to Exercise 11.27.
 a.  Predict the mean total direct cost for all bumper sticker orders with a print run of 

2,000 stickers (that is, with RunSize  2.0).
 b. Compute a 95% confidence interval for this mean.

 Engin. 11.35 Refer to Exercise 11.27.
 a.  Predict the direct cost for a particular bumper sticker order with a print run of 

2,000 stickers. Obtain a 95% prediction interval.
 b.  Would an actual direct cost of $250 be surprising for this order?

 Med. 11.36 Use the data from Exercise 11.22.
 a.  Estimate the mean time to run 10 km for athletes having a treadmill time of  

11 minutes.
 b.  Place a 95% confidence interval on the mean time to run 10 km for athletes 

having a treadmill time of 11 minutes.

 Med. 11.37 Refer to Exercise 11.22 to complete the following.
 a. Predict the time to run 10 km if an athlete has a treadmill time of 11 minutes.
 b.  Place a 95% prediction interval on the time to run 10 km for an athlete having a 

treadmill time of 11 minutes.
 c.  Compare the 95% prediction interval from part (b) to the 95% confidence interval 

from Exercise 11.36. What is the difference in the interpretation of these two 
intervals? Provide a nontechnical reason why the prediction interval is wider than 
the confidence interval.

 11.5 Examining Lack of Fit in Linear Regression

 Engin. 11.38 A manufacturer of laundry detergent was interested in testing a new product prior to 
market release. One area of concern was the relationship between the height of the deter-
gent suds in a washing machine as a function of the amount of detergent added in the wash 
cycle. For a standard-size washing machine tub filled to the full level, the manufacturer made 
 random  assignments of amounts of detergent and tested them on the washing machine. The 
data appear next.

Height, y Amount, x

28.1, 27 .6 6
32.3, 33.2 7
34.8, 35.0 8
38.2, 39.4 9
43.5, 46.8 10

 a. Plot the data.
 b. Fit a linear regression model.
 c. Use a residual plot to investigate possible lack of fit.

  11.39 Refer to Exercise 11.38.
 a. Conduct a test for lack of fit of the linear regression model.
 b. If the model is appropriate, give a 95% prediction band for y.
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  11.40 In the preliminary studies of a new drug, a pharmaceutical firm needs to obtain infor-
mation on the relationship between the dose level and potency of the drug. In order to obtain 
this  information, a total of 18 test tubes are inoculated with a virus culture and incubated for an 
 appropriate period of time. Three test tubes are randomly assigned to each of six different dose 
levels. The 18 test tubes are then injected with the randomly assigned dose level of the drug. The 
measured response is the protective strength of the drug against the virus culture. Due to a prob-
lem with a few of the test tubes, only two responses were obtained for dose levels 4, 8, and 32. The 
data are given here:

Dose level 2 4 8 16 32 64
Response 5, 7, 3 10, 14 15, 17 20, 21, 19 23, 29 28, 31, 30

 a. Plot the data.
 b. Fit a linear regression model to these data.
 c.  From a plot of the residuals, does there appear to be a possible lack of fit of the 

 linear model?

  11.41 Refer to Exercise 11.40. Conduct a test for lack of fit of the linear regression model.

  11.42 Refer to Exercise 11.40. Often in drug evaluations, a logarithmic transformation of the  
dose levels will yield a linear relationship between the response variable and the  independent 
variable. Let xi be the natural logarithm of the dose levels, and evaluate the regression 
of the  response of the drug in the 15 test tubes to the transformed independent variable: 
yi  b0 1 b1xi 1 ei.

 a.  Plot the response of the drug versus the natural logarithm of the dose levels. 
Does it appear that a linear model is appropriate?

 b. Fit a linear regression model to these data.
 c.  From a plot of the residuals, do these appear to be a possible lack of fit of the 

linear model?
 d. Conduct a test for lack of fit of the linear regression model.

 11.6 Correlation

  11.43 Refer to Exercise 11.27.
 a.  Compute the value of r 2

yx.
 b.  What are the value and sign of the correlation coefficient?
 c.  Suppose the study in Exercise 11.27 had been restricted to RunSize values less 

than 1.8. Would you anticipate a larger or smaller value for the correlation 
coefficient? Explain your answer.

 Edu. 11.44 A survey of MBA. graduates of a business school obtained data on the first-year salary 
after graduation and years of work experience prior to obtaining their MBA. The data are given 
in the following table with salary in thousands of dollars.

EXPER 8 5 5 11 4 3 3 3 0 13 14 10 2
SALARY 113.9 112.5 109 125.1 111.6 112.7 104.5 100.1 101.1 126.9 97 .9 113.5 98.3

EXPER 2 5 13 1 5 1 5 5 7 4 3 3 7
SALARY 97 .2 111.3 124.7 105.3 107 103.8 107 .4 100.2 112.8 100.7 107 .3 103.7 121.8

EXPER 7 9 6 6 4 6 5 1 13 1 6 2 4
SALARY 111.7 116.2 108.9 111.9 96.1 113.5 110.4 98.7 120.1 98.9 108.4 110.6 101.8

EXPER 1 5 1 4 1 2 7 5 1 1 0 1 6
SALARY 104.4 106.6 103.9 105 97 .9 104.6 106.9 107 .6 103.2 101.6 99.2 101.7 120.1
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 a.  Plot the data in a scatterplot. Based on the plotted data, does it appear that those 
students having less experience also have smaller salaries?

 b.  Identify any students who do not seem to satisfy the pattern of larger salaries 
associated with more experience.

 Edu. 11.45 Refer to the data in Exercise 11.44.
 a.  Compute the correlation coefficient between years of experience and first-year 

salary. Do the sign and size of the correlation agree with the pattern observed in 
the scatterplot?

 b.  Compute the Spearman rank correlation coefficient between years of experience 
and first-year salary.

 c.  Which of the correlations is more influenced by the data values that do not follow 
the overall pattern?

 Edu. 11.46 Refer to the data in Exercise 11.44.
 a.  Determine the least-squares estimates of the slope and intercept in the regression 

line relating first-year salary to years of experience. Interpret the coefficients. Is 
the intercept meaningful in the context of this data set?

 b. Compute the residual standard deviation. Interpret this value.
 c. Is there a significant relationship between salary and experience?
 d.  How much of the variability in salaries is accounted for by the number of years of 

experience?

 Edu. 11.47 Refer to the data in Exercise 11.44. The student with 14 years of experience with a 
starting salary of $97,900 was hired by a family business. In return for a low starting salary, the 
student received a large equity share in the firm.

 a.  Would the data value associated with this student be considered a high leverage or 
a high influence data value?

 b.  Would the slope increase or decrease if this point was removed from the analysis?
 c.  In which direction (larger or smaller) would the removal of this data point change 

the residual standard deviation?
 d. How would the removal of this data point change the correlation?

 Edu. 11.48 Refer to the data in Exercise 11.47.
 a.  Refit the regression model with the data value (14, 97.9) removed. How large were 

the changes in the slope and residual standard deviation?
 b.  Compute the correlation coefficient with the data value (14, 97.9) removed. 

How large was the change in the correlation coefficient compared with the value 
computed from all the data?

 c.  Compute the Spearman rank correlation coefficient for the complete data set and 
for the data set with the value (14, 97.9) removed.

 d.  Was the change in the Spearman rank correlation coefficient larger or smaller 
than the change in the standard correlation coefficient?

  11.49 Refer to Example 6.7. In this example, an insurance adjuster wanted to know the degree 
to which the two garages were in agreement on their estimates of automobile repairs. The data 
given below are the estimated costs from the two garages for repairing 15 cars.

Car  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

Garage I  17 .6  20.2  19.5  11.3  13.0  16.3  15.3  16.2  12.2  14.8  21.3  22.1  16.9  17 .6  18.4
Garage II  17 .3  19.1  18.4  11.5  12.7 15.8  14.9 15.3 12.0 14.2 21.0 21.0 16.1 16.7 17 .5

 a.  Compute the correlation between the car repair estimates from the two  garages.
 b. Calculate a 95% confidence interval for the correlation coefficient.
 c.  Does the very large positive value for the correlation coefficient indicate that 

the two garages are providing nearly identical estimates for the repairs? If not, 
explain why this statement is wrong.
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 Edu. 11.50 There has been an increasing emphasis in recent years on making sure that young women 
are given the same opportunities to develop their mathematical skills as young men are given 
in U.S. educational systems. The following table provides the SAT scores for male and female 
students over a 34-year period.

Gender/Type 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Male/Verbal 506 508 509 508 511 514 515 512 512 510
Female/Verbal 498 496 499 498 498 503 504 502 499 498
Male/Math 515 516 516 516 518 522 523 523 521 523
Female/Math 473 473 473 474 478 480 479 481 483 482

Gender/Type 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Male/Verbal 505 503 504 504 501 505 507 507 509 509
Female/Verbal 496 495 496 497 497 502 503 503 502 502
Male/Math 521 520 521 524 523 525 527 530 531 531
Female/Math 483 482 484 484 487 490 492 494 496 495

Gender/Type 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Male/Verbal 507 509 507 512 512 513 505 503 502 502
Female/Verbal 504 502 502 503 504 505 502 500 499 497
Male/Math 533 533 534 537 537 538 536 532 532 533
Female/Math 498 498 500 503 501 504 502 499 499 498

Gender/Type 2010 2011 2012 2013

Male/Verbal 502 500 498 499
Female/Verbal 498 495 493 494
Male/Math 533 531 532 531
Female/Math 499 500 499 499

Source: CollegeBoard. (2013). Total Group Profile Report.

 a.  Plot the six pairs of data values in scatterplots: Male/Verbal versus Female/Verbal, 
Male/Math versus Male/Verbal, and so on.

 b.  Which , if any, of the six correlations are significantly different from 0 at the 5% level?
 c. Do the plots reflect the sizes of the correlations between the pairs of variables?
 d. Are male verbal scores more correlated with male or female math scores?

 Edu. 11.51 Refer to Exercise 11.50.
 a. Place a 95% confidence interval on the six correlations.
 b.  Using the confidence intervals from part (b), are there any differences in the 

degree of correlation between male and female math scores?
 c.  Using the confidence intervals from part (b), are there any differences in the 

degree of correlation between male and female verbal scores?
 d.  Are your answers to parts (b) and (c) different from your answer to part (c) in 

Exercise 11.50?

Supplementary Exercises

  11.52 A construction science class project was to compare the daily gas consumption of 
20 homes with a new form of insulation to that of 20 similar homes with standard insulation. The 
students set up instruments to record the temperature both inside and outside of the homes over 
a 6-month period of time (October–March). The average differences in these values are given 
below. The students also obtained the average daily gas consumption (in kilowatt hours). All the 
homes were heated with gas. The data are given here:
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Data for Homes with Standard Form of Insulation:

TempDiff (°F) 20.3 20.7 20.9 22.8 23.1 24.8 25.9 26.1 27 .0 27 .2
GasConsumption (kWh) 70.3 70.7 72.9 77 .6 79.3 86.5 90.6 91.9 94.5 92.7

TempDiff (°F) 29.8 30.2 30.6 31.8 33.2 33.4 34.2 35.1 36.2 36.5
GasConsumption (kWh) 104.8 103.2 91.2 89.6 116.2 116.9 105.1 106.1 117 .8 120.3

Data for Homes with New Form of Insulation:

TempDiff (°F) 20.1 21.1 21.9 22.6 23.4 24.2 24.9 25.1 26.0 27 .2
GasConsumption (kWh) 65.3 66.5 67 .8 73.2 75.3 81.1 82.2 85.7 90.9 87 .4

TempDiff (°F) 28.8 29.2 30.6 30.8 32.6 32.4 34.8 35.9 36.0 36.5
GasConsumption (kWh) 94.9 93.9 87 .1 84.2 106.6 111.3 100.9 101.9 110.1 119.1

 a. Obtain the estimated regression lines for the two types of insulation.
 b. Compare the fits of the two lines.
 c.  Is the rate of increase in gas consumption as temperature difference increases less for 

the new type of insulation? Justify your answer by using 95% confidence intervals.
 d. If the rates are comparable, describe how the two lines differ.

  11.53 Refer to Exercise 11.52.
 a.  Predict the average gas consumption for both groups of homes when the 

temperature difference is 20°F.
 b. Place 95% confidence intervals on your predicted values in part (a).
 c.  Based on the two confidence intervals, do you believe that the average gas 

consumption has been reduced by using the new form of insulation?
 d.  Predict the gas consumption of a home insulated with the new type of insulation if 

the temperature difference was 50°F.

 Bio. 11.54 A realtor studied the relation between x  yearly income (in thousands of dollars per 
year) of home purchasers and y  sale price of the house (in thousands of dollars). The realtor 
gathered data from mortgage applications for 24 sales in the realtor’s basic sales area in one 
season. 

x 25.0 28.5 29.2 30.0 31.0 31.5 31.9 32.0 33.0
y 84.9 94.0 96.5 93.5 102.9 99.5 101.0 105.0 99.9

x 33.5 34.0 35.9 36.0 39.0 39.0 40.5 40.9 42.5
y 110.0 100.0 116.0 110.0 125.0 119.9 130.6 120.8 129.9

x 44.0 45.0 50.0 54.6 65.0 70.0
y 135.5 140.0 150.7 170.0 110.0 185.0

 a.  A scatterplot with a LOWESS smoother, drawn using Minitab, follows. Does the 
relation appear to be basically linear?

 b. Are there any high leverage points? If so, which ones seem to have high influence?
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  11.55 For Exercise 11.54,
 a. Determine the least-squares regression equation for the data.
 b. Interpret the slope coefficient. Is the intercept meaningful?
 c. Compute the residual standard deviation.

 Edu. 11.56 Refer to Exercise 11.54. Delete the data value x  65.0, y  110.0 from the data set.
 a.  Refit the regression line, and compare the slope of the line with and without the 

data value x  65.0, y  110.0 in the set.
 b.  Compute the two forms of the correlation coefficient, and compare their values.
 c.  Is the Spearman rank correlation coefficient less or more affected by an extreme 

value compared to the standard correlation coefficient?

 Ag. 11.57 A researcher conducts an experiment to examine the relationship between the weight 
gain of chickens whose diets had been supplemented by different amounts of the amino acid 
lysine and the amount of lysine ingested. Since the percentage of lysine is known and we can 
monitor the amount of feed consumed, we can determine the amount of lysine eaten. A random 
sample of 12 2-week-old chickens was selected for the study. Each was caged separately and was 
allowed to eat at will from feed composed of a base supplemented with lysine. The sample data 
summarizing weight gains and amounts of lysine eaten over the test period are given here. (In the 
data, y represents weight gain in grams, and x represents the amount of lysine ingested in grams.)

 a. From the scatterplot of the data, does a linear model seem appropriate?
 b. Compute the estimated linear regression model ŷ   b̂0 1  

^
 b1 x.

Chick
Weight Gain,  
y (in grams)

Lysine Ingested, 
x (in grams) Chick

Weight Gain,  
y (in grams)

Lysine Ingested, 
x (in grams)

1 14.7 .09 7 17 .2 .11
2 17 .8 .14 8 18.7 .19
3 19.6 .18 9 20.2 .23
4 18.4 .15 10 16.0 .13
5 20.5 .16 11 17 .8 .17
6 21.1 .23 12 19.4 .21

  11.58 Refer to Exercise 11.57.
 a. Estimate s2

e.
 b. Compute the standard error of b̂1.
 c.  Conduct a statistical test of the research hypothesis that for this diet preparation 

and length of study, there is a direct (positive) linear relationship between weight 
gain and amount of lysine eaten.

  11.59 Refer to Exercise 11.57.
 a.  For this exercise, would it make sense to give any physical interpretation to b0? 

(Hint: The lysine was mixed in the feed.)
 b. Consider an alternative model relating weight gain to amount of lysine ingested:

y  b1x 1 e

  Distinguish between this model and the model y  b0 1 b1x 1 e.

  11.60  a.  Refer to part (b) of Exercise 11.59. Obtain b̂1  for the model y  b1x 1 e, where

  b̂1 
gxy

gx2

 b.   Which of the two models, y  b0 1 b1x 1 e or y  b1x 1 e, appears to give a 
better fit to the sample data? (Hint: Examine the two prediction equations on a 
graph of the sample observations.)

 Engin. 11.61 An air conditioning company responds to calls concerning problems with air conditioners 
by sending a repair person to the home of the caller. There have been complaints about lengthy 
delays between the time the call is received and the time when the repair person reports to the home.  
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The manager of the company would like to develop a method to estimate the length of time the 
customer will have to wait before receiving service. Data is obtained by taking a random sample 
of 15 calls for service for each backlog situation in which 0, 1, 2, 3, or 4 previous callers are wait-
ing for service and then recording the number of minutes it took for the service person to reach 
the customer.

Backlog 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Resp. time 2 3 5 6 8 10 13 15 16 20 24 27 32 35 42

Backlog 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Resp. time 12 23 51 36 48 112 123 163 172 120 252 237 212 245 246

Backlog 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Resp. time 42 38 105 156 158 210 183 215 216 320 324 278 332 375 412

Backlog 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Resp. time 62 73 58 126 208 270 313 415 416 320 324 427 432 435 442

Backlog 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Resp. time 82 93 105 206 278 310 313 415 316 420 424 527 532 635 642

 a.  Plot the data, and assess whether fitting a regression model relating response time 
to backlog would be appropriate.

 b. Fit a regression line relating the response time to the backlog of previous calls.
 c.  Fit a regression line relating the logarithm of response time to the backlog of 

previous calls.
 d. Which of the two regression lines appears to be most appropriate?

 Engin. 11.62 Refer to Exercise 11.61.
 a.  Calculate the predicted response time if there is a backlog of four customers.
 b. Place a 95% prediction interval on your prediction in part (a).
 c.  Compute a 95% confidence interval on the mean response time for situations 

where there is a backlog of four customers. Compare this interval to the interval 
computed in part (b).

 d.  What is the difference in interpretation of the two intervals computed in parts (b) 
and (c)?

 e.  The manager has requested an estimate of the mean response time if there was a 
backlog of seven customers. What is the problem with producing the estimate?

 Engin. 11.63 Refer to Exercise 11.61.
 a. Test for lack of fit for the model relating response time to backlog.
 b. Test for lack of fit for the model relating logarithm of response time to backlog.
 c.  Are the results from parts (a) and (b) consistent with the patterns observed in the 

scatterplots?

 Engin. 11.64 Refer to Exercise 11.61.
 a.  Compute the standard correlation coefficient, ryx, between the backlog and response 

time.
 b.  Compute the standard correlation coefficient, ryx, between the backlog and  logarithm 

of response time.
 c.  Compute the Spearman rank correlation coefficient, rs, between the backlog and 

response time.
 d.  Compute the Spearman rank correlation coefficient, rs, between the backlog and 

 logarithm of response time.
 e.  Which of the two correlations best reflects the relationship between the backlog and 

response time?

 Env. 11.65 An airline designs a study to evaluate fuel usage by a certain type of aircraft. From a 
random sample of 50 flights, the flight length in hundreds of miles and the fuel usage in gallons 
are recorded.
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Mileage 530 533 536 569 580 603 655 667 707 712
FuelUse 382 257 376 290 416 362 361 347 498 449

Mileage 735 784 814 839 844 885 890 913 957 976
FuelUse 482 452 426 441 524 488 551 570 556 522

Mileage 979 1,050 1,055 1,069 1,070 1,114 1,116 1,129 1,308 1,348
FuelUse 542 640 598 502 639 679 630 659 695 767

Mileage 1,356 1,363 1,395 1,474 1,504 1,528 1,613 1,615 1,632 1,657
FuelUse 632 641 740 737 783 802 861 874 847 748

Mileage 1,674 1,698 1,730 1,769 1,775 1,789 1,804 1,820 1,851 1,983
FuelUse 872 802 925 912 936 846 883 902 925 908

 a.  Plot fuel usage versus and mileage. Does the plot display a linear relationship 
between fuel usage and length of flight?

 b. Obtain a regression equation relating fuel usage to length of the flight.
 c. What is the interpretation of b̂1  in this situation?
 d. Is there a sensible interpretation of b̂0  in this situation?
 e.  Compute the correlation coefficient, ryx, and the coefficient of determination. 

Interpret these values.

 Env. 11.66 Refer to Exercise 11.65.
 a.  Estimate the mean fuel usage for a 1000-mile flight. Provide a 95% confidence 

interval for your estimate.
 b.  Predict the fuel usage for a particular 1000-mile flight. Would a fuel usage of 

700 gallons be considered excessive?
 c.  The airline is considering a new flight from New York to Paris. Provide a 

prediction of the amount of fuel to be used in this flight. The flying distance from 
New York to Paris is 3,500 miles.

 Env. 11.67 Refer to Exercise 11.65.
 a.  What are some of the other variables that would be related to fuel usage that may 

improve the fit of the regression line?
 b.  How could you measure the improvement in the fit of the regression model?

 Ag. 11.68 A forester has a unique ability to estimate the volume (in cubic feet) of trees prior to a 
timber sale. The timber company that employs the forester wants him to train other employees 
in his technique of estimation. After a training period, the forester randomly selects 25 trees that 
will be cut down for processing. The forester’s assistant estimates the cubic-foot volume of each 
tree. After the tree has been chopped down, the forester obtains its actual cubic-foot volume.

Estimated volume 11.1 13.0 12.0 11.2 12.2 13.0 12.5 16.2 14.4 15.4 15.9 16.4 15.5
Actual volume 11.4 12.5 13.1 13.3 13.7 13.8 14.3 15.9 16.4 17 .0 18.8 18.8 19.2

Estimated volume 16.9 17 .6 15.8 16.4 18.7 18.9 19.7 19.7 21.0 19.0 21.5 21.3
Actual volume 19.7 19.8 19.8 20.1 20.1 20.9 22.4 22.7 23.1 23.3 24.0 24.8

 a.  Plot the data in a scatterplot. Does there appear to be a reasonable relation 
between the estimated and actual volumes?

 b.  Fit a regression model relating the estimated volume to the actual volume.
 c.  If the assistant is producing very accurate estimates of the volume, what should be 

the value of the slope of the regression line?
 d.  Is there significant evidence that the assistant is producing accurate estimates of 

the volume of the trees?
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 Ag. 11.69 Refer to Exercise 11.68.
 a.  Predict the actual cubic-foot volume for a tree that the assistant estimates to have 

a cubic-foot volume of 13?
 b.  Place a 95% prediction interval on the actual cubic-foot volume for a tree that the 

assistant estimate to have a cubic-foot volume of 13.

 Med. 11.70 A research MD designs a study to examine the relationship between the dose of a drug 
and the cumulative urine volume (CUMVOL) for a drug being considered as a diuretic. The 
selected group of 24 patients yields the following results.

Dose 6 6 6 6 6 6 9 9 9 9 9 9
CUMVOL 7 .1 11.5 8.4 8.0 9.4 12.0 13.2 14.7 12.7 15.5 18.4 14.4

Dose 13.5 13.5 13.5 13.5 13.5 13.5 20.25 20.25 20.25 20.25 20.25 20.25
CUMVOL 12.1 15.8 13.8 20.4 22.7 17 .0 19.8 15.6 25.3 13.5 24.8 20.9

 a.  Plot the data in a scatterplot. Would a straight line be an appropriate model 
relating dose to CUMVOL?

 b. Fit a regression model relating CUMVOL to dose.
 c. Test for lack of fit of the model at the a  .05 level.
 d.  Estimate the mean value of CUMVOL for a dose level of 15 using a 95% 

confidence interval

 Med. 11.71 Refer to Exercise 11.70.
 a.  The researcher consulted with a statistician, and a transformation of the data was 

suggested. Plot the square root of CUMVOL versus the logarithm of dose in a 
scatterplot. Do the plotted points appear to be more closely related by a straight 
line than were the raw data values?

 b.  Fit a regression model relating the square root of CUMVOL to the logarithm of dose.
 c. Test for lack of fit of this model at the a  .05 level.
 d.  Estimate the mean value of CUMVOL for a dose level of 15 using a 95% 

confidence interval based on the model obtained in part (b).
 e. How large are the differences in the two estimates of the mean CUMVOL?

 Med. 11.72 Refer to Exercise 11.70.
 a. Estimate the dose level needed to produce a CUMVOL of 20.
 b. Place a 95% confidence interval on your estimate.

 Engin. 11.73 The management science staff of a grocery products manufacturer is developing a linear 
programming model for the production and distribution of its cereal products. The model  requires 
transportation costs for a very large number of origins and destinations. It is impractical to do the 
detailed tariff analysis for every possible combination, so a sample of 48 routes is  selected. For 
each route, the mileage x and shipping rate y (in dollars per 100 pounds) are found.

The data are as follows: 

Mileage 50 60 80 80 90 90 100 100 100 110 110 110
Rate 12.7 13.0 13.7 14.1 14.6 14.1 15.6 14.9 14.5 15.3 15.5 15.9

Mileage 120 120 120 120 130 130 140 150 170 190 200 230
Rate 16.4 11.1 16.0 15.8 16.0 16.7 17 .2 17 .5 18.6 19.3 20.4 21.8

Mileage 260 300 330 340 370 400 440 440 480 510 540 600
Rate 24.7 24.7 18.0 27 .1 28.2 30.6 31.8 32.4 34.5 35.0 36.3 41.4

Mileage 650 700 720 760 800 810 850 920 960 1,050 1,200 1,650
Rate 46.4 45.8 46.6 48.0 51.7 50.2 53.6 57 .9 56.1 58.7 75.8 89.0

 a. Obtain the regression equation and the residual standard deviation.
 b. Calculate a 90% confidence interval for the true slope.
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  11.74 In a scatterplot of the data from Exercise 11.73, do you see any problems with the data? 

  11.75 For Exercise 11.73, predict the shipping rate for a 350-mile route. Obtain a 95% predic-
tion interval. How serious is the extrapolation problem in this exercise? 

 Soc. 11.76 Suburban towns often spend a large fraction of their municipal budgets on public safety 
(police, fire, and ambulance) services. A taxpayers’ group felt that very small towns were likely to 
spend large amounts per person because they have such small financial bases. The group obtained 
data on the per capita expenditure for public safety of 29 suburban towns in a metropolitan area, 
as well as the population of each town in units of 10,000 people.

TownPop 14 20 22 22 24 24 26 28 29 30
Expend 140 142 165 175 143 141 142 144 144.5 138

TownPop 30 31 32 32 32 32 34 34 36 36
Expend 139 141 140 139 137 137 .2 137 .0 136.5 136 135.5

TownPop 38 40 43 45 49 49.5 52 60 76
Expend 105 132 128 135 129 126 70 95 310

 a.  If the taxpayers’ group is correct, what sign should the slope of the regression 
model have? 

 b. Does the slope in the output confirm the opinion of the group? 

  11.77 Minitab produced a scatterplot and LOWESS smoothing of the data in Exercise 11.76, 
shown here. Does this plot indicate that the regression line is misleading? Why? 
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  11.78 One town in the data base of Exercise 11.76 is the home of an enormous regional shop-
ping mall. A very large fraction of the town’s expenditure on public safety is related to the 
mall; the mall management pays a yearly fee to the township that covers these expenditures. 
That town’s data were removed from the data base and the remaining data were reanalyzed by 
Minitab. A scatterplot is shown. 

 a.  Explain why removing this one point from the data changed the regression line so 
substantially. 

 b.  Does the revised regression line appear to conform to the opinion of the 
 taxpayers’ group in Exercise 11.76? 
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 Soc. 11.79 Refer to Exercise 11.76.
 a.  Obtain the regression line with the one unusual town removed from the data set.
 b.  Estimate the expenditure on public safety for a town of 37,000 people. Compare 

this estimate with an estimate using the complete data set.
 c.  Compare the estimated slope from the regression fit using the data set with the 

unusual town removed to the estimated slope from the regression fit using the 
complete data set? Discuss the impact of an extreme data value on the reliability 
of the inferences that can be made from the data about the population from which 
the data were obtained.

 Bio. 11.80 In screening for compounds useful in treating hypertension (high blood pressure), 
 researchers assign six rats to each of three groups. The rats in group 1 receive .1 mg/kg of a test 
compound; those in groups 2 and 3 receive .2 and .4 mg/kg, respectively. The response of interest 
is the decrease in blood pressure 2 hours postdose compared to the corresponding predose blood 
pressure. The data are shown here: 

 Dose, x Blood Pressure Drop, y (in mm Hg)

Group 1 .1 mg/kg 10 12 15 16 13 11
Group 2 .2 mg/kg 25 22 26 19 18 24
Group 3 .4 mg/kg 30 32 35 27 26 29

 a. Fit the following model to the data.
y  b0 1 b1 log10 y 1 e

 b. Use residual plots to examine the fit to the model in part (a). 
 c.  Conduct a statistical test of H0: b1 # 0 versus Ha: b1 . 0. Give the p-value for your test.

 Ag. 11.81 A laboratory conducts a study to examine the effect of different levels of nitrogen on the 
yield of lettuce plants. Use the data shown here to fit a linear regression model. Test for possible 
lack of fit of the model. 

Coded Nitrogen Yield (Emergent Stalks per Plot) 

 1 21, 18, 17 
 2  24, 22, 26 
 3 34, 29, 32 

 Med. 11.82 Researchers measured the specific activity of the enzyme sucrase extracted from portions 
of the intestines of 24 patients who underwent an intestinal bypass. After the sections were 
extracted, they were homogenized and analyzed for enzyme activity (Carter, 1981). Two different 
methods can be used to measure the activity of sucrase: the homogenate method and the pellet 
method. Data for the 24 patients are shown here for the two methods: 

Sucrase Activity as Measured by the Homogenate and 
Pellet Methods

Patient Homogenate Method, y Pellet Method, x 

 1 18.88 70.00
 2 7 .26 55.43
 3 6.50 18.87
 4 9.83 40.41
 5 46.05 57 .43
 6 20.10 31.14
 7 35.78 70.10
 8 59.42 137 .56
 9 58.43 221.20
 10 62.32 276.43

(continued)
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Sucrase Activity as Measured by the Homogenate  
and Pellet Methods

Patient Homogenate Method, y Pellet Method, x

 11 88.53 316.00
 12 19.50 75.56
 13 60.78 277 .30
 14 77 .92 331.50
 15 51.29 133.74
 16 77 .91 221.50
 17 36.65 132.93
 18 31.17 85.38
 19 66.09 142.34
 20 115.15 294.63
 21 95.88 262.52
 22 64.61 183.56
 23 37 .71 86.12
 24 100.82 226.55

 a.  Produce a scatterplot of the data. Might a linear model adequately describe the 
relationship between the two methods? 

 b.  Produce a residual plot. Are there any potential problems uncovered by the plot? 
 c.  In general, the pellet method is more time consuming than the homogenate 

method, yet it provides a more accurate measure of sucrase activity. How might 
you estimate the pellet reading based on a particular homogenate reading? 

 d.  How would you develop a confidence (prediction) interval about your point 
 estimate?

 Bus. 11.83 A realtor in a suburban area attempted to predict house prices solely on the basis of size. 
From a listing service, the realtor obtained size in thousands of square feet and asking price in 
thousands of dollars. 

Price 210 145 168 352 234 148 217 216 213 143 178 131 181 148 127 158 226 194 166
Size 2.5 1.5 1.8 4.7 2.4 1.5 2.5 3.3 2.6 1.6 1.6 1.4 2.9 1.6 1.9 1.7 2.6 1.9 1.8

Price 207 139 143 141 142 214 262 191 167 153 153 184 123 182 143 144 161 157 155
Size 2.8 1.5 1.5 1.9 1.6 2.2 2.7 2.0 2.2 1.6 1.6 2.3 1.4 1.9 1.6 1.5 1.6 1.7 1.7

Price 203 147 173 160 219 156 169 133 154 220 151 188 153 215 144 125 152 132 164
Size 2.2 1.8 1.8 1.7 2.4 1.9 1.9 1.5 2.9 2.9 1.9 2.3 1.7 2.1 1.9 1.7 1.7 1.4 2.0

 a. Obtain a plot of price against size. Does it appear there is an increasing relation? 
 b. Locate an apparent outlier in the data. Is it a high leverage point? 
 c. Obtain a regression equation, and include the outlier in the data. 
 d.  Delete the outlier, and obtain a new regression equation. How much does the 

slope change without the outlier? Why? 
 e.  Locate the residual standard deviations for the outlier-included and outlier- 

excluded models. Do they differ much? Why? 

  11.84 Obtain the outlier-excluded regression model for the data of Exercise 11.83. 
 a.  Interpret the intercept (constant) term. How much meaning does this number 

have in this context? 
 b.  What would it mean in this context if the slope was 0? Can the null hypothesis of 

zero slope be emphatically rejected? 
 c.  Calculate a 95% confidence interval for the true population value of the slope. 
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  11.85 a.  Obtain a 95% prediction interval for the asking price of a home of 5,000 square 
feet, based on the outlier-excluded data of  Exercise 11.83. Would this be a wise 
prediction to make, based on the data?

 b.  Obtain a plot of the price against the size. Does the constant-variance assumption 
seem reasonable, or does variability increase as size increases? 

 c.  What does your answer to part (b) say about the prediction interval obtained in part (a)? 

 Bus. 11.86 A lawn care company tried to predict the demand for its service by zip code, using the 
housing density in the zip code area as a predictor. The owners obtained the number of houses 
and the geographic size of each zip code and calculated their sales per thousand homes and num-
ber of homes per acre.

Sales 54 72 54 62 72 83 115 90 66 60 100 78 152 87 54 82
Density 6.5 4.6 5.5 4.6 4.2 4.3 2.3 3.5 3.2 8.4 3.4 4.0 2.0 3.2 6.7 3.0

Sales 59 183 171 96 134 79 94 82 66 62 45 69 65 81 94 117
Density 5.7 1.3 1.3 3.0 2.2 4.3 2.6 3.0 4.3 7 .8 9.4 4.2 5.9 6.2 2.8 2.4

 a. Obtain the correlation between the two variables. What does its sign mean?
 b.  Obtain a prediction equation with sales as the dependent variable and density as 

the independent variable. Interpret the intercept (yes, we know the interpretation 
will be a bit strange) and the slope numbers. 

 c.  Obtain a value for the residual standard deviation. What does this number indi-
cate about the accuracy of prediction? 

  11.87 a.  Obtain a value of the t statistic for the regression model of Exercise 11.86. Is there 
conclusive evidence that density is a predictor of sales? 

 b.  Calculate a 95% confidence interval for the true value of the slope. The package 
should have calculated the standard error for you. 

  11.88 Obtain a plot of the data of Exercise 11.86 with sales plotted against density. Does it 
 appear that straight-line prediction makes sense? 

  11.89 Refer to Exercise 11.86. Calculate a new variable: x  1/density.
 a.  What is the interpretation of the new variable? In particular, if the new variable 

equals 0.50, what does that mean about the particular zip code area? 
 b.  Plot sales against the new variable. Does a straight-line prediction look reasonable here?
 c.  Obtain the correlation of sales and the new variable. Compare its magnitude 

to the correlation obtained in Exercise 11.86 between sales and density. What 
explains the difference? 

 Engin. 11.90 A manufacturer of paint used for marking road surfaces developed a new formulation 
that needs to be tested for durability. One question concerns the concentration of pigment in the 
paint. If the concentration is too low, the paint will fade quickly; if the concentration is too high, 
the paint will not adhere well to the road surface. The manufacturer applies paint at various con-
centrations to sample road surfaces and obtains a durability measurement for each sample.

Conc. 20 20 20 20 20 20 20 20 20 20 20 20
Durab. 53.3 25.2 41.9 20.3 55.5 50.7 57 .1 34.1 52.7 42.5 51.7 47 .0

Conc. 30 30 30 30 30 30 30 30 30 30 30 30
Durab. 67 .2 66.7 56.7 60.3 68.0 56.1 59.9 63.3 64.4 49.3 61.7 62.3

Conc. 40 40 40 40 40 40 40 40 40 40 40 40
Durab. 64.7 68.0 76.5 69.9 69.1 50.7 57 .1 65.7 67 .1 74.4 73.5 69.9

Conc. 50 50 50 50 50 50 50 50 50 50 50 50
Durab. 51.6 75.7 55.9 76.1 55.3 73.3 61.5 53.3 74.4 73.6 76.5 73.3

Conc. 60 60 60 60 60 60 60 60 60 60 60 60
Durab. 58.7 70.5 52.5 59.9 65.9 63.3 64.9 53.6 52.5 63.8 59.7 58.9
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 a.  Have your computer program calculate a regression equation with durability 
 predicted by concentration. Interpret the slope coefficient. 

 b.  Find the coefficient of determination. What does it indicate about the predictive 
value of concentration? 

  11.91 In the regression model of Exercise 11.90, is the slope coefficient significantly different 
from 0 at a  .01? 

  11.92 Obtain a plot of the data of Exercise 11.90, with durability on the vertical axis and 
 concentration on the horizontal axis. 

 a. What does this plot indicate about the wisdom of using straight-line prediction? 
 b. What does this plot indicate about the correlation found in Exercise 11.90? 

 Bus. 11.93 A group of builders are considering a method for estimating the cost of constructing 
custom houses. 

The builders used the method to estimate the cost of 10 “spec’’ houses that were built 
without a commitment from a customer. The builders obtained the actual costs  (exclusive of land 
costs) of completing each house, to compare with the estimated costs. 

“We went back to our accountant, who did a regression analysis of the data and gave us 
these results. The accountant says that the estimates are quite accurate, with an 80% correlation 
and a very low p-value. We’re still pretty skeptical of whether this new method gives us decent 
estimates. We only clear a profit of about 10 percent, so a few bad estimates would hurt us. Can 
you explain to us what this output says about the estimating method?’’

Write a brief, not-too-technical explanation for them. Focus on the builders’ question 
about the accuracy of the estimates. A plot is shown here.

MTB > Regress ’Actual’ on 1 variable ’Estimate’.
The regression equation is

Actual = –34739 + 1.25 Estimate

Predictor Coef Stdev t-ratio p
Constant –34739 60147 –0.58 0.579
Estimate 1.2474 0.3293 3.79 0.005

s = 19313 R–sq = 64.2% R–sq(adj) = 59.7%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 5350811136 5350811136 14.35 0.005
Error 8 2983948032 372993504
Total 9 8334758912

Unusual Observations
Obs. Estimate Actual Fit Stdev.Fit Residual St.Resid 2 186200 152134
197531 6286 –45397 –2.49R

R denotes an obs. with a large st. resid.

MTB > Correlation ’Estimate’ ’Actual’.

Correlation of Estimate and Actual = 0.801
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 12.1 Introduction and Abstract of Research Study 

In Chapter 11, we discussed the simplest type of regression model (simple linear 
 regression) relating the response variable (also called the dependent variable) to a 
quantitative explanatory variable (also called the independent variable):

y  b0 1 b1x 1 e

In this chapter, we will generalize the above model to allow several explanatory 
variables and furthermore allow the explanatory variables to have categorical 
 levels. In the simple linear model, the average value of e (also called the expected 
value of e) is restricted to be 0 for a given value of x. This restriction indicates that 
the average (expected) value of the response variable y for a given value of x is 
 described by a straight line:

E 1y 2  b0 1 b1x

This model is very restrictive because in many research settings a straight line does 
not adequately represent the relationship between the response and explanatory 
variables.

For example, consider the data of Table 12.1, which gives the yields (in bush-
els) for 14 equal-sized plots planted in tomatoes for different  levels of fertilization. 
It is evident from the scatterplot in Figure 12.1 that a linear equation will not ade-
quately represent the relationship between yield and amount of fertilizer applied 

expected value of e  
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to the plot. The reason for this is that, whereas a  modest amount of fertilizer may 
well enhance the crop yield, too much fertilizer can be destructive. 

A model for this physical situation might be 

y  b0 1 b1x 1 b2x
2 1 e

Again with the assumption that E 1e 2  0, the expected value of y for a given value 
of x is 

E 1y 2  b0 1 b1x 1 b2x
2

One such line is plotted in Figure 12.1, superimposed on the data of Table 12.1. 
A general polynomial regression model relating a dependent variable y to a 

single quantitative independent variable x is given by 

y  b0 1 b1x 1 b2x
2 1 c1 bpxp 1 e

with 

E 1y 2  b0 1 b1x 1 b2x
2 1 c1 bpxp

FIGURE 12.1
Scatterplot of the yield  
versus fertilizer data in  

Table 12.1
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TABLE 12.1
Yield of 14 equal-sized  

plots of tomato plantings  
for different amounts  

of fertilizer 

 Yield, y Amount of Fertilizer, x
Plot (in bushels) (in pounds per plot)

 1 24 12
 2 18  5
 3 31 15 
 4 33 17 
 5 26 20 
 6 30 14 
 7 20  6
 8 25 23 
 9 25 11 
10 27 13 
11 21  8
12 29 18 
13 29 22 
14 26 25 
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The choice of p and hence the choice of an appropriate regression model will 
depend on the experimental situation. 

The multiple regression model, which relates a response variable y to a set 
of k quantitative explanatory variables, is a direct extension of the polynomial 
regression model in one independent variable. The multiple regression model is 
 expressed as

y  b0 1 b1x1 1 b2x2 1 c1 bkxk 1 e

Any of the k explanatory variables may be powers of the independent variables, 
such as x3  x2

1; a cross-product term, x4  x1x2; a nonlinear function, such as 
x5  log 1x1 2 ; and so on. For the above definitions, we would have the  following 
model:

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x5 1 e

  b0 1 b1x1 1 b2x2 1 b3x
2
1 1 b4x1x2 1 b5log 1x1 2 1 e

The only restriction is that no xi is a perfect linear function of any other xj. For 
 example, x2  2 1 3x1 is not allowed.

The simplest type of multiple regression equation is a first-order model, in 
which each of the independent variables appears, but there are no cross-product 
terms or terms in powers of the independent variables. For example, when three 
quantitative independent variables are involved, the first-order multiple regression 
model is 

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

For these first-order models, we can attach some meaning to the bs. The param-
eter b0 is the y-intercept, which represents the expected value of y when each x is 
zero. For cases in which it does not make sense to have each x be zero, b0 (or its 
 estimate) should be used only as part of the prediction equation and not given an 
interpretation by itself. 

The other parameters (b1, b2, . . . , bk) in the multiple regression equation 
are sometimes called partial slopes. In linear regression, the parameter b1 is the 
slope of the regression line, and it represents the expected change in y for a unit 
increase in x. In a first-order multiple regression model, b1 represents the expected 
change in y for a unit increase in x1 when all other xs are held constant. In general 
then, bj( j 2 0) represents the expected change in y for a unit increase in xj while 
holding all other xs constant. The usual assumptions for a multiple regression model 
are shown here. 

multiple regression 
model 

cross-product term

first-order model

partial slopes

DEFINITION 12.1 The assumptions for multiple regression are as follows: 

1.  The mathematical form of the relation is correct, so E 1ei 2  0 for  
all i.

2. Var 1ei 2  s2
e for all i.

3. The eis are independent. 
4. ei is normally distributed.

There is an additional assumption that is implied when we use a first-order 
multiple regression model. Because the expected change in y for a unit change 
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in xj is constant and does not depend on the value of any other x, we are in fact 
 assuming that the effects of the independent variables are additive. 

EXAMPLE 12.1 

A brand manager for a new food product collected data on y  brand recognition 
(percent of potential consumers who can describe what the product is), x1  length 
in seconds of an introductory TV commercial, and x2  number of repetitions of 
the commercial over a 2-week period. What does the brand manager assume if a 
first-order model 

ŷ  0.31 1 0.042x1 1 1.41x2

is used to predict y?

Solution First, the manager assumes a straight-line, consistent rate of change. The 
manager assumes that a 1-second increase in length of the commercial will lead 
to a 0.042 percentage point increase in recognition, whether the increase is from, 
say, 10 to 11 seconds or from 59 to 60 seconds. Also, every additional repetition 
of the commercial is assumed to give a 1.41 percentage point increase in recogni-
tion, whether it is the second repetition or the twenty-second. 

Second, there is a no-interaction assumption. The first-order model assumes 
that the effect of an additional repetition (that is, an increase in x2) of a commercial 
of a given length (that is, holding x1 constant) doesn’t depend on where that length 
is held constant (at 10 seconds, 27 seconds, 60 seconds, whatever). ■

When might the additional assumption of additivity be warranted? Fig-
ure 12.2(a) shows a scatterplot of y versus x1; Figure 12.2(b) shows the same plot 
with an ID attached to the different levels of a second independent variable x2 

(x2 takes on the value of 1, 2, or 3). From Figure 12.2(a), we see that y is approxi-
mately  linear in x1. The parallel lines of Figure 12.2(b) corresponding to the three 
levels of the independent variable x2 indicate that the expected change in y for a 
unit change in x1 remains the same no matter which level of x2 is used. These data 
suggest that the effects of x1 and x2 are additive; hence, a first-order model of the 
form y  b0 1 b1x1 1 b2x2 1 e is appropriate. 

Figure 12.3 displays a situation in which interaction is present between the 
variables x1 and x2. The nonparallel lines in Figure 12.3 indicate that the change 
in the expected value of y for a unit change in x1 varies depending on the value of 
x2. In particular, it can be noted that when x1  10, there is almost no difference 
in the expected value of y for the three values of x2. However, when x1  50, the 

additive effects

FIGURE 12.2
(a) Scatterplot of y versus x1. 

(b) Scatterplot of y versus 
x1, indicating additivity of 

effects for x1 and x2.
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expected value of y when x2  3 is much larger than the values of the expected 
value of y for x2  2 and x2  1. Thus, the rate of change in the expected value of y 
has increased much more rapidly for x2  3 than it does for x2  1. When this type 
of relationship exists, the explanatory variables are said to interact. A first-order 
model, which  assumes no interaction, would not be appropriate in the situation 
depicted in  Figure 12.3. At the very least, it is necessary to include a cross-product 
term (x1x2) in the model.

The simplest model allowing for interaction between x1 and x2 is

y  b0 1 b1x1 1 b2x2 1 b3x1x2 1 e

Note that for a given value of x2 (say, x2  2), the expected value of y is 

E 1y 2  b0 1 b1x1 1 b2 12 2 1 b3x1 12 2
  1b0 1 2b2 2 1 1b1 1 2b3 2x1

Here the intercept and slope are 1b0 1 2b2 2  and 1b1 1 2b3 2 , respectively. The 
corresponding intercept and slope for x2  3 can be shown to be 1b0 1 3b2 2  and  
1b1 1 3b3 2 . Clearly, the slopes of the two regression lines are not the same, and, 
hence, we have nonparallel lines. 

Not all experiments can be modeled using a first-order multiple regression 
model. For these situations, in which a higher-order multiple regression model 
may be appropriate, it will be more difficult to assign a literal interpretation to the 
bs because of the presence of terms that contain cross-products or powers of the 
 independent variables. Our focus will be on finding a multiple regression model 
that provides a good fit to the sample data, not on interpreting individual bs, except 
as they relate to the overall model. 

The models that we have described briefly have been for regression problems 
for which the experimenter is interested in developing a model to relate a response 
to one or more quantitative independent variables. The problem of modeling an 
experimental situation is not restricted to the quantitative independent-variable 
case.

Consider the problem of writing a model for an experimental situation in 
which a response y is related to a set of qualitative independent variables or to both 
quantitative and qualitative independent variables. For the first situation (relating 
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y to one or more qualitative independent variables), let us suppose that we want 
to compare the average number of lightning discharges per minute for a storm, 
as measured from two different tracking posts located 30 miles apart. If we let y 
denote the number of discharges recorded on an oscilloscope during a 1-minute 
 period, we could write the following two models: 

For tracking post 1: y  m1 1 e

For tracking post 2: y  m2 1 e

Thus, we assume that observations at tracking post 1 randomly “fluctuate” about 
a  population mean m1. Similarly, at tracking post 2, observations differ from a pop-
ulation mean m2 by a random amount e. These two models are not new and could 
have been used to describe observations when comparing two population means 
in Chapter 6. What is new is that we can combine these two models into a single 
model of the form 

y  b0 1 b1x1 1 e

where b0 and b1 are unknown parameters, e is a random error term, and x1 is a 
dummy variable with the following interpretation. We let 

x1  1 if an observation is obtained from tracking post 2 

x1  0 if an observation is obtained from tracking post 1 

For observations obtained from tracking post 1, we substitute x1  0 into our 
model to obtain 

y  b0 1 b1 10 2 1 e  b0 1 e

Hence, b0  m1, the population mean for observations from tracking post 1. Simi-
larly, by substituting x1  1 in our model, the equation for observations from track-
ing post 2 is 

y  b0 1 b1 11 2 1 e  b0 1 b1 1 e

Because b0  m1 and b0 1 b1 must equal m2, we have b1  m2 2 m1, the difference 
in means between observations from tracking posts 2 and 1. 

This model, y  b0 1 b1x1 1 e, which relates y to the qualitative inde-
pendent variable tracking post, can be extended to a situation in which the 
qualitative variable has more than two levels. We do this by using more than 
one dummy  variable. Consider an experiment in which we’re interested in four 
levels of qualitative  variables. We call these levels treatments. We could write 
the model 

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

where 

x1  1 if treatment 2,    x1  0 otherwise 

x2  1 if treatment 3,    x2  0 otherwise

x3  1 if treatment 4,    x3  0 otherwise 

To interpret the bs in this equation, it is convenient to construct a table of the 
expected values. Because e has expectation zero, the general expression for the 
 expected value of y is 

E 1y 2  b0 1 b1x1 1 b2x2 1 b3x3

dummy variable

treatments
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The expected value for observations on treatment 1 is found by substituting  
x1  0, x2  0, and x3  0; after this substitution, we find E(y)  b0. The expected 
value for observations on treatment 2 is found by substituting x1  1, x2  0, and 
x3  0 into the E(y) formula; this substitution yields E(y)  b0 1 b1. Substitu-
tions of x1  0, x2  1, x3  0 and x1  0, x2   0, x3  1 yield expected values 
for treatments 3 and 4, respectively. These expected values are summarized in 
Table 12.2. 

If we identify the mean of treatment 1 as m1, the mean of treatment 2 as m2, 
and so on, then from Table 12.2 we have 

m1  b0  m2  b0 1 b1  m3  b0 1 b2  m4  b0 1 b3

Solving these equations for the bs, we have 

b0  m1  b1  m2 2 m1  b2  m3 2 m1  b3  m4 2 m1

Any comparison among the treatment means can be phrased in terms of the bs. 
For example, the comparison m4 2 m3 could be written as b3 2 b2, and m3 2 m2 
could be written as b2 2 b1. 

EXAMPLE 12.2

An industrial engineer is designing a simulation model to generate the time needed 
to retrieve parts from a warehouse under four different automated retrieval sys-
tems. Suppose the mean times as provided by the companies producing the systems 
are m1  7, m2  9, m3  6, and m4  15. The engineer uses the model

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

where

x1  1 if system 2 is used,     x1  0 otherwise

x2  1 if system 3 is used,     x2  0 otherwise

x3  1 if system 4 is used,     x3  0 otherwise

Using the values of the retrieval means, determine the values for b0, b1, b2, and b3 
to be used in the above model.

Solution Based on what we saw in Table 12.2, we know that 

b0  m1  b1  m2 2 m1  b2  m3 2 m1  b3  m4 2 m1

Using the known values for m1, m2, m3, and m4, it follows that 

b0  7  b1  9 2 7  2  b2  6 2 7  21  b3  15 2 7  8 ■

TABLE 12.2
Expected values 

 for an experiment  
with four treatments

Treatment

1 2 3 4

E 1y 2  b0 E 1y 2  b0 1 b1 E 1y 2  b0 1 b2 E 1y 2  b0 1 b3
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EXAMPLE 12.3 

Refer to Example 12.2. Express m3 2 m2 and m3 2 m4  in terms of the bs. Check 
your findings by substituting values for the bs. 

Solution Using the relationship between the bs and the ms, we can see that

b2 2 b1  1m3 2 m1 2 2 1m2 2 m1 2  m3 2 m2

and 

b2 2 b3  1m3 2 m1 2 2 1m4 2 m1 2  m3 2 m4

Substituting computed values for the bs, we have 

b2 2 b1  21 2 12 2  23

and 

b2 2 b3  21 2 18 2  29

These computed values are identical to the “known’’ differences for m3 2 m2 and 
m3 2 m4, respectively. ■

EXAMPLE 12.4 

Use dummy variables to write the model for an experiment with t treatments. Iden-
tify the bs. 

Solution We can write the model in the form 

y  b0 1 b1x1 1 b2x2 1 c1 bt21xt21 1 e

where

x1  1 if treatment 2,     x1  0 otherwise

x2  1 if treatment 3,      x2  0 otherwise
 (  (

xt21 1 if treatment t,     xt21  0 otherwise

The table of expected values would be as shown in Table 12.3, from which we obtain

b0  m1

b1  m2 2 m1

 (
bt21  mt 2 m1

TABLE 12.3
Expected values

Treatment

1 2 . . . t

E 1y 2  b0 E 1y 2  b0 1 b1 . . . E 1y 2  b0 1 bt21

In the procedure just described, we have a response related to the quali-
tative variable “treatments,” and for t levels of the treatments, we enter (t 2 1) 
bs into our model, using dummy variables. ■ 



12.1 introduction and abstract of research study     633

More will be said about the use of the models for more than one qualita-
tive independent variable in Chapters 14 and 15, where we consider the anal-
ysis of variance for several different experimental designs. In Chapter 16, we 
will also consider models in which there are both quantitative and qualitative 
variables.

Abstract of Research Study: Evaluation of the Performance  
of an Electric Drill
In recent years, there have been numerous reports of homeowners encounter-
ing problems with electric drills. The drills would tend to overheat when under 
strenuous usage. A consumer product testing laboratory has selected a variety 
of brands of electric drills to determine what types of drills are most and least 
likely to overheat under specified conditions. After a careful evaluation of the 
differences in the designs of the drills, the engineers selected three design factors 
for use in comparing the resistance of the drills to overheating. The design factors 
were the thickness of the insulation around the motor, the quality of the wire used 
in the drill’s motor, and the size of the vents in the body of the drill.

The engineers designed a study taking into account various combinations 
of the three design factors. There were five levels of the thickness of the insu-
lation, three levels of the quality of the wire used in the motor, and three sizes 
for the vents in the drill body. Thus, the engineers had potentially 45 (5 3 3 3 3) 
uniquely designed drills. However, each of these 45 drills would have differences 
with respect to other factors that may vary their performance. Thus, the engi-
neers selected 10 drills of each of the 45 designs. Another factor that may vary the 
results of the study is the conditions under which each of the drills is tested. The 
engineers selected two “torture tests” that they felt reasonably represented the 
types of conditions under which overheating occurred. The 10 drills were then 
randomly assigned to one of the two torture tests. At the end of the test, the tem-
perature of the drill was recorded. The mean temperature of the 5 drills was the 
response variable of interest to the engineers. A second response variable was 
the logarithm of the sample variance of the 5 drills. This response variable mea-
sures the degree to which the 5 drills produced a consistent temperature under 
each of the torture tests. The goal of the study was to determine which combi-
nation of the design factors of the drills produced the smallest values of both 
response variables. Thus, they would  obtain a design for a drill having minimum 
mean temperature and a design that produced drills for which an individual drill 
was most likely to produce a temperature closest to the mean temperature. An 
analysis of the 90 drill responses in order to determine the “best” design for the 
drill is given in Section 12.10. The data from this study are given in Table 12.4 
with the following notation:

AVTEM: mean temperature for the five drills under a given torture 
test
lOgV: logarithm of the variance of the temperatures of the five drills
IT: the thickness of the insulation within the drill (IT  2, 3, 4, 5, or 6)
QW: an assessment of quality of the wire used in the drill motor (QW  6, 
  7, or 8)
VS: the size of the vent used in the motor (VS  10, 11, or 12)
I2  (IT 2 mean IT)2, Q2  (QW 2 mean QW)2, V2  (VS 2 mean VS)2

TEST: the type of torture test used
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TABLE 12.4
Drill performance data AvTem logv IT QW vS I2 Q2 v2 Test  AvTem logv IT QW vS I2 Q2 v2 Test

 185 3.6 2 6 10 4 1 1 1  168 3.4 4 7 11 0 0 0 2
 176 3.7 2 6 10 4 1 1 2  160 2.9 4 7 12 0 0 1 1
 177 3.6 2 6 11 4 1 0 1  154 3.1 4 7 12 0 0 1 2
 184 3.7 2 6 11 4 1 0 2  169 2.8 4 8 10 0 1 1 1
 178 3.6 2 6 12 4 1 1 1  156 2.9 4 8 10 0 1 1 2
 169 3.4 2 6 12 4 1 1 2  168 2.7 4 8 11 0 1 0 1
 185 3.2 2 7 10 4 0 1 1  161 2.7 4 8 11 0 1 0 2
 184 3.2 2 7 10 4 0 1 2  156 2.6 4 8 12 0 1 1 1
 180 3.2 2 7 11 4 0 0 1  158 2.7 4 8 12 0 1 1 2
 184 3.5 2 7 11 4 0 0 2  164 3.7 5 6 10 1 1 1 1
 179 3.0 2 7 12 4 0 1 1  163 3.7 5 6 10 1 1 1 2
 173 3.2 2 7 12 4 0 1 2  161 3.7 5 6 11 1 1 0 1
 179 2.9 2 8 10 4 1 1 1  158 3.4 5 6 11 1 1 0 2
 185 2.7 2 8 10 4 1 1 2  154 3.4 5 6 12 1 1 1 1
 180 2.8 2 8 11 4 1 0 1  162 3.7 5 6 12 1 1 1 2
 180 2.7 2 8 11 4 1 0 2  163 2.8 5 7 10 1 0 1 1
 169 2.9 2 8 12 4 1 1 1  166 3.0 5 7 10 1 0 1 2
 177 2.8 2 8 12 4 1 1 2  159 3.3 5 7 11 1 0 0 1
 172 3.6 3 6 10 1 1 1 1  156 3.3 5 7 11 1 0 0 2
 171 3.9 3 6 10 1 1 1 2  152 3.3 5 7 12 1 0 1 1
 172 3.8 3 6 11 1 1 0 1  150 3.3 5 7 12 1 0 1 2
 167 3.6 3 6 11 1 1 0 2  165 2.9 5 8 10 1 1 1 1
 165 3.3 3 6 12 1 1 1 1  156 2.7 5 8 10 1 1 1 2
 159 3.4 3 6 12 1 1 1 2  155 2.8 5 8 11 1 1 0 1
 169 3.0 3 7 10 1 0 1 1  155 3.2 5 8 11 1 1 0 2
 174 3.3 3 7 10 1 0 1 2  149 2.6 5 8 12 1 1 1 1
 163 3.3 3 7 11 1 0 0 1  152 2.9 5 8 12 1 1 1 2
 170 3.3 3 7 11 1 0 0 2  165 3.4 6 6 10 4 1 1 1
 169 3.2 3 7 12 1 0 1 1  160 3.7 6 6 10 4 1 1 2
 163 3.2 3 7 12 1 0 1 2  157 3.7 6 6 11 4 1 0 1
 178 2.7 3 8 10 1 1 1 1  149 3.7 6 6 11 4 1 0 2
 165 2.7 3 8 10 1 1 1 2  149 3.8 6 6 12 4 1 1 1
 167 2.8 3 8 11 1 1 0 1  145 3.7 6 6 12 4 1 1 2
 171 2.8 3 8 11 1 1 0 2  154 3.4 6 7 10 4 0 1 1
 166 2.9 3 8 12 1 1 1 1  153 3.2 6 7 10 4 0 1 2
 166 2.7 3 8 12 1 1 1 2  150 3.0 6 7 11 4 0 0 1
 161 3.7 4 6 10 0 1 1 1  156 3.1 6 7 11 4 0 0 2
 162 3.7 4 6 10 0 1 1 2  146 3.2 6 7 12 4 0 1 1
 169 3.4 4 6 11 0 1 0 1  153 3.3 6 7 12 4 0 1 2
 162 3.7 4 6 11 0 1 0 2  161 2.8 6 8 10 4 1 1 1
 159 3.5 4 6 12 0 1 1 1  160 2.9 6 8 10 4 1 1 2
 168 3.4 4 6 12 0 1 1 2  156 2.9 6 8 11 4 1 0 1
 169 3.1 4 7 10 0 0 1 1  150 2.7 6 8 11 4 1 0 2
 165 3.2 4 7 10 0 0 1 2  149 2.9 6 8 12 4 1 1 1
 163 3.2 4 7 11 0 0 0 1  151 2.8 6 8 12 4 1 1 2
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 12.2 The General Linear Model

It is important at this point to recognize that a single general model can be used for 
multiple regression models in which a response is related to a set of quantitative 
 independent variables and for models that relate y to a set of qualitative indepen-
dent variables. This model, called the general linear model, has the form 

y  b0 1 b1x1 1 b2x2 1 c1 bkxk 1 e

For multiple regression models, the xs represent quantitative independent vari-
ables (such as weight or amount of water), independent variables raised to pow-
ers, and cross-product terms involving the independent variables. We discussed 
a few regression models in Section 12.1; more about the use of the general linear 
model in regression will be discussed in the remainder of this chapter and in 
Chapter 13. 

When y is related to a set of qualitative independent variables, the xs of the 
general linear model represent dummy variables (coded 0 and 1) or products of 
dummy variables. We discussed how to use dummy variables for representing y 
in terms of a single qualitative variable in Section 12.1; the same approach can be 
used to relate y to more than one qualitative independent variable. This will be 
discussed in Chapter 14, where we present more analysis of variance techniques. 

The general linear model can also be used for the case in which y is related 
to both qualitative and quantitative independent variables. A particular exam-
ple of this is discussed in Section 12.7, and other applications are presented in 
Chapter 16.

Why is this model called the general linear model, especially as it can be used 
for polynomial models? The word linear in the general linear model refers to how 
the bs are entered in the model, not to how the independent variables appear in the 
model. A general linear model is linear (used in the usual algebraic sense) in the bs.

That is, the bs do not appear as an exponent or as the argument of a nonlin-
ear function. Examples of models which are not linear models include

 ● y  b1x1e
b2x2 1 e

  (nonlinear because b2 appears as an exponent).

 ● y  b1cosine 1b2x2 2 1 e

  (nonlinear because b2 appears as an argument of the cosine function).

The following two models will be referred to as linear models, even though they 
are not linear in the explanatory variable, because they are linear in bs:

 ● y  b0 1 b1x 1 b2x
2 1 e

  b0, b1, and b2 appear as coefficients in a quadratic model in x.

 ● y  b0 1 b1 sine 1x1 2 1 b2log 1x2 2 1 e

  b0, b1, and b2 appear as coefficients in a model involving functions 
of the two explanatory variables x1 and x2.

Why are we discussing the general linear model now? The techniques that 
we will develop in this chapter for making inferences about a single b, a set of 
bs, and E(y) in multiple regression are those that apply to any general linear 
model. Thus, using general linear model techniques, we have a common thread 
to inferences about multiple regression (Chapters 12 and 13) and the analysis 

general linear model
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of variance (Chapters 14 through 18). As you study these seven chapters, try 
whenever possible to make the connection back to a general linear model; we’ll 
help you with this connection. For Sections 12.3 through 12.10 of this chapter, 
we will concentrate on multiple  regression, which is a special case of a general 
linear model. 

 12.3 Estimating Multiple Regression Coefficients 

The multiple regression model relates a response y to a set of quantitative inde-
pendent variables. For a random sample of n measurements, we can write the ith 
observation as 

yi  b0 1 b1xi1 1 b2xi2 1 c1 bkxik 1 ei  1i  1, 2, . . . , n; n . k 2
where xi1, xi2, . . . , xik are the settings of the quantitative independent variables 
 corresponding to the observation yi. 

To find least-squares estimates for b0, b1, . . . , and bk in a multiple regres-
sion model, we follow the same procedure that we did for a linear regression model 
in Chapter 11. We obtain a random sample of n observations; we find the least-
squares prediction equation 

ŷ b̂0 1 b̂1x1 1 c1 b̂kxk

by choosing b̂0, b̂1, . . . , b̂k to minimize SS(Residual)  gi 1yi 2 ŷi 2 2. However, 
 although it was easy to write down the solutions to b̂0

 and b̂1 for the linear 
 regres sion model, 

y  b0 1 b1x 1 e

we must find the estimates for b0, b1, . . . , bk by solving a set of simultaneous equa-
tions, called the normal equations, shown in Table 12.5.

 yi b̂0  xi1b̂1 . . . xikb̂k

1 gyi  nb̂0       1 gxi1b̂1 1 c1 gxikb̂k

xi1 gxi1yi  gxi1b̂0 1 gx2
i1b̂1 1 c1 gxi1xikb̂k

(  (  
xik gxikyi  gxikb̂0 1 gxikxi1b̂1 1 c1 gxik

2 b̂k

TABLE 12.5
Normal equations for a 

 multiple regression model

Note the pattern associated with these equations. By labeling the rows and 
columns as we have done, we can obtain any term in the normal equations 
by  multiplying the row and column elements and summing. For example, the 
last term in the second equation is found by multiplying the row element (xi1) 
by the column element (xik b̂k) and summing; the resulting term is gxi1xik b̂k. 
Because all terms in the normal equations can be formed in this way, it is fairly 
simple to write down the equations to be solved to obtain the least-squares 
estimates b̂0, b̂1, . . . , b̂k. The solution to these equations is not necessarily triv-
ial; that’s why we’ll enlist the help of various statistical software packages for 
their solution. 
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EXAMPLE 12.5 

An experiment was conducted to investigate the weight loss of a compound for 
different amounts of time the compound was exposed to the air. Additional infor-
mation was also available on the humidity of the environment during exposure. 
The complete data are presented in Table 12.6. 

TABLE 12.6
Weight loss, exposure  

time, and relative  
humidity data

Weight exposure
loss, y Time, x1 Relative

(pounds) (hours) Humidity, x2

4.3 4 .20 
5.5 5 .20 
6.8 6 .20 
8.0 7 .20 
4.0 4 .30 
5.2 5 .30 
6.6 6 .30 
7 .5 7 .30 
2.0 4 .40 
4.0 5 .40 
5.7 6 .40 
6.5 7 .40 

 a. Set up the normal equations for this regression problem if the 
assumed model is 

 y  b0 1 b1x1 1 b2x2 1 e

  where x1 is exposure time and x2 is relative humidity. 

 b. Use the computer output shown here to determine the least-squares 
 estimates of b0, b1, and b2. Predict weight loss for 6.5 hours of  
exposure and a relative humidity of .35. 

4 8.0 7.0 0.20
5 4.0 4.0 0.30
6 5.2 5.0 0.30
7 6.6 6.0 0.30
8 7.5 7.0 0.30
9 2.0 4.0 0.40

10 4.0 5.0 0.40
11 5.7 6.0 0.40
12 6.5 7.0 0.40
13 . 6.5 0.35

Dependent Variable: WT_LOSS WEIGHT LOSS

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 31.12417 15.56208 104.133 0.0001
Error 9 1.34500 0.14944
C Total 11 32.46917

Root MSE 0.38658 R–square 0.9586
Dep Mean 5.50833 Adj R–sq 0.9494
C.V. 7.01810

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > T

INTERCEP 1 0.666667 0.69423219 0.960 0.3620
TIME 1 1.316667 0.09981464 13.191 0.0001
HUMID 1 –8.000000 1.36676829 –5.853 0.0002

OBS WT_LOSS PRED RESID L95MEAN U95MEAN

1 4.3 4.33333 –0.03333 3.80985 4.85682
2 5.5 5.65000 –0.15000 5.23519 6.06481
3 6.8 6.96667 –0.16667 6.55185 7.38148
4 8.0 8.28333 –0.28333 7.75985 8.80682
5 4.0 3.53333 0.46667 3.11091 3.95576
6 5.2 4.85000 0.35000 4.57346 5.12654
7 6.6 6.16667 0.43333 5.89012 6.44321
8 7.5 7.48333 0.01667 7.06091 7.90576
9 2.0 2.73333 –0.73333 2.20985 3.25682
10 4.0 4.05000 –0.05000 3.63519 4.46481
11 5.7 5.36667 0.33333 4.95185 5.78148
12 6.5 6.68333 –0.18333 6.15985 7.20682
13 . 6.42500 . 6.05269 6.79731

0slaudiseRfomuS
Sum of Squared Residuals 1.3450
Predicted Resid SS (Press) 2.6123

OUTPUT FOR EXAMPLE 12.5

OBS WT_LOSS TIME HUMID

1 4.3 4.0 0.20
2 5.5 5.0 0.20
3 6.8 6.0 0.20
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4 8.0 7.0 0.20
5 4.0 4.0 0.30
6 5.2 5.0 0.30
7 6.6 6.0 0.30
8 7.5 7.0 0.30
9 2.0 4.0 0.40

10 4.0 5.0 0.40
11 5.7 6.0 0.40
12 6.5 7.0 0.40
13 . 6.5 0.35

Dependent Variable: WT_LOSS WEIGHT LOSS

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 31.12417 15.56208 104.133 0.0001
Error 9 1.34500 0.14944
C Total 11 32.46917

Root MSE 0.38658 R–square 0.9586
Dep Mean 5.50833 Adj R–sq 0.9494
C.V. 7.01810

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > T

INTERCEP 1 0.666667 0.69423219 0.960 0.3620
TIME 1 1.316667 0.09981464 13.191 0.0001
HUMID 1 –8.000000 1.36676829 –5.853 0.0002

OBS WT_LOSS PRED RESID L95MEAN U95MEAN

1 4.3 4.33333 –0.03333 3.80985 4.85682
2 5.5 5.65000 –0.15000 5.23519 6.06481
3 6.8 6.96667 –0.16667 6.55185 7.38148
4 8.0 8.28333 –0.28333 7.75985 8.80682
5 4.0 3.53333 0.46667 3.11091 3.95576
6 5.2 4.85000 0.35000 4.57346 5.12654
7 6.6 6.16667 0.43333 5.89012 6.44321
8 7.5 7.48333 0.01667 7.06091 7.90576
9 2.0 2.73333 –0.73333 2.20985 3.25682
10 4.0 4.05000 –0.05000 3.63519 4.46481
11 5.7 5.36667 0.33333 4.95185 5.78148
12 6.5 6.68333 –0.18333 6.15985 7.20682
13 . 6.42500 . 6.05269 6.79731

0slaudiseRfomuS
Sum of Squared Residuals 1.3450
Predicted Resid SS (Press) 2.6123

OUTPUT FOR EXAMPLE 12.5

OBS WT_LOSS TIME HUMID

1 4.3 4.0 0.20
2 5.5 5.0 0.20
3 6.8 6.0 0.20

Solution

 a. The three normal equations for this model are shown in Table 12.7.

  For these data, we have

     a yi  66.10     a xi1  66               a xi2  3.60

 a xi1yi  383.3  a xi2yi  19.19           a xi1xi2  19.8

    a xi1
2  378     a xi2

2  1.16

TABLE 12.7
Normal equations  
for Example 12.5

 yi          b̂0          xi1b̂1           xi2b̂2

 1 gyi  nb̂0 1 gxi1b̂1 1 gxi2b̂2

xi1 gxi1yi  gxi1b̂0 1 gx2
i1b̂1 1 gxi1xi2

^   b2

xi2 gxi2yi  gxi2b̂0 1 gxi2xi1b̂1 1 gx2
i2
^   b2
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  Substituting these values into the normal equation yields the result 
shown here: 

 66.1  12b̂0 1 66b̂1 1 3.6b̂2

 383.3  66b̂0 1 378b̂1 1 19.8b̂2

 19.19  3.6b̂0 1 19.8b̂1 1 1.16b̂2

 b. The normal equations of part (a) could be solved to determine 
b̂0, b̂1, and b̂2. The solution would agree with that shown here in the 
output. The least-squares prediction equation is 

 ŷ 0.667 1 1.317x1 2 8.000x2

  where x1 is exposure time and x2 is relative humidity. Substituting x1 
 6.5 and x2  .35, we have

 ŷ 0.667 1 1.317 16.5 2 2 8.000 1.35 2  6.428

  This value agrees with the predicted value shown as observation 13 
in the output, except for rounding errors. ■

There are many software programs that provide the calculations to obtain 
least-squares estimates for parameters in the general linear model (and hence 
for multiple regression). The output of such programs typically has a list of vari-
able names, together with the estimated partial slopes, labeled COEFFICIENTS 
(or ESTIMATES or PARAMETERS). The intercept term b̂0 is usually called 
 INTER CEPT (or CONSTANT); sometimes it is shown along with the slopes but 
with no variable name.

EXAMPLE 12.6

A kinesiologist is investigating measures of the physical fitness of persons 
entering 10-kilometer races. A major component of overall fitness is cardiore-
spiratory  capacity as measured by maximal oxygen uptake. Direct measurement 
of maximal oxygen is expensive and thus is difficult to apply to large groups of 
individuals in a timely fashion. The researcher wanted to determine if a pre-
diction of maximal oxygen uptake can be obtained from a prediction equation 
using easily measured explanatory variables from the runners. In a preliminary 
study, the  kinesiologist randomly selects 54 males and obtains the following data 
for the variables

 y  maximal oxygen uptake (in liters per minute)

 x1  weight (in kilograms)

 x2  age (in years)

 x3  time necessary to walk 1 mile (in minutes)

 x4  heart rate at end of the walk (in beats per minute)

The data shown in Table 12.8 were simulated from a model that is consistent with 
information given in the article “Validation of the Rockport Fitness Walking Test in 
 College Males and Females” [ Research Quarterly for Exercise and Sport (1994) 65: 
152–158].
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The data in Table 12.8 were analyzed using Minitab software. Identify the least-
squares estimators of the intercept and partial slopes.

Regression Analysis:  y versus wgt, age, time, pulse

The regression equation is
y = 5.59 + 0.0129 wgt – 0.0830 age – 0.158 time – 0.00911 pulse

Predictor     Coef   SE Coef      T      P  VIF
Constant     5.588     1.030   5.43  0.000
wgt       0.012906  0.002827   4.57  0.000  1.0
age       -0.08300   0.03484  -2.38  0.021  1.0
time      -0.15817   0.02658  -5.95  0.000  1.1
pulse    -0.009114  0.002507  -3.64  0.001  1.1

TABLE 12.8
Fitness walking test data

Subject

 1 2 3 4 5 6 7 8 9 10 11 12

y 1.5 2.1 1.8 2.2 2.2 2.0 2.1 1.9 2.8 1.9 2.0 2.7
x1 139.8 143.3 154.2 176.6 154.3 185.4 177 .9 158.8 159.8 123.9 164.2 146.3
x2 19.1 21.1 21.2 23.2 22.4 22.1 21.6 19.0 20.9 22.0 19.5 19.8
x3 18.1 15.3 15.3 17 .7 17 .1 16.4 17 .3 16.8 15.5 13.8 17 .0 13.8
x4 133.6 144.6 164.6 139.4 127 .3 137 .3 144.0 141.4 127 .7 124.2 135.7 116.1

 13 14 15 16 17 18 19 20 21 22 23 24

y 2.4 2.3 2.0 1.7 2.3 0.9 1.2 1.9 0.8 2.2 2.3 1.7
x1 172.6 147 .5 163.0 159.8 162.7 133.3 142.8 146.6 141.6 158.9 151.9 153.3
x2 20.7 21.0 21.2 20.4 20.0 21.1 22.6 23.0 22.1 22.8 21.8 20.0
x3 16.8 15.3 14.2 16.8 16.6 17 .5 18.0 15.7 19.1 13.4 13.6 16.1
x4 109.0 131.0 143.3 156.6 120.1 131.8 149.4 106.9 135.6 164.6 162.6 134.8

 25 26 27 28 29 30 31 32 33 34 35 36

y 1.6 1.6 2.8 2.7 1.3 2.1 2.5 1.5 2.4 2.3 1.9 1.5
x1 144.6 133.3 153.6 158.6 108.4 157 .4 141.7 151.1 149.5 144.3 166.6 153.6
x2 22.9 22.9 19.4 21.0 21.1 20.1 19.8 21.8 20.5 21.0 21.4 20.8
x3 15.8 18.2 13.3 14.9 16.7 15.7 13.5 18.8 14.9 17 .2 17 .4 16.4
x4 154.0 120.7 151.9 133.6 142.8 168.2 120.5 135.6 119.5 119.0 150.8 144.0

 37 38 39 40 41 42 43 44 45 46 47 48

y 2.4 2.3 1.7 2.0 1.9 2.3 2.1 2.2 1.8 2.1 2.2 1.3
x1 144.1 148.7 159.9 162.8 145.7 156.7 162.3 164.7 134.4 160.1 143.0 141.6
x2 20.3 19.1 19.6 21.3 20.0 19.2 22.1 19.1 20.9 21.1 20.5 21.7
x3 13.3 15.4 17 .4 16.2 18.6 16.4 19.0 17 .1 15.6 14.2 17 .1 14.5
x4 124.7 154.4 136.7 152.4 133.6 113.2 81.6 134.8 130.4 162.1 144.7 163.1

 49 50 51 52 53 54

y 2.5 2.2 1.4 2.2 2.5 1.8
x1 152.0 187 .1 122.9 157 .1 155.1 133.6
x2 20.8 21.5 22.6 23.4 20.8 22.5
x3 17 .3 14.6 18.6 14.2 16.0 15.4
x4 137 .1 156.0 127 .2 121.4 155.3 140.4
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Solution The least-squares estimator of the intercept, b̂0, is 5.588 and is labeled as  
Constant. The least-squares estimators of the four partial slopes—.012906, 2.08300, 
2.15817, and 2.009114—are associated with the explanatory variables, weight 
(wgt), age of subject (age), time to complete 1-mile walk (time), and heart rate at 
end of walk (pulse), respectively. The labels for the estimators of the intercept and 
 partial slopes vary across the various software programs. ■

The coefficient of an independent variable xj in a multiple regression equa-
tion does not, in general, equal the coefficient that would apply to that variable in 
a simple linear regression. In multiple regression, the coefficient refers to the effect 
of changing that xj variable while other independent variables stay constant. In 
simple linear regression, all other potential independent variables are ignored. If 
other independent variables are correlated with xj (and therefore don’t tend to stay 
constant while xj changes), simple linear regression with xj as the only indepen-
dent variable captures not only the direct effect of changing xj but also the indirect 
 effect of the associated changes in other xs. In multiple regression, by holding the 
other xs constant, we eliminate that indirect effect. 

EXAMPLE 12.7

Refer to the data in Example 12.6. A multiple regression model was run using the 
SPSS software, yielding the output shown in Table 12.9.

Next, a simple linear regression (one-explanatory-variable) model was run using 
just the variable x4, pulse, yielding the output in Table 12.10.

Compare the coefficients of pulse in the two models. Explain why the two  coefficients 
differ.

Coefficientsa

 Unstandardized Standardized
 Coefficients Coefficients

 model B Std. error Beta t Sig.

1   (Constant)  5.588 1.030    5.426 .000
wgt   .013  .003   .426   4.565 .000
age 2.083  .035 2.221 22.382 .021
time 2.158  .027 2.570 25.950 .000
pulse 2.009  .003 2.350 23.636 .001

a. Dependent variable: y

TABLE 12.9
SPSS output for multiple 

 regression model of  
Example 12.6

Coefficientsa

 Unstandardized Standardized
 Coefficients Coefficients

 model B Std. error Beta t Sig.

1   (Constant) 2.545 .494   5.153 .000
pulse 2.004 .004 2.152 21.111 .272

a. Dependent variable: y

TABLE 12.10
SPSS output for a simple 

 linear  regression model  
relating x4 to y
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Solution In the multiple regression model, the least-squares regression model 
was estimated to be

y  5.588 1 .013x1 2 .083x2 2 .158x3 2 .009x4

In the simple linear regression model, the least-squares regression model was 
 estimated to be

y  2.545 2 .004x4

The difference occurs because the four explanatory variables are correlated, as 
displayed in the output in Table 12.11.

In the simple linear regression model, b̂1  2.004 represents a decrease of .004 lit-
ers per minute in y, maximal oxygen uptake, with a unit increase in pulse, x4, ignor-
ing the values of the other three explanatory variables, which most likely are also 
changing considering the correlation among the four explanatory variables. In the 
multiple regression model, 2.009 represents a decrease of .009 liters per minute in 
maximal oxygen uptake, with a unit increase in pulse, x4, holding the  values of the 
other three explanatory variables constant. Thus, we are considering two groups 
of subjects having a unit difference in pulse rate, but their age, weight, and time to 
walk a mile are the same. The difference in the average maximal  oxygen uptake 
between the two groups is .009 liters per minute lower for the group having the 
larger value for time to walk the mile. ■

In addition to estimating the intercept and partial slopes, it is important to 
estimate the model standard deviation se. The residuals, ei, are defined as before, 
as the difference between the observed value and the predicted value of y: 

ei  yi 2ŷi  yi 2 1b̂0 1 b̂1xi1 1 b̂2xi2 1 c1 b̂k 
xik 2

   Correlations

  y wgt age time pulse

y Pearson Correlation 1 .414** 2.288* 2.506** 2.152
 Sig. (2-tailed)  .002 .035 .000 .272
 N 54 54 54 54 54

wgt Pearson Correlation .414** 1 2.074 2.022 .116
 Sig. (2-tailed) .002  .596 .873 .404
 N 54 54 54 54 54

age Pearson Correlation 2.288* 2.074 1 .069 2.013
 Sig. (2-tailed) .035 .596  .619 .926
 N 54 54 54 54 54

time Pearson Correlation 2.506** 2.022 .069 1 2.255
 Sig. (2-tailed) .000 .873 .619  .063
 N 54 54 54 54 54

pulse Pearson Correlation 2.152 .116 2.013 2.255 1
 Sig. (2-tailed) .272 .404 .926 .063 
 N 54 54 54 54 54

** Correlation is significant at the .01 level (2-tailed).

 * Correlation is significant at the .05 level (2-tailed).

TABLE 12.11
Correlations between the 
 variables in Example 12.6

model standard  
deviation



12.3 Estimating Multiple Regression Coefficients     643

The sum of squared residuals, SS(Residual), also called SS(Error), is defined 
 exactly as it sounds. Square the prediction errors and sum the squares: 

SS(Residual) a 1yi 2 ŷi 2 2 a e 

2
i

  a 3yi 2 1b̂0 1 b̂1xi1 1 b̂2xi2 1 c1 b̂ixik2 42
The df for this sum of squares is n 2 (k 1 1). One df is subtracted for the intercept, 
and 1 df is subtracted for each of the k partial slopes. The mean square residual, 
MS(Residual), also called MS(Error), is the residual sum of squares divided by n 2 
(k 1 1). Finally, the estimate of the model standard deviation se is the square root of 
MS(Residual).

The estimated model standard deviation se is often referred to as the resid-
ual standard deviation. It may also be called “std dev,” “standard error of esti-
mate,” or “root MSE.” If the output is not clear, you can take the square root 
of MS(Residual) by hand. As always, interpret the standard deviation by the 
 Empirical Rule. About 95% of the prediction errors will be within 62 standard 
deviations of the mean (and the mean error is automatically zero): 

se  ËMS 1Residual 2  Å
SS 1Residual 2
n 2 1k 1 1 2

EXAMPLE 12.8

The following SPSS computer output is obtained from the data in Example 12.6. 
Identify SS(Residual) and se in Table 12.12.

Model Summary

   Adjusted Std. Error of
Model R R Square R Square the Estimate

1 .763a .582 .547 .29945

a. Predictors: (Constant), pulse, age, wgt, time

ANOVAb

 Sum of
    Model Squares df Mean Square F Sig.

1   Regression  6.106  4 1.527 17 .024 .000a

    Residual  4.394 49  .090
    Total 10.500 53

a. Predictors: (Constant), pulse, age, wgt, time
b. Dependent variable: y

TABLE 12.12
SPSS output for  

Example 12.6

Solution In Table 12.12, SPSS labels the table containing the needed information 
as ANOVA. In this table, SS(Residual)  4.394 with df  49. Recall that this data set 
had n  54 observations and k  4 explanatory variables. Therefore, we confirm the 
value from the table by computing Residual df  n 2 (k 1 1)  54 2 (4 1 1)  49. 
Just above the ANOVA table, the value .29945 is given in the column headed by “Std. 
Error of the Estimate.” This is the value of se.We can confirm this value by computing

se  ËSS 1Residual 2 /df  Ë4.394 /49  .29945 ■
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 12.4 Inferences in Multiple Regression

We make inferences about any of the parameters in the general linear model (and 
hence in multiple regression) as we did for b0 and b1 in the linear regression model, 
y  b0 1 b1x 1 e.

Before we do this, however, we must introduce the coefficient of determination. 
The coefficient of determination, R2, is defined and interpreted very much like 
the r2 value in Chapter 11. (The customary notation is R2 for multiple regression 
and r2 for simple linear regression.) As in Chapter 11, we define the coefficient of 
determination as the proportion of the variation in the responses, y, that is explained 
by the model relating y to x1, x2, . . . , xk. For example, if we have the multiple 
regression model with three x-values, and R2

y #x1x2x3
 .736, then we can account for 

73.6% of the variability of the y-values by using the model relating y to x1, x2, and 
x3. Formally, 

R2
y#x1

cxk


SS 1Total 2 2 SS 1Residual 2
SS 1Total 2

where

SS 1Total 2 a 1yi 2 y 2 2

EXAMPLE 12.9

Referring to the data in Example 12.8, locate the value of R2
y.x1,x2,x3x4

. Using the sum 
of squares in the ANOVA table, confirm this value.

Solution The required value is listed under R Square, .582 or 58.2%. From the 
ANOVA table, we have

SS(Regression)  6.106   SS(Residual)  4.394   SS(Total)  10.500

From these values, we can compute

R2
y.x1,x2,x3x4


110.500 2 4.394 2

10.500
 .582 ■

There is no general relation between the multiple R2 from a multiple regres-
sion equation and the individual coefficients of determination r 2

yx1
, r 2

yx2
, . . . , r2

yxk 
other than that multiple R2 must be at least as big as any of the individual r2 values. 
If all the independent variables are themselves perfectly uncorrelated with each 
other, then multiple R2 is just the sum of the individual r2 values. Equivalently, if 
all the xs are uncorrelated with each other, SS(Regression) for the all-predictors 
model is equal to the sum of SS(Regression) values for simple regressions using 
one x at a time. If the xs are correlated, it is much more difficult to break apart 
the overall predictive value of x1, x2, . . . , xk as measured by R2

y.x1
cxk into separate 

pieces that can be attributable to x1 alone, to x2 alone, . . . , to xk alone. 
When the independent variables are themselves correlated, collinearity 

(sometimes called multicollinearity) is present. In multiple regression, we are  trying 
to separate out the predictive value of several predictors. When the predictors are 
highly correlated, this task is very difficult. For example, suppose that we try to 
 explain variation in regional housing sales over time, using gross domestic product 
(gDP) and national disposable income (DI) as two of the predictors. DI has been 
almost exactly a fraction of gDP, so the correlation of these two predictors will be 

coefficient of  
determination

collinearity



12.4 inferences in Multiple regression    645

extremely high. Now, is variation in housing sales attributable more to variation 
in gDP or to variation in DI? good luck taking those two apart! It is very likely 
that either predictor alone will explain variation in housing sales almost as well as 
both together. 

Collinearity is usually present to some degree in a multiple regression study. 
It is a small problem for slightly correlated xs but a more severe one for highly 
correlated xs. Thus, if collinearity occurs in a regression study—and it usually does 
to some degree—it is not easy to break apart the overall R2

y.x1x2
cxk

 into separate 
 components associated with each x variable. The correlated xs often account for 
overlapping pieces of the variability in y, so that often, but not inevitably, 

R2
y.x1x2

...xk
, r 2

yx1 1 r 2
yx2 1 c1 r 2

yxk

Many statistical computer programs will report sequential sums of squares. 
These SS are incremental contributions to SS(Regression) when the independent 
variables enter the regression model in the order you specify to the program. 
 Sequential sums of squares depend heavily on the particular order in which the 
 independent variables enter the model. Again, the trouble is collinearity. For 
 example, if all variables in a regression study are strongly and positively correlated 
(as often happens in economic data), whichever independent variable happens to 
be entered first typically accounts for most of the explainable variation in y and the 
remaining variables add little to the sequential SS. The explanatory power of any 
x given all the other xs (which is sometimes called the unique predictive value of that 
x) is small. When the data exhibit severe collinearity, separating out the predictive 
value of the various independent variables is very difficult indeed. 

EXAMPLE 12.10

For the data in Example 12.6, interpret the sequential sums of squares (Type I SS) 
in the following SAS output for the model in which the explanatory variables were 
entered in the following order: x1, x2, x3, x4. Would the sequential sums of squares 
change if we changed the order in which the explanatory variables were entered in 
the model as x3, x1, x2, x4?

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|   Type I SS

Intercept    1    5.58767    1.02985      5.43     <.0001   216.00000
wgt          1    0.01291    0.00283      4.57     <.0001     1.80280
age          1   –0.08300    0.03484     -2.38     0.0211     0.69733
time         1   –0.15817    0.02658     -5.95     <.0001     2.42053
pulse        1   –0.00911    0.00251     -3.64     0.0007     1.18558

Solution The Type I SS column contains the sequential sum of squares. The vari-
able wgt by itself accounts for 1.80280 of the total variation in y, maximal oxygen 
uptake. Adding the variable age to a model already containing wgt accounts for 
 another 0.69733 of the variation in y. Adding the variable time to a model 
already containing both wgt and age accounts for another 2.42053 of the variation 
in y.  Finally, adding the variable pulse to a model already containing the other 
three  explanatory variables accounts for another 1.18558 of the variation in y. The 
 following SAS output was for a model in which the explanatory variables were 
 entered as x3, x1, x2, x4.

sequential sums of 
squares
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                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|   Type I SS

Intercept    1    5.58767    1.02985      5.43     <.0001   216.00000
time         1   –0.15817    0.02658     -5.95     <.0001     2.68399
wgt          1    0.01291    0.00283      4.57     <.0001     1.70696
age          1   –0.08300    0.03484     -2.38     0.0211     0.52971
pulse        1   –0.00911    0.00251     -3.64     0.0007     1.18558

We can observe that the sequential sums of squares are different for three of 
the four variables. Now, the variable time by itself accounts for 2.68399 of the 
total variation in y. Adding the variable wgt to a model already containing time 
 accounts for another 1.70696 of the variation in y. Adding the variable age 
to a model already containing both time and wgt accounts for another .52971 
of the variation in y. The sum of squares for pulse remains the same for both 
models because it is the last variable entered. Recall that in Example 12.7, we 
computed the correlations among x1, x2, x3, and x4. The six correlations ranged 
from 2.255 to .116. This results in a change in the sequential sums of squares 
but not  too large a change because the four explanatory variables are only 
weakly correlated. ■

The ideas of Section 12.4 involve point estimation of the regression coefficients 
and the standard deviation se. Because these estimates are based on sample data, 
they will be in error to some extent, and a researcher should allow for that error in 
interpreting the model. We now present tests about the partial slope parameters in 
a multiple regression model. 

First, we examine a test of an overall null hypothesis about the partial 
slopes (b1, b2, . . . , bk) in the multiple regression model. According to this 
 hypothesis—H0:  b1  b2  . . . bk   0—none of the variables included in the 
multiple regression has any predictive value at all. This is the “nullest” of null 
 hypotheses; it says that all those carefully chosen predictors are absolutely use-
less. The research  hypothesis is a very general one—namely, Ha: At least one 
bj 2 0. This merely says that there is some predictive value somewhere in the 
set of predictors.

The test statistic is similar to the F statistic of Chapter 11. To state the test, we 
first define the sum of squares attributable to the regression of y on the variables 
x1, x2, . . . , xk. We designate this sum of squares as SS(Regression); it is also called 
SS(Model) or the explained sum of squares. It is the sum of squared differences 
 between the predicted values and the mean y-value. 

DEFINITION 12.2  SS 1Regression 2  a 1 ŷi 2 y 2 2

 SS 1Total 2  a 1yi 2 y 2 2

  SS 1Regression 2 1 SS 1Residual 2
 SS 1Regression 2  SS 1Total 2 2 SS 1Residual 2
       a 1 ŷi 2 y 2 2  a 1yi 2 y 2 2 2 a 1yi 2 ŷi 2 2 
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Unlike SS(Total) and SS(Residual), we don’t interpret SS(Regression) in 
terms of prediction error. Rather, it measures the extent to which the predictions 
ŷi vary. If SS(Regression)  0, the predicted y-values 1ŷ 2  are all the same. In such 
a case, information about the xs is useless in predicting y. If  SS(Regression) is 
large relative to SS(Residual), the indication is that there is real predictive value in 
the independent variables x1, x2, . . . , xk. We state the test statistic in terms of mean 
squares rather than sums of squares. As always, a mean square is a sum of squares 
divided by the appropriate df. 

EXAMPLE 12.11

The following SAS output is provided for fitting the model y  b0 1 b1x1 1 b2x2 1 
b3x3 1 b4x4 1 e to the maximal oxygen uptake data of Example 12.6.

                    Analysis of Variance

                           Sum of       Mean
Source             DF     Squares     Square    F Value    Pr > F

Model               4     6.10624    1.52656      17.02    <.0001
Error              49     4.39376    0.08967
Corrected Total    53    10.50000

        Root MSE          0.29945    R-Square    0.5815
        Dependent Mean    2.00000    Adj R-Sq    0.5474
        Coeff Var        14.97236

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1    5.58767    1.02985      5.43     <.0001
x1           1    0.01291    0.00283      4.57     <.0001
x2           1   –0.08300    0.03484     –2.38     0.0211
x3           1   –0.15817    0.02658     –5.95     <.0001
x4           1   –0.00911    0.00251     –3.64     0.0007

Use this information to answer the following questions.

 a. locate SS(Regression).
 b. locate the F statistic.
 c. Is there substantial evidence that the four independent variables x1, 

x2, x3, and x4 as a group have at least some predictive power? That 
is, does the evidence support the contention that at least one of the 
bjs is not zero?

F Test of H0:  
b1 5 b2 5 . . .   

bk 5 0 

   H0:  b1  b2  . . .  bk  0

   Ha:  At least one b 2 0.

 T.S.:  F 
SS 1Regression 2 /k

SS 1Residual 2 / 3n 2 1k 1 1 2 4 
MS 1Regression 2

MS 1Residual 2
R.R.:  With df1  k and df2  n 2 1k 1 1 2 , reject H0 if F . Fa.

Check assumptions and draw conclusions.
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Solution

 a. SS(Regression) is shown in the Analysis of Variance table as  
SS(Model) with a value of 6.10624.

 b. The MS(Regression) is given as MS(Model)  1.52656, which is just 
SS(Regression) /df  SS(Model) /df  6.10624 /4. MS(Residual)  
is given as MS(Error)  .08967, which is just SS(Residual) / 
df  SS(Error) /df  4.39376 /49  .08967.

   The F statistic is given as 17.02, which is computed as follows

 F 
MS 1Regression 2

MS 1Residual 2 
1.52656
.08967

 17.02

 c. For df1  4, df2  49, and a  .01, the tabled F-value is 3.73. The 
computed F is 17.02 which is much larger than 3.73. Therefore,  
there is strong evidence (p-value , .0001, much smaller than  
a  .01) in the data to reject the null hypothesis and conclude that 
the four explanatory variables collectively have at least some  
predictive value. ■

This F test may also be stated in terms of R2. Recall that R2
y.x1

. . . xk
 measures 

the reduction in squared error for y attributed to how well the xs predict y. Because 
the regression of y on the xs accounts for a proportion R2

y.x1
. . . xk

 of the total squared 
error in y, 

SS(Regression)  R2
y.x1

. . . xk
 SS(Total) 

The remaining fraction, 1 2 R2, is incorporated in the residual squared error: 

SS(Residual)  (1 2 R2
y.x1

. . . xk
) SS(Total) 

 The overall F test statistic can be rewritten as 

F 
MS 1Regression 2

MS 1Residual 2 
R2

y.x1
. . . xk /k

11 2 R2
y.x1

. . . xk
2 / 3n 2 1k 1 1 2 4

This statistic is to be compared with tabulated F-values for df1  k and df2  n 
2 (k 1 1).

EXAMPLE 12.12 

A large city bank studies the relation of average account size in each of its branches 
to per capita income in the corresponding zip code area, number of business 
 accounts, and number of competitive bank branches. The data are analyzed by 
 Statistix, as shown here: 

CORRELATIONS (PEARSON)

ACCTSIZE BUSIN COMPET

BUSIN –0.6934

COMPET 0.8196 –0.6527

INCOME 0.4526 0.1492 0.5571

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION OF ACCTSIZE

PREDICTOR

VARIABLES COEFFICIENT STD ERROR STUDENT’S T P VIF

CONSTANT 0.15085 0.73776 0.20 0.8404

BUSIN –0.00288 8.894E-04 –3.24 0.0048 5.2

COMPET –0.00759 0.05810 –0.13 0.8975 7.4

INCOME 0.26528 0.10127 2.62 0.0179 4.3

R–SQUARED 0.7973 RESID. MEAN SQUARE (MSE) 0.03968

ADJUSTED R–SQUARED 0.7615 STANDARD DEVIATION 0.19920

SOURCE DF SS MS F P

REGRESSION 3 2.65376 0.88458 22.29 0.0000

RESIDUAL 17 0.67461 0.03968

TOTAL 20 3.32838

F and R2
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CORRELATIONS (PEARSON)

ACCTSIZE BUSIN COMPET

BUSIN –0.6934

COMPET 0.8196 –0.6527

INCOME 0.4526 0.1492 0.5571

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION OF ACCTSIZE

PREDICTOR

VARIABLES COEFFICIENT STD ERROR STUDENT’S T P VIF

CONSTANT 0.15085 0.73776 0.20 0.8404

BUSIN –0.00288 8.894E-04 –3.24 0.0048 5.2

COMPET –0.00759 0.05810 –0.13 0.8975 7.4

INCOME 0.26528 0.10127 2.62 0.0179 4.3

R–SQUARED 0.7973 RESID. MEAN SQUARE (MSE) 0.03968

ADJUSTED R–SQUARED 0.7615 STANDARD DEVIATION 0.19920

SOURCE DF SS MS F P

REGRESSION 3 2.65376 0.88458 22.29 0.0000

RESIDUAL 17 0.67461 0.03968

TOTAL 20 3.32838

 a. Identify the multiple regression prediction equation. 
 b. Use the R2 value shown to test H0: b1  b2  b3  0. (Note: n  21.) 

Solution
 a. From the output, the multiple regression forecasting equation is

 ŷ  0.15085 2 0.00288x1 2 0.00759x2 1 0.26528x3

 b. The test procedure based on R2 is 

  H0:  b1  b2  b3  0

  Ha:  At least one bj differs from zero.

                 T.S.:  F 
R2

y.x1x2x3 /3
11 2 R2

y.x1x2x3
2 / 121 2 4 2 

.7973 /3
.2027 /17

 22.29

R.R.:  For df1  3 and df2  17, the critical .05 value of F is 3.20. 

Because the computed F statistic, 22.29, is greater than 3.20, we 
reject H0 and conclude that one or more of the x-values has some pre-
dictive power. This also follows because the p-value, shown as .0000, 
is (much) less than .05. Note that the F-value we compute is the same 
as that shown in the output. ■

Rejection of the null hypothesis of this F test is not an overwhelmingly 
impressive conclusion. This rejection merely indicates that there is good evidence 
of some degree of predictive value somewhere among the independent variables. It 
does not give any direct indication of how strong the relation is or any indication 
of which individual independent variables are useful. The next task, therefore, is to 
make inferences about the individual partial slopes. 

To make these inferences, we need the estimated standard error of each par-
tial slope. As always, the standard error for any estimate based on sample data indi-
cates how accurate that estimate should be. These standard errors are computed 
and shown by most regression computer programs. They depend on three things: 
the residual standard deviation, the amount of variation in the predictor variable, 
and the degree of correlation between that predictor and the other predictors. The 
expression that we present for the standard error is useful in considering the effect 
of collinearity (correlated independent variables), but it is not a  particularly good 
way to do the computation. let a computer program do the arithmetic.
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As in simple regression, the larger the residual standard deviation, the larger  
the uncertainty in estimating coefficients. Also, the less variability there is in the  
predictor, the larger the standard error of the regression coefficient, s ̂bj

. The most 
important use of the formula for estimated standard error is to illustrate the effect of 
collinearity. If the independent variable xj is highly collinear with one or more other 
independent variables, R2

j  is by definition very large and 1 2 R2
j  is near zero. Divi-

sion by a near-zero number yields a very large standard error. Thus, one important 
effect of severe collinearity is that it results in very large standard errors of partial 
slopes and, therefore, very inaccurate estimates of those slopes. 

The term 1 /(1 2 R2
j ) is called the variance inflation factor (VIF). It measures 

how much the variance (square of the standard error) of a coefficient is increased 
because of collinearity. This factor is printed out by some computer packages and 
is helpful in assessing how serious the collinearity problem is. If the VIF is 1, there 
is no collinearity at all. If it is very large, such as 10 or more, collinearity is a serious 
problem.

A large standard error for any estimated partial slope indicates a large prob-
able error for the estimate. The partial slope b̂j of xj estimates the effect of increas-
ing xj by one unit while all other xs remain constant. If xj is highly collinear with 
other xs, when xj increases, the other xs also vary rather than staying constant. 
Therefore, it is difficult to estimate bj, and its probable error is large when xj is 
severely collinear with other independent variables. 

The standard error of each estimated partial slope b̂j is used in a confidence 
interval and statistical test for b̂j. The confidence interval follows the familiar for-
mat of estimate plus or minus table value times estimated standard error. The table 
value is the t table with the error df, n 2 (k 1 1). 

EXAMPLE 12.13

Calculate a 95% confidence interval for b3, the coefficient associated with the 
 explanatory variable INCOME in the three-predictor model for the data of 
 Example 12.12.

DEFINITION 12.3 Estimated standard error of b̂j in a multiple regression: 

s ̂bj
 se Å

1
g 1xij 2 xj 2 2 11 2 R2

j 2
where R2

j  is the R2 value obtained by letting xj be the dependent variable in a 
multiple regression, with all other xs independent variables. Note that se is the 
residual standard deviation for the multiple regression of y on x1, x2, . . . , xk.

DEFINITION 12.4 The confidence interval for bj is 

Ab̂j 2 ta/2 sb̂j 

,   ̂bj 1 ta/2 s b̂j
B

where ta/2 cuts off area a/2 in the tail of a t distribution with df  n 2 (k 1 1), 
the error df.

effect of collinearity

variance inflation 
factor
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Solution The least-squares estimator of b1 is b̂1  .26528 with standard error 
s ̂b3

 .10127. The upper .025 percentile of the t distribution with df  n 2 (k 1 1) 
 21 2 (3 1 1)  17 is 2.110. The 95% confidence interval on b3 is computed as

b̂3 6 ta/2sb̂3
 .26528 6 12.110 2 1.10127 2  1.05160, .47896 2  ■

EXAMPLE 12.14

locate the estimated partial slope for x1 and its standard error in the output in 
 Example 12.11. Calculate a 90% confidence interval for b1.

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1    5.58767    1.02985      5.43     <.0001
x1           1    0.01291    0.00283      4.57     <.0001
x2           1   -0.08300    0.03484     -2.38     0.0211
x3           1   -0.15817    0.02658     -5.95     <.0001
x4           1   -0.00911    0.00251     -3.64     0.0007

Solution b̂1  .01291 with standard error .00283. The tabled t-value for a/2  .10/2 
 .05 and df  54 2 (4 1 1)  49 is 1.677. The 90% confidence interval is computed 
as follows

b̂1 6 ta/2sb̂1
 1.01291 2 11.677 2 1.00283 2 , .01291 1 11.677 2 1.00283 2 2

           1.00816, .01766 2  ■
The usual null hypothesis for inference about bj is H0: bj  0. This hypothesis 

does not assert that xj has no predictive value by itself. It asserts that it has no addi-
tional predictive value over and above that contributed by the other independent 
variables; that is, if all other xs had already been used in a regression model and 
then xj was added last, the prediction would not improve. The test of H0: bj  0 
measures whether xj has any additional (e.g., unique) predictive value. The t test of 
this H0 is summarized next.

Summary for  
Testing bj

   H 0:  1. bj # 0 H a:  1. bj . 0

     2. bj $ 0  2. bj , 0

     3. bj  0  3. bj 2 0

 T.S.:  t  b̂j /sb̂j

R.R.:  1. t . ta

     2. t , 2ta

     3. |t| . ta/2

where ta cuts off a right-tail area a in the t distribution with df  n 2 (k 1 1).

Check assumptions and draw conclusions. 

This test statistic is shown by virtually all multiple regression programs.

interpretation of  
H0: bj 5 0 
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EXAMPLE 12.15

Refer to the output given in Example 12.14.

 a. Test H0:b1  0 versus Ha:b1 2 0 at the a  .10 level.
 b. Is the conclusion of the test compatible with the confidence interval?

Solution
 a. The test statistic for H0:b1  0 versus Ha:b1 2 0  is

  t 
b̂1

sb̂1


.01291
.00283

 4.562

  The .05 upper percentile for the t distribution with df  54 2 (4 1 1) 
 49 is 1.677. Because the computed value of the test statistic is 
greater than the tabled value, we conclude there is significant evi-
dence to reject H0. Thus, x1 has additional predictive power in the 
presence of the other three explanatory variables.

 b. The 90% confidence interval for b1 did not include 0, which indi-
cates that H0: b1 = 0 should be rejected at the a  .10 level. ■

EXAMPLE 12.16

Refer to Example 12.12. locate the t statistic for testing H0: b3 # 0  versus 
Ha: b3 . 0  in the output given in Example 12.12. Do the data support Ha: b3 . 0  
at any of the usual values for a?

Solution The t statistics are shown under the heading STUDENT’S T. For x3 
 (INCOME), the t statistic is 2.62, which is computed as .26528 /.10127. With df  17, 
the tabled values from the t distribution are 2.576 and 2.898 for a  .01 and .005, re-
spectively. Thus, H0 would be rejected at the a  .01 level but not at the a  .005 level.

The output lists a p-value under the column heading P. This p-value is for a 
two-sided alternative hypothesis, Ha: b3 2 0 . The p-value for the one-sided alterna-
tive Ha: b3 . 0  is given by p-value  Pr(t17 . 2.62)  1 2 pt(2.62, 17)  .00896 , 
.01  a. ■

The multiple regression F and t tests that we discuss in this chapter test 
 different null hypotheses. It sometimes happens that the F test results in the rejec-
tion of H0: b1  b2  c bk  0 , whereas no t test of H0: bj  0  is significant. 
In such a case, we can conclude that there is predictive value in the equation as 
a whole, but we cannot identify the specific variables that have predictive value. 
 Remember that each t test is testing the unique predictive value. Does this variable 
add predictive value given all the other predictors? When two or more predictor 
variables are highly correlated among themselves, it often happens that no xj can 
be shown to have significant, unique predictive value, even though the xs together 
have been shown to be useful. If we are trying to predict housing sales based on 
gross domestic product and disposable income, we  probably cannot prove that 
gDP adds value given DI or that DI adds value given gDP.

 12.5 Testing a Subset of Regression Coefficients

In the last section, we presented an F test for testing all the coefficients in a regression 
model and a t test for testing one coefficient. Another F test of the null  hypothesis 
tests whether several of the true coefficients are zero—that is, whether several of 
the predictors have no value given the others. For example, if we try to predict the 

F test for several bjs



12.5 Testing a Subset of Regression Coefficients    653

prevailing wage rate in various geographical areas for clerical workers based on 
the national minimum wage, national inflation rate, population density in the area, 
and median apartment rental price in the area, we might well want to test whether 
the variables related to area (density and apartment price) add anything given the 
national variables. 

A null hypothesis for this situation would say that the true coefficients of 
 density and apartment price are zero. According to this null hypothesis, these two 
independent variables together have no predictive value once minimum wage and 
inflation are included as predictors. 

The idea is to compare the SS(Regression) or R2 values when density and apart-
ment price are excluded and when they are included in the prediction equation. When 
they are included, the R2 is automatically at least as large as the R2 when they are 
excluded because we can predict at least as well with more information as with less. 
Similarly, SS(Regression) will be larger for the complete model. The F test for this null 
hypothesis tests whether the gain is more than could be  expected by chance alone. In 
general, let k be the total number of predictors, and let g be the number of predictors 
with coefficients not hypothesized to be zero (g , k). Then k 2 g represents the num-
ber of predictors with coefficients that are  hypothesized to be zero. The idea is to find 
SS(Regression) values using all predictors (the complete model) and using only the g 
predictors that do not appear in the null hypothesis (the reduced model). Once these 
have been computed, the test proceeds as outlined next. The notation is easier if we 
assume that the reduced model contains b1, b2, . . . , bg, so that the variables in the null 
hypothesis are listed last. 

complete and reduced 
models

EXAMPLE 12.17 

A state fisheries commission wants to estimate the number of bass caught in 
a given lake during a season in order to restock the lake with the appropriate 
 number of young fish. The commission could get a fairly accurate assessment of 
the seasonal catch by extensive “netting sweeps” of the lake before and after a 
season, but this technique is much too expensive to be done routinely. Therefore, 
the commission samples a number of lakes and records y, the seasonal catch 
(thousands of bass per square mile of lake area); x1, the number of lakeshore 
residences per square mile of lake area; x2, the size of the lake in square miles; 
x3  1 if the lake has public access, 0 if not; and x4, a structure index. (Structures 
are weed beds, sunken trees, drop-offs, and other living places for bass.) The data 
are shown in Table 12.13.

The commission is convinced that residences and size are important variables 
in predicting catch because they both reflect how intensively the lake has been 

  H0: bg11  bg12  c bk  0

  Ha: H0 
is not true.

  T.S.:  F 
3SS 1Regression, complete 2 2 SS 1Regression, reduced 2 4 / 1k 2 g 2

SS 1Residual, complete 2 / 3n 2 1k 1 1 2 4
R.R.:  F . Fa, where Fa cuts off a right tail of area a of the F distribution 

with df1  1k 2 g 2 and df2  3n 2 1k 1 1 2 4 .
Check assumptions and draw conclusions.

F Test of a Subset 
of Predictors
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fished. However, the commission is uncertain whether access and structure are 
 useful as additional predictor variables. Therefore, two regression models (with all 
four predictor variables entered linearly) are fitted to the data, the first model with 
all four variables and the second model without access and structure. The relevant 
portions of the Minitab output follow.

Full Model:

Regression Analysis: catch versus residenc, size, access, structur

The regression equation is
catch = – 2.78 + 0.0268 residenc + 0.504 size + 0.743 access + 0.0511 structur

Predictor     Coef    SE Coef      T      P
Constant   –2.7840     0.8157  –3.41  0.004
residenc  0.026794   0.009141   2.93  0.010
size        0.5035     0.2208   2.28  0.038
access      0.7429     0.2021   3.68  0.002
structur  0.051129   0.004542  11.26  0.000

S = 0.389498  R-Sq = 91.4%  R-Sq(adj) = 89.1%

Analysis of Variance

Source          DF        SS      MS      F      P
Regression       4   24.0624  6.0156  39.65  0.000
Residual Error  15    2.2756  0.1517    
Total           19   26.3380

TABLE 12.13
Bass catch data

lake Catch Residence Size Access Structure

 1 3.6 92.2 .21 0 81

 2 .8 86.7 .30 0 26

 3 2.5 80.2 .31 0 52

 4 2.9 87 .2 .40 0 64

 5 1.4 64.9 .44 0 40

 6 .9 90.1 .56 0 22

 7 3.2 60.7 .78 0 80

 8 2.7 50.9 1.21 0 60

 9 2.2 86.1 .34 1 30

 10 5.9 90.0 .40 1 90

 11 3.3 80.4 .52 1 74

 12 2.9 75.0 .66 1 50

 13 3.6 70.0 .78 1 61

 14 2.4 64.6 .91 1 40

 15 .9 50.0 1.10 1 22

 16 2.0 50.0 1.24 1 50

 17 1.9 51.2 1.47 1 37

 18 3.1 40.1 2.21 1 61

 19 2.6 45.0 2.46 1 39

 20 3.4 50.0 2.80 1 53
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Reduced Model:

Regression Analysis: catch versus residenc, size

The regression equation is
catch = – 0.87 + 0.0394 residenc + 0.828 size

Predictor     Coef    SE Coef      T      P
Constant    –0.871      2.409  –0.36  0.722
residenc   0.03941    0.02733   1.44  0.168
size        0.8280     0.6372   1.30  0.211

S = 1.17387  R-Sq = 11.1%  R-Sq(adj) = 0.6%

Analysis of Variance

Source          DF        SS      MS      F      P
Regression       2     2.913   1.456   1.06  0.369
Residual Error  17    23.425   1.378    
Total           19    26.338

 a. Write the complete and reduced models. 
 b. Write the null hypothesis for testing that the omitted variables have 

no (incremental) predictive value. 
 c. Perform an F test for this null hypothesis. 

Solution 

 a. The complete and reduced models are, respectively, 

 yi  b0 1 b1xi1 1 b2xi2 1 b3xi3 1 b4xi4 1 ei

  and

 yi  b0 1 b1xi1 1 b2xi2 1 ei

  The corresponding multiple regression least-squares equations 
based on the  sample data are 

 Complete: ŷ  22.78 1 .0268x1 1 .504x2 1 .743x3 1 .0511x4

    Reduced: ŷ  2.87 1 .0394x1 1 .828x2

 b. The appropriate null hypothesis of no predictive power for x3 and x4 
is H0: b3  b4  0 .

 c. The test statistic for the H0 of part (b) makes use of SS(Regression, 
 complete)  24.0624, SS(Regression, reduced)  2.913, SS(Residual,  
complete)  2.2756, k  4, g  2, and n  20: 

        T.S.: F
3SS 1Regression, complete 2 2 SS 1Regression, reduced 2 4 / 1422 2

SS 1Residual, complete 2 / 12025 2

 
124.0624 2 2.913 2 /2

2.2756 / 120 2 5 2  69.705

The tabled value F.01 for 2 and 15 df is 6.36. The value of the test 
statistic is much larger than the tabled value, so we have conclusive 
evidence that the access and structure variables add predictive value 
(p , .0001). ■
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 12.6 Forecasting Using Multiple Regression 

One of the major uses for multiple regression models is in forecasting a y-value 
given certain values of the independent x variables. The best-guess forecast is easy; 
just substitute the specified x-values into the estimated regression equation. In this 
section, we discuss the relevant standard errors. 

As in simple regression, the forecast of y for given x-values can be interpreted 
two ways. The resulting value can, first, be thought of as the estimate for E(y), the 
long-run average y-value that results from averaging infinitely many observations 
of y when the xs have the specified values. The alternative interpretation is that 
this is the predicted y-value for one individual case having the given x-values. The 
standard errors for both interpretations require matrix algebra ideas that are not 
required for this text. 

Computer programs typically give a standard error for an individual y forecast. 
This information can also be used to find a standard error for estimating E(y). In 
most computer outputs, an interval for the mean value is called a confidence interval; 
a forecast interval for an individual value is called a prediction interval. The appro-
priate plus or minus term for constructing an interval can be found by  multiplying 
the  standard error by a tabled t-value with df  n 2 (k 1 1). In fact, many computer 
 programs give the plus or minus term directly. 

EXAMPLE 12.18 

An advertising manager for a manufacturer of prepared cereals wants to develop 
an equation to predict sales (s) based on advertising expenditures for children’s 
television (c), daytime television (d), and newspapers (n). Data were collected 
monthly for the previous 30 months (and divided by a price index to control for 
inflation). A multiple regression is fit, yielding the following Minitab computer 
output: 

The regression equation is
s = 0.053 + 0.00562 c + 0.0184 d – 0.00600 n

Predictor Coef Stdev t-ratio p
Constant 0.0526 0.1374 0.38 0.705
c 0.005618 0.002930 1.92 0.066
d 0.01841 0.01211 1.52 0.141
n –0.005996 0.004362 –1.37 0.181

s = 0.04736 R-sq = 30.8% R-sq(adj) = 22.9%

Analysis of Variance

SOURCE DF SS MS F p
Regression 3 0.026003 0.008668 3.86 0.021
Error 26 0.058317 0.002243
Total 29 0.084320

SOURCE DF SEQ SS
c 1 0.000330
d 1 0.021434
n 1 0.004238

Fit Stdev.Fit 95% C.I. 95% P.I.
0.24686 0.01998 (0.20579,0.28794) (0.14118,0.35255)
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 a. Write the regression equation. 
 b. locate the predicted y-value ( ŷ) when c  31, d  5, and n  12. 

locate the lower and upper limits for a 95% confidence interval for 
E(y) and the upper and lower 95% prediction limits for an individual 
y-value. 

Solution

 a. The column labeled Coef yields the equation 

     ŷ  .0526 1 .005618c 1 .01841d 2 .005996n

 b. The predicted y-value is shown as Fit. As can be verified by substi-
tuting c  31, d  5, and n  12 into the equation, the predicted y 
is .24686. The 95% confidence limits for the mean E(y) are shown 
in the 95% C.I. part of the output as .20579 to .28794, whereas the 
wider prediction  limits for an individual y-value are .14118 to .35255. ■

The notion of extrapolation is more subtle in multiple regression than in 
 simple linear regression. In simple regression, extrapolation occurred when we tried 
to predict y using an x-value that was well beyond the range of the data. In multiple 
regression, we must be concerned not only about the range of each individual pre-
dictor but also about the set of values of several predictors together. It might well be 
reasonable to use multiple regression to predict the salary of a 30-year-old middle 
manager or the salary of a middle manager with 25 years of experience, but it would 
not be reasonable to use regression to predict the salary of a 30-year-old middle 
manager with 25 years of experience! Extrapolation depends not only on the range 
of each separate xj predictor used to develop the regression equation but also on the 
correlations among the xj values. In the salary prediction example,  obviously age 
and experience will be positively correlated, so the combination of a low age and 
high amount of experience wouldn’t occur in the data. When making forecasts using 
multiple regression, we must consider not only whether each independent variable 
value is reasonable by itself but also whether the chosen combination of predictor 
values is reasonable.

EXAMPLE 12.19 

The state fisheries commission hoped to use the data of Example 12.17 to predict 
the catch at a lake with 8 residences per square mile, a size of .7 square mile, 1 public 
access, and a structure index of 55 and also for another lake with 48 residences per 
square mile, a size of 1.0 square mile, 1 public access, and a structure index of 40. 
The following Minitab output was obtained:

Regression Analysis: catch versus residenc, size, access, structur

The regression equation is
catch = – 2.78 + 0.0268 residenc + 0.504 size + 0.743 access + 0.0511 structur

Predictor     Coef    SE Coef      T      P
Constant   –2.7840     0.8157  –3.41  0.004
residenc  0.026794   0.009141   2.93  0.010
size        0.5035     0.2208   2.28  0.038
access      0.7429     0.2021   3.68  0.002
structur  0.051129   0.004542  11.26  0.000

S = 0.389498  R-Sq = 91.4%  R-Sq(adj) = 89.1%

Predicted Values for New Observations

New
Obs     Fit  SE Fit      95% CI           95% PI
  1  1.3379  0.6119 (0.0337, 2.6420) (–0.2081,2.8838)XX
  2  1.7937  0.2129 (1.3400, 2.2475) ( 0.8476, 2.7398)

XX denotes a point that is an extreme outlier in the predictors.

Values of Predictors for New Observations

New
Obs  residenc   size   access   structur
  1       8.0   0.70     1.00       55.0
  2      48.0   1.00     1.00       40.0

extrapolation in  
multiple regression
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Regression Analysis: catch versus residenc, size, access, structur

The regression equation is
catch = – 2.78 + 0.0268 residenc + 0.504 size + 0.743 access + 0.0511 structur

Predictor     Coef    SE Coef      T      P
Constant   –2.7840     0.8157  –3.41  0.004
residenc  0.026794   0.009141   2.93  0.010
size        0.5035     0.2208   2.28  0.038
access      0.7429     0.2021   3.68  0.002
structur  0.051129   0.004542  11.26  0.000

S = 0.389498  R-Sq = 91.4%  R-Sq(adj) = 89.1%

Predicted Values for New Observations

New
Obs     Fit  SE Fit      95% CI           95% PI
  1  1.3379  0.6119 (0.0337, 2.6420) (–0.2081,2.8838)XX
  2  1.7937  0.2129 (1.3400, 2.2475) ( 0.8476, 2.7398)

XX denotes a point that is an extreme outlier in the predictors.

Values of Predictors for New Observations

New
Obs  residenc   size   access   structur
  1       8.0   0.70     1.00       55.0
  2      48.0   1.00     1.00       40.0

locate the 95% prediction intervals for the two new lakes. Why is the first interval 
so much wider than the second?

Solution The prediction intervals are given by the respective 95% PI values, 
(2.2081, 2.8838) for the first lake and (.8476, 2.7398) for the second lake. The first 
interval carries a warning: a point that is an extreme outlier in the predictors. A 
check of the data for the original 20 lakes reveals no lake had even close to eight 
residences per square mile. Thus, the prediction for this set of values of the pre-
dictors would be an extrapolation well beyond the data used to fit the model. For 
this case, the problem is with the value for just one of the explanatory variables, 
residence; the values for the remaining predictor variables are well within the range 
of the data. ■

 12.7 Comparing the Slopes of Several Regression Lines

This topic represents a special case of the general problem of constructing a mul-
tiple regression equation for both qualitative and quantitative independent vari-
ables. The best way to illustrate this particular problem is by way of an example.

EXAMPLE 12.20 

An investigator was interested in comparing the responses of rats to different 
doses of two drug products (A and B). The study called for a sample of 60 rats of 
a particular strain to be randomly allocated into two equal groups. The first group 
of rats was to receive drug A, with 10 rats randomly assigned to each of three 
doses (5, 10, and 20 mg). Similarly, the 30 rats in group 2 were to receive drug B, 
with 10 rats randomly assigned to the 5-, 10-, and 20-mg doses. In the study, each 
rat  received its assigned dose, and after a 30-minute observation period, it was 
scored for signs of anxiety on a 0- to 30-point scale. Assume that a rat’s anxiety 
score is a linear function of the dosage of the drug. Write a model relating a rat’s 
scores to the two independent variables “drug product” and “drug dose.” Inter-
pret the bs. 

Solution For this experimental situation, we have one qualitative variable (drug 
product) and one quantitative variable (drug dose). letting x1 denote the drug 
dose, we have the model 

y  b0 1 b1x1 1 b2x2 1 b3x1x2 1 e
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where

x1  drug dose 

 x2  1 if drug B,    x2  0 otherwise 

The expected value for y in our model is 

E 1y 2  b0 1 b1x1 1 b2x2 1 b3x1x2

Substituting x2  0 and x2  1, respectively, for drugs A and B, we obtain the 
 expected rat anxiety score for a given dose:

Drug A:  E 1y 2  b0 1 b1x1

 Drug B:  E 1y 2  b0 1 b1x1 1 b2 1 b3x1  1b0 1 b2 2 1 1b1 1 b3 2x1

These two expected values represent linear regression lines. The parameters 
in the model can be interpreted in terms of the slopes and intercepts associated 
with these regression lines. In particular, 

b0:  y-intercept for drug A regression line 

b1:  slope of drug A regression line 

b2:  difference in y-intercepts of regression lines for drugs B and A 

b3:  difference in slopes of regression lines for drugs B and A 

Figure 12.4(a) indicates a situation in which b3 2 0 (that is, there is an inter-
action between the two variables “drug product” and “drug dose”). Thus, the 
 regression lines are not parallel. Figure 12.4(b) indicates a case in which b3  0  
(no interaction), which results in parallel regression lines. 

FIGURE 12.4
Comparing two  
regression lines

B

A

5 10 20
x1

y

(a) 3 = 0; interaction is present;
     intersecting lines

(b) 3 = 0; interaction is not present;
     parallel lines

5 10 20
x1

y

B

A

Indeed, many other experimental situations are possible depending on the 
signs and magnitudes of the parameters b0, b1, b2, and b3.

EXAMPLE 12.21 

Sample data for the experiment discussed in Example 12.20 are listed in Table 12.14. 
The response of interest is an anxiety score obtained from trained  investigators. 
Use these data to fit the general linear model 

y  b0 1 b1x1 1 b2x2 1 b3x1x2 1 e

linear regression lines

y-intercept

slope

■
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Of particular interest to the experimenter is a comparison between the slopes 
of the regression lines. A difference in slopes would indicate that the drug products 
have different effects on the anxiety of the rats. Conduct a statistical test of the 
equality of the two slopes. Use a  .05. 

Solution Using the complete model 

y  b0 1 b1x1 1 b2x2 1 b3x1x2 1 e

we obtain a least-squares fit of 

ŷ  15.30 1 .19x1 2 .70x2 1 .30x1x2

with SS(Regression, complete)  442.10 and SS(Residual, complete)  133.63. 
(See the computer output that follows.) 

The reduced model corresponding to the null hypothesis H0: b3  0 (that is, 
the slopes are the same) is 

y  b0 1 b1x1 1 b2x2 1 e

for which we obtain 

ŷ  13.55 1 .34x1 1 2.80x2

and SS(Regression, reduced)  389.60. The reduction in the sum of squares for 
error attributed to x1x2 is 

SSdrop   SS(Regression, complete) 2 SS(Regression, reduced)

    442.10 2 389.60  52.50 

It follows that 

 F 
3SS 1Regression, complete 2 2 SS 1Regression, reduced 2 4 /k 2 g

 SS 1Residual, complete 2 / 3n 2 1k 1 1 2 4

 
52.50 /1

133.63 /56
 22.00

TABLE 12.14
Rat anxiety scores Drug Dose (mg)

Drug 5 10 20

 A 15 16 18 16 20 17
 16 15 17 15 19 18
 18 16 18 19 21 21
 13 17 19 18 18 20
 19 15 20 16 19 17

 av  16 av  17 .6 av  19.0

 B 16 15 19 18 24 23
 17 15 21 20 25 24
 18 18 22 21 23 22
 17 17 23 22 25 26
 15 16 20 19 25 24

 av  16.4 av  20.5 av  24.1
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REGRESSION ANALYSIS OF ANXIETY TREATMENTS–COMPLETE MODEL

Model: MODEL1

Dependent Variable: SCORE

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 3 442.10476 147.36825 61.758 0.0001

Error 56 133.62857 2.38622

C Total 59 575.73333

Root MSE 1.54474 R–square 0.7679

Dep Mean 18.93333 Adj R–sq 0.7555

C.V. 8.15884

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 15.300000 0.59827558 25.573 0.0001

DOSE 1 0.191429 0.04522538 4.233 0.0001

PRODUCT 1 –0.700000 0.84608944 –0.827 0.4116

PRD_DOSE 1 0.300000 0.06395835 4.691 0.0001

Variable

Variable DF Label

INTERCEP 1 Intercept

DOSE 1 DRUG DOSE LEVEL

PRODUCT 1 DRUG PRODUCT

PRD_DOSE 1 PRODUCT TIMES DOSE

REGRESSION ANALYSIS OF ANXIETY TREATMENTS–REDUCED MODEL

Model: MODEL1

Dependent Variable: SCORE

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 389.60476 194.80238 59.656 0.0001

Error 57 186.12857 3.26541

C Total 59 575.73333

Root MSE 1.80705 R–square 0.6767

Dep Mean 18.93333 Adj R–sq 0.6654

C.V. 9.54425
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Because the observed value of F exceeds 4.08, the value for df1  1, df2  56 
 (actually 40), and a  .05 in Appendix Table 8, we reject H0 and conclude that the 
slopes for the two groups are different. Note that we could have obtained the same 
result by testing H0: b3  0 using a t test. From the computer output, the t statistic 
is 4.69, which is significant at the .0001 level. For this type of test, the t statistic and 
F statistic are related; namely, t2  F (here 4.6912 < 22). ■

The results presented here for comparing the slope of two regression lines 
can be readily extended to the comparison of three or more regression lines by 
 including additional dummy variables and all possible interaction terms between 
the quantitative variable x1 and the dummy variables. Thus, for example, in com-
paring the slopes of three regression lines, the model would contain the quantitative 
variable x1, two dummy variables x2 and x3, and two interaction terms x1x2 and x1x3. 

 12.8 Logistic Regression

In many research studies, the response variable may be represented as one of two 
possible values. Thus, the response variable is a binary random variable taking on 
the values 0 and 1. For example, in a study of a suspected carcinogen, aflatoxin B1, 
a number of levels of the compound were fed to test animals. After a period of 
time, the animals were sacrificed, and the number of animals having liver tumors 
was recorded. The response variable is y  1 if the animal has a tumor and y  
0 if the animal fails to have a tumor. Similarly, a bank wants to determine which 
customers are most likely to repay their loans. Thus, the bank wants to record a 
number of independent variables that describe a customer’s reliability and then 
determine whether these variables are related to the binary variable, y  1 if the 
customer repays the loan and y  0 if the customer fails to repay the loan. A model 
that relates a binary variable y to explanatory variables will be developed next. 

When the response variable y is binary, the distribution of y reduces to a single 
value, the probability p  P(y  1). We want to relate p to a linear combination 
of the independent variables. The difficulty is that p varies between zero and one, 
whereas linear combinations of the explanatory variables can vary between 2` 
and 1`. In Chapter 10, we introduced the transformation of probabilities into an 
odds ratio. As the probabilities vary between zero and one, the odds ratio varies 
between zero and infinity. By taking the logarithm of the odds ratio, we will have 
a transformed variable that will vary between 2` and 1` when the probabilities 

Variable

Variable DF Label

INTERCEP 1 Intercept

DOSE 1 DRUG DOSE LEVEL

PRODUCT 1 DRUG PRODUCT

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 13.550000 0.54711020 24.766 0.0001

DOSE 1 0.341429 0.03740940 9.127 0.0001

PRODUCT 1 2.800000 0.46657715 6.001 0.0001
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vary between zero and one. The model often used to study the association between 
a binary response and a set of explanatory variables is given by logistic regression 
analysis. In this model, the natural logarithm of the odds ratio is related to the 
explanatory variables by a linear model. We will consider the situation where we 
have a single independent variable, but this model can be generalized to multiple 
independent variables. let p(x) be the probability that y equals 1 when the inde-
pendent variable equals x. We model the log–odds ratio to a linear model in x, a 
simple logistic regression model: 

lna p 1x 2
1 2 p 1x 2 b  b0 1 b1x

This transformation can be formulated directly in terms of p(x) as 

p 1x 2 
eb01b1x

1 1 eb01b1x

For example, the probability of a tumor being present in an animal exposed to x 
units of the aflatoxin B1 would be given by p(x) as expressed by the above equation. 
The values of b0 and b1 would be estimated from the observed data using maximum 
likelihood estimation. 

We can interpret the parameters b0 and b1 in the logistic regression model in 
terms of p(x). The intercept parameter b0 permits the estimation of the probability 
of the event associated with y  1 when the independent variable x  0. For exam-
ple, the probability of a tumor being present when the animal is not exposed to afla-
toxin B1 would correspond to the probability of y  1 when x  0—that is, p(0). The 
logistic regression model would yield

p 10 2 
eb0

1 1 eb0

The slope parameter b1 measures the degree of association between the 
probability of the event occurring and the value of the independent variable x. 
When b1  0, the probability of the event occurring is not associated with size of 
the value of x. In our example, the chance of an animal developing a liver tumor 
would remain constant no matter the amount of aflatoxin B1 the animal was 
 exposed to. Figure 12.5 displays two simple logistic regression functions. If b1 . 0,  
the probability of the event occurring increases as the value of the independent 

logistic regression  
analysis

simple logistic  
regression model

FIGURE 12.5 
logistic regression  

functions 
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variable increases. If b1 , 0, the probability of the event occurring decreases as 
the value of the independent variable increases. 

In the situation where both b0 and b1 are zero, the event is as likely to occur 
as not to occur because 

p 1x 2 
e0

1 1 e0 
1

1 1 1


1
2

This would indicate that the probability of the occurrence of the event indicated 
by y  1 is not related to the independent variable x. Thus, the model is noninfor-
mative in determining the probability of the event’s occurrence; there is an equal 
chance of occurrence or nonoccurence of the event no matter the value of the 
independent variable. 

A second interpretation of the logistic regression model results from using the 
odds and odds ratio of the event being modeled. For the logistic regression model,

lna p 1x 2
1 2 p 1x 2 b  b0 1 b1x

and the odds of the event associated with y  1 are

p 1x 2
1 2 p 1x 2  eb01b1x  eb0 1eb1 2 x

This exponential relationship provides the following interpretation for the 
parameter b1. An increase of one unit in the predictor variable x results in the 
odds of the specified event being multiplied by eb1. That is, the odds of the event 
when the predictor variable equals x 1 1 equal the odds when the predictor vari-
able has a value of x multiplied by eb1. Thus, when b1  0, eb1  1, and, hence, the 
odds are unchanged when the value of the predictor variable changes. Finally, 
the odds ratio of the event when the predictor variable has a value x 1 1 to the 
event when the predictor variable has a value x is eb1. This can be seen from the 
following  expression:

p 1x 1 1 2 / 11 2 p 1x 1 1 2 2
p 1x 2 / 11 2 p 1x 2 2 

eb01b11x112

eb01b1x
 eb01b11x1122b02b1x  eb1

Whether we are using the simple logistic regression model or multiple logis-
tic regression models, the computational techniques used to estimate the model 
parameters require the use of computer software. We will use an example to illus-
trate the use of logistic regression models. 

EXAMPLE 12.22 

A study reported by Smith (1967), recorded the level of an  enzyme, creatinine kinase 
(CK), for patients who were suspected of having a heart  attack. The objective of the 
study was to assess whether measuring the amount of CK on admission to the hos-
pital was a useful diagnostic indicator of whether patients admitted with a diagnosis 
of a heart attack had really had a heart attack. The enzyme CK was measured in 360 
patients on admission to the hospital. After a period of time, a doctor reviewed the 
records of these patients to decide which of the 360 patients had actually had a heart 
attack. The data are given in Table 12.15 with the CK values given as the midpoint of 
the range of values in each of 13 classes of values.
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LOGISTIC REGRESSION ANALYSIS EXAMPLE

The LOGISTIC Procedure

Data Set: WORK.LOGREG
Response Variable (Events): R
Response Variable (Trials): N
Number of Observations: 13
Link Function: Logit

Response Profile

Ordered Binary
Value Outcome Count

1 EVENT 230
2 NO EVENT 130

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and

Criterion Only Covariates Chi–Square for Covariates

AIC 472.919 191.773 .
SC 476.806 199.545 .
–2 LOG L 470.919 187.773 283.147 with 1 DF (p=0.0001)
Score . . 159.142 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized
Variable DF Estimate Error Chi–Square Chi–Square Estimate

INTERCPT 1 –3.0284 0.3670 68.0948 0.0001
CK 1 0.0351 0.00408 73.9842 0.0001 3.100511

LOGISTIC REGRESSION ANALYSIS EXAMPLE

OBS CK PRED LCL UCL

1 20 0.08897 0.05151 0.14937
2 60 0.28453 0.21224 0.36988
3 100 0.61824 0.51935 0.70821
4 140 0.86833 0.78063 0.92436
5 180 0.96410 0.91643 0.98502
6 220 0.99094 0.97067 0.99724
7 260 0.99776 0.99000 0.99950
8 300 0.99945 0.99662 0.99991
9 340 0.99986 0.99886 0.99998
10 380 0.99997 0.99962 1.00000
11 420 0.99999 0.99987 1.00000
12 460 1.00000 0.99996 1.00000
13 500 1.00000 0.99999 1.00000

The computer output for obtaining the estimated logistic regression curve 
and 95% confidence intervals on the predicted probabilities of having had a heart 
attack are given here.

TABLE 12.15
Heart attack data  Number of Patients Number of Patients

CK value with Heart Attack without Heart Attack

 20 2 88
 60 13 26
100 30 8
140 30 5
180 21 0
220 19 1
260 18 1
300 13 1
340 19 0
380 15 0
420 7 0
460 8 0
500 35 0
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Response Profile

Ordered Binary
Value Outcome Count

1 EVENT 230
2 NO EVENT 130

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and

Criterion Only Covariates Chi–Square for Covariates

AIC 472.919 191.773 .
SC 476.806 199.545 .
–2 LOG L 470.919 187.773 283.147 with 1 DF (p=0.0001)
Score . . 159.142 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized
Variable DF Estimate Error Chi–Square Chi–Square Estimate

INTERCPT 1 –3.0284 0.3670 68.0948 0.0001
CK 1 0.0351 0.00408 73.9842 0.0001 3.100511

LOGISTIC REGRESSION ANALYSIS EXAMPLE

OBS CK PRED LCL UCL

1 20 0.08897 0.05151 0.14937
2 60 0.28453 0.21224 0.36988
3 100 0.61824 0.51935 0.70821
4 140 0.86833 0.78063 0.92436
5 180 0.96410 0.91643 0.98502
6 220 0.99094 0.97067 0.99724
7 260 0.99776 0.99000 0.99950
8 300 0.99945 0.99662 0.99991
9 340 0.99986 0.99886 0.99998
10 380 0.99997 0.99962 1.00000
11 420 0.99999 0.99987 1.00000
12 460 1.00000 0.99996 1.00000
13 500 1.00000 0.99999 1.00000

 a. Is CK level significantly related to the probability of a heart attack 
through the logistic regression model? 

 b. From the computer output, obtain the estimated coefficients b0 and b1.
 c. Construct the estimated probability of having had a heart attack as 

a function of CK level. In particular, estimate this probability for a 
patient having a CK level of 140.

Solution
 a. From the computer output, we obtain, p-value  .0001 for testing the  

hypotheses H0: b1  0 versus Ha: b1 2 0 in the logistic regression model. 
Thus, there is significant evidence that CK is related to the probability 
of having had a heart attack. 

 b. From the computer output, we obtain b̂0  23.0284 and b̂1  .0351. 
Note that b̂1 is positive. This would indicate that patients having 
higher levels of CK are associated with a larger probability that a 
heart attack had  occurred. Also, we can conclude that the odds of 
having had a heart attack for a patient with a CK level of x 1 1 is 
e.0351  1.036 times the odds for a patient having a CK level of x.

 c. The estimated probability of having had a heart attack as a function 
of CK level in the patient is given by 

 p 1CK 2 
e23.02841.0351*CK

1 1 e23.02841.0351*CK

We can use this formula to calculate the probability that a patient had 
experienced a heart attack when the CK level in the patient was 140. 
This value is given by 

 p 1CK 2 
e23.02841.0351*140

1 1 e23.02841.0351*140 
e1.886

1 1 e1.886  .868 

From the computer printout, we obtain 95% confidence intervals 
for this probability as .781 to .924. Thus, we are 95% confident that 
between 78.1% and 92.4% of patients with a CK level of 140 would 
have had a heart attack. The estimated probabilities of a heart attack 
along with 95% confidence intervals on these probabilities are plot-
ted in Figure 12.6. We note that the estimated probability of having 
had a heart attack increases very rapidly with increasing CK levels in 
the patients. This would indicate that CK levels are a useful indicator 
of whether a patient has had a heart attack.  

8
8
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The logistic regression model can be generalized to incorporate k predictor 
variables. These predictors can be quantitative, qualitative, or a mixture of quanti-
tative and qualitative variables. let x1, x2, . . . , xk be the k predictors of the binary 
response variable y. The logistic regression model given previously generalizes to 
the following model with x denoting the vector of k predictor variables. The model 
is given by

lna p 1x 2
1 2 p 1x 2 b  b0 1 b1x1 1 b2x2 1 c 1 bkxk

The interpretation of the bis in this model is similar to the interpretation given to 
the parameters in the multiple linear regression model. The parameter bi is related 
to the effect of the predictor xi on the log odds ratio that y  1, with the values of 
the other k 2 1 predictors held constant. That is, exp(bi) is the multiplicative effect 
on the odds of the event occurring for a one-unit increase in the value of the pre-
dictor xi while holding the values of the other k 2 1 predictors constant.

For example, suppose the values of x2, x3, . . . , xk are held constant at the 
values x2  x20, x3  x30, . . . , xk  xk0 while the value of x1 is changed from x10 to 
x10 1 1. The ratio of the odds that y  1 when x2  (x10 1 1, x20, . . . , xk0) and when 
x1  (x10, x20, . . . , xk0) is given by

p 1x2 2 / 11 2 p 1x2 2 2
p 1x1 2 / 11 2 p 1x1 2 2


eb01b11x101121b2x201c 1bkxk0

eb01b1x101b2x201c 1bkxk0
  eb1 1

     
p 1x2 2

1 2 p 1x2 2
 eb1

p 1x1 2
1 2 p 1x1 2

EXAMPLE 12.23

The following example from A Handbook of Statistical Analyses Using SAS (Der and 
Everitt, 2002) will illustrate a logistic regression model with two predictor variables. 
A study was conducted to examine the extent to which red blood cells settle out 
of suspension in blood plasma; erythrocyte sedimentation rate (ESR) is related to 
two proteins that are present in blood plasma. Individuals are classified as healthy 
(ESR , 20) or unhealthy (ESR $ 20). The two blood plasma proteins are fibrin-
ogen (x1) and g-globulin (x2) and are measured on each of the patients in units of 
grams/liter. The researchers wanted to determine the strength of the relationship 
between the probability of determining a patient was  unhealthy (ESR $ 20) and 

FIGURE 12.6 
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heart attack with 95% 
confidence limits 
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the levels of the two plasma proteins. The data are given in Table 12.16 with Hth  
(1  unhealthy, 0  healthy), Fib (level of fibrinogen), and gam (level of g-globulin).

 a. Are the levels of the two plasma proteins related to the probability 
that a patient has an unhealthy level of ESR through the logistic 
regression model?

 b. From the computer output, obtain the estimated coefficients b0, b1, 
and b2.

 c. Construct the estimated probability that a patient has an unhealthy 
level of ESR as a function of the two predictor variables.

 d. From the SAS output, obtain 95% confidence interval on the prob-
abilities for the  following two sets of values for the predictor variables: 
(Fib, gam)  (2.50, 40) and (Fib, gam)  (4.90, 38).

TABLE 12.16
Blood cell data

Fib 2.52 2.46 2.29 3.15 2.88 2.29 2.99 2.38
gam 38 36 36 36 30 31 36 37
Hth 0 0 0 0 0 0 0 1

Fib 2.56 3.22 2.35 3.53 2.65 2.15 3.32 2.23
gam 31 38 29 46 46 31 35 37
Hth 0 0 0 1 0 0 0 0

Fib 2.19 2.21 5.06 2.68 2.09 2.54 2.18 2.67
gam 33 37 37 34 44 28 31 39
Hth 0 0 1 0 1 0 0 0

Fib 3.41 3.15 3.34 2.60 2.28 3.93 2.60 3.34
gam 37 39 32 38 36 32 41 30
Hth 0 0 1 0 0 1 0 0

                       The SAS LOGISTIC Procedure

                           Response Profile

                    Ordered                    Total
                      Value     health     Frequency

                          1          1             6
                          2          0            26
                      
                    Probability modeled is health=1.

                 Testing Global Null Hypothesis: BETA=0

          Test                 Chi-Square     DF    Pr > ChiSq

          Likelihood Ratio         7.9138      2        0.0191
          Score                    8.2067      2        0.0165
          Wald                     4.7561      2        0.0927

                       The LOGISTIC Procedure

              Analysis of Maximum Likelihood Estimates
 
                              Standard        Wald
     Parameter  DF  Estimate     Error  Chi-Square  Pr > ChiSq

     Intercept   1  –12.7920    5.7964      4.8704      0.0273
     fib          1    1.9104    0.9710      3.8708      0.0491
     gamma       1    0.1558    0.1195      1.6982      0.1925

                        Odds Ratio Estimates

                             Point         95% Wald
               Effect     Estimate     Confidence  Limits

               fib            6.756      1.007      45.308
               gamma         1.169      0.924       1.477

Obs    fib   gamma   health   _LEVEL_     pred      LCL       UCL

 33   2.50      40     -         1      0.14368   0.03637   0.42724
 34   4.90      38     -         1      0.92332   0.21469   0.99812
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Solution
 a. From the computer output, the likelihood ratio chi-square test has  

a p-value of .0191. The null hypothesis for this test is H0: b1  0,  
b2  0. The size of the p-value would suggest that the data support the 
research hypothesis: Ha: b1 2 0, and/or b2 2 0. This would indicate 
that at least one of the two plasma proteins has predictive power in 
determining the probability that the patient is unhealthy (ESR $ 20).

 b. The maximum likelihood estimates of the model parameters are

 b̂0  212.7920   b̂1  1.9104   b̂2  .1558

 c. The estimated equation for obtaining the probability that a patient  
is unhealthy (y  1) is given by the following equation with x1  Fib and  
x2  gam.

 p̂ 1x1, x2 2 
e212.792011.9104x11.1558x2

1 1 e212.792011.9104x11.1558x2

 d. From the SAS output, when Fib equals 2.50 and gam equals 40, 
the predicted probability that a patient has these levels of Fib and 
gam is .14368 with a 95% confidence interval of (.03637, .42724). 
When Fib equals 4.90 and gam equals 38, the predicted probability 
that a patient has these levels of Fib and gam is .92332 with a 95% 
confidence interval of (.21469, .99812). ■

 12.9 Some Multiple Regression Theory (Optional)

In this section, we use matrix notation to sketch some of the mathematics underlying 
multiple regression. The focus is on how multiple regression calculations are actually 
done, whether by hand or by computer. We do not prove most of the  results; proofs 
are available in many specialized texts, such as Sheather (2009).

First, we will provide a few results related to the algebraic operations on 
 vectors and matrices.

                       The SAS LOGISTIC Procedure

                           Response Profile

                    Ordered                    Total
                      Value     health     Frequency

                          1          1             6
                          2          0            26
                      
                    Probability modeled is health=1.

                 Testing Global Null Hypothesis: BETA=0

          Test                 Chi-Square     DF    Pr > ChiSq

          Likelihood Ratio         7.9138      2        0.0191
          Score                    8.2067      2        0.0165
          Wald                     4.7561      2        0.0927

                       The LOGISTIC Procedure

              Analysis of Maximum Likelihood Estimates
 
                              Standard        Wald
     Parameter  DF  Estimate     Error  Chi-Square  Pr > ChiSq

     Intercept   1  –12.7920    5.7964      4.8704      0.0273
     fib          1    1.9104    0.9710      3.8708      0.0491
     gamma       1    0.1558    0.1195      1.6982      0.1925

                        Odds Ratio Estimates

                             Point         95% Wald
               Effect     Estimate     Confidence  Limits

               fib            6.756      1.007      45.308
               gamma         1.169      0.924       1.477

Obs    fib   gamma   health   _LEVEL_     pred      LCL       UCL

 33   2.50      40     -         1      0.14368   0.03637   0.42724
 34   4.90      38     -         1      0.92332   0.21469   0.99812

A matrix B of dimension m 3 n is an array of mn elements, assigned to m 
rows and n columns. Matrices are designated as B  (bij), where bij represents 
the number placed in the ith row and jth column of B. A matrix is said to be 
square if m  n. A matrix is said to be an identity matrix (often designated 
as I) if it is a square matrix with ones on its diagonal and zeros in all other 
locations. The zero matrix (often designated as 0) is a matrix with all of its 
entries equal to zero.

DEFINITION 12.5
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EXAMPLE 12.24

Some examples of matrices are 2 3 3 matrix B  B3
8
  8

4
  5

1
R ; a 3 3 3 identity matrix 

I  C
1
0
0

  0
1
0

  0
0
 1

S ; a 3 3 3 square matrix 

C  C
22
4.3

7

  6
  1.2
  4

  1.2
5

1.7
S .  ■

A matrix consisting of a single column is called an m 3 1 vector.

EXAMPLE 12.25

Y  E

4
5
1
0
9

 U  is a 5 3 1 vector. 1  E

1
1
1
1
1

U  is a 5 3 1 unit vector.

 0  C
0
0
0
S  is a 3 3 1 zero vector. ■

DEFINITION 12.6 let C and D be two matrices of the same dimension. Then the addition and 
subtraction of C and D are given by

C 1 D  (cij 1 dij)    C 2 D  (cij 2 dij)

The multiplication of matrix C having dimension m 3 n by matrix D of 
 dimension n 3 k results in the m 3 k product matrix M  CD given by

M  CD  1mij 2  with  mij a
n

t1
citdtj

Note that the number of columns of C must equal the number of rows 
of D in order to multiply C by D. 

The transpose of an m 3 n matrix C is the n 3 m matrix C9 obtained by 
placing the rows of C into the columns of C9. A square matrix C is symmetric 
if C9  C.

EXAMPLE 12.26

let C  B22
4

 6
2

 4
1
R ;  D  C

3
9
7

 2
5
1

 4
 22

8
S ; E  C

4
8
1

 21
6

26

  0
4
7
S . 

Obtain the following matrices: C 1 D, D 1 E, D 2 E, CD, EC, and E9.
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Solution It is not possible to compute C 1 D because the two matrices have 
 different dimensions.

D 1 E  C
3 1 4
9 1 8
7 1 1

  2 1 121 2
5 1 6

1 1 126 2

  4 1 0
  22 1 4

8 1 7
S   C

7
17
8

  1
 11
 25

 4
2

 15
S

D 2 E  C
3 2 4
9 2 8
7 2 1

  2 2 121 2
5 2 6

1 2 126 2

  4 2 0
  22 2 4

8 2 7
S   C

21
1
6

 3
 21

7

 4
26

1
S

CD  B22 # 3 1 6 # 9 1 4 # 7
  4 # 3 1 2 # 9 1 1 # 7

 
22 # 2 1 6 # 5 1 4 # 1

4 # 2 1 2 # 5 1 1 # 1
 

22 # 4 1 6 # 22 1 4 # 8
4 # 4 1 2 # 22 1 1 # 8

R

     B76
37

 30
19

 12
20

R

EC can not be computed because the number of columns in E is 3, whereas the 
number of rows in C is 2.

 E r  C
4

21
0

 8
6
4

1
26
  7

 S  ■

DEFINITION 12.7
The determinant of a 2 3 2 square matrix  B  Bb11

b21

 b12

b22
R  is the value 

|B|  b11b22 2 b12b21.

The determinant of a 3 3 3 square matrix C  C
c11

c21

c31

 c12

c22

c32

 c13

c23

c33

S  is the value

|C|  c11 1c22c33 2 c32c23 2 2 c21 1c12c33 2 c32c13 2 1 c31 1c12c23 2 c22c13 2 .
The inverse of a square matrix B is the matrix B2l with the property that 
BB21  I and B21B  I.

Not all square matrices have an inverse. The rank of a matrix is defined as 
the number of linearly independent rows in the matrix. An m 3 m square matrix 
B has an inverse only if the rank of B is m. If the determinant of a matrix is zero, 
then the inverse will not exist.

The inverses of 2 3 2 and 3 3 3 matrices can be displayed explicitly. For 
larger matrices, a computer software package should be used to obtain the deter-
minant and inverse.

The inverse of a 2 3 2 square matrix B  Bb11

b21

 b12

b22
R  is the matrix

B21 
1

|B|
 B b22

2b21

 2b12

b11
R

rank

inverse
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The inverse of a 3 3 3 square matrix C  C
c11

c21

c31

 c12

c22

c32

 c13

c23

c33

S  is the matrix

C 21 
1

|C|
C

c22c33 2 c32c23

c31c23 2 c21c33

c21c32 2 c31c22

  c32c13 2 c12c33

c11c33 2 c31c13

c31c12 2 c11c32

  c12c23 2 c22c13

c21c13 2 c11c23

c11c22 2 c21c12

S

EXAMPLE 12.27

let B  B7
9

 3
5
R  and  C  C

3
2
3

2
8
1

4
22

8
S .

Display |B|, |C|, and the matrices B21 and C21.

Solution |B|  7 # 5 2 9 # 3  8 and

                  |C|  3 18 # 8 2 1 # 22 2 2 2 12 # 8 2 1 # 4 2 1 3 12 # 22 2 8 # 4 2  66

 B21 
1
8

 B 5
29

23
7
R  B 5 /8

29 /8
23 /8

7 /8
R

Note that BB21  B21B  B1
0

0
1
R  I.

 C21 
1
66

 C
8 ?  8 2 1 ?  22
3 ?  22 2 2 ?  8

2 ?  1 2 3 ?  8

1 ?  4 2 2 ?  8
  3 ?  8 2 3 ?  4
 3 ?  2 23 ?  1

  2 ?  22 2 8 ?  4
2 ?  4 2 3 ?  22

3 ?  8 2 2 ?  2
S

 
1
66

C
66

222
222

  212
12
3

  236
14
20

S

  C
66 /66

222 /66
222 /66

  212 /66
12 /66
3 /66

  236 /66
14 /66
20 /66

S

Note that CC21  C21C  C
1
0
0

  0
1
 0

  0
0
1
S  I. ■

The starting point for the use of matrix notation is the multiple regression 
model itself. Recall that a model relating a response y to a set of independent 
 variables of the form

y  b0 1 b1x1 1 b2x2 1 c1 bkxk 1 e

is called the general linear model. The least-squares estimates b̂0, b̂1, . . . , b̂k of 
the intercept and partial slopes in the general linear model can be obtained using 
 matrices. 
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let the n 3 1 matrix Y 

Y  D

y1

y2

(
yn

T

be the matrix of observations, and let the n 3 (k 1 1) matrix X 

X  D

1
1

(
1

 x11

x21

(
xn1

. . .

. . .

. . .

 x1k

x2k

(
xnk

T

be the matrix of settings for the independent variables augmented with a column of 
1s. The first row of X contains a 1 and the settings for the k independent variables 
for the first observation, y1. Row 2 contains a 1 and the corresponding settings for 
the  independent variables for the second observation, y2. Similarly, the other rows 
contain settings for the  remaining observations. 

Next, we turn to the least-squares estimates b̂0, b̂1, . . . , b̂k of the intercept 
and partial slopes in the multiple regression model. Recall that the least-squares 
principle involves choosing the estimates to minimize the sum of squared residuals. 
Those familiar with the calculus will see that the solution can be found by differen-
tiating SS(Residual) with respect to b̂j 1 j  0, . . . , k 2  and setting the result to zero. 
The resulting normal equations, in matrix notation, are 

(X9X) b̂  X9Y 

where 

b̂ D

b̂ 0
b ^1
(

b̂ 
k

T

is the desired vector of estimated coefficients. Provided that the matrix X9X 
has an inverse (it does as long as no xj is perfectly collinear with other xs), the 
 solution is 

b̂  1X rX 221X rY

EXAMPLE 12.28 

Suppose that in a given experimental situation 

Y  D

25
19
33
23

T    and   X  D

1
1
1
1

 22
22

2
2

  5
 25

5
25

T

Obtain the least-squares estimates for the prediction equation 

ŷ b̂0 1 b̂1x1 1 b̂2x2
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Solution For these data, 

X rX  C
4
0
0

  0
  16

0

  0
0

  100
S

X rY  C
100
24
80

S

The X9X matrix is a diagonal one, so inverting the matrix is easy. The solution is 

 b̂ 1X rX 221X rY

  C
1 /4

0
0

  0
  1 /16

0

  0
0

  1 /100
S C

100
24
80

S  C
25
1.5
.8
S

and the prediction equation is 

ŷ 25 1 1.5x1 1 .8x2 ■

The hard part of the arithmetic in multiple regression is computing the 
inverse of X9X. For the most realistic multiple regression problems, this task takes 
hours by hand and fractions of a second by computer. This is the major reason why 
most multiple regression problems are done with computer software.

Once the inverse of the X9X matrix is found and the b̂ vector is calculated, 
the next task is to compute the residual standard deviation. The hard work is to 
compute SS(Residual)  g 1yi 2 ŷi 2 2, which can be written as SS(Residual)    
Y rY 2 b̂ r 1X rY 2 . 

EXAMPLE 12.29

Compute SS(Residual) for the data of Example 12.28. 

Solution b̂ and X9Y were calculated to be C
25
1.5
0.8

S  and C
100
24
80

S , respectively, and 

Y rY  325  19  33  23 4 D
25
19
33
23

T  2,604

The shortcut formula yields 

SS 1Residual 2  2,604 2 325  1.5  .8 4 C
100
24
80

S  2,604 2 2,600  4 ■
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Similar calculations yield SS(Regression) and SS(Total). Although the 
formulas for these sums can be expressed artificially in pure matrix notation, 
they can be expressed more easily in mixed matrix and algebraic notation: 

SS 1Regression 2 b̂ r 1X rY 2 2
1gyi 2 2

n

       SS 1Total 2  Y rY 2
1gyi 2 2

n
 

EXAMPLE 12.30

Calculate SS(Regression) and SS(Total) for the data of Example 12.28.

Solution gyi  100 and n  4. The relevant matrix calculations were performed 
in the previous example. 

SS 1Regression 2  2,600 2
1100 2 2

4
 100

SS 1Total 2  2,604 2
1100 2 2

4
 104

Note that SS(Total)  104  100 1 4  SS(Regression) 1 SS(Residual). ■

These sum-of-squares calculations are necessary for making inferences based 
on R2 using F tests. For inferences about individual coefficients using t tests, the 
 estimated standard errors of the coefficients are necessary. In Section 12.4, we pre-
sented a conceptually useful but computationally cumbersome formula for these 
estimated standard errors. A much easier way of computing them involves only 
the standard deviation se and the main diagonal elements of the (X9X)21 matrix. 

EXAMPLE 12.31

Calculate the estimated standard errors of b̂0, b̂1, and b̂2 for the data of 
Example 12.28.

Solution 

 se  ËMSE  Ë4 /1  2 

sb̂0
 2Ë1 /4  1.0, sb̂1

 2Ë1 /16  0.5

sb̂2
 2Ë1 /100  0.2 ■

The estimated standard error of b̂j is 

sb̂j
 seËvjj

where se is the standard deviation from the regression equation and vjj is the 
entry in row j 1 1, column j 1 1 of (X9X)21: 

1X rX 221  D

v00

 v11

f
 vkk

T

Because the (X9X)21 matrix must be computed to obtain the b̂js, it is a direct 
calculation to obtain the estimated standard errors.

DEFINITION 12.8
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 12.10 ReseaRch study: evaluation of the Performance  
of an electric drill

defining the Problem
There have been numerous reports of homeowners encountering problems with 
electric drills. The drills would tend to overheat when under strenuous usage. A 
consumer product testing laboratory has selected a variety of brands of electric 
drills to determine what types of drills are most and least likely to overheat under 
specified conditions. After a careful evaluation of the differences in the designs 
of the drills, the engineers selected three design factors for use in comparing the 
resistance of the drills to overheating. The design factors were the thickness of the 
insulation around the motor, the quality of the wire used in the drill’s motor, and 
the size of the vents in the body of the drill.

collecting the data
The engineers designed a study taking into account various combinations of the 
three design factors. There were five levels of the thickness of the insulation, three 
levels of the quality of the wire used in the motor, and three sizes for the vents in 
the drill body. Thus, the engineers had potentially 45 (5 3 3 3 3) uniquely designed 
drills. However, each of these 45 drills would have differences with respect to other 
factors that may impact on their performance. Thus, the engineers selected 10 drills 
from each of the 45 designs. Another factor that may vary the results of the study is 
the conditions under which each of the drills is tested. The engineers  selected two 
“torture tests” that they felt reasonably represented the types of conditions under 
which overheating occurred. The 10 drills were then randomly assigned to one of the 
two torture tests. At the end of the test, the temperature of the drill was recorded. 
The mean temperature of the 5 drills was the response variable of interest to the engi-
neers. A second response variable was the logarithm of the sample variance of the 5 
drills. This response variable measures the degree to which the 5 drills produced a 
consistent temperature under each of the torture tests. The goal of the study was to 
determine which combination of the design factors of the drills produced the smallest 
values of both response variables. Thus, they would obtain a  design for a drill having 
minimum mean temperature and a design that produced drills for which an individ-
ual drill was most likely to produce a temperature closest to the mean temperature.

summarizing the data
The data consist of the 90 responses under the various designs and tests. The data 
were presented in Table 12.4 at the beginning of this chapter with the variables of 
 interest given below.

  AVTEM: mean temperature for the five drills under a given torture test
  LOGV: logarithm of the variance of the temperatures of the five drills
  IT: the thickness of the insulation within the drill (IT  2, 3, 4, 5, or 6)

   QW:  an assessment of quality of the wire used in the drill motor (QW  6, 
7, or 8)

   VS: the size of the vent used in the motor (VS  10, 11, or 12)
   I2  (IT 2 mean IT)2, Q2  (QW 2 mean QW)2, (V2  (VS 2 mean VS)2

   TEST: the type of torture test used
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The response variables (dependent variables) are AVTEM and lOgV. The explan-
atory variables (independent variables) are IT, QW, and VS. Quadratic versions of 
all three variables will also be considered in finding an appropriate model. These 
variables are denoted as I2, Q2, and V2. We thus have six possible explanatory vari-
ables to be used in our model. There are a total of 90 observations in this study. A 
preliminary summary of the data is given by the scatterplots in Figures 12.7 and 12.8.

FIGURE 12.7
Scatterplots of IT, QW, and VS 

versus AVTEM

140

2 3

IT

A
V

T
E

M

4 5 6

150

160

190

170

180

140

10
VS

A
V

T
E

M

11 12

150

160

190

170

180

140

6

QW

A
V

T
E

M

7 8

150

160

190

170

180

FIGURE 12.8
Scatterplots of IT, QW, and VS 

versus lOgV
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From the scatterplots, the following relationships between the variables are 
obtained: AVTEM tends to decrease as IT increases—but in a nonlinear fashion. 
However, AVTEM appears to remain fairly constant with increases in QW and 
VS. Similarly, lOgV tends to decrease as QW increases—but not at a constant 
rate. lOgV tends to remain fairly constant with increases in IT and VS.

Analyzing the Data
After examining the scatterplots, the models in Table 12.18 were considered in an 
attempt to relate AVTEM and lOgV to the explanatory variables.

The goal was to obtain models for AVTEM and lOgV that fit the data well 
but did not overfit the data. Thus, models were sought that would have a signifi-
cant fit (small p-value and large R2 value) without having too many terms in the 
model. The eight models were programmed for analysis using the SAS software. 
SAS output is given in Tables 12.18–12.20 using the notation shown in Table 12.17.

variable Notation variable Notation

IT x1 IT*QW x7
QW x2 IT*VS x8
VS x3 VS*QW x9
I2 x4 AVTEM y1
Q2 x5 lOgV y2
V2 x6 

TABLE 12.17
Notation for variables in  

regression models

TABLE 12.18
Models for describing 

AVTEM

models for AvTem

Model 1 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 e

Model 2 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 e

Model 3 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4IT * QW 1 b5IT* VS 
  1 b6QW * VS 1 e

Model 4 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 b7IT * QW
  1 b8IT * VS 1 b9QW * VS 1 e

                       The SAS System
OUTPUT FROM MODELS FOR RELATING AVTEM (y1) TO EXPLANATORY VARIABLES
                  Dependent Variable: y1

MODEL 1:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               3  7660.94568  2553.64856    131.97    <.0001
Error              86  1664.17654    19.35089
Corrected Total    89  9325.12222

        Root MSE          4.39896    R-Square    0.8215
        Dependent Mean  164.25556    Adj R-Sq    0.8153

                   
   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  234.56106    7.63872     30.71     <.0001
x1           1   –6.15000    0.32788    –18.76     <.0001
x2           1   –0.67445    0.56822     –1.19     0.2385
x3           1   –3.73340    0.56843     –6.57     <.0001
------------------------------------------------------------
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MODEL 2:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6  7941.21675  1323.53612     79.38    <.0001
Error              83  1383.90547    16.67356
Corrected Total    89  9325.12222

        Root MSE          4.08333    R-Square    0.8516
        Dependent Mean  164.25556    Adj R-Sq    0.8409

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  234.87853    7.16673     32.77     <.0001
x1           1   -6.18215    0.30447    -20.30     <.0001
x2           1   -0.72541    0.52761     -1.37     0.1729
x3           1   -3.81541    0.52812     -7.22     <.0001
x4           1    0.96451    0.24758      3.90     0.0002
x5           1   -0.29207    0.91332     -0.32     0.7499
x6           1   -1.04740    0.91355     -1.15     0.2549
------------------------------------------------------------

MODEL 2:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6  7941.21675  1323.53612     79.38    <.0001
Error              83  1383.90547    16.67356
Corrected Total    89  9325.12222

        Root MSE          4.08333    R-Square    0.8516
        Dependent Mean  164.25556    Adj R-Sq    0.8409

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  234.87853    7.16673     32.77     <.0001
x1           1   -6.18215    0.30447    -20.30     <.0001
x2           1   -0.72541    0.52761     -1.37     0.1729
x3           1   -3.81541    0.52812     -7.22     <.0001
x4           1    0.96451    0.24758      3.90     0.0002
x5           1   -0.29207    0.91332     -0.32     0.7499
x6           1   -1.04740    0.91355     -1.15     0.2549
------------------------------------------------------------

MODEL 3:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6  7683.85390  1280.64232     64.76    <.0001
Error              83  1641.26833    19.77432
Corrected Total    89  9325.12222

        Root MSE          4.44683    R-Square    0.8240
        Dependent Mean  164.25556    Adj R-Sq    0.8113

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  214.01181   58.56103      3.65     0.0005
x1           1   -0.53333    5.30316     -0.10     0.9201
x2           1    0.21831    7.91120      0.03     0.9781
x3           1   -2.60819    5.21968     -0.50     0.6186
x7           1   -0.29167    0.40594     -0.72     0.4745
x8           1   -0.32500    0.40594     -0.80     0.4256
x9           1    0.02498    0.70409      0.04     0.9718
------------------------------------------------------------

MODEL 4:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               9  7968.16362   885.35151     52.20    <.0001
Error              80  1356.95860    16.96198
Corrected Total    89  9325.12222

        Root MSE          4.11849    R-Square    0.8545
        Dependent Mean  164.25556    Adj R-Sq    0.8381

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  203.41326   54.30065      3.75     0.0003
x1           1   -0.22505    4.91223     -0.05     0.9636
x2           1    1.72599    7.33803      0.24     0.8146
x3           1   -1.82023    4.83905     -0.38     0.7078
x4           1    0.97354    0.25005      3.89     0.0002
x5           1   -0.29587    0.92146     -0.32     0.7490
x6           1   -1.04984    0.92165     -1.14     0.2581
x7           1   -0.34034    0.37617     -0.90     0.3683
x8           1   -0.32500    0.37597     -0.86     0.3899
x9           1   -0.09944    0.65298     -0.15     0.8793
------------------------------------------------------------
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TABLE 12.19
Models for describing  

lOgV

models for logv

Model 1 lOgV  b0 1 b1IT 1 b2QW 1 b3VS 1 e

Model 2 lOgV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 e

Model 3 lOgV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4IT * QW 1 b5IT * VS
   1 b6QW * VS 1 e

Model 4 lOgV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2
   1 b7IT * QW 1  b8IT * VS 1 b9QW * VS 1 e

MODEL 4:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               9  7968.16362   885.35151     52.20    <.0001
Error              80  1356.95860    16.96198
Corrected Total    89  9325.12222

        Root MSE          4.11849    R-Square    0.8545
        Dependent Mean  164.25556    Adj R-Sq    0.8381

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1  203.41326   54.30065      3.75     0.0003
x1           1   -0.22505    4.91223     -0.05     0.9636
x2           1    1.72599    7.33803      0.24     0.8146
x3           1   -1.82023    4.83905     -0.38     0.7078
x4           1    0.97354    0.25005      3.89     0.0002
x5           1   -0.29587    0.92146     -0.32     0.7490
x6           1   -1.04984    0.92165     -1.14     0.2581
x7           1   -0.34034    0.37617     -0.90     0.3683
x8           1   -0.32500    0.37597     -0.86     0.3899
x9           1   -0.09944    0.65298     -0.15     0.8793
------------------------------------------------------------

OUTPUT FROM MODELS FOR RELATING LOGV (y2) TO EXPLANATORY VARIABLES
                       Dependent Variable: y2

MODEL 1:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               3     9.87413     3.29138    160.33    <.0001
Error              86     1.76543     0.02053
Corrected Total    89    11.63956

        Root MSE          0.14328    R-Square    0.8483
        Dependent Mean    3.19778    Adj R-Sq    0.8430

                   Parameter Estimates

                  Parameter    Standard
Variable    DF     Estimate       Error   t Value   Pr > |t|

Intercept    1      6.23345     0.24880     25.05     <.0001
x1           1      0.00667     0.01068      0.62     0.5341
x2           1     -0.40568     0.01851    -21.92     <.0001
x3           1     -0.02028     0.01851     -1.10     0.2764
------------------------------------------------------------

MODEL 2:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6     9.96474     1.66079     82.30    <.0001
Error              83     1.67482     0.02018
Corrected Total    89    11.63956

        Root MSE          0.14205    R-Square    0.8561
        Dependent Mean    3.19778    Adj R-Sq    0.8457

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1    6.25908    0.24932     25.10     <.0001
x1           1    0.00632    0.01059      0.60     0.5525
x2           1   -0.40624    0.01835    -22.13     <.0001
x3           1   -0.02148    0.01837     -1.17     0.2457
x4           1    0.01047    0.00861      1.22     0.2274
x5           1    0.01043    0.03177      0.33     0.7436
x6           1   -0.05300    0.03178     -1.67     0.0991
---------------------------------------------------------
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MODEL 3:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6     9.97345     1.66224     82.81    <.0001
Error              83     1.66610     0.02007
Corrected Total    89    11.63956

        Root MSE          0.14168    R-Square    0.8569
        Dependent Mean    3.19778    Adj R-Sq    0.8465

                   Parameter Estimates

                  Parameter    Standard
Variable    DF     Estimate       Error   t Value   Pr > |t|

Intercept    1      9.95482     1.86582      5.34     <.0001
x1           1     -0.21000     0.16896     -1.24     0.2174
x2           1     -0.81681     0.25206     -3.24     0.0017
x3           1     -0.35718     0.16630     -2.15     0.0347
x7           1   0.00083333     0.01293      0.06     0.9488
x8           1      0.01917     0.01293      1.48     0.1421
x9           1      0.03719     0.02243      1.66     0.1012
--------------------------------------------------------------

MODEL 3:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6     9.97345     1.66224     82.81    <.0001
Error              83     1.66610     0.02007
Corrected Total    89    11.63956

        Root MSE          0.14168    R-Square    0.8569
        Dependent Mean    3.19778    Adj R-Sq    0.8465

                   Parameter Estimates

                  Parameter    Standard
Variable    DF     Estimate       Error   t Value   Pr > |t|

Intercept    1      9.95482     1.86582      5.34     <.0001
x1           1     -0.21000     0.16896     -1.24     0.2174
x2           1     -0.81681     0.25206     -3.24     0.0017
x3           1     -0.35718     0.16630     -2.15     0.0347
x7           1   0.00083333     0.01293      0.06     0.9488
x8           1      0.01917     0.01293      1.48     0.1421
x9           1      0.03719     0.02243      1.66     0.1012
--------------------------------------------------------------

MODEL 4:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               9    10.05889     1.11765     56.57    <.0001
Error              80     1.58066     0.01976
Corrected Total    89    11.63956

        Root MSE          0.14056    R-Square    0.8642
        Dependent Mean    3.19778    Adj R-Sq    0.8489

                   Parameter Estimates

                Parameter   Standard
Variable   DF    Estimate      Error   t Value   Pr > |t|

Intercept   1     9.83366    1.85328      5.31     <.0001
x1          1    –0.20686    0.16765     –1.23     0.2209
x2          1    –0.79658    0.25045     –3.18     0.0021
x3          1    –0.34633    0.16516     –2.10     0.0392
x4          1     0.00993    0.00853      1.16     0.2482
x5          1     0.01164    0.03145      0.37     0.7122
x6          1    –0.05187    0.03146     –1.65     0.1031
x7          1  0.00033702    0.01284      0.03     0.9791
x8          1     0.01917    0.01283      1.49     0.1392
x9          1     0.03547    0.02229      1.59     0.1154
------------------------------------------------------------

MODEL 2:
                    Analysis of Variance

                           Sum of        Mean
Source             DF     Squares      Square   F Value    Pr > F

Model               6     9.96474     1.66079     82.30    <.0001
Error              83     1.67482     0.02018
Corrected Total    89    11.63956

        Root MSE          0.14205    R-Square    0.8561
        Dependent Mean    3.19778    Adj R-Sq    0.8457

                   Parameter Estimates

                Parameter   Standard
Variable    DF   Estimate      Error   t Value   Pr > |t|

Intercept    1    6.25908    0.24932     25.10     <.0001
x1           1    0.00632    0.01059      0.60     0.5525
x2           1   -0.40624    0.01835    -22.13     <.0001
x3           1   -0.02148    0.01837     -1.17     0.2457
x4           1    0.01047    0.00861      1.22     0.2274
x5           1    0.01043    0.03177      0.33     0.7436
x6           1   -0.05300    0.03178     -1.67     0.0991
---------------------------------------------------------
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The fit of the eight models are summarized in Table 12.21. We will repeat the 
table of models (Table 12.20) to assist in the evaluation.

TABLE 12.21
Model summary 

information

Model R2 Model p-value p-value for Model Comparisons

Models for AVTEM

Model 1 .822 ,.0001 Model 2 versus Model 1: p-value  .0015
Model 2 .852 ,.0001 Model 3 versus Model 1: p-value  .7605
Model 3 .824 ,.0001 Model 4 versus Model 3: p-value  .0016
Model 4 .855 ,.0001 Model 4 versus Model 2: p-value  .5296

Models for LOGV

Model 1 .848 , .0001 Model 2 versus Model 1: p-value  .2206
Model 2 .856 , .0001 Model 3 versus Model 1: p-value  .1842
Model 3 .857 , .0001 Model 4 versus Model 3: p-value  .2373
Model 4 .864 , .0001 Model 4 versus Model 2: p-value  .5296

TABLE 12.20
Models for describing 
AVTEM and LOGV

Models for AVTEM

Model 1 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 e

Model 2 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 e

Model 3 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4IT * QW 1 b5IT * VS
  1 b6QW * VS 1 e

Model 4 AVTEM  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 b7IT * QW
  1 b8IT * VS 1 b9QW * VS 1 e

Models for LOGV

Model 1 LOGV  b0 1 b1IT 1 b2QW 1 b3VS 1 e

Model 2 LOGV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2 1 e

Model 3 LOGV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4IT * QW 1 b5IT * VS
 1 b6QW * VS 1 e

Model 4 LOGV  b0 1 b1IT 1 b2QW 1 b3VS 1 b4I2 1 b5Q2 1 b6V2
 1 b7IT * QW 1  b8IT * VS 1 b9QW * VS 1 e 

All four models for AVTEM provided a significant ( p-value , .0001) fit to 
the data set. The R2 values for the four models relating AVTEM to the explana-
tory variables are .822, .852, .824, and .855. There is very little difference in the four 
values for R2. Based on the significant fit and the very slight differences in the R2 
values, the most appropriate model would be the model with the fewest independ-
ent variables—namely, model 1. Another comparison of the models involves testing 
whether adding extra terms to model 1 would yield any significant terms in the fitted 
model. From Table 12.21, only model 2 had added terms over model 1 that were sig-
nificantly different from 0. That is, the question of examining the addition of terms to 
model 1 in order to obtain model 2 is equivalent to testing in model 2 the hypotheses

H0: b4  b5  b6  0  versus  Ha: At least one of b4, b5, and b6 2 0.

From the SAS output, we obtain the sum of squares model from the two models and 
compute the value of the F statistic for the full model (model 2) versus the reduced 
model (model 1):

F 
17,941.21675 2 7,660.94568 2 / 16 2 3 2

1,383.90547 /83
 5.60 with df  3, 83

p-value  P 1F3, 83 $ 5.50 2  .0015
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We thus conclude that model 2 is significantly different in fit than model 1; that is, 
at least one of b4, b5, and b6 is not equal to 0 in model 2. With p-value  .761, we 
would conclude that model 3 is not significantly different in fit than model 1; that 
is, we cannot reject the hypothesis that b4  b5  b6  0 in model 3. With p-value 
 .530, we would conclude that model 4 is not significantly different in fit than 
model 2  because we cannot reject the hypothesis that b7  b8  b9 = 0 in model 4.

Based on the scatterplots and the above test, model 2 would be the most 
appropriate model. Although model 4 has a slightly larger R2 value, the F test dem-
onstrates that model 4 is not significantly different from model 2, whereas model 2 
is significantly different from model 1. Model 2 includes the variables I2, Q2, and 
V2, at least one of which appears to significantly improve the fit of the model over 
model 1. Model 4 is more complex than model 2 but does not appear to provide 
much  improvement in the fit over model 2 (R2  .8545 versus .8516).

For the purpose of predicting values of AVTEM, the least-squares estimates 
 produce the following prediction model for AVTEM:

 AVTEM  234.879 2 6.182 IT 2 .725 QW 2 3.815 VS 1 .965 I2 

  2.292 Q2 2 1.047 V2

For the response variable lOgV, all four models provided a significant 
( p-value , .0001) fit to the data set. The R2 values for the four models relating 
lOgV to the explanatory variables are .848, .856, .857, and .864. There is very little 
difference in the models based on the values for R2. Based on the significant fit and 
the very slight differences in the R2 values, the most appropriate model would be the 
model with the fewest independent variables—namely, model 1. Another compari-
son of the models involves testing whether adding extra terms to model 1 would yield 
any significant terms in the fitted model. From Table 12.21, none of the models pro-
vided a significant improvement in fit over model 1. With p-value  .221, we would 
conclude that model 2 is not significantly different in fit than model 1; that is, we 
cannot reject the hypothesis that b4  b5  b6  0 in model 2. With p-value  .184, 
we would conclude that model 3 is not significantly different in fit than model 1; that 
is, we cannot reject the hypothesis that b4  b5  b6  0 in model 3. With p-value  
.237, we would conclude that model 4 is not significantly different in fit than model 3; 
that is, we cannot reject the hypothesis that b4  b5  b6  0 in model 3. With p-value 
 .530, we would conclude that model 4 is not significantly different in fit than model 
2; that is, we cannot reject the hypothesis that b7  b8  b9  0 in model 4.

Based on the scatterplots, fit statistics, and tests of hypotheses, model 1 would 
appear to be the most appropriate model. Model 2 and model 3 are not  significantly 
different from model 1. Model 4 is more complex than model 2 but does not provide 
much improvement in the fit over model 2. Therefore, since the models are not sig-
nificantly different, the R2 values are nearly the same, and model 1 is the model con-
taining the fewest independent variables (hence the easiest to understand), I would 
select model 1. For the purpose of predicting values of lOgV, the least-squares 
estimates produce the following prediction model lOgV:

lOgV  6.233 1 .00667 IT 2 .406 QW 2 .0203 VS 

 12.11 Summary and Key Formulas

This chapter consolidates the material for expressing a response y as a function 
of one or more independent variables. Multiple regression models (where all the 
 independent variables are quantitative) and models that incorporate information 
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on qualitative variables were discussed and can be represented in the form of a 
general linear model 

y  b0 1 b1x1 1 b2x2 1 c1 bkxk 1 e

After discussing various models and the interpretation of bs in these models, 
we presented the normal equations used in obtaining the least-squares estimates b̂. 

A confidence interval and statistical test about an individual parameter bj 
were developed using b̂j and the standard error of b̂j. We also considered a statisti-
cal test about a set of bs, a confidence interval for E(y) based on a set of xs, and a 
prediction interval for a given set of xs. 

All of these inferences involve a fair to moderate amount of numerical cal-
culation unless statistical software programs are available. Sometimes these calcu-
lations can be done by hand if one is familiar with matrix operations (see Section 
12.9). However, even these methods become unmanageable as the number of 
independent variables increases. Thus, the message should be very clear. Inferences 
about general linear models should be done using available computer software 
to facilitate the analysis and to minimize computational errors. Our job in these 
situations is to review and interpret the output. 

Aside from a few exercises that will probe your understanding of the mechan-
ics involved with these calculations, most of the exercises in the remainder of this 
chapter and in the regression problems of the next chapter will make extensive use 
of computer output. 

Here are some reminders about multiple regression concepts: 

 1. Each regression coefficient in a first-order model (one not containing 
transformed values, such as squares of a variable or product terms) 
should be interpreted as a partial slope—the predicted change in a 
dependent variable when an independent variable is increased by 
one unit while other variables are held constant. 

 2. Correlations are important not only between an independent variable 
and the dependent variable but also between independent variables. 
Collinearity—correlation between independent variables—implies 
that  regression coefficients will change as variables are added to or 
deleted from a regression model. 

 3. The effectiveness of a regression model can be indicated not only by 
the R2 value but also by the residual standard deviation.

 4. As always, the various statistical tests in a regression model indicate 
only how strong the evidence is that the apparent pattern is more 
than random. They don’t directly indicate how good a predictive 
model is. In particular, a large overall F statistic may merely indicate 
a weak prediction in a large sample. 

 5. A t test in a multiple regression assesses whether that independent 
variable adds unique predictive value as a predictor in the model. 
It is quite possible that several variables may not add a statistically 
detectable amount of unique predictive value, even though deleting 
all of them from the model causes a serious drop in predictive value. 
This is especially true when there is severe collinearity.

 6. The variance inflation factor (VIF) is a useful indicator of the overall 
impact of collinearity in estimating the coefficient of an independent 
variable. The higher the VIF number, the more serious the impact of 
collinearity on the accuracy of a slope estimate. 

 7. Extrapolation in multiple regression can be subtle. Making predic-
tions for a new set of x-values may not be unreasonable when these 
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values are considered one by one, but the combination of these 
values may be far outside the range of previous data. 

Key Formulas

1. R2
y #x1

cxk


SS 1Total 2 2 SS 1Residual 2
SS 1Total 2 

SS 1Regression 2
SS 1Total 2

 where

SS 1Total 2 a 1
 
yi 2 y 2 2

SS 1Regression 2  a 1ŷi 2 y 2 2

SS 1Residual 2 a 1yi 2 ŷi 2 2 

2. F test for H0: b1  b2  c bk  0

F 
SS 1Regression 2 /k

SS 1Residual 2 / 3n 2 1k 1 1 2 4

3. s b̂j
 seÅ

1
g 1xij 2 x 2 2 11 2 R2

xj
#x1 . . . xj21xj11

. . . xk
2

 where

se  Å
MS 1Residual 2
n 2 1k 1 1 2

4. Confidence interval for bj

A  b̂j 2 ta/2sb̂j
, b̂j 1 ta/2sb̂j

B
5. Statistical test for bj

T.S.  t 
b̂j

sb̂j

6. Testing a subset of predictors

H0:  bg11  bg12  c bk  0

T.S.  F 
3SS 1Regression, complete 2 2 SS 1Regression, reduced 2 4 / 1k 2 g 2

SS 1Residual, complete 2 / 3n 2 1k 1 1 2 4
7. Assessing collinearity

VIFj  1 / 11 2 R2
j 2 , where R2

j  R2
xj

#x1
cxj 2 1xj 1 1

cxk

 12.12 Exercises

 12.2 The General Linear Model
 Basic 12.1  An automotive engineer wanted to explain and predict the miles per gallon during city driv-

ing, y, for a variety of vehicles, using these explanatory variables: c, the number of cylinders; y, the 
interior passenger volume; and w, the weight of the vehicle. 

 a. Write a first-order multiple regression model relating y to c, y, and w. 
 b.  Write a second-order multiple regression model relating y to c, y, w; the squares 

of c, v, w; and their cross-products. 
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 Basic 12.2 Refer to Exercise 12.1. There are three modes of drive for automobiles: rear-wheel, front-
wheel, and all-wheel drive. The engineer wants to relate miles per gallon for the vehicles to the 
three explanatory variables with a separate model for each mode of drive mechanism. 

 a. Write a first-order general linear model that allows for different slopes and 
intercepts for each mode of drive mechanism. 

 b. In terms of the coefficients of the model in part (a), identify the slopes and 
intercepts for each of the three modes of drive mechanism. 

 Basic 12.3 Refer to Exercise 12.2. 
 a. Write a second-order general linear model that allows for different slopes and 

intercepts for each mode of drive mechanism. 
 b. Display the second-order regression equation for each of the three modes of drive 

mechanism in terms of the coefficients of the model in part (a). Hint: A first-order 
regression model contains terms involving xi, whereas a second-order regression 
model involves terms xi, xi

2 and xi  xj. 

 Basic 12.4 A cardiologist designs a study to examine factors related to the condition of the heart for 
patients 50 years of age or older. The design obtains physiological information on hundreds of pa-
tients. The cardiologist creates an heart health index, HHI, which is an overall assessment of heart 
health with values ranging from 0 (very poor condition) to 10 (excellent condition). The goal of the 
study is to obtain a model that will relate (predict) HHI to the following explanatory variables: A, 
age; BMI, body mass index; E, hours of exercise per week; and SB, systolic blood pressure reading. 
Write a first-order regression model relating HHI to the four explanatory variables. 

 Basic 12.5 Refer to Exercise 12.4. The cardiologist decides to include two other variables in the model: an 
indicator variable for sex, male or female; and an indicator variable for diabetes, yes or no. 

 a. Write a first-order general linear model that includes sex and diabetes as  
explanatory variables along with the other four continuous variables. 

 b. In terms of the coefficients of the model in part (a), display four separate models, 
one for each combination of the indicator variables sex and diabetes. 

 Basic 12.6 A researcher employed by the state department of education in a state with a large 
proportion of students coming from families in which English is not the primary language spo-
ken at home is asked to assess a new program to teach written English to fifth-grade students. 
She obtains the scores on a statewide language test for 500 fifth-grade students after a year in 
the new program and for 500 students that were not in the program. Let S be the scores on the 
exam for the 1,000 students. The following model was used to assess the effectiveness of the 
new program. 

S  b0 1 b1P 1 b2E 1 b3P*E 1 e

where 

P  e 1
0

if
if

new program  
old program

    E  e 1
0

if
if

English spoken at home  
English not spoken at home

 a. Display the mean score for each of the four groups of students (new program—
English spoken at home, old program—English spoken at home, etc.) in terms of 
the  bs in the above model. 

 b. The researcher wanted to compare the mean scores of students in the new and 
old programs. She decided it would be necessary to separate the students from 
homes in which English was spoken from the students from homes in which 
English was not spoken. For those students whose families did not speak English 
at home, express the difference in mean scores in terms of the bs in the above 
model between students who were in the new program and those who were in 
the old program. 

 c. For those students whose families spoke English at home, express the difference 
in mean scores in terms of the bs in the above model between students who were 
in the new program and those who were in the old program. 

 d. Explain why it is necessary to include the term b3P *E in the model. 
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  12.7 Refer to Exercise 12.6. Suppose the researcher wants to determine if the new program is more 
appropriate for girls than boys. The indicator variable, x3, was now included in the model, where 

G  e 1
0

if
if

girl  
boy

  A general linear model was used to model S as a function of x1, x2, and x3: 

S  b0 1 b1P 1 b2E 1 b3G 1 b4P * E 1 b5P * G 1 b6E * G 1 e

 a. Using the bs from the above model, express the mean scores for boys and girls en-
rolled in the new program who lived in homes in which English is not spoken. 

 b. Express the difference in the  mean scores for the new and old programs for girls 
who lived in homes in which English was not spoken. 

 c. Express the difference in the mean scores for the new and old programs for boys 
who lived in homes in which English was spoken. 

  12.8 Refer to Exercise 12.6. The researcher has decided that a more meaningful evaluation of 
the new program would use the difference between the score on the exam at the end of the fifth 
grade and that at the end of the fourth grade. Let S4 be the score on the exam at the end of the 
fourth grade and S5 be the score on the  exam at the end of the fifth grade. Initially, the following 
model was fit to the data set with D  S5 2 S4. 

Model 1: D  b0 1 b1P 1 b2E 1 b3G 1 b4P * E 1 b5P * G 1 b6E * G 1 e

  It was suggested to the researcher that an improved model would express the fifth-grade score, 
S5, as a function of the fourth-grade score, S4: 

Model 2: S5  b0 1 b1P 1 b2E 1 b3G 1 b4P * E 1 b5P * G 1 b6E * G 1 b7S4 1 e

 a.  Rewrite model 1 to express S5 as a function of P, E, G, P * E, P * G, E * G, and S4. 
 b. Explain why model 2 is a  more appropriate model than model 1. Hint: Consider 

your answer to part (a). 

 12.3 Estimating Multiple Regression Coefficients
 Med. 12.9  A pharmaceutical firm would like to obtain information on the relationship between the 

dose level and potency of a drug product. To do this, each of 15 test tubes is inoculated with a 
virus culture and incubated for 5 days at 30°C. Three test tubes are randomly assigned to each 
of the five different dose levels to be investigated (2, 4, 8, 16, and 32 mg). Each tube is injected 
with only one dose level, and the response of interest (a measure of the protective strength of the 
product against the virus culture) is obtained. The data are given here.

 Dose Level Response

 2 5, 7, 3
 4 10, 12, 14
 8 15, 17, 18
 16 20, 21, 19
 32 23, 24, 29

 a. Plot the data.
 b. Fit linear and quadratic regression models to these data.
 c. Which regression equation appears to fit the data better? Why?

  12.10  Refer to the data of Exercise 12.9. Often a logarithmic transformation can be used on the 
dose levels to linearize the response with respect to the independent variable.

 a. Obtain the natural logarithms of the five dose levels, ln(dose)
 b. Let x  ln(dose), fit the model

y  b0 1 b1x 1 e
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 c.  Compare your results to the fitted models in Exercise 12.9. Does the logarithmic 
transformation provide a better fit than the models in Exercise 12.9?

 Med. 12.11  A medical study was conducted to study the relationship between infants’ systolic blood 
pressure and two explanatory variables, weight (kgm) and age (days). The data for 25 infants are 
shown here.

Infant Age (Days) Weight (kgm) Systolic BP, y

 1 3 2.61 80
 2 4 2.67 90
 3 5 2.98 96
 4 6 3.98 102
 5 3 2.87 81
 6 4 3.41 96
 7 5 3.49 99
 8 6 4.03 110
 9 3 3.41 88
 10 4 2.81 90
 11 5 3.24 100
 12 6 3.75 102
 13 3 3.18 86
 14 4 3.13 93
 15 5 3.98 101
 16 6 4.55 103
 17 3 3.41 86
 18 4 3.35 91
 19 5 3.75 100
 20 6 3.83 105
 21 3 3.18 84
 22 4 3.52 91
 23 5 3.49 95
 24 6 3.81 104
 25 6 4.03 107

 a. Obtain the estimated regression equation.
 b. Obtain the estimated residual standard deviation.
 c. Provide an interpretation of b̂2, the coefficient of weight.

 Bus. 12.12 A regional airline transfers passengers from small airports to a larger regional hub airport. 
The airline’s data analyst was assigned to estimate the revenue (in thousands of dollars) gener-
ated by each of the 22 small airports based on two variables: the distance from each airport (in 
miles) to the hub and the population (in hundreds) of the cities in which each of the 22 airports is 
located. The data is given in the following table. 

  Airport Revenue Distance Population Airport Revenue Distance Population 

 1 233 233 56 12 267 205 96
 2 272 209 74 13 338 214 96
 3 253 206 67 14 243 183 73
 4 296 232 78 15 252 230 55
 5 268 125 73 16 269 238 91
 6 296 245 54 17 242 144 64
 7 276 213 100 18 233 220 60
 8 235 134 98 19 234 170 60
 9 253 140 95 20 450 170 240
 10 233 165 81 21 340 290 70
 11 240 234 52 22 200 340 75
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 a.  Produce three scatterplots: revenue versus distance, revenue versus population, 
and distance versus population. 

 b. For the 22 airports, is there a strong correlation between airport distance from the 
regional hub and city population?

 c. Does there appear to a problem with high leverage points? Justify your answer. 
 d.  Fit a first-order regression model relating revenue to distance and population size. 

Comment on the quality of the fit of the model to the data. 
 e.  Do the two estimated slopes appear to have the appropriate sign? If not, explain why. 

 Ag. 12.13  A poultry scientist was studying various dietary additives to increase the rate at which chick-
ens gain weight. One of the potential additives was studied by creating a new diet that consisted 
of a standard basal diet supplemented with varying amounts of the additive (0, 20, 40, 60, 80, 
and 100 grams). There were 60 chicks available for the study. Each of the six diets was randomly 
 assigned to 10 chicks. At the end of 4 weeks, the feed efficiency ratio, feed consumed (gm) to 
weight gain (gm), was obtained for the 60 chicks. The data are given here.

Additive Feed efficiency Ratio (gm Feed to gm Wtgain)

 0 1.30, 1.35, 1.44, 1.52, 1.56, 1.61, 1.48, 1.56, 1.45, 1.14
 20 2.17, 2.11, 2.08, 2.13, 2.22, 2.29, 2.33, 2.24, 2.16, 2.21
 40 2.30, 2.34, 2.20, 2.38, 2.48, 2.44, 2.37, 2.43, 2.37, 2.41
 60 2.47, 2.51, 2.79, 2.40, 2.55, 2.67, 2.50, 2.55, 2.60, 2.49
 80 3.31, 3.17, 3.24, 3.21, 3.35, 3.38, 3.42, 3.36, 3.25, 3.51
 100 4.92, 3.87, 4.81, 4.88, 5.06, 5.09, 4.97, 4.95, 4.59, 4.76

 a.  In order to explore the relationship between feed efficiency ratio (FER) and feed 
additive (A), plot the mean FER versus A.

 b. What type of regression appears most appropriate?
 c.  Fit first-order, quadratic, and cubic regression models to the data. Which  

regression equation provides the best fit to the data? Explain your answer.
 d.  Is there anything peculiar about any of the data values? Provide an explanation of 

what may have happened.

 Ag. 12.14  Refer to the data of Exercise 12.13. The experiment was also concerned with the effects 
of high levels of copper in the chick feed. Five of the 10 chicks in each level of the feed additive 
received 400 ppm of copper, while the remaining five chicks received no copper. The data are given 
here.

Copper level Additive Feed efficiency Ratio

 0 0 1.30, 1.35, 1.44, 1.52, 1.56
 400 0 1.61, 1.48, 1.56, 1.45, 1.14
 0 20 2.17, 2.11, 2.08, 2.13, 2.22
 400 20 2.29, 2.33, 2.24, 2.16, 2.21
 0 40 2.30, 2.34, 2.20, 2.38, 2.48
 400 40 2.44, 2.37, 2.43, 2.37, 2.41
 0 60 2.47, 2.51, 2.79, 2.40, 2.55
 400 60 2.67, 2.50, 2.55, 2.60, 2.49
 0 80 3.31, 3.17, 3.24, 3.21, 3.35
 400 80 3.38, 3.42, 3.36, 3.25, 3.51
 0 100 4.92, 3.87, 4.81, 4.88, 5.06
 400 100 5.09, 4.97, 4.95, 4.59, 4.76
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  let y be the feed efficiency ratio, x1 be the amount of the feed additive, and x2 be the amount of 
copper placed in the feed. Fit the following two models:

Model 1: y  b0 1 b1x1 1 b2x 1
2 1 b3x2 1 e

Model 2 : y  b0 1 b1x1 1 b2 x 1
2 1 b3 x2 1 b4 x1x2 1 b5 x 1

2 x2 1 e

 a.  Which of the two models appears to provide the better fit to the data? Justify 
your  answer.

 b. Display the predicted equation for the best-fitting model.
 c.  Explain the meaning of b̂1 in the best-fitting model.

 12.4 Inferences in Multiple Regression
 Bus. 12.15 Refer to Exercise 12.12. Use the fitted regression model to answer the following  

questions. 
 a. Can the hypothesis of no overall predictive value of the model be rejected at the 

the a  .01 level? 
 b. Test the hypothesis that distance to the hub airport is a significant predictor of 

revenue at the a  .05 level. 
 c. Place a 95% confidence interval of the slope associated with distance to the hub 

airport. 
 d. Test the hypothesis that the slope associated with population size is greater than .5 

at the a  .05 level. 

 Bus. 12.16 Refer to Exercise 12.12. Fit a second-order regression model to the data. 
 a. Was there an improvement in the fit of the model compared to the first-order 

model? 
 b. Test the hypothesis that distance to the hub airport is a significant predictor of 

revenue at the a  .05 level. 
 c. Test the hypothesis that population size is a significant predictor of revenue at the 

a  .05 level. 

 Bus. 12.17 Refer to Exercise 12.12. In the plot of the data, airport 20 had a much larger revenue than 
any of the other 21 airports. 

 a. Replot the three scatterplots with the data from airport 20 deleted. Does there  
appear to be any relationship among revenue and the two explanatory variables in 
this data set? 

 b. Fit a first-order regression model relating revenue to distance and population size. 
Comment on the quality of the fit of the model to the data. Is revenue related to 
distance from hub and population size once airport 20 is deleted from the data? 

 c. What conclusions can be inferred from parts (a) and (b) about the importance of 
plotting the data and not just running models through a software program? 

  12.18  Refer to Exercise 12.13. Fit a cubic model to the data, and then answer the following 
questions.

 a.  Can the hypothesis of no overall predictive value be rejected at the a  0.01 
level? Justify your answer.

 b.  Test the research hypothesis H0: b3  0 at the a  0.05 level. Report the p-value of 
the test.

 c. Based on the results of the test in part (b), display the estimated regression model.
 d. Plot the data along with the best-fitting estimated regression line.

 Med. 12.19 Refer to Exercise 12.11. Fit the following regression model to the data, where y is the 
systolic blood pressure, A is the age, and W is the weight of the infant. 

y  b0 1 b1A 1 b2W 1 b3A
2 1 b4W

2 1 e

 a. What are your conclusions about the overall fit of the quadratic model? 
 b. Conduct a test of the hypothesis that the second-order terms are needed in the 

model. 
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 c. Does a second- or first-order model appear to be the more appropriate model?  
Justify your answer. 

 Med. 12.20 Refer to Exercise 12.19. 
 a. Test the significance of the four slope parameters in the model using a  .05. 
 b. Are your conclusions from part (a) reasonable considering your results from 

Exercise 12.19 about the overall fit of the quadratic model? 

 Med. 12.21 Refer to Exercise 12.19. 
 a. Provide a 95% confidence interval for the true coefficients associated with age 

and weight. 
 b. Interpret the confidence intervals provided in part (a). 

 Engin. 12.22  A metalworking firm conducts an energy study using multiple regression methods. 
The dependent variable is y  energy consumption cost per day (in thousands of dollars), and 
the  independent variables are x1  tons of metal processed per day, x2  average external tem-
perature, x3  rated wattage for machinery in use, and x4  x1x2. The data are analyzed by 
Statistix. Selected output is shown here:

CORRELATIONS (PEARSON)

ENERGY METAL METXTEMP TEMP
METAL 0.6128
METXTEMP 0.4929 0.1094
TEMP 0.4007 –0.0606 0.9831
WATTS 0.5775 0.2239 0.3630 0.3529

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION OF ENERGY

PREDICTOR
VARIABLES COEFFICIENT STD ERROR STUDENT’S T P VIF

CONSTANT 7.20439 17.5322 0.41 0.6855
METAL 1.36291 0.92438 1.47 0.1559 8.8
TEMP 0.30588 1.62104 0.19 0.8522 250.0
WATTS 0.01024 0.00473 2.16 0.0427 1.5
METXTEMP –0.00277 0.07722 –0.04 0.9717 246.4

R-SQUARED 0.6636 RESID. MEAN SQUARE (MSE) 6.51555
ADJUSTED R-SQUARED 0.5963 STANDARD DEVIATION 2.55255

SOURCE DF SS MS F P

REGRESSION 4 257.048 64.2622 9.86 0.0001
RESIDUAL 20 130.311 6.51555
TOTAL 24 387.360

CASES INCLUDED 25 MISSING CASES 0

 a. Write the estimated model.
 b. Summarize the results of the various t tests.
 c. Calculate a 95% confidence interval for the coefficient of METXTEMP.
 d. What does the VIF column of the output indicate about collinearity problems?

 12.5 Testing a Subset of Regression Coefficients
 Med. 12.23  Refer to the kinesiology data in Example 12.6. In this example, a first-order model was 

fit to relate y, maximal oxygen uptake, to the explanatory variables: x1, weight; x2, age; x3, time to 
walk 1 mile; and x4, heart rate at the end of a 1-mile walk.

 a. Provide the kinesiologist with an interpretation of the fitted model having an  
R2 of 58.2%.
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 b. Fit a quadratic model to the data with the squared values of the four predictors 
in the model. How much of an increase in R2 was obtained by this fitting this 
model? 

 c. The quadratic model now has eight partial slope coefficients. How many of them 
are significant at the .05 level? 

 d. At the .05 level, are the quadratic terms significant taken as a group of four terms? 
 e. Which of the two model—just first-order terms or first- and second-order 

terms—would you recommend? 
 Med. 12.24 Refer to Exercise 12.23. Fit a complete second-order model relating y to x1, x2, x3, and 

x4. That is, include both first- and second-order terms in the four variables along with all six cross- 
product terms, xi xj. 

 a. Compare the R2 values for the three models. Which model appears to  
provide the best fit? 

 b. Test at the .05 level whether any of the cross-product terms provide a significant 
relationship with y, maximal oxygen uptake. 

 c. Which of the three models would you recommend? Justify your answer.

 Ag. 12.25 Refer to the feed efficiency data in Exercise 12.14. The researcher is relating y, feed effi-
ciency, to the explanatory variables: x1, amount of feed additive; and x2, amount of copper placed 
in the feed. Consider the following models: 

Model 1: y  b0 1 b1x1 1 e 

Model 2: y  b0 1 b1x1 1 b2x2 1 e 

Model 3: y  b0 1 b1x1 1 b2x2
1 1 b3x2 1 e 

Model 4: y  b0 1 b1x1 1 b2x2
1 1 b3x2 1 1b4x1x2 1 b5x2

1x2 e 

 a. In model 4, which of the coefficients are significantly different from 0 at the .05 
level? 

 b. Do the added terms in model 4 provide a significant gain over model 3 in the fit of 
the model. 

 c. Are your conclusions from parts (a) and (b) consistent? Explain in detail. 

 Med. 12.26 Refer to Exercise 12.25. 
 a. Compare the R2 values for the four models. Which model appears to provide the 

best fit? 
 b. Test at the .05 level whether the cross-product terms in Model 4 provide a 

significant relationship with y, feed efficiency.
 c. Which of the four models would you recommend? Justify your answer. 

 Soc. 12.27  An automobile financing company uses a rather complex credit rating system for car 
loans. The questionnaire requires substantial time to fill out, taking sales staff time and risk-
ing alienating the customer. The company decides to see whether three variables (age, monthly 
family income, and debt payments as a fraction of income) will reproduce the credit score rea-
sonably accurately. Data were obtained on a sample (with no evident biases) of 500 applications. 
The complicated rating score was calculated and served as the dependent variable in a multiple 
 regression. Some results from JMP are shown.

 a. How much of the variation in ratings is accounted for by the three predictors?
 b. Use this number to verify the computation of the overall F statistic.
 c.  Does the F test clearly show that the three independent variables have predictive 

value for the rating score?
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Summary of Fit

Response: Rating score

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response

Observations (or Sum Wgts)

Parameter Estimates

Term

Intercept

Age

Monthly income

Debt fraction

0.979566

0.979443

2.023398

65.044

500

Estimate Std Error t Ratio Prob >[t]

54.657197

0.0056098

0.0100597

-39.95239

0.634791

0.011586

0.000157

0.883684

86.10

0.48

64.13

-45.21

0.0000

0.6285

0.0000

0.0000

Effect Test

Source

Age

Monthly income

Debt fraction

Nparm DF

1 1

1 1

11

Sum of Squares

0.960

16835.195

8368.627

F Ratio Prob>F

0.2344

4112.023

2044.05

0.6285

0.0000

0.0000

Whole-Model Test

100

90
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R
a
t
i
n
g
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Rating score Predicted

Analysis of Variance

Source

Model

Error

C Total

DF

3

496

499

Sum of Squares

97348.339

2030.693

99379.032

Mean Square

32449.4

4.1

F Ratio

7925.829

Prob>F

0.0000

  12.28  The credit rating data from Exercise 12.27 were reanalyzed, using only the monthly in-
come variable as a predictor. JMP results are shown.

 a.  By how much has the regression sum of squares been reduced by eliminating age 
and debt percentage as predictors?

 b.  Do these variables add statistically significant (at normal a levels) predictive 
value, once income is given?
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Response: Rating score

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.895261
0.895051
4.571792
65.044

500

Lack of Fit

Parameter Estimates

Term

Intercept
Monthly income

Estimate

30.152827
0.0135544

Std Error
0.572537
0.000208

t Ratio Prob >[t]
52.67
65.24

0.0000
0.0000

 Engin. 12.29 A chemical firm tests the yield that results from the presence of varying amounts of two 
catalysts. Yields are measured for five different amounts of catalyst 1 paired with four different 
amounts of catalyst 2. A second-order model is fit to approximate the anticipated nonlinear rela-
tion. The variables are y  yield, x1  amount of catalyst 1, x2  amount of catalyst 2, x3  x2

1, 
x4  x1x2, and x5  x2

2. Selected output from the regression analysis is shown here.

Multiple Regression Analysis

Dependent variable: Yield

Table of Estimates

Standard t P
Estimate Error Value Value

Constant 50.0195 4.3905 11.39 0.0000
Cat1 6.64357 2.01212 3.30 0.0052
Cat2 7.3145 2.73977 2.67 0.0183
@Cat1Sq –1.23143 0.301968 –4.08 0.0011
@Cat1Cat2 –0.7724 0.319573 –2.42 0.0299
@Cat2Sq –1.1755 0.50529 –2.33 0.0355

R-squared = 86.24%
Adjusted R-squared = 81.33%
Standard error of estimation = 2.25973

Analysis of Variance

Sum of P
Source Squares D.F. Mean Square F-Ratio Value
Model 448.193 5 89.6386 17.55 0.0000
Error 71.489 14 5.10636

Total (corr.) 519.682 19

Conditional Sums of Squares

Sum of P
Source Squares D.F. Mean Square F-Ratio Value

Cat1 286.439 1 286.439 56.09 0.0000
Cat2 19.3688 1 19.3688 3.79 0.0718
@Cat1Sq 84.9193 1 84.9193 16.63 0.0011
@Cat1Cat2 29.8301 1 29.8301 5.84 0.0299
@Cat2Sq 27.636 1 27.636 5.41 0.0355

Model 448.193 5

Multiple Regression Analysis

Dependent variable: Yield

Table of Estimates

Standard t P
Estimate Error Value Value

Constant 70.31 2.57001 27.36 0.0000
Cat1 –2.676 0.560822 –4.77 0.0002
Cat2 –0.8802 0.70939 –1.24 0.2315

R-squared = 58.85%
Adjusted R-squared = 54.00%
Standard error of estimation = 3.54695

Analysis of Variance

Sum of P
Source Squares D.F. Mean Square F-Ratio Value

Model 305.808 2 152.904 12.15 0.0005
Error 213.874 17 12.5808

Total (corr.) 519.682 19



12.12 exercises    695

Analysis of Variance

Sum of P
Source Squares D.F. Mean Square F-Ratio Value
Model 448.193 5 89.6386 17.55 0.0000
Error 71.489 14 5.10636

Total (corr.) 519.682 19

Conditional Sums of Squares

Sum of P
Source Squares D.F. Mean Square F-Ratio Value

Cat1 286.439 1 286.439 56.09 0.0000
Cat2 19.3688 1 19.3688 3.79 0.0718
@Cat1Sq 84.9193 1 84.9193 16.63 0.0011
@Cat1Cat2 29.8301 1 29.8301 5.84 0.0299
@Cat2Sq 27.636 1 27.636 5.41 0.0355

Model 448.193 5

Multiple Regression Analysis

Dependent variable: Yield

Table of Estimates

Standard t P
Estimate Error Value Value

Constant 70.31 2.57001 27.36 0.0000
Cat1 –2.676 0.560822 –4.77 0.0002
Cat2 –0.8802 0.70939 –1.24 0.2315

R-squared = 58.85%
Adjusted R-squared = 54.00%
Standard error of estimation = 3.54695

Analysis of Variance

Sum of P
Source Squares D.F. Mean Square F-Ratio Value

Model 305.808 2 152.904 12.15 0.0005
Error 213.874 17 12.5808

Total (corr.) 519.682 19

 a. Write the estimated complete model.
 b. Write the estimated reduced model.
 c. locate the R2 values for the complete and reduced models.
 d.  Is there convincing evidence that the addition of the second-order terms improves 

the predictive ability of the model?

 12.6 Forecasting Using Multiple Regression
 Med. 12.30  Refer to the data from Exercise 12.11. Recall that a model was fit to relate systolic blood 

pressure to the age and weight of infants. The researcher wants to be able to predict systolic blood 
pressure from the fitted model. 

 a.  Provide an estimate for the mean systolic blood pressure for an infant of age  
4 days weighing 3 kg.

 b.  Provide a 95% confidence interval for the mean systolic blood pressure for an  
infant of age 4 days weighing 3 kg.

 Med. 12.31  Refer to Exercise 12.30.
 a.  Provide an estimate for the mean systolic blood pressure for an infant of age 8 days 

weighing 5 kg.
 b.  Provide a 95% confidence interval for the mean systolic blood pressure for an  

infant of age 8 days weighing 5 kg.

 Basic 12.32  The following artificial data are designed to illustrate the effect of correlated and uncor-
related explanatory variables: 

 y 17 21 26 22 27 25 28 34 29 37 38 38

 x 1 1 1 1 2 2 2 2 3 3 3 3

w 1 2 3 4 1 2 3 4 1 2 3 4

 v 1 1 2 2 3 3 4 4 5 5 6 6
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  Here is relevant Minitab output:

MTB > Correlation ’y’ ’x’ ’w’ ’v’.

y x w
x 0.856
w 0.402 0.000
v 0.928 0.956 0.262

MTB > Regress ’y’ 3 ’x’ ’w’ ’v’;
SUBC> Predict at x 3 w 1 v 6.

The regression equation is
y = 10.0 + 5.00 x + 2.00 w + 1.00 v

s = 2.646 R-sq = 89.5% R-sq(adj) = 85.6%

Fit Stdev.Fit 95% C.I. 95% P.I.
33.000 4.077 ( 23.595, 42.405) ( 21.788, 44.212) XX

X denotes a row with X values away from the center
XX denotes a row with very extreme X values

  locate the 95% prediction interval. Explain why Minitab gave the ‘‘very extreme X values’’ 
warning.

 Med. 12.33 Refer to the kinesiology data in Example 12.6 and the models fit to this data set in  
Exercises 12.23 and 12.24. 

 a. Predict the maximal oxygen uptake for a person having a weight of 150 kg, an age 
of 20 years, a time to walk 1 mile of 17 minutes, and a heart rate of 140 beats per 
minute using the fitted first-order model. generate a 95% prediction interval for 
your prediction. 

 b. Predict the maximal oxygen uptake for a person having a weight of 150 kg, an age 
of 20 years, a time to walk 1 mile of 17 minutes, and a heart rate of 140 beats per 
minute using the fitted second-order model. generate a 95% prediction interval 
for your prediction. 

 c. Predict the maximal oxygen uptake for a person having a weight of 150 kg, an age 
of 20 years, a time to walk 1 mile of 17 minutes, and a heart rate of 140 beats per 
minute using the fitted second-order model with cross-product terms. generate a 
95% prediction interval for your prediction. 

 d. Compare the widths of the three prediction intervals. Did the added  complexity 
of models 2 and 3 provide a substantial reduction in the widths of the intervals? 

 12.7 Comparing the Slopes of Several Regression Lines
  12.34  A psychologist wants to evaluate three therapies for treating people with a gambling 

 addiction. A study is designed to randomly select 25 patients at clinics using each of the three 
therapies. After the patients had undergone 3 months of inpatient/outpatient treatment, an 
 assessment of each patient’s inclination to continue gambling is made, resulting in a gambling 
 inclination score, y, for each patient. The psychologist would like to determine if there is a relation-
ship between the degree to which each patient gambled, as measured by the amount of money 
the patient had lost gambling the year prior to being admitted to treatment, x, and the gambling 
score, y. One manner of comparing the difference in the three therapies is to compare the slopes 
and intercepts of the lines relating y to x.

 a.  Write a general linear model relating the response, gambling inclination, y, to 
the explanatory variable, amount of money loss gambling, x, and type of therapy. 
Make sure to define all variables and parameters in your model.

 b. Modify the model of part (a) to reflect that the three therapies have the same 
slope.
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  12.35  After sewage is processed through sewage treatment plants, what remains is a dried 
product called sludge. Sludge contains many minerals that are beneficial to the growth of many 
farm crops, such as corn, wheat, and barley. Thus, large corporate farms purchase sludge from big 
cities to use as fertilizer for their crops. However, sludge often contains varying concentrations 
of heavy metals, which can concentrate in the crops and pose health problems to the people and 
animals consuming the crops. Therefore, it is important to study the amount of heavy metals 
 absorbed by plants fertilized with sludge. A crop scientist designs the following experiment to 
study the amount of mercury that may be accumulated in the crops if mercury was contained in 
sludge. The experiment studied corn, wheat, and barley plants with one of six concentrations of 
mercury added to the planting soil. There were 90 growth containers used in the experiment with 
each container having the same soil type. The 18 treatments (three crop types and six mercury 
concentrations) were randomly assigned to five containers each. At a specified growth stage, the 
mercury concentration in parts per million (ppm) was determined for the plants in each con-
tainer. The 90 data values are given here. Note that there are 5 data values for each combination 
of type of crop and mercury concentration in the soil.

 Type of Crop

merCon Corn Wheat Barley

 1 33.3 25.8 24.6 15.1 18.0 17 .4 9.2 10.0 25.9 8.6 1.1 23.1 9.6 4.5 8.2
 2 31.4 35.7 14.5 40.9 22.9 10.5 34.6 23.4 18.4 24.9 21.2 4.3 9.6 6.4 23.2
 3 40.4 35.2 52.1 30.7 46.9 27 .1 13.5 30.3 19.3 33.6 30.8 22.0 12.9 3.5 27 .9
 4 65.6 74.7 77 .3 64.2 71.3 50.6 53.9 55.2 48.6 35.2 36.6 34.2 6.8 27 .7 39.5
 5 94.4 94.9 88.1 100.1 104.8 84.9 77 .6 93.3 64.3 74.2 56.7 42.8 49.0 47 .9 45.2
 6 123.4 158.6 137 .3 156.7 133.5 107 .5 91.9 87 .7 106.2 108.1 70.8 75.7 100.3 64.6 70.1

 a. graph the above data with separate symbols for each crop.
 b.  Does the relationship between soil mercury content and plant mercury content 

 appear to be linear? Quadratic?
 c.  Does the relationship between soil mercury content and plant mercury content 

 appear to be the same for all three crops?

  12.36  Refer to Exercise 12.35. Fit a single model to the data that will relate x, the soil mercury 
content, to y, the plant mercury content, with separate intercepts and slopes for the three crops.

 a. Does there appear to be a difference in slopes for the three crops?
 b. Does there appear to be a difference in intercepts for the three crops?
 c. Does a first-order model appear to provide an adequate fit to the data?

  12.37  Refer to Exercise 12.36.
 a. Write the estimated least-square line for the model without a crop difference.
 b. Write the estimated least-square line for the model for each of the three crops.
 c. Do the three equations in part (b) appear to be different?

  12.38  Refer to Exercise 12.35. Fit a single model to the data that relates y to x and x2 with sepa-
rate coefficients for each of the three crops.

 a. Does there appear to be a difference in slopes for the three crops?
 b. Does there appear to be a difference in intercepts for the three crops?
 c. Does a quadratic model appear to provide an adequate fit to the data?

  12.39  Refer to Exercise 12.38.
 a.  Write the estimated least-square quadratic line for the model without a crop  

difference.
 b.  Write the estimated least-square quadratic line for the model for each of the three 

crops.
 c. Do the three equations in part (b) appear to be different?
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 12.8 Logistic Regression
 Engin. 12.40  A quality control engineer studied the relationship between years of experience as 

a system control engineer and the capacity of the engineer to complete within a given time a 
complex control design including the debugging of all computer programs and control devices. 
A group of 25 engineers having widely differing amounts of experience (measured in months of 
experience) was given the same control design project. The results of the study are given in the 
following table with y  1 if the project was successfully completed in the allocated time and 
y  0 if the project was not successfully completed.

 Months of  Months of
 Experience Project Success Experience Project Success

  2 0 15 1
  4 0 16 1
  5 0 17 0
  6 0 19 1
  7 0 20 1
  8 1 22 0
  8 1 23 1
  9 0 24 1
 10 0 27 1
 10 0 30 0
 11 1 31 1
 12 1 32 1
 13 0

 a. Determine whether experience is associated with the probability of completing 
the task.

 b.  Compute the probability of successfully completing the task for an engineer hav-
ing 24 months of experience. Place a 95% confidence interval on your estimate.

  12.41  An additive to interior house paint has been recently developed that may greatly increase 
the ability of the paint to resist staining. An investigation was conducted to determine whether 
the additive is safe when children are exposed to it. Various amounts of the additive were fed to 
test animals, and the number of animals developing liver tumors was recorded. The data are given 
in the following table.

Amount (ppm) 0 10 25 50 100 200
Number of test animals 30 20 20 30 30 30
Number of animals with tumors 0 2 2 7 25 30

 a.  Determine whether the amount of additive given to the test animals is associated 
with the probability of a tumor developing in the animals’ livers.

 b.  Compute the probability of a tumor developing in the liver of a test animal exposed 
to 100 ppm of the additive. Place a 95% confidence interval on your estimate.

  12.42  The following example is from the book Introduction to Regression Modeling 
 (Abraham and Ledolter, 2006). The researchers were examining data on death penalty sentenc-
ing in  Georgia. For each of 362 death penalty cases, the following information is provided: the 
outcome (death penalty, yes/no), the race of the victim (white/black), and the aggravation level 
of the crime. The lowest level (level 1) involved barroom brawls, liquor-induced arguments, 
and lovers’ quarrels. The highest level (level 6) included the most vicious, cruel, cold-blooded, 
unprovoked crimes.
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Aggravation Race of Death Penalty Death Penalty
 level victim Yes No

 1 White 2 60
  Black 1 181
 2 White 2 15
  Black 1 21
 3 White 6 7
  Black 2 9
 4 White 9 3
  Black 2 4
 5 White 9 0
  Black 4 3
 6 White 17 0
  Black 4 0

 a.  Compute the odds ratio for receiving the death penalty for each of the aggrava-
tion levels of the crime.

 b. Use a software package to fit the logistic regression model for the variables:

y  e 1
0

if
if

death  yes
death  no

    x1  aggravation level    x2  e 1
0

if
if

black
white

 c.  Is there an association between the severity of the crime and the probability of 
 receiving the death penalty?

 d.  Is the association between the severity of the crime and the probability of receiv-
ing the death penalty different for the two races?

 e.  Compute the probability of receiving the death penalty for a crime of aggravation 
level 3 separately for a white and then for a black victim. Place 95% confidence 
intervals on the two probabilities.

 12.9 Some Multiple Regression Theory (Optional)
  12.43  Suppose that we have 10 observations on the response variable, y, and two explanatory 

variables, x1 and x2, which are given below in matrix form.

Y    

25
31
26
38
18
27
29
17
35
21

 X   

1
1
1
1
1
1
1
1
1
1

1.7
6.3
6.2
6.3

10.5
1.2
1.3
5.7
4.2
6.1

10.8
9.4
7.2
8.5
9.4
5.4
3.6

10.5
8.2
7.2

 a. Compute X r X, 1X r X 221, and X r Y,
 b. Compute the least-squares estimators of the prediction equation

  ŷ  b0
^ 1 b1

^ x1 1 b̂2x2

  12.44  Using the data given in Exercise 12.43, display the X matrix for the following two predic-
tion models:

 a. ŷ  b0
^ 1 b1

^ x1 1 b2
^ x2 1 b3

^ x1x2

 b. ŷ  b0
^ 1 b1

^ x1 1 b̂2x2 1 b3
^ x1x2 1 b4

^ x1
2 1 b̂5x2

2
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  12.45  Refer to Exercise 12.11. Display the Y and X matrices for the following two prediction 
models:

 a.  ̂y   ̂b0 1  ̂b1 AgE 1  ̂b2 Weight

 b. ŷ  b0
^ 1 b1

^
 AgE 1 b2

^  Weight 1 b3
^

 AgE2 1 b4
^  Weight2 1 b5

^  AgE ? Weight

Supplementary Exercises
 Bus. 12.46  One of the functions of bank branch offices is to arrange profitable loans to small busi-

nesses and individuals. As part of a study of the effectiveness of branch managers, a bank col-
lected data from a sample of branches on current total loan volumes (the dependent variable), 
total deposits held in accounts opened at that branch, the number of such accounts, the average 
number of daily transactions, and the number of employees at the branch. Correlations and a 
scatterplot matrix are shown in the figure.

 a. Which independent variable is the best predictor of loan volume?
 b. Is there a substantial collinearity problem?
 c. Do any points seem extremely influential?

Correlations

Variable
Loan volume (millions)
Deposit volume (millions)
Number of accounts
Transactions
Employees

Loan volume (millions) Deposit volume (millions) Number of accounts Transactions Employees
1.0000
0.9369
0.9403
0.8766
0.6810

0.9369
1.0000
0.9755
0.9144
0.7377

0.9403
0.9755
1.0000
0.9299
0.7487

0.8766
0.9144
0.9299
1.0000
0.8463

0.6810
0.7377
0.7487
0.8463
1.0000

Loan volume (m

Deposit volume

Number of acco

Transactions

Employees

14

10

6

2

15

10

5

2500

1500

500

1000

600

200

10

12

8

6

4

4 6 8 10 12200 600 1000500 1500 25005 10 152 6 10 14
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  12.47  Refer to Exercise 12.46. A regression model was created for the bank branch office data 
using JMP. Some of the results are shown here. 

 a.   Use the R2 value shown to compute an overall F statistic. Is there clear evidence 
that there is predictive value in the model, using a  .01?

 b.  Which individual predictors have been shown to have unique predictive value, 
again using a  .01?

 c. Explain the apparent contradiction between your answers to the first two parts.

Response: Loan volume (millions)

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations(or Sum Wgts)

0.894477

0.883369

0.870612

4.383395

43

Parameter Estimates

Term

Intercept

Deposit volume (millions)

Number of accounts

Transactions

Employees

Estimate

0.2284381

0.3222099

0.0025812

0.0010058

-0.119898

Std Error

0.6752

0.191048

0.001314

0.001878

0.130721

t Ratio

0.34

1.69

1.96

0.54

-0.92

Prob>[t]

0.7370

0.0999

0.0569

0.5954

0.3648

  12.48  Refer to Exercise 12.46. Another multiple regression model used only deposit volume 
and number of accounts as independent variables, with results as shown here.

 a. Does omitting the transactions and employees variables seriously reduce R2?
 b.  Use the R2 values to test the null hypothesis that the coefficients of transactions 

and employees are zero. What is your conclusion?

Response: Loan volume (millions)

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations(or Sum Wgts)

0.892138

0.886744

0.857923

4.383395

43

Parameter Estimates

Term

Intercept

Deposit volume (millions)

Number of accounts

Estimate

-0.324812

0.3227636

0.002684

Std Error

0.290321

0.187509

0.001166

t Ratio

-1.12

1.72

2.30

Prob >[t]

0.2699

0.0929

0.0266

  12.49  The following exercise is from Introduction to Regression Modeling and refers to data 
taken from Higgins and Koch’s, “Variable Selection and Generalized Chi-Square Analysis of Cat-
egorical Data Applied to a Large Cross-Sectional Occupational Health Survey” [ International Sta-
tistical Review (1977) 45:51–62]. The data were taken from a large survey of workers in the 
cotton industry. The researchers wanted to study the factors that may be associated with brown 
lung disease resulting from inhaling particles of cotton, flax, hemp, or jute. The variables are as 
follows: number of workers suffering from disease (yes); number of workers not suffering from 
disease (no); dustiness of workplace (1—high; 2—medium; 3—low); race (1—white; 2—other); 
sex (1—male; 2—female); smoking history (1—smoker; 2—nonsmoker); length of employment 
in cotton industry (1—less than 10 years; 2—between 10 and 20 years; 3—more than 20 years).
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 a.  list the five covariates from most likely to least likely to be associated with the 
probability that a cotton worker has brown lung disease.

 b. Do there appear to be any interactions between the covariates?
 c.  Use a statistical software package to obtain a prediction model using all five covariates.

  12.50  Refer to Exercise 12.49. The researchers decide to use the model with all five covariates.
 a.  Display the estimated probability that a cotton worker will have brown lung dis-

ease as a function of the five covariates.
 b.  Compute the probability that a male white cotton worker who smokes and has 

worked more than 20 years in a medium-dust workplace will have brown lung disease.
 c. Place a 95% confidence interval on your probability from part (b).

 Bus. 12.51  A chain of small convenience food stores performs a regression analysis to  explain vari-
ation in sales volume among 16 stores. The variables in the study are as follows: 

Yes No Dust Race Sex Smoking employ

 3 37 1 1 1 1 1
 0 74 2 1 1 1 1
 2 258 3 1 1 1 1
 25 139 1 2 1 1 1
 0 88 2 2 1 1 1
 3 242 3 2 1 1 1
 0 5 1 1 2 1 1
 1 93 2 1 2 1 1
 3 180 3 1 2 1 1
 2 22 1 2 2 1 1
 2 145 2 2 2 1 1 
 3 260 3 2 2 1 1
 0 16 1 1 1 2 1
 0 35 2 1 1 2 1
 0 134 3 1 1 2 1
 6 75 1 2 1 2 1
 1 47 2 2 1 2 1
 1 122 3 2 1 2 1
 0 4 1 1 2 2 1
 1 54 2 1 2 2 1
 2 169 3 1 2 2 1
 1 24 1 2 2 2 1
 3 142 2 2 2 2 1
 4 301 3 2 2 2 1
 8 21 1 1 1 1 2
 1 50 2 1 1 1 2
 1 187 3 1 1 1 2
 8 30 1 2 1 1 2
 0 5 2 2 1 1 2
 0 33 3 2 1 1 2
 0 0 1 1 2 1 2
 1 33 2 1 2 1 2
 2 94 3 1 2 1 2
 0 0 1 2 2 1 2
 0 4 2 2 2 1 2
 0 3 3 2 2 1 2

Yes No Dust Race Sex Smoking employ

 2 8 1 1 1 2 2
 1 16 2 1 1 2 2
 0 58 3 1 1 2 2
 1 9 1 2 1 2 2
 0 0 2 2 1 2 2
 0 7 3 2 1 2 2
 0 0 1 1 2 2 2
 0 30 2 1 2 2 2
 1 90 3 1 2 2 2
 0 0 1 2 2 2 2
 0 4 2 2 2 2 2
 0 4 3 2 2 2 2
 31 77 1 1 1 1 3
 1 141 2 1 1 1 3
 12 495 3 1 1 1 3
 10 31 1 2 1 1 3
 0 1 2 2 1 1 3
 0 45 3 2 1 1 3
 0 1 1 1 2 1 3
 3 91 2 1 2 1 3
 3 176 3 1 2 1 3
 0 1 1 2 2 1 3
 0 0 2 2 2 1 3
 0 2 3 2 2 1 3
 5 47 1 1 1 2 3
 0 39 2 1 1 2 3
 3 182 3 1 1 2 3
 3 15 1 2 1 2 3
 0 1 2 2 1 2 3
 0 23 3 2 1 2 3
 0 2 1 1 2 2 3
 3 187 2 1 2 2 3
 2 340 3 1 2 2 3
 0 0 1 2 2 2 3
 0 2 2 2 2 2 3
 0 3 3 2 2 2 3
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 Sales: Average daily sales volume of a store in thousands of dollars 
 Size: Floor space in thousands of square feet 
 Parking: Number of free parking spaces adjacent to the store 
 Income: Estimated per household income of the zip code area of the store 

   Output from a regression program (StataQuest) is shown here: 

. regress Sale Size Parking Income

Source | SS df MS Number of obs = 16
---------------------------------------- F( 3, 12) = 15.16

Model | 27.1296056 3 9.04320188 Prob > F = 0.0002
Residual | 7.15923792 12 .59660316 R-square = 0.7912
---------------------------------------- Adj R-square = 0.7390

Total | 34.2888436 15 2.2859229 Root MSE = .7724

--------------------------------------------------------------------
Sales | Coef. Std. Err. t P>|T| [95% Conf. Interval]

--------------------------------------------------------------------
Size | 2.547936 1.200827 2.122 0.055 –.0684405 5.164313

Parking | .2202793 .1553877 1.418 0.182 –.1182814 .5588401
Income | .5893221 .1780576 3.310 0.006 .2013679 .9772763
_cons | .872716 1.945615 0.449 0.662 –3.366415 5.111847

--------------------------------------------------------------------

. correlate Sales Size Parking Income
(obs=16)

| Sales Size Parking Income
--------------------------------------------------

Sales | 1.0000
Size | 0.7415 1.0000

Parking | 0.6568 0.6565 1.0000
Income | 0.7148 0.4033 0.3241 1.0000

. regress Sale Size Parking Income

Source | SS df MS Number of obs = 16
---------------------------------------- F( 3, 12) = 15.16

Model | 27.1296056 3 9.04320188 Prob > F = 0.0002
Residual | 7.15923792 12 .59660316 R-square = 0.7912
---------------------------------------- Adj R-square = 0.7390

Total | 34.2888436 15 2.2859229 Root MSE = .7724

--------------------------------------------------------------------
Sales | Coef. Std. Err. t P>|T| [95% Conf. Interval]

--------------------------------------------------------------------
Size | 2.547936 1.200827 2.122 0.055 –.0684405 5.164313

Parking | .2202793 .1553877 1.418 0.182 –.1182814 .5588401
Income | .5893221 .1780576 3.310 0.006 .2013679 .9772763
_cons | .872716 1.945615 0.449 0.662 –3.366415 5.111847

--------------------------------------------------------------------

. correlate Sales Size Parking Income
(obs=16)

| Sales Size Parking Income
--------------------------------------------------

Sales | 1.0000
Size | 0.7415 1.0000

Parking | 0.6568 0.6565 1.0000
Income | 0.7148 0.4033 0.3241 1.0000

 a. Write the regression equation. Indicate the standard errors of the coefficients. 
 b. Carefully interpret each coefficient. 
 c. Locate R2 and the residual standard deviation. 
 d. Is there a severe collinearity problem in this study? 

  12.52  Summarize the results of the F and t tests for the output of Exercise 12.51.

 Ag. 12.53  A producer of various feed additives for cattle conducts a study of the number of days of 
feedlot time required to bring beef cattle to market weight. Eighteen steers of essentially identi-
cal age and weight are purchased and brought to a feedlot. Each steer is fed a diet with a specific 
combination of protein content, antibiotic concentration, and percentage of feed supplement. 
The data are as follows: 

STEER 1 2 3 4 5 6 7 8 9
PROTEIN 10 10 10 10 10 10 15 15 15
ANTIBIO 1 1 1 2 2 2 1 1 1
SUPPLEM 3 5 7 3 5 7 3 5 7
TIME 88 82 81 82 83 75 80 80 75

STEER 10 11 12 13 14 15 16 17 18 
PROTEIN 15 15 15 20 20 20 20 20 20
ANTIBIO 2 2 2 1 1 1 2 2 2
SUPPLEM 3 5 7 3 5 7 3 5 7
TIME 77 76 72 79 74 75 74 70 69

 a. Obtain the regression equation relating feedlot time to the three diet variables. 
 b. Find the value of ŝe. 
 c. Find the R2 value. 
 d. How much of a collinearity problem is there with these data? 
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  12.54  Refer to Exercise 12.53. 
 a.  Predict the feedlot time required for a steer fed 15% protein, 1.5% antibiotic con-

centration, and 5% supplement. 
 b.  Do these values of the independent variables represent a major extrapolation 

from the data? 
 c. give a 95% confidence interval for the mean time predicted in part (a). 

  12.55  Analyze the data of Exercise 12.53 using a regression model with only protein content as 
an independent variable. 

 a. Display the regression equation. 
 b. Find the R2 value. 
 c.  Test the null hypothesis that the coefficients of ANTIBIO and SUPPlEM are 

zero at a  .05. 
 H.R. 12.56  A survey of information systems managers was used to predict the yearly salary of be-

ginning programmer/analysts in a metropolitan area. Managers specified their standard salary for 
a beginning programmer/analyst, the number of employees in the firm’s information processing 
staff, the firm’s gross profit margin in cents per dollar of sales, and the firm’s information process-
ing cost as a percentage of total administrative costs. The data are given below for the 68 pro-
grammer positions as follows: programmer/analyst, yearly salary, number of employees, profit 
margin, and information processing cost.

 Programmer/     Programmer/   
managers Analyst Salary Numemp margin IPCost managers Analyst Salary Numemp margin IPCost

 1 29.5 58 19.4 10.14 35 29 38 21.9 6.45
 2 29.3 37 17 .7 9.18 36 29.2 80 20.9 10.07
 3 29.8 135 20.4 6.84 37 28.1 77 14 7 .06
 4 29.2 69 20.5 7 .59 38 27 .7 28 19.8 9.7
 5 28.9 48 19.1 4.96 39 27 .3 30 6.7 3.16
 6 31.7 159 23.3 10.52 40 31.3 34 21.4 10.91
 7 27 .5 42 23.4 8.61 41 27 .4 28 16 8.19
 8 29.4 37 23.1 10.72 42 29.3 230 14.9 5.7
 9 30.4 71 18.57 5.65 43 28.7 121 19.3 6.42
 10 27 .7 69 16.4 5.46 44 29.7 146 20.9 5.74
 11 30.9 121 24.6 7 .37 45 29.3 124 17 .6 6.13
 12 28.9 389 11 7 .4 46 28.3 40 16.3 8.86
 13 29.7 99 20.9 9.05 47 25.7 130 15.6 4.11
 14 30.3 62 23 8.81 48 27 .2 60 15.9 6.13
 15 31.3 107 15.3 10.94 49 29.2 94 22.6 9.95
 16 30 42 18.8 6.84 50 30.2 43 19.6 7 .83
 17 30 35 21 6.45 51 30.7 111 18.2 6.7
 18 28.5 42 10.5 6.06 52 29.4 37 23 11.25
 19 29.9 31 19.3 10.2 53 28.4 76 15.5 4.77
 20 29.7 78 18 9.6 54 30.1 188 18.9 5.94
 21 30.2 132 23.5 7 .88 55 28.5 64 12.6 4.81
 22 29.7 37 22.4 6.71 56 28.8 185 17 .7 8.66
 23 29.9 89 22.8 10.04 57 32.4 371 22.3 7 .45
 24 29 101 21.7 8.39 58 28.4 81 23.1 5.14
 25 29.4 60 18 5.24 59 29.7 62 20.9 9.26
 26 30.3 48 21.9 9.6 60 27 30 9.8 1.44
 27 30.4 75 22.6 11.63 61 28.2 103 22.1 7 .98
 28 31.1 71 24.5 9.65 62 27 .6 29 9.7 6.09
 29 29.4 47 24.2 7 .94 63 30.7 28 17 .1 8.71
 30 30.7 39 22.7 9.67 64 28.7 34 16.8 5.11
 31 30.2 50 23.1 9.66 65 29.4 279 23.2 6.2
 32 30.7 40 16.1 10.31 66 29.9 35 23.4 8.42
 33 28.5 102 16.2 6.67 67 31.3 43 18.3 7 .52
 34 28.5 77 19 7 .85 68 28.5 64 12.6 4.81
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 a.  Obtain a multiple regression equation with salary as the dependent variable  
and the other three variables as predictors. Interpret each of the (partial) slope 
coefficients. 

 b.  Is there conclusive evidence that the three predictors together have at least some 
value in predicting salary? Locate a p-value for the appropriate test. 

 c.  Which of the independent variables, if any, have statistically detectable (a  .05) 
predictive value as the last predictor in the equation? 

 H.R. 12.57   a.  Compute the coefficient of determination (R2) for the regression model in 
Exercise 12.56.

 b.  Obtain another regression model with number of employees as the only indepen-
dent variable. Compute the coefficient of determination for this model. 

 c.  Test the null hypothesis that adding profit margin and information processing cost 
does not yield any additional predictive value given the information about number 
of employees. Use a  .10. What can you conclude from this test?

 H.R. 12.58  Obtain correlations for all pairs of predictor variables in Exercise 12.56. Does there 
seem to be a major collinearity problem in the data? 

 Gov. 12.59  A government agency pays research contractors a fee to cover overhead costs, over and 
above the direct costs of a research project. Although overhead costs vary considerably among 
contracts, they are usually a substantial share of the total contract cost. An agency task force 
obtained data on overhead costs are a percentage of direct costs, number of employees of the 
contractor, size of contract as a percentage of the contractor’s yearly income, and personnel costs 
as a percentage of direct costs. The data are given below for the 86 research contractors as follows: 
contractor, overhead costs as a percentage of direct costs, number of employees, size of contract, 
and personnel costs as a percentage of direct costs.

 Cont. OverCost NumEmp Size PerCosts

 1 66.4 293 2.14 69
 2 73.7 117 1.15 61
 3 62.8 356 0.49 59
 4 69.7 579 1.78 50
 5 69.5 400 1.00 70
 6 60.1 154 0.88 63
 7 76.4 1,234 1.24 70
 8 70.1 343 2.08 55
 9 60.0 186 1.87 60
 10 65.6 65 2.29 64
 11 66.5 788 3.07 70
 12 66.5 600 2.98 60
 13 71.0 871 2.32 58
 14 68.3 562 3.07 62
 15 68.7 337 1.33 59
 16 66.1 296 3.70 76
 17 56.4 126 1.99 54
 18 60.9 252 2.74 62
 19 66.4 439 2.08 60
 20 72.2 558 3.43 65
 21 63.3 379 1.99 63
 22 72.6 453 1.24 61
 23 70.1 233 2.86 37
 24 56.2 194 1.24 65
 25 74.8 435 4.00 58 

 Cont. OverCost NumEmp Size PerCosts

 26 78.1 194 0.85 64
 27 64.0 94 3.58 52
 28 76.0 609 1.96 61
 29 66.5 183 2.47 42
 30 63.3 502 2.38 74
 31 72.6 1,182 2.35 66
 32 76.4 7,216 3.97 68
 33 65.3 512 2.08 59
 34 73.1 1,236 2.59 50
 35 76.0 2,247 2.56 61
 36 57 .8 65 0.91 72
 37 80.1 157 1.66 53
 38 66.6 423 1.96 64
 39 59.8 429 2.11 54
 40 64.2 487 1.06 58
 41 67 .7 218 2.08 60
 42 74.6 190 2.62 59
 43 67 .9 169 1.03 50 
 44 72.7 1,422 1.87 69
 45 65.5 269 1.15 73
 46 72.4 531 2.77 68
 47 78.7 421 3.76 45
 48 61.9 235 2.56 80 
 49 85.6 1,866 1.90 37
 50 58.1 88 1.87 59

(continued)
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 a.  Obtain correlations of all pairs of variables. Is there a severe collinearity problem 
with the data? 

 b.  Plot overhead costs against each of the other variables. locate a possible high  
influence outlier. 

 c.  Obtain a regression equation (with overhead costs as the dependent variable) 
using all the data including any potential outlier. 

 d.  Delete the potential outlier, and get a revised regression equation. How much did 
the slopes change? 

 Gov. 12.60  Consider the outlier-deleted regression model of Exercise 12.59. 
 a.  locate the F statistic.What null hypothesis is being tested? What can we conclude 

based on the F statistic? 
 b.  locate the t statistic for each independent variable. What conclusions can we 

reach based on the t tests? 

 Gov. 12.61  Use the outlier-deleted data of Exercise 12.59 to predict overhead costs of a contract 
when the contractor has 500 employees, the contract is 2.50% of the contractor’s income, and 
personnel costs are 55% of direct costs. Obtain a 95% prediction interval. Would overhead costs 
equal to 88.9% of direct costs be unreasonable in this situation?

 Bus. 12.62  The owner of a rapidly growing computer store tried to explain the increase in biweekly 
sales of computer software, using four explanatory variables: number of titles displayed, display 
footage, current customer base of Windows-based computers, and current customer base of  Mac 
computers. The data are given below for the 52 biweekly sales periods as follows: biweek, soft-
ware sales, number of titles displayed, display footage, Windows-based customers, and Mac 
based customers.

 Cont. overCost Numemp Size PerCosts

 51 75.6 1,833 4.45 55
 52 63.0 870 1.54 66
 53 67 .9 946 2.29 56
 54 65.8 422 4.72 65
 55 57 .1 79 2.74 64
 56 74.7 393 4.54 64
 57 66.1 229 1.66 68
 58 68.5 316 3.07 57
 59 55.2 224 1.54 66
 60 60.9 573 1.09 70
 61 72.3 461 2.50 66
 62 70.2 732 1.48 68
 63 62.2 189 2.02 64
 64 58.1 195 2.29 65
 65 66.2 962 2.17 60
 66 84.1 964 4.90 45
 67 81.6 921 3.28 54
 68 76.7 214 2.62 79

 Cont. overCost Numemp Size PerCosts

 69 60.4 127 0.76 63
 70 80.9 3,766 3.19 55
 71 74.8 1,576 3.52 54
 72 79.2 764 3.04 57
 73 68.1 408 1.36 50
 74 66.8 370 1.57 70
 75 83.6 769 2.23 53
 76 61.7 1,041 3.01 63
 77 76.2 546 2.86 63
 78 64.3 147 1.27 51
 79 71.3 148 1.72 55
 80 63.8 501 1.42 57
 81 80.4 1,686  2.26 57
 82 80.1 1,264 2.68 58
 83 59.9 229 0.43 67
 84 65.5 111 0.28 57
 85 73.0 2,138 3.82 63
 86 67 .0 356 3.58 55

 Biweek Sales Titles Footage Windows  mac

 1 86.7 116 78 362 179
 2 86.0 122 89 318 197
 3 76.6 112 70 306 154
 4 87 .6 116 79 337 166
 5 90.4 122 90 354 184

 Biweek Sales Titles Footage Windows  mac

 6 91.7 115 77 349 168
 7 80.7 110 66 330 153
 8 85.2 113 72 360 182
 9 106.6 129 93 354 206
 10 91.4 124 82 381 183

(continued)
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 Biweek Sales Titles Footage Windows  mac

 11 105.0 125 85 387 201
 12 102.3 131 96 387 203
 13 94.0 125 85 346 201
 14 93.6 122 78 339 173
 15 109.6 140 101 418 211
 16 108.2 136 92 409 211
 17 107 .9 139 99 414 210
 18 108.4 138 96 440 226
 19 89.2 127 75 382 188
 20 92.6 134 88 383 211
 21 104.4 129 80 397 213
 22 107 .6 134 88 384 227
 23 107 .2 141 91 407 242
 24 102.6 141 89 434 217
 25 104.7 138 84 424 211
 26 112.2 145 98 428 245
 27 115.9 145 99 415 237
 28 113.3 147 103 443 251
 29 109.1 142 91 414 217
 30 112.8 145 98 412 250
 31 111.1 142 92 424 217

 Biweek Sales Titles Footage Windows  mac

 32 120.8 148 104 441 251
 33 125.9 161 104 500 270
 34 128.4 164 111 501 277
 35 127 .9 163 109 471 274
 36 126.7 164 110 483 282
 37 120.2 163 107 494 261
 38 115.1 162 105 456 253
 39 115.9 167 117 474 275
 40 134.1 172 125 512 275
 41 131.8 174 117 520 296
 42 140.1 170 111 507 275
 43 157 .1 175 119 517 264
 44 152.7 178 124 499 297
 45 136.5 173 115 474 278
 46 140.4 170 109 515 296
 47 130.8 171 112 482 274
 48 121.7 167 104 510 282
 49 124.7 173 115 488 294
 50 138.6 179 127 539 294
 51 148.4 188 134 578 325
 52 142.0 183 123 536 302

 a.  Before doing the calculations, consider the economics of the situation, and state 
what sign you would expect for each of the partial slopes.

 b.  Obtain a multiple regression equation with sales as the dependent variable and all 
other variables as independent. Does each partial slope have the sign you  
expected in part (a)?

 c.  Calculate a 95% confidence interval for the coefficient of the titles variable. The 
computer output should contain the calculated standard error for this coefficient. 
Does the interval include 0 as a plausible value?

 Gov. 12.63   a.   In the regression model of Exercise 12.62, can the null hypothesis that none of the 
variables has predictive value be rejected at normal a levels?

 b.  According to t tests, which predictors, if any, add statistically detectable predictive 
value (a  .05) given all the others?

 Gov. 12.64  Obtain correlation coefficients for all pairs of variables from the data of Exercise 12.62. 
How severe is the collinearity problem in the data? 

 Gov. 12.65  Compare the coefficient of determination (R2) for the regression model of Exercise 
12.62 to the square of the correlation between sales and titles in Exercise 12.64. Compute the 
incremental F statistic for testing the null hypothesis that footage, Windows base, and Mac base 
add no predictive value given titles. Can this hypothesis be rejected at a  .01? 

 Bus. 12.66  The market research manager of a catalog clothing supplier has begun an investigation 
of what factors determine the typical order size the supplier receives from customers. From the 
sales records stored on the company’s computer, the manager obtained average order size data 
for 180 zip code areas. A part-time intern looked up the latest census information on per capita 
income, average years of formal education, and median price of an existing house in each of these 
zip code areas. (The intern couldn’t find house price data for two zip codes and entered 0 for 
those areas.) The manager also was curious whether climate had any bearing on order size and 
included data on the average daily high temperature in winter and in summer. 
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The market research manager has asked for your help in analyzing the data. The output 
provided is intended only as a first try. The manager would like to know whether there was 
any evidence that the temperature variables mattered much and also which of the other vari-
ables seemed useful. There is some question about whether putting in 0 for the missing house 
price data was the right thing to do or whether that might distort the results. Please provide 
a basic, not-too-technical explanation of the results in this output and any other analyses you 
choose to  perform.

MTB > name c1 ’AvgOrder’ c2 ’Income’ c3 ’Educn’ &
CONT> c4 ’HousePr’ c5 ’WintTemp’ c6 ’SummTemp’
MTB > correlations of c1-c6

AvgOrder Income Educn HousePr WintTemp
Income 0.205
Educn 0.171 0.913
HousePr 0.269 0.616 0.561
WintTemp –0.134 –0.098 0.014 0.066
SummTemp –0.068 –0.115 0.005 0.018 0.481

MTB > regress c1 on 5 variables in c2-c6

The regression equation is
AvgOrder = 36.2 + 0.078 Income – 0.019 Educn
+ 0.0605 HousePr – 0.223 WintTemp + 0.006 SummTemp

Predictor Coef Stdev t-ratio p
Constant 36.18 12.37 2.92 0.004
Income 0.0780 0.4190 0.19 0.853
Educn –0.0189 0.5180 –0.04 0.971
HousePr 0.06049 0.02161 2.80 0.006
WintTemp –0.2231 0.1259 –1.77 0.078
SummTemp 0.0063 0.1646 0.04 0.969

s = 4.747 R-sq = 9.6% R-sq(adj) = 7.0%

Analysis of Variance

SOURCE DF SS MS F p
Regression 5 417.63 83.53 3.71 0.003
Error 174 3920.31 22.53
Total 179 4337.94

SOURCE DF SEQ SS
Income 1 182.94
Educn 1 7.18
HousePr 1 142.63
WintTemp 1 84.84
SummTemp 1 0.03

Unusual Observations
Obs. Income AvgOrder Fit Stdev.Fit Residual St.Resid
25 17.1 23.570 36.555 0.632 –12.985 –2.76R
78 11.9 24.990 34.950 0.793 –9.960 –2.13R
83 13.4 36.750 29.136 2.610 7.614 1.92X
87 14.3 45.970 35.918 0.463 10.052 2.13R
111 11.1 21.720 33.570 0.802 –11.850 –2.53R
113 10.4 43.500 33.469 0.817 10.031 2.15R
143 16.1 20.350 27.915 3.000 –7.565 –2.06RX
149 13.2 44.970 35.369 0.604 9.601 2.04R
169 13.5 44.650 34.361 0.660 10.289 2.19R
180 13.7 23.050 34.929 0.469 –11.879 –2.51R
R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.

 

  12.67  The following data were taken from the article “Toxaemic Signs During Pregnancy” 
[Applied Statistics (1983) 32:69–72]. The data given here relate signs of toxemia, the presence 
or absence of hypertension and proteinuria, for 13,384 pregnant women classified by social class and 
smoking habit. The aim of the research was to determine if the amount of smoking and social class 
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s = 4.747 R-sq = 9.6% R-sq(adj) = 7.0%

Analysis of Variance

SOURCE DF SS MS F p
Regression 5 417.63 83.53 3.71 0.003
Error 174 3920.31 22.53
Total 179 4337.94
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Income 1 182.94
Educn 1 7.18
HousePr 1 142.63
WintTemp 1 84.84
SummTemp 1 0.03
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78 11.9 24.990 34.950 0.793 –9.960 –2.13R
83 13.4 36.750 29.136 2.610 7.614 1.92X
87 14.3 45.970 35.918 0.463 10.052 2.13R
111 11.1 21.720 33.570 0.802 –11.850 –2.53R
113 10.4 43.500 33.469 0.817 10.031 2.15R
143 16.1 20.350 27.915 3.000 –7.565 –2.06RX
149 13.2 44.970 35.369 0.604 9.601 2.04R
169 13.5 44.650 34.361 0.660 10.289 2.19R
180 13.7 23.050 34.929 0.469 –11.879 –2.51R
R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.
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of the women were associated with the incidence of signs of toxemia. The explanatory variables 
were  social class (I, II, III, IV, V), an ordinal-level variable, and level of smoking (1—none; 2—1 
to 19 cigarettes per day; 3—20 or more cigarettes per day).

 Signs of Toxemia

Social Smoking  Hypertension Proteinuria Both Hypertension 
Class level None only only and Proteinuria Total

 I 1 286 21 82 28 417
 I 2 71 5 24 5 105
 I 3 13 0 3 1 17
 II 1 785 34 266 50 1,135 
 II 2 284 17 92 13 406
 II 3 34 3 15 0 52
 III 1 3,160 164 1,101 278 4,703
 III 2 2,300 142 492 120 3,054
 III 3 383 32 92 16 523
 IV 1 656 52 213 63 984
 IV 2 649 46 129 35 859
 IV 3 163 12 40 7 222
 V 1 245 23 78 20 366
 V 2 321 34 74 22 451
 V 3 65 4 14 7 90

 a.  Determine a model to relate the probability of hypertension in a pregnant woman 
to social class and smoking level.

 b.  Predict the probability of hypertension in a pregnant woman of social class III 
smoking 20 or more cigarettes per day.

 c.  Place a 95% confidence interval on the probability of hypertension in a pregnant 
woman of social class III smoking 20 or more cigarettes per day.

  12.68  Refer to Exercise 12.67 .
 a.  Determine a model to relate the probability of proteinuria in a pregnant woman 

to social class and smoking level.
 b.  Predict the probability of proteinuria in a pregnant woman of social class I smok-

ing less than 20 cigarettes per day.
 c.  Place a 95% confidence interval on the probability of proteinuria in a pregnant 

woman of social class I smoking less than 20 cigarettes per day.

  12.69  Refer to Exercise 12.67.
 a.  Determine a model to relate the probability of both hypertension and proteinuria 

in a pregnant woman to social class and smoking level.
 b.  Predict the probability of both hypertension and proteinuria in a pregnant woman 

of social class II smoking 1–19 cigarettes per day.
 c.  Place a 95% confidence interval on the probability of both hypertension and pro-

teinuria in a pregnant woman of social class II smoking 1–19 cigarettes per day.

  12.70  Refer to Exercise 12.67.
 a.  Determine a model to relate the probability of a pregnant woman having neither 

hypertension nor proteinuria to social class and smoking level.
 b.  Predict the probability of a nonsmoking pregnant woman of social class III having 

neither hypertension nor proteinuria.
 c.  Place a 95% confidence interval on the probability of a nonsmoking pregnant 

woman of social class III having neither hypertension and proteinuria.
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 Bio. 12.71 Refer to the fishery data in Example 12.17. The researcher wanted to determine if the 
modeling of the number of bass caught in the lake was altered by whether or not there is public 
access to the lake. 

 a. Fit a first-order model relating catch to residency, size, and structure with separate 
intercepts and slopes for those lakes with access and those without access  
(access is used as an indicator variable). 

 b. Display the fitted regression lines for lakes both with and without access. 
 c. Test at the a  .05 level whether there is a significant difference between the partial 

slopes for residency, size, and structure for the lakes with and without access. 

 Bio. 12.72 Refer Exercise 12.71. 
 a. Estimate the mean catch for a lake having residency  70, size  .8, and  

structure  80 for lakes both with and without access. 
 b. Place 95% confidence intervals on both of your estimates. Comment on the differ-

ences between the estimates for lakes with and without access. 

 Bio. 12.73 Refer to the fishery data in Example 12.17. 
 a. Fit a second-order model relating catch to residency, size, and structure (with the 

squared terms but without the cross-product terms) with separate intercepts and 
slopes for those lakes with access and those without access (access is used as an 
indicator variable). 

 b. Display the fitted regression lines for lakes both with and without access. 
 c. Test whether the squared terms in residency, size, and structure provide a 

significant improvement to the fit of the model compared to the model with  
just the first-order terms. 

 Bio. 12.74 Refer Exercise 12.73. 
 a. Estimate the mean catch for a lake having residency  70, size  .8, and  

structure  80 for lakes both with and without access using the second-order 
model. 

 b. Place 95% confidence intervals on both of your estimates. Comment on the differ-
ences between the estimates for lakes with and without access. 

 c. Compare the intervals on the estimates from the second-order model to those 
from the first-order model. 

 Bio. 12.75 Refer to Example 12.17. Why would it not be possible to fit a complete second-order 
model to this data—that is, a model including the three explanatory variables and their squares, 
cross-products, and terms, allowing separate partial slope coefficients for the two types of lakes?
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 13.1 Introduction and Abstract of Research Study

In Chapter 12, we presented the background information needed to use multiple 
regression. We discussed the general linear model and its use in multiple regres-
sion and introduced the normal equations, a set of simultaneous equations used 
in obtaining least-squares estimates for the bs of a multiple regression equation. 
Next, we presented standard errors associated with the b̂j and their use in inferences 
about a single parameter bj, a set of bs, E(y), and a future value of y. We also 
considered special  situations—comparing the slopes of several regression lines and 
the logistic regression problem. Finally, we condensed all of these inferential tech-
niques using matrices.

This chapter is devoted to putting multiple regression into practice. How 
does one begin to develop an appropriate multiple regression for a given problem? 
Although there are no hard and fast rules, we can offer a few hints. 

First, for each problem, you must decide on the dependent variable and can-
didate independent variables for the regression equation. This selection process 
will be discussed in Section 13.2. In Section 13.3, we consider how one selects the 
form of the multiple regression equation. The final step in the process of develop-
ing a multiple regression is to check for violation of the underlying assumptions. 
Tools for assessing the validity of the assumptions will be discussed in Section 13.4.

Following these steps once for a given problem will not ensure that you 
have an appropriate model. Rather, the regression equation seems to evolve as 
these steps are applied repeatedly, depending on the problem. For example, hav-
ing  considered candidate independent variables (step 1) and selected the form 
for a  regression model involving some of these variables (step 2), we may find 
that  certain assumptions have been violated (step 3). This will mean that we may 
have to return to either step 1 or step 2, but, hopefully, we have learned from 
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our previous deliberations and can modify the variables under consideration and/
or the model(s)  selected for consideration. Eventually, a regression model will 
emerge that meets the needs of the experimenter. Then the analysis techniques 
of Chapter 12 can be used to draw inferences about model parameters E(y) and y.

Research Study: Construction Costs for Nuclear Power Plants
Advocates for nuclear power state that this source of electrical power provides net 
environmental benefits. Under the assumption that carbon dioxide emissions are asso-
ciated with global warming, nuclear power plants would be an improvement over fossil 
fuel–based power plants. There is considerably less air pollution from nuclear power 
plants in comparison to coal or natural gas plants with respect to the production of 
sulfur oxides, nitrogen oxides, or other particulates. The waste from a nuclear plant 
differs from the waste from fossil fuel–based plants in that it is a solid-waste, spent fuel 
and some process chemicals, steam, and heated cooling water. The volume and mass 
of the waste from a nuclear power plant are much smaller than those of the waste from 
a fossil fuel–based plant. Some fossil fuel–based emissions can be limited or managed 
through pollution control equipment. However, these types of devices greatly increase 
the cost of building or managing the power plant. Similarly, nuclear plant operators 
and managers must spend money to control the radioactive wastes from their plants. 
An environmental component of any decision between building a nuclear or a fossil 
fuel plant is the cost of such controls and how they might change the costs of building 
and operating the power plant. Controversial decisions must also be made regarding 
what controls are appropriate. As public concerns increase about the level of pollu-
tion from coal-powered plants and the  diminishing availability of other fossil fuels, the 
resistance to the construction of nuclear power plants has been reduced.

One of the major issues confronting power companies in seeking alternatives 
to fossil fuels is the need to forecast the costs of constructing nuclear power plants. 
The data, presented in Table 13.13 at the end of this chapter, are from the book 
Applied Statistics (Cox and Snell, 1981) and provide information on the construc-
tion costs of 32 light water reactor (LWR) nuclear power plants. The data set also 
contains information on the construction of the plants and specific characteristics 
of each power plant. The research goal is to determine which of the explanatory 
variables are most strongly related to the capital cost of the plant. If a reasonable 
model can be produced from these data, then the construction costs of new plants 
meeting specified characteristics can be predicted. Because of the resistance of the 
public and politicians to the construction of nuclear power plants, there is only a 
limited amount of data associated with new construction. The data set provided 
by Cox and Snell has only n  32 plants along with 10 explanatory variables. The 
book Introduction to Regression Modeling (Abraham and Ledolter, 2006) provides 
a detailed analysis of this data set. At the end of this chapter, we will document 
some of the steps needed to build a model and then assess its usefulness in predict-
ing the cost of constructing specific types of nuclear power plants.

 13.2 Selecting the Variables (Step 1)

Perhaps the most critical decision in constructing a multiple regression model 
is the initial selection of independent variables. In later sections of this chapter, 
we  consider many methods for refining a multiple regression analysis, but first 
we must make a decision about which independent (x) variables to consider for 
 inclusion—and hence which data to gather. If we do not have useful data, we are 
 unlikely to come up with a useful predictive model.
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Although initially it may appear that an optimum strategy might be to 
 construct a monstrous multiple regression model with very many variables, such 
models are difficult to interpret and are much more costly from a data-gathering 
and analysis time standpoint. How can a researcher make a reasonable selection of 
initial variables to include in a regression analysis?

Knowledge of the problem area is critically important in the initial selection 
of data. First, identify the dependent variable to be studied. Individuals who have 
had experience with this variable by observing it, trying to predict it, and trying to 
explain changes in it often have remarkably good insight as to what factors (inde-
pendent variables) affect it. As a consequence, the first step involves consulting 
those who have the most experience with the dependent variable of interest. For 
example, suppose that the problem is to forecast the next quarter’s sales volume 
of an inexpensive brand of computer printer for each of 40 districts. The depend-
ent variable y is then district sales volume. Certain independent variables, such as 
the advertising budget in each district and the number of sales outlets, are obvious 
candidates. A good district sales manager undoubtedly could suggest others.

A major consideration in selecting predictor variables is the problem of 
 collinearity—that is, severely correlated independent variables. A partial slope 
in multiple regression estimates the predictive effect of changing one independ-
ent variable while holding all others constant. However, when some or all of the 
predictors vary together, it can be almost impossible to separate out the predic-
tive  effects of each one. A common result when predictors are highly correlated is 
that the overall F test is highly significant, but none of the individual t tests comes 
close to significance. The significant F result indicates only that there is detectable 
predictive value somewhere among the independent variables; the nonsignificant 
t-values indicate that we cannot detect additional predictive value for any vari-
able given all the others. The reason is that highly correlated predictors are surro-
gates for each other; any of them individually may be useful, but adding others will 
not be. When seriously collinear independent variables are all used in a multiple 
regression model, it can be virtually impossible to decide which predictors are in 
fact related to the dependent variable.

There are several ways to assess the amount of collinearity in a set of inde-
pendent variables. The simplest method is to look at a (Pearson) correlation 
 matrix, which can be produced by almost all computer packages. The higher these 
correlations, the more severe the collinearity problem is. In most situations, any 
correlation over .9 or so definitely indicates a serious problem.

Some computer packages can produce a scatterplot matrix, a set of scatterplots 
for each pair of variables. Collinearity appears in such a matrix as a close  linear rela-
tion between two of the independent variables. For example, a sample of automotive 
writers rated a new compact car on 0- to 100-point scales for performance, comfort, 
appearance, and overall quality. The promotion manager doing the study wanted to 
know which variables best predicted the writers’ rating of overall quality. A Minitab 
scatterplot matrix is shown in Figure 13.1. There are clear linear relations among the 
performance, comfort, and appearance ratings, indicating substantial collinearity. 
The following matrix of correlations confirms that fact:

selection of the 
independent variables

collinearity

correlation matrix

scatterplot matrix

Correlations (Pearson)
overall perform comfort

perform 0.698

MTB > correlations c1–c4

comfort 0.769 0.801
appear 0.630 0.479 0.693
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A scatterplot matrix can also be useful in detecting nonlinear relations or 
outliers. The matrix contains scatterplots of the dependent variable against each 
independent variable separately. Sometimes a curve or a serious outlier will be 
clear in the matrix. Other times the effect of other independent variables may con-
ceal a problem. The analysis of residuals, discussed later in this chapter, is another 
good way to look for assumption violations.

The correlation matrix and scatterplot matrix may not reveal the full extent 
of a collinearity problem. Sometimes two predictors together predict a third all too 
well, even though either of the two by itself shows a more modest correlation with 
the third one. (Direct labor hours and indirect labor hours together predict total 
labor hours remarkably well, even if either one predicts the total imperfectly.) A 
number of more sophisticated ways of diagnosing collinearity are built into vari-
ous computer packages. One such diagnostic is the variance inflation factor (VIF) 
discussed in Chapter 12. 

A proposed full model uses k explanatory variables, xl, x2, . . . , xk, to explain 
the variation in the response variable, y:

y  bo 1 b1x1 1 b2x2 1 c1 bkxk 1 e

The VIF of the estimator of the jth partial slope, bj, associated with the jth explan-
atory variable, xj, is given by

VIFj  1 / 11 2 R2
j 2

where R2
j  is the coefficient of determination from the regression of xj on the 

 remaining k 2 1 explanatory variables. When xj is linearly dependent on the 
other explanatory variables, the value of R2

j  will be close to one, and VIFj will be 
large. There is strong evidence of collinearity in the explanatory variables when 
the value of VIF exceeds 10. A detailed discussion of several diagnostic measures 
of collinearity can be found in the books by Cook and Weisberg (1982) and by 
 Belsley, Kuh, and Welsch (1980).

EXAMPLE 13.1

Mercury contamination in freshwater fish has been a recognized problem in 
North America for over four decades. High concentrations of mercury in fish 
can pose a serious health threat to humans and birds. The paper “Influence of 
Water Chemistry on Mercury Concentration in Largemouth Bass from Florida 
Lake” (Lange, Royals, and Connor, 1993) evaluated the relationships between 
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mercury concentrations and selected physical and chemical lake characteristics. 
The researchers were  attempting to determine if chemical characteristics of 
lakes strongly influenced the bioaccumulation of mercury in largemouth bass. 
The study included 53 lakes that were hydrologically diverse and spanned a 
wide range in terms of size and alkalinites. The data are given in Table 13.1.

Lake EHg Alk pH Ca Chlo  Lake EHg Alk pH Ca Chlo

1 1.53 5.9 6.1 3 .7  28 .87 3.9 4.5 3.3 7
2 1.33 3.5 5.1 1.9 3.2  29 .50 5.5 4.8 1.7 14.8
3 .04 116 9.1 44.1 128.3  30 .47 6.3 5.8 3.3 .7
4 .44 39.4 6.9 16.4 3.5  31 .25 67 7.8 58.6 43.8
5 1.33 2.5 4.6 2.9 1.8  32 .41 28.8 7.4 10.2 32.7
6 .25 19.6 7.3 4.5 44.1  33 .87 5.8 3.6 1.6 3.2
7 .45 5.2 5.4 2.8 3.4  34 .56 4.5 4.4 1.1 3.2
8 .16 71.4 8.1 55.2 33.7  35 .16 119.1 7.9 38.4 16.1
9 .72 26.4 5.8 9.2 1.6  36 .16 25.4 7.1 8.8 45.2

10 .81 4.8 6.4 4.6 22.5  37 .23 106.5 6.8 90.7 16.5
11 .71 6.6 5.4 2.7 14.9  38 .04 53 8.4 45.6 152.4
12 .51 16.5 7.2 13.8 4  39 .56 8.5 7 2.5 12.8
13 .54 25.4 7.2 25.2 11.6  40 .89 87.6 7.5 85.5 20.1
14 1.00 7.1 5.8 5.2 5.8  41 .18 114 7 72.6 6.4
15 .05 128 7.6 86.5 71.1  42 .19 97.5 6.8 45.5 6.2
16 .15 83.7 8.2 66.5 78.6  43 .44 11.8 5.9 24.2 1.6
17 .19 108.5 8.7 35.6 80.1  44 .16 66.5 8.3 26 68.2
18 .49 61.3 7.8 57.4 13.9  45 .67 16 6.7 41.2 24.1
19 1.02 6.4 5.8 4 4.6  46 .55 5 6.2 23.6 9.6
20 .70 31 6.7 15 17  47 .27 81.5 8.9 20.5 9.6
21 .45 7.5 4.4 2 9.6  48 .98 1.2 4.3 2.1 6.4
22 .59 17.3 6.7 10.7 9.5  49 .31 34 7 13.1 4.6
23 .41 12.6 6.1 3.7 21  50 .43 15.5 6.9 5.2 16.5
24 .81 7 6.9 6.3 32.1  51 .58 25.6 6.2 12.6 27.7
25 .42 10.5 5.5 6.3 1.6  52 .28 17.3 5.2 3 2.6
26 .53 30 6.9 13.9 21.5  53 .25 71.8 7.9 20.5 8.8
27 .31 55.4 7.3 15.9 24.7

TABLE 13.1
Mercury contamination 

data

The variables in Table 13.1 are as follows:

Lake ID number of the lake
EHg  expected mercury concentration (mg / g) for a 3-year-old fish 

(inferred from data)
Alk alkalinity level in lake (mg / L as CaCO3)
pH degree of acidity (0 # pH # 7) or alkalinity (7 , pH # 14)
Ca calcium level (mg / L)
Chlo chlorophyll (mg / g)

A scatterplot matrix is shown in Figure 13.2 along with the pairwise correlation 
from Minitab. Is there any indication of collinearity in the four explanatory vari-
ables? Does the matrix plot suggest any other problems with the data?
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Solution The plots in Figure 13.2 indicate a positive linear relationship between 
alkalinity and pH and between alkalinity and calcium, with a somewhat weaker 
positive  relationship between calcium and pH and between chlorophyll and pH. 
The relationships between chlorophyll and calcium and between alkalinity and 
chlorophyll are very weak. These observations are confirmed by the values from 
the correlation matrix. Based on the correlation values, the only pair of explana-
tory variables that would be of concern for collinearity would be calcium and al-
kalinity. However, with a correlation of 0.833, there is no  indication of a serious 
collinearity problem in the data. Further, there appear to be two lakes that have 
data values that may be of high leverage. Lakes 3 and 38 have chlorophyll values 
that are considerably larger than the values for the remaining 51 lakes. As we dis-
cussed in Chapter 11, a data point that has high leverage may greatly influence the 
slope of the line relating mercury content to amount of chlorophyll in the lake. 
Also, the data value associated with lake 40 may have high influence in that in the 
plots of EHg versus alkalinity and EHg versus calcium, the EHg value for lake 40 
is much larger than the EHg values for the other data points that have values for 
alkalinity and calcium similar to those for lake 40. ■

One of the best ways to avoid collinearity problems is to choose predictor 
variables intelligently, right at the beginning of a regression study. Try to find 
 independent variables that should correlate decently with the dependent varia-
ble but do not have obvious correlations with each other. If possible, try to find 
 independent variables that reflect various components of the dependent variable. 
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For example, suppose we want to predict the sales of inexpensive printers for 
 personal computers in each of 40 sales districts. Total sales are made up of sev-
eral sectors of buyers. We might identify the important sectors as college students, 
home users, small businesses, and computer network workstations. Therefore, we 
might try number of college freshmen, household income, small business starts, 
and new network installations as independent variables. Each one makes sense 
as  a predictor of printer sales, and there is no obvious correlation among the 
 predictors. People who are knowledgeable about the variable you want to predict 
can often identify components and suggest reasonable predictors for the different 
components.

EXAMPLE 13.2

A firm that sells and services desktop computers is concerned about the volume 
of service calls. The firm maintains several district service branches within each 
sales region, and computer owners requiring service call the nearest branch. The 
branches are staffed by technicians trained at the main office. The key problem is 
whether technicians should be assigned to main office duty or to service branches; 
assignment decisions have to be made monthly. The required number of service 
branch technicians grows in almost exact proportion to the number of service calls. 
Discussion with the service manager indicates that the key variables in determin-
ing the volume of service calls seem to be the number of computers in use, the 
number of new installations, whether or not a model change has been introduced 
recently, and the average temperature. (High temperatures, or possibly the associated 
high humidity, lead to more frequent computer troubles, especially in imperfectly air 
conditioned offices.) Which of these variables can be expected to correlate with 
the others?

Solution  It is hard to imagine why temperature should be correlated with any of 
the other variables. There should be some correlation between number of comput-
ers in use and number of new installations, if only because every new installation 
is a computer in use. Unless the firm has been growing at an increasing rate, we 
would not expect a severe correlation (we would, however, like to see the data). 
The correlation of model change to number in use and new installations is not at all 
obvious; surely data should be collected and correlations analyzed. ■

A researcher who begins a regression study may try to put too many inde-
pendent variables into a regression model; hence, we need some sensible guide-
lines to help select the independent variables to be included in the final regression 
model from potential candidates.

To sort out which independent variables should be included in a  regression 
model from the list of variables generated from discussions with experts, you 
can resort to any one of a number of selection procedures. We will consider several 
of these in this text; for further details, consult Neter, Kutner, Nachtsheim, and 
Wasserman (1996).

The first selection procedure involves performing all possible regressions 
with the dependent variable and one or more of the independent variables from 
the list of candidate variables. Obviously, this approach should not be attempted 
unless the analyst has access to a computer with suitable software and sufficient 
core to run a large number of regression models relatively efficiently.



718 Chapter 13 Further regression topiCs 

As an illustration, we will use hypothetical data on prescription sales data 
(volume per month) obtained for a random sample of 20 independent pharma-
cies. These data, along with data on the total floor space, percentage of floor space 
 allocated to the prescription department, number of parking spaces available for 
the store, whether the pharmacy is in a shopping center, and per capita  income for 
the surrounding community are recorded in Table 13.2.

Before running all possible regressions for the data of Table 13.2, we need to 
consider what criterion should be used to select the best-fitting equation from all 
possible regressions. The first and perhaps simplest criterion for selecting the best 
regression equation from the set of all possible regression equations involves comput-
ing an estimate of the error variance, s2

e, using s2
e  MS(Residual)  SS(Residual)/ 

3n 2 1k 1 1 2 4 . Since this quantity is used in most inferences (statistical tests and 
confidence intervals) about model parameters and E(y), it would seem reasonable to 
choose the model that has the smallest value of s2

e, the mean square error.
A second criterion makes use of the coefficient of determination, R2, which 

is computed for each model. We then choose from amongst those models having 
highest R2 values. There is a limitation in using this criterion. Suppose we denote 
the coefficient of determination computed from a model having k explanatory 
variables and an intercept term (that is, k 1 1 regression coefficients) by R2

k, where

R2
k 

SS 1Total 2 2 SSk 1Residual 2
SS 1Total 2  1 2

SSk 1Residual 2
SS 1Total 2

TABLE 13.2
Data on 20 independent pharmacies

PHARMACY VOLUME FLOOR—SP PRESC—RX PARKING SHOPCNTR INCOME

 1 22 4,900 9 40 1 18
 2 19 5,800 10 50 1 20
 3 24 5,000 11 55 1 17
 4 28 4,400 12 30 0 19
 5 18 3,850 13 42 0 10
 6 21 5,300 15 20 1 22
 7 29 4,100 20 25 0 8
 8 15 4,700 22 60 1 15
 9 12 5,600 24 45 1 16

 10 14 4,900 27 82 1 14
 11 18 3,700 28 56 0 12
 12 19 3,800 31 38 0 8
 13 15 2,400 36 35 0 6
 14 22 1,800 37 28 0 4
 15 13 3,100 40 43 0 6
 16 16 2,300 41 20 0 5
 17 8 4,400 42 46 1 7
 18 6 3,300 42 15 0 4
 19 7 2,900 45 30 1 9

 20 17 2,400 46 16 0 3
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where SSk(Residual) is the residual sum of squares from a model with k explana-
tory variables and SS(Total)  gn

i1 1yi 2 y 2 2. The term SS(Total) is the same for 
all models, but SSk(Residual) may be quite different depending on k, and, further-
more, even for the same k there may be many different models having the same 
number of explanatory variables but in different combinations. Consider the five 
explanatory variables in Table 13.2. There are 10 different models in which the 
model contains three of the five explanatory variables. We would thus have 10 
different values of R2

3 in this case. In selecting amongst the 10 models using three 
of the five explanatory variables, we generally would prefer the model having the 
largest value for R2

3. In general, if we increase the number of explanatory variables 
in the model, then SS(Residual) decreases or stays the same. By increasing the 
number of explanatory variables in the model, we can eventually obtain a model 
in which R2

k is very close to one. In fact, if we have n data values and the model 
contains n regression coefficients, then SS(Residual)  0 and R2

n  1. Thus, R2 can 
lead to misleading results if we are trying to balance the two criteria of obtaining 
a model in which we have a good fit and obtaining one in which we have a limited 
number of explanatory variables.

For the reasons given above, we will define an adjusted R2, which provides 
for a penalty for each regression coefficient included in the model:

R2
adj, k  1 2

SSk 1Residual 2 / 1n 2 k 2 1 2
SS 1Total 2 / 1n 2 1 2  1 2

1n 2 1 2
1n 2 k 2 1 2  11 2 R2

k 2

Note that in R2
adj, k, the sums of squares are adjusted for their corresponding degrees 

of freedom. Also, increasing the number of terms in the model from k to k 1 1 will 
not always result in an increase in R2

adj, k, as would be true for R2
k. If the additional 

term does not result in a decrease in SS(Residual), then R2
adj, k will actually decrease, 

whereas R2
k11 would always be larger or the same as R2

k. Thus, we will be penalized 
with a smaller R2

adj, k for including variables in the model that do not provide a rea-
sonable improvement to the fit of the model to the data.

With one more algebraic manipulation, we can show that

R2
adj, k  1 2

SSk 1Residual 2 / 1n 2 k 2 1 2
SS 1Total 2 / 1n 2 1 2  1 2

s2
e

SS 1Total 2 / 1n 2 1 2   1 2
s2

e

s2
y

 

From these two forms for R2
adj, we can observe that the adjusted coefficient of 

 determination is comparing the variability in the response variable without any 
 explanatory variables, s2

y, to the variability that remains in the ys after fitting a 
model to ys that includes k explanatory variables. Thus, selecting models using the 
criterion of a large value of R2

adj is equivalent to selecting models using the criterion 
of a small value for s2

e.

EXAMPLE 13.3

Refer to the data of Table 13.2. Use the R2
adj criterion to determine the best-fitting 

regression equation for one, two, three, and four independent variables.

Solution  SAS output is provided here, and the regression equations with the 
highest R2

adj values are summarized in Table 13.3. 

adjusted R2
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Although there is a sizable increase in R2
adj when the number of explanatory 

variables is increased from one to two, there is very little improvement by includ-
ing three or four explanatory variables. Therefore, the best overall model based 
on R2

adj, considering both number of variables and fit of the model, would be the 
model containing the variables floor space and prescription sales.

SAS OUTPUT

Dependent Variable: VOLUME

Variable Selection

Number of Observations Read 20

Number    Adjusted
in Model  R-Square  R-Square   C(p)    AIC    BIC    Variables in Model

   3      0.6327    0.6907    2.4364  57.03  61.82  FLOOR_SP PRESC_RX SHOPCNTR
   2      0.6263    0.6657    1.6062  56.59  60.12  FLOOR_SP PRESC_RX
   3      0.6193    0.6794    2.9635  57.75  62.21  FLOOR_SP PRESC_RX PARKING
   4      0.6184    0.6987    4.0623  58.51  64.37  FLOOR_SP PRESC_RX PARKING SHOPCNTR
   4      0.6115    0.6933    4.3177  58.87  64.52  FLOOR_SP PRESC_RX SHOPCNTR INCOME
   2      0.6055    0.6471    2.4744  57.67  60.86  PRESC_RX SHOPCNTR
   3      0.6039    0.6664    3.5713  58.54  62.66  FLOOR_SP PRESC_RX INCOME
   3      0.5993    0.6626    3.7496  58.77  62.79  PRESC_RX PARKING SHOPCNTR
   4      0.5954    0.6806    4.9097  59.67  64.86  FLOOR_SP PRESC_RX PARKING INCOME
   5      0.5930    0.7001    6.0000  60.42  67.19  FLOOR_SP PRESC_RX PARKING SHOPCNTR INCOME
   3      0.5809    0.6471    4.4720  59.67  63.29  PRESC_RX SHOPCNTR INCOME
   4      0.5731    0.6630    5.7301  60.75  65.31  PRESC_RX PARKING SHOPCNTR INCOME
   3      0.5279    0.6024    6.5577  62.05  64.66  PRESC_RX PARKING INCOME
   2      0.4943    0.5475    7.1224  62.64  64.32  PRESC_RX INCOME
   2      0.4763    0.5314    7.8722  63.34  64.81  PRESC_RX PARKING
   2      0.4364    0.4958    9.5366  64.81  65.86  SHOPCNTR INCOME
   1      0.4082    0.4393   10.1709  64.93  65.87  PRESC_RX
   3      0.4064    0.5001   11.3332  66.63  67.45  FLOOR_SP SHOPCNTR INCOME
   3      0.4042    0.4983   11.4193  66.71  67.50  PARKING SHOPCNTR INCOME
   4      0.3683    0.5013   13.2789  68.59  69.14  FLOOR_SP PARKING SHOPCNTR INCOME
   2      0.1691    0.2565   20.7035  72.57  71.67  FLOOR_SP SHOPCNTR
   2      0.1449    0.2349   21.7147  73.15  72.12  FLOOR_SP INCOME
   3      0.1273    0.2651   22.3051  74.34  72.66  FLOOR_SP PARKING SHOPCNTR
   3      0.1161    0.2557   22.7427  74.60  72.84  FLOOR_SP PARKING INCOME
   2      0.1120    0.2054   23.0890  73.90  72.71  PARKING INCOME
   1      0.1007    0.1480   23.7702  73.30  72.82  INCOME
   1      -.0122    0.0411   28.7618  75.66  74.84  SHOPCNTR
   1      -.0202    0.0335   29.1129  75.82  74.97  FLOOR_SP
   2      -.0410    0.0686   29.4780  77.08  75.26  FLOOR_SP PARKING
   1      -.0505    0.0048   30.4539  76.41  75.48  PARKING
   2      -.0706    0.0421   30.7126  77.64  75.71  PARKING SHOPCNTR

Number of Explanatory 
    Variables in Model R2

adj Variables

1 0.4082 Prescription sales
2 0.6263 Floor space, prescription sales
3 0.6327 Shopping center, floor space, prescription sales
4 0.6184 Parking, shopping center, floor space, prescription sales
5 0.5930 Parking, shopping center, floor space, prescription sales,  
  income

■

TABLE 13.3
Best-fitting models,  

based on R2
adj
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The SAS output displays the values for R2. This example illustrates the prob-
lem in using R2 as a measure of the best model. Examining the values for R2, it 
can be seen that the models with the highest R2 values are the models with four 
variables, then with three variables, and so on. However, when using the values of 
R2

adj, the three  models with largest R2
adj values are two three-variable models and a 

two-variable model, not one of the five four-variable models.
Keep in mind that the object of our search is to choose the subset of inde-

pendent variables that generates the best prediction equation for future values of 
y; unfortunately, however, because we do not know these future values, we focus 
on criteria that choose the best-fitting regression equations to the known sample 
y-values. One possible bridge between this emphasis on the best fit to the known 
sample y-values and that on choosing the best predictor of future y-values is to split 
the sample data into two parts—one part used for fitting the various regression 
equations and the other part used for validating how well the prediction equations 
can predict ‘‘future’’ values. Although there is no universally accepted rule for 
deciding how many of the data should be included in the  ‘‘fitting’’ portion of the 
sample and how many go into the ‘‘validating’’ portion of the sample, it is reason-
able to split the total sample in half provided the total sample size n is greater than 
2p 1 20, where p is the number of parameters in the largest potential regression 
model. A possible criterion for the best prediction equation would involve mini-
mizing g 1

 
yi 2 ŷi 2 2 for the validating portion of the total sample.

Once the regression model is selected from the data-splitting approach, the 
entire set of sample data is used to obtain the final prediction equation. Thus, even 
though it appears we would only use part of the data, the entire data set is used to 
obtain the final prediction equation.

Observations do cost money, however, and it may be impractical to obtain 
enough observations to apply the data-splitting approach for choosing the best- 
fitting regression equation. In these situations, a form of validation can be accom-
plished using the PRESS statistic. For a sample of y-values and a proposed 
regression model relating y to a set of xs, we first remove the first observation and 
fit the model using the remaining n 2 1 observations. Based on the fitted equation, 
we estimate the first observation (denoted by ŷ   

*
1) and compute the residual y1 2 ŷ   

*
1.  

This process is repeated n 2 1 times, successively removing the second, third, . . . ,  
nth observation, each time computing the residual for the removed observation. 
The PRESS statistic is defined as

PRESS  a
n

i1

1yi 2 ŷ   
*
i 2 2

The model that gives the smallest value for the PRESS statistic is chosen as the 
best-fitting model.

To this point, we have considered criteria for selecting the best-fitting regres-
sion model from a subset of independent variables. In general, if we choose a model 
that leaves out one or more ‘‘important’’ predictor variables, our model is under-
specified, and the additional variability in the y-values that would be accounted for 
with these variables becomes part of the estimated error variance. At the other 
end of the spectrum, if we choose a model that contains one or more ‘‘extrane-
ous’’ predictor variables, our model is overspecified, and we stand the chance of 
having a multicollinearity problem. We will deal with this problem later. The point 
is that a criterion, based on the Cp statistic, seems to balance some pros and cons 
of previously presented selection criteria, along with the problems of over- and 
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 underspecification, to arrive at a choice of the best-fitting subset regression equa-
tion. The Cp statistic (see Mallows, 1973) is

Cp 
SS 1Residual 2p

s2
e

2 1n 2 2p 2

where SS(Residual)p is the sum of squares for error from a model with p parameters 
(including b0) and s2

e is the mean square error from the regression equation with the 
largest number of independent variables. For a given selection problem, compute 
Cp for every regression equation that is fit. Theory suggests that the best-fitting 
model should have Cp < p. For a model with k explanatory variables, p  k 1 1.

EXAMPLE 13.4

Refer to the output of Example 13.3. Determine the value of Cp for all possible 
 regressions with one, two, three, and four independent variables. Select the best-
fitting equation for one, two, three, and four independent variables. Which regres-
sion equation seems to give the best overall fit, based on the Cp statistic?

Solution  The best-fitting models are summarized in Table 13.4. Based on the Cp 
criterion, there would be very little difference between the best-fitting models for 
three and four independent variables. The most ‘‘important’’ predictive variables 
would be parking space and prescription sales because they appear in the best-
fitting models for three and four independent variables. Note that the important 
independent variables found in Example 13.3 are different from the ones related 
by Cp.

      Number of 
Independent Variables p Cp Variables

1 2 10.17 Prescription sales
2 3 1.61 Floor space, prescription sales
  2.47 Prescription sales, shopping center

3 4 3.75 Prescription sales, parking space, shopping center
4 5 4.91 Floor space, prescription sales, parking,  
     income
5 6 6.00 All five independent variables

■

TABLE 13.4
Best-fitting models,  

Cp criterion

Two other criteria for selecting the most crucial independent variables are 
based on information criteria. The Akaike’s information criterion (AIC) selects 
the model having the smallest value of AIC:

AICk  nloge (SS(Residual) / n) 1 2k

AIC balances the model selection process between the goodness of fit of 
the model, as measured by SS(Residual), and the model complexity, the num-
ber of terms in the model, 2k. As the number of terms in the model increases, 
SS(Residual) decreases, but the penalty of model complexity, 2k, increases. 



13.2 selecting the Variables (step 1)    723

Thus, if a large number of unnecessary independent variables were placed in 
the model that resulted in only a small reduction in SS(Residual), the model 
complexity penalty, the value of 2k, would exceed this decrease in SS(Residual), 
resulting in an increase in AIC, not a decrease. Chatterjee and Hadi (2012) rec-
ommend that models with AIC not differing by more than two units should be 
treated as equally adequate.

Sheather (2009) states that when either the sample size is small or the num-
ber of parameters in the model divided by the sample size, k/n, is relatively large, 
using AIC to select the independent variables in the model will tend to put too 
many terms in the model, referred to as overfitting the model.

An alternative to AIC was proposed by Schwarz (1978). The Bayesian Infor-
mation Criterion (BIC) selects the model having the smallest value of BIC:

BICk  nloge (SS(Residual) / n) 1 kloge (n)

AIC and BIC differ with respect to the model complexity penalty, 2k versus 
kloge(n), with BIC placing a much more severe penalty for overfitting the model. 
For smaller data sets, BIC will often correct the tendency of AIC to overfit the 
model; that is, BIC will generally place fewer terms in the model than will AIC.

EXAMPLE 13.5

Refer to the SAS output of Example 13.3. Determine the value of AIC and BIC 
for all possible regression models with one, two, three, and four independent vari-
ables. Select the best-fitting model for one, two, three, and four independent vari-
ables. Which model seems to produce the best overall fit, based on AIC? Answer 
this question using BIC also.

Solution The best-fitting models are summarized below for each value of k, the 
number of independent variables in the model. Based on AIC and using the rec-
ommendation that models not differing by two units should be treated as equally 
adequate, the models with two, three, and four variables as listed below would 
be considered as the best-fitting models. Based on BIC, the four-variable model 
would have a somewhat higher BIC value than the two- and three-variable models. 
This would confirm the observation that AIC tends to overfit models when the 
sample size is small. An overall recommendation based on combining the values 
of Cp, AIC, and BIC would be a three-variable model, However, the variables 
selected using Cp differ from the variables selected by AIC and BIC. The varia-
bles prescription sales and parking are in common, but Cp would include shopping 
center, whereas AIC and BIC would include floor space.

k AIC BIC Independent Variables in Model

1 64.93 65.87 Prescription sales
2 56.59 60.12 Floor space, prescription sales
3 57.03 61.82 Floor space, prescription sales, shopping center
4 58.51 64.37 Floor space, prescription sales, parking, shopping center
5 60.42 67.19 Floor space, prescription sales, parking, shopping center, income

■
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Best subset regression provides another procedure for finding the best-fitting 
regression equation from a set of k candidate independent variables. This proce-
dure uses an algorithm that avoids running all possible regressions. The computer 
program prints a listing of the best M (the user selects M) regression equations 
with one independent variable in the model, two independent variables in the 
model, three independent variables in the model, and so on, up to the model con-
taining all k independent variables in the model. Some programs allow the user to 
specify the criterion for ‘‘best’’ (for example, Cp or maximum R2

adj), whereas other 
programs fix the criterion.

EXAMPLE 13.6

Use the SAS output in Example 13.3 to find the M  2 best subset regression 
equations of size one to five based on the AIC criterion for the data of Table 13.2. 
From the various ‘‘best’’ regression equations, select the regression equation that 
has the ‘‘best’’ AIC.

Solution  The relevant information is given below. There are two best subsets of 
size one to four. Based on the maximum R2, the subset with all independent vari-
ables will always be the best regression. However, based on AIC, BIC, adjusted R2, 
or Cp, our conclusion would differ from the best obtained from the maximum R2.

A number of other procedures can be used to select the best regression, and 
although we will not spend a great deal more time on this subject, we will mention 
briefly the backward elimination method and stepwise regression procedure.

The backward elimination method begins with fitting the regression model 
that contains all the candidate independent variables. For each independent vari-
able xj, we compute

Fj 
SSRj 2 SSR

MS 1Residual 2    j  1, 2, . . .

backward elimination
stepwise regression

SAS OUTPUT

Dependent Variable: VOLUME

Variable Selection

Number of Observations Read 20

Number    Adjusted
in Model  R-Square  R-Square   C(p)    AIC    BIC    Variables in Model

   1      0.4082    0.4393   10.1709  64.93  65.87  PRESC_RX
   1      0.1007    0.1480   23.7702  73.30  72.82  INCOME
   2      0.6263    0.6657    1.6062  56.59  60.12  FLOOR_SP PRESC_RX
   2      0.6055    0.6471    2.4744  57.67  60.86  PRESC_RX SHOPCNTR
   3      0.6327    0.6907    2.4364  57.03  61.82  FLOOR_SP PRESC_RX SHOPCNTR
   3      0.6193    0.6794    2.9635  57.75  62.21  FLOOR_SP PRESC_RX PARKING
   4      0.6184    0.6987    4.0623  58.51  64.37  FLOOR_SP PRESC_RX PARKING SHOPCNTR
   4      0.6115    0.6933    4.3177  58.87  64.52  FLOOR_SP PRESC_RX SHOPCNTR INCOME
   5      0.5930    0.7001    6.0000  60.42  67.19  FLOOR_SP PRESC_RX PARKING SHOPCNTR INCOME

■
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where SSR is the sum-of-squares residuals from the complete model and SSRj 
is the sum-of-squares residuals from the model that contains all xs except xj. 
MS(Residual) is the mean square error for the complete model. Let min Fj  denote 
the smallest Fj value. If min Fj , Fa, where a is the preselected significance level, 
remove the independent variable corresponding to min Fj from the  regression 
equation. The backward elimination process then begins all over again with one 
variable removed from the list of candidate independent variables. Thus, back-
ward elimination starts with the complete model with all independent variables 
entered and eliminates variables one at a time until a reasonable candidate regres-
sion model is found. This occurs when, in a particular step, min Fj . Fa; the result-
ing complete model is the best-fitting regression equation. 

Stepwise  regression, on the other hand, works in the other direction, starting 
with the model y  b0 1 e and adding variables one at a time until a stopping cri-
terion is satisfied. At the initial stage of the process, the first variable entered into 
the equation is the one with the largest F test for regression. At the second stage, 
the two variables to be included in the model are the variables with the largest F 
test for regression of two variables. Note that the variable entered in the first step 
might not be included in the second step; that is, the best single variable might 
not be one of the best two variables. Because of this, some people use a simplified 
stepwise regression (sometimes called forward selection) whereby, once a variable 
is entered, it cannot be eliminated from the regression equation at a later stage.

EXAMPLE 13.7

Use the data of Example 13.3 to find the variables to be included in a regression 
equation based on backward elimination. Comment on your findings. 

Solution  SAS output is shown for a backward elimination procedure applied to 
the data of Table 13.2. As indicated, backward elimination begins with all (five) 
candidate variables in the regression equation. This is designated as step 0 in the 
backward elimination process. Then one by one, independent variables are elimi-
nated until min Fj . Fa. Note that in step 1, the variable income is removed and in 
step 2, the variable parking is removed from the regression equation. Step 3 is the 
final step in the process for this example; the variable shopping  center is removed. 
As indicated in the output, the remaining variables comprise the best- fitting regres-
sion equation based on backward elimination. That equation is

ŷ  48.291 2 .004(floor space) 2 .582(prescription sales)

which is identical to the result we obtained from the other variable selection 
 procedures.

REGRESSION ANALYSIS, USING BACKWARD ELIMINATION

Backward Elimination Procedure for Dependent Variable VOLUME

Step 0 All Variables Entered R-square = 0.70007369 C(p) = 6.00000000
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DF Sum of Squares Mean Square F Prob>F

Regression 5 525.44030541 105.08806108 6.54 0.0025
Error 14 225.10969459 16.07926390
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 42.08710826 10.43775070 261.42703544 16.26 0.0012
FLOOR SP –0.00241878 0.00183889 27.81923726 1.73 0.2095
PRESC RX –0.50046955 0.16429694 149.19783807 9.28 0.0087
PARKING –0.03690284 0.06546687 5.10907792 0.32 0.5819
SHOPCNTR –3.09957355 3.24983522 14.62673442 0.91 0.3564
INCOME 0.10666360 0.42742012 1.00135642 0.06 0.8066

Bounds on condition number: 7.823107, 117.1991
------------------------------------------------------------------------------

Step 1 Variable INCOME Removed R-square = 0.69873952 C(p) = 4.06227626

DF Sum of Squares Mean Square F Prob>F

Regression 4 524.43894899 131.10973725 8.70 0.0008
Error 15 226.11105101 15.07407007
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 43.46782063 8.56960161 387.83321233 25.73 0.0001
FLOOR SP –0.00228513 0.00170330 27.13112543 1.80 0.1997
PRESC RX –0.52910174 0.11386382 325.48983690 21.59 0.0003
PARKING –0.03952477 0.06256589 6.01580808 0.40 0.5371
SHOPCNTR –2.71387948 2.76799605 14.49041122 0.96 0.3424

Bounds on condition number: 5.071729, 46.98862
------------------------------------------------------------------------------

Step 2 Variable PARKING Removed R-square = 0.69072432 C(p) = 2.43641080

DF Sum of Squares Mean Square F Prob>F

Regression 3 518.42314091 172.80771364 11.91 0.0002
Error 16 232.12685909 14.50792869
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 42.82702645 8.34803435 381.83242065 26.32 0.0001
FLOOR SP –0.00247284 0.00164539 32.76871130 2.26 0.1523
PRESC RX –0.52941361 0.11170410 325.87978038 22.46 0.0002
SHOPCNTR –3.03834296 2.66836223 18.81002755 1.30 0.2716

Bounds on condition number: 4.917388, 30.31995
-----------------------------------------------------------------------------

Step 3 Variable SHOPCNTR Removed R-square = 0.66566267 C(p) = 1.60624219

DF Sum of Squares Mean Square F Prob>F

Regression 2 499.61311336 249.80655668 16.92 0.0001
Error 17 250.93688664 14.76099333
Total 19 750.55000000
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Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 48.29085530 6.89043477 725.02357305 49.12 0.0001
FLOOR SP –0.00384228 0.00113262 169.87259933 11.51 0.0035
PRESC RX –0.58189034 0.10263739 474.44587802 32.14 0.0001

Bounds on condition number: 2.290122, 9.160487
-----------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination Procedure for Dependent Variable VOLUME

Variable Number Partial Model
Step Removed In R**2 R**2 C(p) F Prob>F

1 INCOME 4 0.0013 0.6987 4.0623 0.0623 0.8066
2 PARKING 3 0.0080 0.6907 2.4364 0.3991 0.5371
3 SHOPCNTR 2 0.0251 0.6657 1.6062 1.2965 0.2716

■

EXAMPLE 13.8

Describe the results of stepwise regression applied to the data of Table 13.2.

Solution  The SAS output for the data of Table 13.2 is shown here. Stepwise 
 regression begins with the model y  b0 1 e and adds variables one at a time. 
For these data, the variable prescription sales was entered in step 1 of the stepwise 
procedure, the variable floor space was added to the regression model in step 2, 
and the variable shopping center was added in step 3. No other variables met the 
entrance criterion of p  .5 for inclusion in the model. If the criterion was more 
selective,  requiring a relatively small p-value (say, .15 or less) for each new inde-
pendent variable, the stepwise regression procedure would not include the variable 
shopping center in step 3 (with a p-value of .2716), and we would arrive at the same 
best-fitting regression equation that we obtained previously with other methods.

REGRESSION ANALYSIS, USING FORWARD ELIMINATION

Forward Selection Procedure for Dependent Variable VOLUME

Step 1 Variable PRESC RX Entered R-square = 0.43933184 C(p) = 10.17094219

DF Sum of Squares Mean Square F Prob>F

Regression 1 329.74051403 329.74051403 14.10 0.0014
Error 18 420.80948597 23.37830478
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 25.98133346 2.58814791 2355.90463660 100.77 0.0001
PRESC RX –0.32055657 0.08535423 329.74051403 14.10 0.0014

Bounds on condition number: 1, 1
------------------------------------------------------------------------------
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Step 2 Variable FLOOR SP Entered R-square = 0.66566267 C(p) = 1.60624219

DF Sum of Squares Mean Square F Prob>F

Regression 2 499.61311336 249.80655668 16.92 0.0001
Error 17 250.93688664 14.76099333
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 48.29085530 6.89043477 725.02357305 49.12 0.0001
FLOOR SP –0.00384228 0.00113262 169.87259933 11.51 0.0035
PRESC RX –0.58189034 0.10263739 474.44587802 32.14 0.0001

Bounds on condition number: 2.290122, 9.160487
------------------------------------------------------------------------------

Step 3 Variable SHOPCNTR Entered R-square = 0.69072432 C(p) = 2.43641080

DF Sum of Squares Mean Square F Prob>F

Regression 3 518.42314091 172.80771364 11.91 0.0002
Error 16 232.12685909 14.50792869
Total 19 750.55000000

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 42.82702645 8.34803435 381.83242065 26.32 0.0001
FLOOR SP –0.00247284 0.00164539 32.76871130 2.26 0.1523
PRESC RX –0.52941361 0.11170410 325.87978038 22.46 0.0002
SHOPCNTR –3.03834296 2.66836223 18.81002755 1.30 0.2716

Bounds on condition number: 4.917388, 30.31995
-------------------------------------------------------------------------------

No other variable met the 0.5000 significance level for entry into the model.

Summary of Forward Selection Procedure for Dependent Variable VOLUME

Variable Number Partial Model
Step Entered In R**2 R**2 C(p) F Prob>F

1 PRESC RX 1 0.4393 0.4393 10.1709 14.1046 0.0014
2 FLOOR SP 2 0.2263 0.6657 1.6062 11.5082 0.0035
3 SHOPCNTR 3 0.0251 0.6907 2.4364 1.2965 0.2716

■

In a typical regression problem, you ascertain which variables are potential 
candidates for inclusion in a regression model (step 1) by discussing the problem 
with experts and/or by using any one of a number of possible selection procedures. 
For example, we could run all possible regressions, apply a best subset regression 
approach, or follow a stepwise regression (or backward elimination) procedure. 
This list is by no means exhaustive. Sometimes the various criteria do single out 
the same model as best (or near best, as seen with the data of Table 13.2). At other 
times, you may get different models from the different criteria. Which approach is 
best? Which one should we believe and use?

The most important response to these questions is that with the availabil-
ity and accessibility of a computer and applicable software systems, it is possible 
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to work effectively with any of these selection procedures; no one procedure is 
 universally accepted as better than the others. Hence, rather than attempting to 
use some or all of the procedures, you should begin to use one method (perhaps 
because of the availability of particular software in your computer facility) and 
learn as much as you can about it by continued use. Then you will be well equipped 
to solve almost any regression problem to which you are exposed.

 13.3 Formulating the Model (Step 2)

In Section 13.2, we suggested several ways to develop a list of candidate independ-
ent variables for a given regression problem. We can and should seek the advice of 
 experts in the subject matter area to provide a starting point, and we can employ 
any one of several selection procedures to come up with a possible regression 
model. In this section, we refine the information gleaned from step 1 to  develop a 
useful multiple regression model.

Having chosen a subset of k independent variables to be candidates for inclu-
sion in the multiple regression and the dependent variable y, we still may not know 
the actual relationship between the dependent and independent variables. Sup-
pose the assumed regression model is of a lower order than is the actual model 
relating y to x1, x2, . . . , xk. Then provided there is more than one observation per 
factor–level combination of the independent variables, we can conduct a test of the 
inadequacy of a fitted polynomial model using the equation F  MSLack/MSPexp as 
discussed in Chapter 11.

Another way to examine an assumed (fitted) model for lack of fit is to exam-
ine scatterplots of residuals (yi 2 ŷ i) versus xj. For example, suppose that step 1 
has indicated that the variables x1, x2, and x3 constitute a reasonable subset of 
independent variables to be related to a response y using a multiple regression 
equation. Not knowing which polynomial function of the independent variables to 
use, we could start by fitting the multiple linear regression model

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

to obtain the least-squares prediction equation ŷ b̂ 
0 1 b̂  1x1 1 b̂  2x2 1 b̂  3x3. A 

plot of the residuals (yi 2 ŷ i) versus each one of the xs would shed some light as to 
which higher-degree terms may be appropriate. We’ll illustrate the concepts using 
residuals by way of a regression problem for one independent variable and then 
extend the concepts to a multiple regression situation.

EXAMPLE 13.9

In a radioimmunoassay, a hormone with a radioactive trace is added to a test tube 
containing an antibody that is specific to that hormone. The two will combine to 
form an antigen–antibody complex. To measure the extent of the reaction of the 
hormone with the antibody, we measure the amount of hormone that is bound 
to the antibody relative to the amount remaining free. Typically, experimenters 
measure the ratio of the bound/free radioactive count (y) for each dose of hor-
mone (x) added to a test tube. Frequently, the relation between y and x is nearly 
linear. Data from 11 test tubes in a radioimmunoassay experiment are shown in 
Table 13.5.
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a. Plot the sample data and fit the linear regression model

y  b0 1 b1x 1 e

b. Plot the residuals versus count and versus ŷ. Does a linear model 
 adequately fit the data?

c. Suggest an alternative (if appropriate).

Solution  Computer output is shown here.

Data Display

Row BOUND/FREE COUNT DOSE DOSE_2
1 9.900 0.00 0.0000
2 10.465 0.25 0.0625
3 10.312 0.50 0.2500
4 13.633 0.75 0.5625

Row BOUND/FREE COUNT DOSE DOSE_2
5 20.784 1.00 1.0000
6 36.164 1.25 1.5625
7 62.045 1.50 2.2500
8 78.327 1.75 3.0625
9 90.307 2.00 4.0000
10 97.348 2.25 5.0625
11 102.686 2.50 6.2500

Regression Analysis: BOUND/FREE COUNT versus DOSE

The regression equation is
BOUND/FREE COUNT = –7.19 + 44.4 DOSE

Predictor Coef SE Coef T P
Constant –7.189 6.226 –1.15 0.278
DOSE 44.440 4.210 10.56 0.000

S = 11.04 R-Sq = 92.5% R-Sq(adj) = 91.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 13577 13577 111.44 0.000
Residual Error 9 1097 122
Total 10 14674

Bound/Free Count Dose (concentration)

   9.900 .00
  10.465 .25
  10.312 .50
  13.633 .75
  20.784 1.00
  36.164 1.25
  62.045 1.50
  78.327 1.75
  90.307 2.00
   97.348 2.25
 102.686 2.50

TABLE 13.5
Radioimmunoassay data
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  The plot of y (count) versus x (concentration) clearly shows a lack 
of fit of the linear regression model; the residual plots confirm this 
same lack of fit. The linear regression underestimates counts at the 
lower and upper ends of the concentration scale and overestimates 
at the middle concentrations.

c. A possible alternative model would be a quadratic model in 
 concentration:

y  b0 1 b1x 1 b2x
2 1 e

 More will be said about this later in the chapter. ■
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Scatterplots are not very helpful in detecting interactions among the inde-
pendent variables other than for the two-independent variable case. The reason is 
that there are too many variables for most practical problems and it is difficult to 
present the interrelationships among independent variables and their joint effects 
on the response y using two-dimensional scatterplots. Perhaps the most reason-
able suggestion is to use one of the best subset regression methods of the previous 
 section, some trial-and-error fitting of models using the candidate independent 
variables, and a bit of common sense to determine which interaction terms should 
be used in the multiple regression model.

The presence of dummy variables (for qualitative independent variables) 
presents no major problem for ascertaining the adequacy of the fit of a polynomial 
model. The important thing to remember is that when quantitative and dummy 
variables are included in the same regression model, for each setting of the dummy 
variables, we obtain a regression in the quantitative variables. Hence, plotting 
methods for detecting an inadequate fit should be applied separately for each set-
ting of the dummy variables. By examining these plots carefully, we can also detect 
potential differences in the forms of the polynomial models for different settings 
of the dummy variables.

EXAMPLE 13.10

A nutritional study involved participants taking a course in which they were given 
 information concerning how to control their caloric intake. The study was con-
ducted with 29 subjects aged 20 to 53 years, all of whom were healthy but moder-
ately overweight. The researchers collected data on caloric intake during a 4-week 
period prior to the participants attending the course. During a second 4-week 
period 6 months after completing the course, the researchers once again collected 
information on caloric intake. The data in Table 13.6 provide information on the 
gender and age of the  participants, along with the mean daily caloric intake prior to 
instruction and the percentage reduction in mean caloric intake during the second 
4-week test period.

Subject Gender Age Before Reduction

1 F 20 1,160 8.23
2 F 22 1,888 7.56
3 F 24 1,861 7.23
4 F 27 1,649 6.89
5 F 28 2,463 5.47
6 F 31 1,934 3.78
7 F 35 2,211 2.43
8 F 37 2,320 2.51
9 F 38 2,352 3.12

10 F 39 2,693 3.26
11 F 40 2,236 4.30
12 F 41 2,072 4.54
13 F 46 2,026 5.28
14 F 47 1,991 5.92
15 F 52 1,552 6.92
16 F 53 1,406 7.83
17 M 22 3,678 5.93

TABLE 13.6
Caloric intake data
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The researchers were interested in studying the relationship between the per-
centage reduction in caloric intake and the explanatory variables: gender, age, and 
caloric  intake prior to instruction. Fit a linear regression model and use residual 
plots to determine what (if any) higher-order terms are required. Do the same 
conclusions hold for males and females? Make suggestions for additional terms in 
the multiple regression model.

Solution  A linear model in the three explanatory variables was fit to the data:

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x1x2 1 b5x1x3 1 e

where

 y  percentage reduction in caloric intake

x1  b1
0

if
if

female
male

 x2  age of participant

 x3  caloric intake before instruction

From the SAS output, the estimated regression equation is

ŷ  6.41 1 7.51x1 2 .115x2 1 .000531x3 1 .091x1x2 2 .00441x1x3

Substituting x1  0 and 1 into this equation, we obtain the separate regression 
equations for males and females, respectively:

 x1  0 (males)

 ŷ  6.41 2 .115x2 1 .000531x3

 x1  1 (females)

 ŷ  13.92 2 .024x2 2 .00388x3

Scatterplots of y versus x2 and x3 show that reduction in caloric intake decreases 
as male participants’ ages increase but show a quadratic relationship for female 
partici pants. For female participants, reduction in caloric intake tends to decrease 
as the before caloric intake increases with the opposite relationship holding true 
for males.

Subject Gender Age Before Reduction

18 M 23 3,101 5.10
19 M 26 3,418 8.19
20 M 32 2,891 2.00
21 M 33 2,273 4.75
22 M 33 2,509 2.71
23 M 34 3,689 3.64
24 M 36 2,789 3.65
25 M 37 3,018 2.75
26 M 42 2,754 2.84
27 M 45 2,567 4.23
28 M 47 2,177 2.43
29 M 49 2,695 2.18
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LINEAR REGRESSION OF ENERGY INTAKE ON BEFORE AND AGE

Dependent Variable: PERCENT CALORIC REDUCTION
                    
                               Sum of        Mean
Source               DF       Squares      Square   F Value    Pr > F
Model                 5      70.15325    14.03065      7.93    0.0002
Error                23      40.68257     1.76881
Corrected Total      28     110.83581

Root MSE          1.32997    R-Square    0.6329
Dependent Mean    4.67828    Adj R-Sq    0.5532
Coeff Var        28.42853    

                              Parameter Estimates

                                       Parameter     Standard
Variable    Label                 DF    Estimate        Error   t Value   Pr > |t|
 
Intercept  Intercept               1     6.40924     4.50491      1.42     0.1682
I          GENDER                  1     7.51016     4.95060      1.52     0.1429
A          AGE                     1    –0.11521     0.05683     –2.03     0.0544
AI         GENDER*AGE              1     0.09091     0.06594      1.38     0.1812
B          INTAKE BEFORE           1  0.00053148     0.00102      0.52     0.6076
BI         GENDER*INTAKE BEFORE    1    –0.00441     0.00133     –3.32     0.0030
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The residual plots versus age show an underestimation for middle-aged males 
and females but an overestimation for younger and older males and  females. 
The residual plots versus caloric intake before did not reveal any discernable 

Residual plots from 
linear model
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 patterns for either males or females. A second-order model in both x2 and x3 
was fit to the data. Based on the plots, the quadratic terms in x3 were probably 
unnecessary.

y  b0 1 b1x1 1 b2x2 1 b3x2
2 1 b4x3 1 b5x2

3 1 b6x1x2 1 b7x1x
2
2

  1 b8x1x3 1 b9x1x
2
3 1 e

From the SAS output, the estimated regression equation is

ŷ  22.664 1 1.604x1 2 .517x2 1 .00559x2
2 2 .00581x3 1 .00000104x2

3

  2 .834x1x2 1 .0125x1x
2
2 1 .0108x1x3 2 .00000235x1x

2
3 1 e

Substituting x1  0 and 1 into this equation, we obtain the separate regression 
equations for males and females, respectively:

x1  0 (males)

 ŷ  22.664 2 .517x2 1 .00559x2
2 2 .00581x3 1 .00000104x2

3

x1  1 (females)

 ŷ  24.268 2 1.351x2 1 .0181x2
2 1 .00499x3 2 .00000131x2

3

From the output from the two models, note that R2
adj has increased from .5532 for 

the linear model to .6701 for the quadratic model. There has been a sizable increase 
in the fit of the model to the data. 

QUADRATIC REGRESSION OF ENERGY INTAKE ON BEFORE AND AGE

Dependent Variable: PERCENT CALORIC REDUCTION
                    
                               Sum of        Mean
Source               DF       Squares      Square   F Value    Pr > F
Model                 9      86.02731     9.55859      7.32    0.0001
Error                19      24.80850     1.30571
Corrected Total      28     110.83581

Root MSE          1.14268    R-Square    0.7762
Dependent Mean    4.67828    Adj R-Sq    0.6701
Coeff Var        24.42517    

                              Parameter Estimates

                                         Parameter    Standard
Variable    Label                 DF      Estimate       Error   t Value   Pr > |t|
 
Intercept  Intercept               1      22.66395    13.57467      1.67     0.1114
I          INDICATOR FOR GENDER    1       1.60406    14.97921      0.11     0.9158
A          AGE                     1      -0.51678     0.33877     -1.53     0.1436
A2         AGE SQUARED             1       0.00559     0.00465      1.20     0.2441
AI         AGE*GENDER              1      -0.83449     0.54323     -1.54     0.1410
A2I        AGE SQUARED*GENDER      1       0.01249     0.00741      1.69     0.1082
B          INTAKE BEFORE           1      -0.00581     0.00868     -0.67     0.5110
BI         INTAKE BEFORE*GENDER    1       0.01078     0.01105      0.98     0.3417
B2         INTAKE BEFORE SQUARED   1    0.00000104  0.00000146      0.71     0.4848
B2I        INTAKE SQUARED*GENDER   1   -0.00000235  0.00000219     -1.07     0.2980
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So far in this section, we have considered lack of fit only as it relates to poly-
nomial terms and interaction terms. However, sometimes the lack of fit is related 
not to the fact that we have not included enough higher-degree terms and interac-
tions in the model but rather to the fact that y is not adequately represented by any 
polynomial model in the subset of independent variables.

Residual plots from 
quadratic model
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Figure 13.3 contains six plots of various functions of a response variable y to 
a single explanatory variable x:

The plots were generated using the following relationships between y and x:

Plot 1: y  2x 1 3

Plot 2: y  4(x 2 3)2 1 5

Plot 3: y  (x 2 2)3 1 .6

Plot 4: y 
1

x 1 .2

Plot 5: y  3ex/2

Plot 6: y  8log(x 1 2)
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Plots 1–3 of Figure 13.3 demonstrate the great flexibility in the shape of models 
using a polynomial relationship between y and x. However, polynomial relation-
ships do not cover all possible relationships unless we are willing to use a very 
high-order model, such as

y  b0 1 b1x 1 b2x
2 1 b3x

3 1 c1 bkxk 1 e

where k is a very large integer. Plots 4–6 display shapes that can be obtained by 
using models involving negative exponents, exponentiation, or the log function. 
There may be situations in which a model that is nonlinear in the bs may be appro-
priate. Such models are displayed in plots 4–6 with the following general forms 
given here:

Plot 4:   y 
1

b1x 1 b2
 

Plot 5:   y  b1e
x/b2 

Plot 6:   y  b1log 1b2x 1 b3 2  
In engineering problems, nonlinear models often arise as the solution of differen-
tial equations that govern an engineering process. In biological studies, nonlinear 
models often are used for growth models. Some examples of the application of 
nonlinear models in economics and finance will be presented next.

Most basic finance books show that if a quantity y grows at a rate r per unit 
time (continuously compounded), the value of y at time t is

yt  y0ert

where y0 is the initial value. This relation may be converted into a linear relation 
between yt and t by a logarithmic transformation:

log yt  log y0 1 rt

The simple linear regression methods of Chapter 11 can be used to fit data for 
this regression model with b0  log y0 and b1  r. When y is an economic vari-
able such as total sales, the logarithmic transformation is often used in a multiple 
regression model:

log yi  b0 1 b1xi1 1 b2xi2 1 c1 bkxik 1 ei

The Cobb–Douglas production function is another standard example of a 
nonlinear model that can be transformed into a regression equation:

y  cl akb

where y is production, l is labor input, k is capital input, and a and b are unknown 
constants. Again, to transform the dependent variable, we take logarithms to 
obtain

log y  (log c) 1 a(log l) 1 b(log k)

  b0 1 b1(log l) 1 b2(log k)

which suggests that a regression of log production on log labor and log capital is 
linear.

logarithmic 
transformation
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EXAMPLE 13.11

In studying the relationships between the streams of people migrating to urban 
areas and the size of the urban areas, demographers have used a gravity-type model:

M 
a1S1S2

Da2

where a1 and a2 are unknown constants, M is the level of migration (interaction) 
between two urban areas, D is the distance from one urban area to the second 
urban area, and S1 and S2 are the population sizes of the two urban areas. Express 
this model as a linear model.

Solution  By taking the natural logarithm of both sides of the equation, we would 
have

log(M)  log(a1) 1 log(S1) 1 log(S2) 2 a2 log(D)

This model then can be expressed in a general form as

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

where y  log(M), b0  log(a1), x1  log(S1), x2  log(S2), x3  log(D), and b3  2a2. 
Data on M, S1, S2, and D would be needed in order to obtain estimates of the two 
 constants, a1 and a2. ■

A logarithmic transformation is only one possibility. It is, however, particu-
larly useful because logarithms convert a multiplicative relation to an additive one.

Another transformation that is sometimes useful is an inverse transforma-
tion, 1/y. If, for instance, y is speed in meters per second, then 1/y is time required 
in  seconds per meter. This transformation works well with very severe curvature; 
a  logarithm works well with moderate curvature. Try them both; it is easy with 
a computer package. Another transformation that is particularly useful when a 
dependent  variable increases to a maximum and then decreases, is a quadratic x2 
term. In this transformation, do not replace x by x2; use them both as predictors. 
The same use of both x and x2 works well if a dependent variable decreases to a 
minimum and then increases. A fairly extensive discussion of possible transforma-
tions is found in Tukey (1977).

The remaining material in this section should be considered optional. We will 
use computer software and output to illustrate the fitting of nonlinear models. The 
logic behind what we are doing is the same used in the least-squares method for 
the general linear model; in fact, the procedure is sometimes called nonlinear least 
squares. The sum of squares for error is defined as before,

SS 1Residual 2  a
i

1yi 2 ŷ  i 2 2

The problem is to find a method for obtaining estimates â  1, â  2, . . . that will mini-
mize SS(Residual). The set of simultaneous equations used for finding these esti-
mates is again called the set of normal equations, but unlike least squares for the 
general linear model, the form of the normal equations depends on the form of the 
nonlinear model being used. Also, because the normal equations involve nonlinear 
functions of the parameters, their solutions can be quite complicated. Because of 
this technical difficulty, a number of iterative methods have been developed for 
 obtaining a solution to the normal equations.

nonlinear least 
squares
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For those of you with a background in calculus, the normal equations for a 
nonlinear model involve partial derivatives of the nonlinear function with respect 
to each of the parameters ai. Fortunately, most of the computer software pack-
ages currently marketed (for example, SAS, SPSS, R, and JMP) approximate the 
derivative and do not require one to give the form of the normal equations; only 
the form of the nonlinear equation is needed. We will illustrate this with the data 
from a  previous example.

EXAMPLE 13.12

In Example 13.9, we fit the model y  b0 1 b1x 1 e to the radioimmunoassay 
data. The residual plots from this fit suggested that higher-order terms in x were 
needed in the model. Fit a quadratic model, y  b0 1 b1x 1 b2x

2 1 e, to the data, 
and  assess the fit.

Solution SAS output from fitting the model y  b0 1 b1x 1 b2x
2 1 e is shown 

here. From the residual plot, there appears to be a cyclical pattern in the residuals. 
This would indicate that the quadratic model did not provide an adequate fit and 
hence that an alternative model may be needed. When there is a cyclical pattern in 
the data, polynomial models do not generally provide an adequate fit.

A nonlinear model that may provide a more reasonable fit to the data is the 
following model:

y 
b0 2 b3

1 1 1x /b2 2b1
1 b3

where the parameters have the following interpretations:

b0: value of y at the lower end of the curve

b3: value of y at the upper end of the curve

b1: value of x corresponding to the value of y midway between b0 and b3

b2: a slope-type measure

Regression Analysis: BOUND/FREE COUNT versus DOSE, DOSE_2

The regression equation is
BOUND/FREE COUNT = 2.88 + 17.6 DOSE + 10.7 DOSE_2

Predictor Coef SE Coef T P
Constant 2.884 7.175 0.40 0.698
DOSE 17.58 13.35 1.32 0.225
DOSE_2 10.745 5.144 2.09 0.070

S = 9.418 R-Sq = 95.2% R-Sq(adj) = 94.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 13964.4 6982.2 78.72 0.000
Residual Error 8 709.6 88.7
Total 10 14674.0

Source DF Seq SS
DOSE 1 13577.4
DOSE_2 1 386.9
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EXAMPLE 13.13

Use a nonlinear estimation program to fit the radioimmunoassay data to the model

y 
b0 2 b3

1 1 1x /b2 2b1
1 b3

Solution SAS was used to fit this model to the sample data. As we can see from 
the residual plot, the nonlinear model provides a much better fit to the sample data 
than either the linear or the quadratic model.

NONLINEAR REGRESSION ANALYSIS

DATA LISTING

BOUND/FREE
OBS COUNT DOSE

1 9.900 0.00
2 10.465 0.25
3 10.312 0.50
4 13.633 0.75
5 20.784 1.00
6 36.164 1.25
7 62.045 1.50
8 78.327 1.75
9 90.307 2.00

10 97.348 2.25
11 102.686 2.50

Nonlinear Least Squares Summary Statistics Dependent Variable COUNT

Source DF Sum of Squares Mean Square

Regression 4 40390.959650 10097.739913
Residual 7 9.675063 1.382152
Uncorrected Total 11 40400.634713

(Corrected Total) 10 14673.985182

Parameter Estimate Asymptotic Asymptotic 95%
Std. Error Confidence Interval

Lower Upper
B0 10.3172019 0.6302496017 8.82688647 11.80751738
B1 5.3700868 0.2558475371 4.76509868 5.97507498
B2 1.4863334 0.0154121366 1.44988919 1.52277759
B3 107.3777343 1.7277534567 103.29221381 111.46325486

Asymptotic Correlation Matrix

Corr B0 B1 B2 B3
----------------------------------------------------------------------------

6953271411.07533317134.010B –0.255171767
17533317134.01B –0.514768068 –0.808689153

B2 0.1141723596 – 9053809397.01860867415.0
B3 –0.255171767 – 19053809397.0351986808.0

NOTE: Missing values were generated as a result of performing an operation on
 missing values. Each place is given by (number of times)
 AT (statement)/(line): (column) 4 AT 1/815:16
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We can also use the fitted equation to predict y (count ratio) based on 
 concentration.

 13.4 Checking Model Assumptions (Step 3)

Now that we have identified possible independent variables (step 1) and consid-
ered the form of the multiple regression model (step 2), we should check whether 
the assumptions underlying the chosen model are valid. Recall that in Chapter 12 
we indicated that the basic assumptions for a regression model of the form

yi  b0 1 b1xi1 1 b2xi2 1 c1 bkxik 1 ei

are as follows:

1. Zero expectation: E 1ei 2  0 for all i.
2. Constant variance: V 1ei 2  s2

e for all i.
3. Normality: ei is normally distributed.
4. Independence: The ei are independent.

Note that because the assumptions for multiple regression are written in terms of 
the random errors ei, it would seem reasonable to check the assumptions by using 
the residuals yi 2 ŷ  i, which are estimates of the ei.

The residuals are given by ei  yi 2 ŷ  i and have mean 0 when the model has 
been correctly formulated and variances Var 1ei 2  s2

e 11 2 hii 2 , where hii are the 
diagonal elements of the hat matrix H  X(X9X)21 X9 and the X matrix is from the 
matrix formulation of the regression model as was discussed at the end of Chapter 12.
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The first assumption, zero expectation, deals with model selection and 
whether additional independent variables need to be included in the model. If we 
have done our job in steps 1 and 2, assumption 1 should hold. The use of residual 
plots to check for inadequacy (lack of fit) of the model was discussed briefly in 
Chapter 11 and again in Section 13.3. If we have not done our job in steps 1 and 2, 
then a plot of the residuals should help detect this.

The residuals are standardized so that they have mean 0 and variance 1. The 
first choice of standardization is to divide the residual by se  ËMSR, where MSR 
is the mean square residual from the fitted model. This statistic is referred to as 
the standardized residual: ei/se. The problem with this standardization is that the 
standardized residuals do not have a variance equal to one. Thus, a more appropri-
ate form for the standardization is to use the studentized residuals given by di  
ei /  

seË1 2 hii. The studentized residuals have a mean value of 0 and a variance of 
1. The studentized residuals are available in most statistical software packages. 
Often, subtracting out the predictive part of the data reveals other structure more 
clearly. In particular, plotting the residuals from a first-order (linear terms only) 
model against each independent variable often reveals further structure in the data 
that can be used to improve the regression model.

One possibility is nonlinearity. We discussed nonlinearity and transforma-
tions earlier in the chapter. A noticeable curve in the residuals reflects a curved 
relation in the data, indicating that a different mathematical form for the regres-
sion equation would improve the predictive value of the model. A plot of residu-
als against each independent variable x often reveals this problem. A scatterplot 
smoother, such as LOWESS, can be useful in looking for curves in residual plots. 
For example, Figure 13.4 shows a scatterplot of y against x2 and a residual plot 
against x2. We think that the curved relation is more evident in the residual plot. 
The LOWESS curve helps considerably in both plots.

When nonlinearity is found, try transforming either independent or depen-
dent variables. One standard method for doing this is to use (natural) logarithms 
of all variables except dummy variables. Such a model essentially estimates the 
percentage change in the dependent variable for a small percentage change in an 
independent variable, other independent variables held constant. Other useful 
transformations are logarithms of one or more independent variables only, square 
roots of independent variables, and inverses of the dependent variable or an inde-
pendent variable. With a good computer package, a number of these transforma-
tions can be tested easily.

Assumption 2, the property of constant variance, can be examined using 
residual plots. One of the simplest residual plots for detecting nonconstant variance 
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is a plot of the residuals versus the predicted values, ŷ  i. Most of the available sta-
tistical software systems can provide these plots as part of the regression analysis.

EXAMPLE 13.14

Forest scientists measured the diameters of 30 trees in a South American rain for-
est. The researchers then used carbon dating to determine the ages of the trees. 
The  researchers were interested in determining if the diameter (D) of a tree in cm 
would provide an adequate prediction of the age (A) of the tree in years. The data 
are given in the Table 13.7.

Solution  The model A  b0 1 b1D 1 b2D
2 1 e is fit to the data. As can be seen 

from the Minitab residual plot, the spread in the studentized residuals is generally 
increasing with the magnitudes of the predicted values of age, suggesting possi-
ble nonconstant variance of the studentized residuals. Also, because age is directly 
 related to diameter via the regression model (i.e., age increases with diameter), the 
residuals are increasing with the magnitude of the values for diameter. This type 
of pattern in the residuals suggests that the variance of the eis (and hence the vari-
ance of the ages) is increasing with diameter. The accompanying plot of age versus 
 diameter tends to support this observation.

Regression Analysis: AGE versus DIAMETER, DIA_SQ

The regression equation is
AGE = – 593 + 14.4 DIAMETER – 0.0374 DIA_SQ

Predictor     Coef    SE Coef      T      P
Constant    –592.5      732.2  –0.81  0.425
DIAMETER     14.44      10.50   1.38  0.180
DIA_SQ    –0.03741    0.03667  –1.02  0.317

S = 162.840  R-Sq = 33.4%  R-Sq(adj) = 28.4%

Analysis of Variance

Source          DF        SS      MS      F      P
Regression       2    358414  179207   6.76  0.004
Residual Error  27    715958   26517    
Total           29   1074371

TABLE 13.7
Tree age data Tree Diameter Age Tree Diameter Age Tree Diameter Age

1  91 534 11 130 731 21 160 540
2  94 368 12 137 657 22 161 633
3 100 529 13 140 520 23 165 808
4 109 528 14 142 859 24 166 623
5 114 454 15 146 798 25 174 991
6 120 591 16 147 751 26 180 1,002
7 121 550 17 149 877 27 182 488
8 122 650 18 151 917 28 183 1,209
9 123 516 19 156 898 29 186 594

10 129 579 20 157 594 30 193 705
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In some situations, there may be difficulties in readingresidual plots. In the 
book Transformation and Weighting in Regression (Carroll and Ruppert, 1988), 
it is pointed out that “the usual plots . . . are often sparse and difficult to inter-
pret, particularly when the positive and negative residuals do not appear to exhibit 
the same general pattern. This difficulty is at least partially removed by plotting 
squared residuals . . . and thus visually doubling the sample size.” There are sev-
eral modifications that have been introduced for detecting heteroscedasticity of 
variance. These include plots of the absolute residuals, studentized residuals, and 
standardized residuals. The limitation of all graphical procedures is that they are 
all subjective and thus depend on the user’s ability to differentiate “good” plots 
from “bad” plots. Attempts to remove this subjective nature of plot interpretation 
have resulted in several numerical measures of nonconstant variance. We will dis-
cuss one of these approaches, the Breusch–Pagan (BP) statistic.

The BP statistic tests the hypotheses H0: homogeneous variances versus 
Ha: heterogeneous variances for the regression model. The BP statistic is discussed 
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in greater detail in Applied Linear Regression Models by Kutner, Nachtsheim, and 
Neter (2004). The BP procedure involves the following steps:

 Step 1:  Fit the regression model, yi  b0 1 b1x1i 1 b2x2i 1 . . . 1 bkxki 1 ei, to 
the data, and obtain the residuals, eis, and the sum of squared residu-
als, SS(Residuals).

 Step 2:  Regress ei
2 on the explanatory variables: Fit the model 

ei
2  b0 1 b1x1i 1 b2x2i 1 . . . 1 bkxki1 hi , and obtain  

SS(Regression)*, the  regression sum of squares from fitting  
the model with ei

2 as the  response variable.
 Step 3: Compute the BP statistic:

BP 
SS 1Regression 2* /2
1SS 1Residuals 2 /n 2 2

 where SS (Regression)* is the regression sum of squares from fitting 
the model with ei

2 as the response variable and SS(Residuals) is the 
sum of square residuals from fitting the regression model with y as 
the response variable.

 Step 4:  Reject the null hypothesis of homogeneous variance if BP . x2
a, k,  

the upper a percentile from a squared distribution with degrees of 
freedom k.

Note: The residuals referred to in the BP procedure are the unstandardized residu-
als: ei  yi 2 ŷi.

Warning: The Breusch–Pagan test should be used only after it has been confirmed 
that the residuals have a normal distribution.

EXAMPLE 13.15

Refer to the data of Example 13.14, where the residual plots seemed to indicate a 
violation of the constant variance condition. Apply the Breusch–Pagan test to this 
data set, and determine if there is significant evidence of nonconstant variance.

Solution  We will discuss methods for detecting whether or not the residuals ap-
pear to have a normal distribution at the end of this section. After that discussion, 
we will demonstrate in Example 13.17 that the residuals from the data in Exam-
ple 13.14 appear to have a normal distribution. Thus, we can validly proceed to 
apply the BP test. Minitab output is given here.

Regression Analysis: AGE versus DIAMETER, DIA_SQ

Analysis of Variance

Source          DF        SS      MS      F      P
Regression       2    358414  179207   6.76  0.004
Residual Error  27    715958   26517    
Total           29   1074371
  

Regression Analysis: RESID_SQ versus DIAMETER, DIA_SQ

Analysis of Variance

Source          DF            SS          MS      F      P
Regression       2   12341737513  6170868757   7.62  0.002
Residual Error  27   21859028491   809593648
Total           29   34200766004
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From the first analysis of variance table, we obtain SS(Residual)  715,958, and from 
the second analysis of variance table, we obtain SS(Regression)*  12,341,737,513. 
We then compute

BP 
SS 1Regression 2* /2
1SS 1Residuals 2 /n 2 2 

12,341,737,513 /2
1715,958 /30 2 2  10.83

The critical chi-squared value is x2
a, k  x2

.05, 2  5.99. Because BP  10.83 . 
5.99  x2

.05, 2 we reject H0: homogenous variances and conclude that there is signifi-
cant evidence that there is nonconstant variance in this situation. ■

What are the consequences of having a nonconstant variance problem in a 
regression model? First, if the variance about the regression line is not constant, 
the least-squares estimates may not be as accurate as possible. A technique called 
weighted least squares (see Draper and Smith, 1998) will give more accuracy. Per-
haps more important, however, the weighted least-squares technique improves the 
statistical tests (F and t tests) on model parameters and the interval estimates for 
parameters because they are, in general, based on smaller standard errors.

The more serious pitfall involved with inferences in the presence of noncon-
stant variance seems to be for estimates E(y) and predictions of y. For these infer-
ences, the point estimate y is sound, but the width of the interval may be too large 
or too small depending on whether we’re predicting in a low- or high-variance 
section of the experimental region.

The best remedy for nonconstant variance is to use weighted least squares. 
We will not cover this technique in the text. However, when the nonconstant vari-
ance possesses a pattern related to y, a reexpression (transformation) of y may 
resolve the problem. Several transformations for y were discussed in Chapter 11; 
ones that help to stabilize the variance when there is a pattern to the nonconstant 
variance were discussed in Chapter 8 for the analysis of variance. They can also be 
applied in certain regression situations.

An excellent discussion of transformations is given in the book Introduction 
to Regression Modeling by Abraham and Ledolter (2006). A special class of trans-
formations is called Box–Cox transformations. The general form of the Box–Cox 
transformation is

g 1yi 2  1yl
i 2 1 2 /l

where l is a constant to be determined from the data. From the form of g(yi), we 
can observe the following special cases:

●● If l  1, then no transformation is needed. The original data should 
be modeled.

●● If l  2, then the Box–Cox transformation is the square of the origi-
nal response variable, and yi

2 should be modeled.
●● If l  21, then the Box–Cox transformation is the reciprocal of the 

original response variable, and 1/yi should be modeled.
●● If l  1/2, then the Box–Cox transformation is the reciprocal of the 

original response variable, and Ëyi should be modeled.
●● If l  0, then in the limit as l converges to 0, the Box–Cox transfor-

mation is the natural logarithm of the original response variable, and 
log(yi) should be modeled.

●● If l  21/2, then the Box–Cox transformation is the reciprocal of 
the square root of the original response variable, and 1 /Ëyi should 
be modeled.

weighted least 
squares

Box–Cox
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In the article “An Analysis of Transformation,” Box and Cox (1964) describe a 
process to obtain a sample estimate of l. The steps in their process are as given 
here. Define y 1l2 by

yi
1l2 

1yl
i 2 1 2

l yl21
g

where yg  3wn
i1 yi 41/n is the geometric mean of the values of the response vari-

able, yi. If l  0, then y 1l2 would be undefined. Thus, when l  0, we take its limit-
ing value:

y 1l02  lim 
lS0

yi
1l2  yglog 1 yi 2

where log(yi) is the natural logarithm. To obtain an estimate of l, follow these 
steps:

 Step 1: Select a grid of values for l:

l   22, 21.75, 21.5, 21.25, 21.0, 2.75, 2.5, 2.25, 0, 
.25, .50, .75, 1.0, 1.25, 1.5, 1.75, 2

 Step 2:  For each value of l in the grid, regress y 1l2 on the k explanatory vari-
ables, and obtain the SS(Residual) from the fitted model.

 Step 3:  Take as your value for l that value of l having the smallest value of 
SS(Residual).

EXAMPLE 13.16

Refer to Example 13.15, where we detected a violation of the constant variance 
condition. Determine the Box–Cox transformation for this data set. Regress the 
transformed variable, and determine if there is an improvement of the model fit 
and a reduction in the heterogeneity of the variances.

Solution  Table 13.8 gives the values of MS(Residual) for the various values of l.

From Table 13.8, the value of l that yields the smallest value for MS(Residual) 
is l  2.75. To determine if the transformation yi

2.75  1 /yi
.75 yields an improved 

fit, the model 1 /y.75  b0 1 b1Diameter 1 b2Diameter2 1 e was fit to the data. The 
Minitab package produced the following output.

l MS(Residual) l MS(Residual)

2.00 1,039,501 2.25 556,310
1.75 934,661 2.50 546,340
1.50 847,632 2.75 543,015
1.25 775,501 21.00 546,517
1.00 715,958 21.25 557,276
.75 667,182 21.50 575,994
.50 627,761 21.75 603,686
.25 596,619 22.00 641,736

0 572,976

TABLE 13.8
MS(Residual) as a  

function of l
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Regression Analysis: 1/y^(.75) versus DIAMETER, DIA_SQ

The regression equation is
1/y^(.75) = 111612 + 21.3 DIAMETER - 0.0619 DIA_SQ

Predictor     Coef    SE Coef       T      P
Constant    111612        638  175.03  0.000
DIAMETER    21.271      9.142    2.33  0.028
DIA_SQ    -0.06187    0.03194   -1.94  0.063

S = 141.816  R-Sq = 41.4%  R-Sq(adj) = 37.0%

Analysis of Variance

Source          DF        SS      MS      F      P
Regression       2    383229  191615   9.53  0.001
Residual Error  27    543015   20112    
Total           29    926244

The plot of residuals versus diameter is given below.
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From the residual plot, it would appear that the nonconstant variance pattern that 
was present in the residuals when using the model involving the untransformed age 
variable has been greatly reduced using the transformed age variable. The BP test 
was computed for the transformed data, yielding the following results:

BP 
SS 1Regression 2* /2
1SS 1Residuals 2 /n 2 2 

2,186,828,520 /2
1543,015 /30 2 2  3.34

The critical chi-squared value is x2
a, k  x2

.05, 2  5.99. Because BP  3.34 , 
5.99  x2

.05, 2, we fail to reject H0: homogenous variances and conclude that there 
is not  significant evidence of nonconstant variance in this situation. The Box–Cox 
transformation has eliminated the violation of the constant variance condition. 
Also, the value of R2 has increased from 33.4% from the model using the original 
y values to 41.1% for the model fit using the Box–Cox transformation. ■
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The third assumption for multiple regression is that of normality of the ei. 
Skewness and/or outliers are examples of forms of nonnormality that may be 
detected through the use of certain scatterplots and residual plots.

A plot of the residuals in the form of a histogram or a stem-and-leaf plot 
will help to detect skewness. By assumption, the ei are normally distributed with 
mean 0. If a histogram of the residuals is not symmetrical about 0, some skewness 
is present. For example, the residual plot in Figure 13.5(a) is symmetrical on 0 and 
suggests no skewness. In contrast, the residual plot in Figure 13.5(b) is skewed to 
the right.

Another way to detect nonnormality is through the use of a normal prob-
ability plot of the residuals, as was discussed in Chapter 4. The idea behind the plot 
is that if the residuals are normally distributed, the normal probability plot will be 
approximately a straight line. Most computer packages in statistics offer an option 
to obtain normal probability plots. We’ll use them when needed to do our plots.

EXAMPLE 13.17

Refer to the data in Example 13.14. Use the normal probability plot following to 
determine whether there is evidence that the distribution of the residuals has a 
nonnormal distribution.

probability plot

(b) Middle of
interval Number of observations

2.0 3
1.5 10
1.0 16
  .5 15
  .0 18
  .5 12
1.0 7
1.5 5
2.0 3
2.5 3
3.0 2
3.5 0
4.0 1

(a) Middle of
interval Number of observations

2.0 3
1.5 10
1.0 16
 .5 15
  .0 20
  .5 15
1.0 11
1.5 6
2.0 3
2.5 0
3.0 1

FIGURE 13.5
Top: residuals centered  

on zero; bottom: residuals  
skewed to right
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Solution  The plotted points in the normal probability plot fall very close to the 
straight line. Thus, we can be reasonably assured that the residuals have a normal 
distribution. ■

The presence of one or more outliers is perhaps a more subtle form of non-
normality that may be detected by using a scatterplot and one or more residual 
plots. An outlier is a data point that falls away from the rest of the data. Recall 
from Chapter 11 that we must be concerned about the leverage (x outlier) and 
influence (both x and y outlier) properties of a point. A high influence point may 
seriously distort the regression equation. In addition, some outliers may signal a 
need for taking some action. For example, if a regression analysis indicates that 
the price of a particular parcel of land is very much lower than predicted, that 
parcel may be an excellent purchase. A sales office that has far better results than 
a regression model predicts may have employees who are doing outstanding work 
that can be copied. Conversely, a sales office that has far poorer results than the 
model predicts may have problems. Sometimes it is possible to isolate the reason 
for the outlier; other times it is not. An outlier may arise because an error was 
made in recording the data or in entering it into a computer or because the obser-
vation is obtained under different conditions from the other observations. If such 
a reason can be found, the data entry can be corrected or the point omitted from 
the analysis. If there is no identifiable reason to correct or omit the point, run the 
regression both with and without it to see which results are sensitive to that point. 
No matter what the source or reason for outliers, if they go undetected, they can 
cause serious distortions in a regression equation.

For the linear regression model y  b0 1 b1x 1 e, a scatterplot of y versus 
x will help detect the presence of an outlier. This is shown in Table 13.9 and Fig-
ure 13.6. It certainly appears that the circled data point is an outlier. Computer 
output for a linear fit to the data of Table 13.9 is shown here, along with a residual 
plot and a normal probability plot. Again, the data point corresponding to the sus-
pected  outlier (62, 125) is circled in each plot. The Minitab program produced the 
following analysis.
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Regression Analysis: y versus x

The regression equation is
y = 114 + 4.59 x

Predictor Coef SE Coef T P
Constant 114.36 75.53 1.51 0.161
x 4.595 1.787 2.57 0.028

s = 108.1 R-Sq = 39.8% R-Sq(adj) = 33.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 77201 77201 6.61 0.028
Residual Error 10 116755 11676
Total 11 193956

Obs x y Fit SE Fit Residual Standardized
Residual

1 10.0 120.0 160.3 59.7 –40.3 –0.45
2 20.0 115.0 206.2 45.4 –91.2 –0.93
3 21.0 250.0 210.8 44.2 39.2 0.40
4 27.0 210.0 238.4 37.4 –28.4 –0.28
5 29.0 300.0 247.6 35.5 52.4 0.51
6 33.0 330.0 266.0 32.7 64.0 0.62
7 40.0 295.0 298.1 31.3 –3.1 –0.03
8 44.0 400.0 316.5 32.7 83.5 0.81
9 52.0 380.0 353.3 39.4 26.7 0.27
10 56.0 460.0 371.7 44.2 88.3 0.90
11 62.0 125.0 399.2 52.3 –274.2 –2.90R
12 68.0 510.0 426.8 61.2 83.2 0.93

R denotes an observation with a large standardized residual

Plot of Y*X
Y

X

600

500

400

300

200

100

10 20 30 40 50 60 70

FIGURE 13.6
Scatterplot of the data in Table 13.9

Obs x y

1 10 120
2 20 115
3 21 250
4 27 210
5 29 300
6 33 330
7 40 295
8 44 400
9 52 380

10 56 460
11 62 125
12 68 510

N  12

TABLE 13.9
Listing of data
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This data set helps to illustrate one of the problems in trying to identify out-
liers. Sometimes a single plot is not sufficient. For this example, the scatterplot 
and the probability plot clearly identify the outlier, whereas the residual plot is 
less conclusive because the outlier adversely affects the linear fit to the data by 
pulling the fitted line toward the outlier. This makes some of the other residuals 
larger than they should be. The message is clear: Don’t jump to conclusions without 
 examining the data in several different ways. The problem becomes even more dif-
ficult with multiple regression, where simple scatterplots are not possible.



13.4 Checking Model assumptions (step 3)    757

When we have multiple explanatory variables, it is possible that data points 
having high leverage and/or high influence may not be detected by just plotting 
the data. There are a number of diagnostics that are outputted by most statistical 
software packages. Two of the most commonly used statistics are hii, the diagonal 
elements of the Hat matrix H  X 1X rX 221 X r, and Cook’s D statistic. The values 
of hii are used to determine if the ith observation 1yi, x1i, x2i, . . . , xki 2  has high lever-
age. If hii . 2 1k 1 1 2 /n, then the ith observation is considered high leverage in the 
fit of the regression model. Such an ith observation needs to be identified and then 
given a careful examination to determine if the values of the explanatory variables 
in that observation have been misrecorded or if they are much different than those 
of the remaining n 2 1 observations. A high leverage value may or may not have 
high influence.

Cook’s D statistic attempts to identify observations that have high influence 
by measuring how the deletion of an observation affects the parameter estimates. 
Let b̂ be the estimates of the regression coefficients obtained from the full data set 
and b̂(i) be the vector of estimates of the regression coefficients obtained from the 
data set in which the ith observation has been deleted. Cook’s D statistic measures 
the difference between b̂ and b̂(i). How large must Cook’s D be for an observa-
tion to need to be examined? There is no trigger value as there was in the case of 
hii. The values of Cook’s D should be used to compare the n observations for influ-
ence. Select those observations having the largest value for D. In the literature, it 
is often recommended that if an observation has a value of D greater than 1, then 
this observation demands examination.

EXAMPLE 13.18

An example that has often been used to illustrate the detection of high leverage 
and high influence is the Brownlee’s stack-loss data. The data given below were 
obtained from 21 days of operation of a plant for the oxidation of ammonia to 
nitric acid and are presented in Statistical Theory and Methodology in Science and 
Engineering (Brownlee, 1965). The dependent variable is 10 times the percentage 
of the ingoing ammonia to the plant that escapes unabsorbed. The explanatory 
variables are x1  airflow, x2  cooling water inlet temperature, and x3  acid con-
centration. The data are given in Table 13.10.

Case x1 x2 x3 y Case x1 x2 x3 y

1 80 27 89 42 12 58 17 88 13
2 80 27 88 37 13 58 18 82 11
3 75 25 90 37 14 58 19 93 12
4 62 24 87 28 15 50 18 89 8
5 62 22 87 18 16 50 18 86 7
6 62 23 87 18 17 50 19 72 8
7 62 24 93 19 18 50 19 79 8
8 62 24 93 20 19 50 20 80 9
9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15
11 58 18 89 14

TABLE 13.10
Stack-loss data
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The model y  b0 1 b1x1 1 b2x
2
1 1 b3x2 1 b4x3 1 e was fit to the data, yielding the 

following Minitab output, scatterplot matrix, and residual plots.

Regression Analysis: y versus x1, x2, x3, x1_sq

The regression equation is
y = – 16.4 – 0.17 x1 + 1.26 x2 – 0.093 x3 + 0.00678 x1_sq

Predictor     Coef    SE Coef        T      P    VIF
Constant    –16.35      33.29    –0.49  0.630 
x1          –0.165      1.168    –0.14  0.889  212.6
x2          1.2613     0.3754     3.36  0.004    2.6
x3         –0.0934     0.1762    –0.53  0.603    1.7
x1_sq     0.006784   0.008933     0.76  0.459  207.2

S = 3.28452  R-Sq = 91.7%  R-Sq(adj) = 89.6%

Analysis of Variance

Source          DF         SS       MS      F      P
Regression       4    1896.63   474.16  43.95  0.000 
Residual Error  16     172.61    10.79  
  Lack of Fit   15     172.11    11.47  22.95  0.163      
  Pure Error     1       0.50     0.50
Total           20    2069.24

Unusual Observations

Obs    x1       y     Fit  SE Fit  Residual  St Resid
  4  62.0  28.000  21.623   1.478     6.377      2.17R
 21  70.0  15.000  22.046   1.770    -7.046     -2.55R 

R denotes an observation with a large standardized residual.

 SRES1
 0.95685

 –1.06253
 1.49660
 2.17418

 –0.35564
 –0.77741
 –0.71871
 –0.37030
 –0.92079
 0.66822
 0.90379
 0.99738

 –0.31521
 –0.05511
0.49077

 –0.00516
 –0.62911
 –0.31581
 –0.37705
 0.56698

 –2.54670

Case 
 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

x1
80
80
75
62
62
62
62
62
58
58
58
58
58
58
50
50
50
50
50
56
70

x2
27
27
25
24
22
23
24
24
23
18
18
17
18
19
18
18
19
19
20
20
20

x3
89
88
90
87
87
87
93
93
87
80
89
88
82
93
89
86
72
79
80
82
91

y
42
37
37
28
18
18
19
20
15
14
14
13
11
12
8
7
8
8
9

15
15

 HI1
 0.409572
 0.410937
 0.176019
 0.202615
 0.112237
 0.144365
 0.236391
 0.236391
 0.163108
 0.261592
 0.156344
 0.219303
 0.197933
 0.207790
0.383454

 0.266996
 0.412771
 0.196788
 0.214605
 0.100353
0.290440

 COOK1
 0.127022
 0.157516
 0.095694
 0.240228
 0.003198
 0.020394
 0.031981
 0.008490
 0.033049
 0.031637
 0.030274
 0.055887
 0.004904
 0.000159
0.029959

 0.000002
 0.055639
 0.004887
 0.007769
 0.007172
 0.530949
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An examination of the scatterplot matrix and residual plots reveals a few 
observations that may need further investigation. Cases 4 and 21 have large-in-
magnitude standardized residuals. Cases 1 and 2 are both at the outer edge of val-
ues for all three explanatory variables and may have high leverage. The table of 
values for the leverage values hii and D values reveals that cases 4 and 21 have 
standardized residuals of 2.174 and 22.547, respectively. Both of these values would 
be considered large. The values of hii for cases 1, 2, 4, and 21 are .4095, .4109, .2026, 
and .2904, respectively. Using the criterion hii . 2(k 1 1)/n  2(5)/21  .476, none 
of these values would indicate a concern for high leverage. The case having the 
highest leverage value was case 17: hii  .4128 , .476, and, hence, it should not be 
considered of high leverage. It may be noted that case 17 had the lowest values for 
x1 and x3 and hence placed itself in a corner of the observation space. Next, we will 
examine the values of Cook’s D. The cases with largest values are cases 4 and 21. 



13.4 Checking Model assumptions (step 3)    761

Because neither of these cases had high leverage, their high values of D are due 
to their large standardized residuals. To evaluate the impact of these two cases, the 
regression models were rerun three times first with case 4 deleted, then with case 
21 deleted, and  finally with both cases deleted. The results are summarized in 
Table 13.11.

From Table 13.11, it is obvious that both cases 4 and 21 have a strong influ-
ence on the fit of the regression model. There is a large change in the estimation 
regression coefficients, an increase in R2, and a decrease in MSE when either or 
both of the cases are removed from the data set. The researchers would next have 
to carefully examine the data associated with these two cases and the conditions 
under which the data were collected. A decision to delete one or both of the cases 
would then be made. However, if cases are removed from the data set, it is always 
good practice to include in any papers or reports a listing of these cases and an 
explanation of why they were deleted. ■

If you detect outliers, what should you do with them? Of course, recording 
or transcribing errors should simply be corrected. Sometimes an outlier obviously 
comes from a different population than the other data points. For example, a For-
tune 500 conglomerate firm doesn’t belong in a study of small manufacturers. In 
such situations, the outliers can reasonably be omitted from the data. Unless a 
compelling reason can be found, throwing out a data point is inappropriate.

The final assumption is that the ei are statistically independent and hence 
 uncorrelated. When the time sequence of the observations is known, as is the case 
with time series data, where observations are taken at successive points in time, 
it is possible to construct a plot of the residuals versus time to observe where the 
residuals are serially correlated. If, for example, there is a positive serial corre-
lation, adjacent residuals (in time) tend to be similar; negative serial correlation 
implies that adjacent residuals are dissimilar. These patterns of positive and nega-
tive serial correlation are displayed in Figures 13.7(a) and 13.7(b), respectively. 
Figure 13.7(c) shows a residual plot with no apparent serial correlation.

A formal statistical test for serial correlation is based on the Durbin–Watson 
statistic. Let et denote the residual at time t and n the total number of time points. 
Then the Durbin–Watson test statistic is

d 
gn21

t1 1et11 2 et 2 2

gtet
2

The logic behind this statistic is as follows: If there is a positive serial correlation, 
then successive residuals will be similar and their squared difference, 1et11 2 et 2 2, 

time series

serial correlation

Durbin–Watson  
test statistic

Parameter Estimate All Data w/o Case 4 w/o Case 21 w/o Cases 4, 21

b̂0 216.35 5.84 227.28 24.19
b̂1 2.165 2.871 .2745 2.4557
b̂2 1.2613 .9762 .8018 .4772
b̂3 2.0934 2.0469 2.0672 2.0166
b̂4 .00678 .0127 .00471 .0109

Statistics

R2 91.7% 93.8% 95.0% 97.7%
MSE 10.79 8.11 6.84 3.22

TABLE 13.11
Impact of outliers on  
parameter estimates
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will tend to be smaller than it would be if the residuals were uncorrelated. Similarly, 
if there is a negative serial correlation among the residuals, the squared difference 
of successive residuals will tend to be larger than when no correlation exists.

When there is no serial correlation, the expected value of the Durbin– Watson 
test statistic d is approximately 2.0; positive serial correlation makes d , 2.0 and 
negative serial correlation makes d . 2.0. Although critical values of d have been 
tabulated by Durbin and Watson (1951), values of d less than approximately 1.5 
(or greater than approximately 2.5) lead one to suspect positive (or negative) serial 
correlation.

EXAMPLE 13.19

Sample data corresponding to retail sales for a particular line of personalized com-
puters by month are shown in Table 13.12.

positive and negative 
serial correlation

Residual

0

Time
(a)

Residual

0

Time
(b)

Residual

0

Time
(c)

FIGURE 13.7
(a) Positive serial 

correlation. (b) Negative 
serial correlation.  

(c) No apparent serial 
correlation.

Month, x Sales, y (millions of dollars)  Month, x Sales, y (millions of dollars)

1 6.0  8 8.5
2 6.3  9 9.0
3 6.1 10 8.7
4 6.8 11 7.9
5 7.5 12 8.2
6 8.0 13 8.4
7 8.1 14 9.0

TABLE 13.12
Sales data
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Plot the data. Also plot the residuals by time based on a linear regression equation.
Does there appear to be serial correlation?

Solution  It is clear from the scatterplot of the sample data and from the residual 
plot of the linear regression that serial correlation is present in the data.

OBS MONTH COMPUTER SALES
SALE (MILLIONS OF DOLLARS)

1 1 6.0
2 2 6.3
3 3 6.1
4 4 6.8
5 5 7.5
6 6 8.0
7 7 8.1
8 8 8.5
9 9 9.0

10 10 8.7
11 11 7.9
12 12 8.2
13 13 8.4
14 14 9.0

Dependent Variables: Y SALES (MILLIONS OF DOLLARS)

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 10.57540 10.57540 34.302 0.0001
Error 12 3.69960 0.30830
C Total 13 14.27500

Root MSE 0.55525 R-square 0.7408
Dep Mean 7.75000 Adj R-sq 0.7192
C.V. 7.16449

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 6.132967 0.31344787 19.566 0.0001
X 1 0.215604 0.03681259 5.857 0.0001

Variable
Variable DF Label

INTERCEP 1 Intercept
X 1 MONTH

Durbin-Watson D 0.625
(For Number of Obs.) 14
1st Order Autocorrelation 0.668
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EXAMPLE 13.20

Determine the value of the Durbin–Watson statistic for the data of Example 13.19. 
Does it confirm the impressions you obtained from the plots?
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Solution  Based on the output of Example 13.19, we find d  .625. Because this 
value is much less than 1.5, we have evidence of positive serial correlation; the re
sidual plot bears this out. ■

If serial correlation is suspected, then the proposed multiple regression 
model is inappropriate, and some alternative must be sought. A study of the many 
approaches to analyzing time series data where the errors are not independent can 
consume many years; hence, we cannot expect to solve many of these problems 
within the confines of this text. We will, however, suggest a simplified regression 
approach, based on first differences, which may alleviate the problem.

Regression based on first differences is simple to use and, as might be 
expected, is only a crude approach to the problem of serial correlation. For a sim
ple linear regression of y on x, we compute the differences yt 2 yt21 and xt 2 xt21. A 
regression of the n 2 1 y differences on the corresponding n 2 1 x differences may 
eliminate the serial correlation. If not, you should consult someone more familiar 
with analyzing time series data.

The residual plots that we have discussed can be useful in diagnosing prob
lems in fitting regression models to data. Unfortunately however, they, too, can be 
misleading because the residuals are subject to random variation. Some research
ers have suggested that it is better to use ‘‘standardized’’ residuals to detect prob
lems with a fitted regression model.

If the software package you use works with standardized residuals, you can 
replace plots of the ordinary residuals with plots of the standardized residuals to 
perform the diagnostic evaluation of the fit of a regression model. In theory, these 
standardized residuals have a mean of 0 and a standard deviation of 1. Large resi
duals would be ones with an absolute value of, say, 3 or more.

 13.5 ReseaRch study: construction costs  
for Nuclear Power Plants

One of the major issues confronting power companies in seeking alternatives to 
fossil fuels the need to forecast the costs of constructing nuclear power plants. 
The data documenting the construction costs of 32 light water reactor (LWR) 
nuclear power plants, constructed in late 1960s and early 1970s, along with infor
mation on the construction of the plants and specific characteristics of each power 
plant are presented in Table 13.13. The research goal is to determine which of the 
explanatory variables are most strongly related to the capital cost of the plant. 
If a reasonable model can be produced from these data, then the construction 
costs of new plants meeting specified characteristics can be predicted. Because of 
the resistance of the public and politicians to the construction of nuclear power 
plants, there is only a limited amount of data associated with new construction. 
The data set provided by Cox and Snell (1981) has only n  32 plants along with 10 
explanatory variables. The book Introduction to Regression Modeling (Abraham 
and Ledolter, 2006) provides a detailed analysis of this data set. We will docu
ment some of the steps needed to build a model and then assess its usefulness in 
predicting the cost of construction of specific types of nuclear power plants. This 
is a relatively small data set (n  32) especially considering the large number of 
explanatory variables (k  10).
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The columns are identified according to the following notation:

C Cost in dollars 3 1026, adjusted to 1976 base
D Date construction permit issues (year. proportion of year)
T1 Time between application for and issue of permit
T2 Time between issue of operating license and construction permit
S Power plant net capacity (MWe)
PR Prior existence of an LWR on same site (1)
NE Plant constructed in northeast region of USA (1)
CT Use of cooling tower (1)
BW Nuclear steam supply system manufactured by Babcock–Wilcox (1)
N  Cumulative number of power plants constructed by each architect– 

engineer
PT Partial turnkey plant (1)

TABLE 13.13
Power plant construction costs data

Plant C D T1 T2 S PR NE CT BW N PT

1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1,065 0 0 1 0 1 0
3 443.22 67.33 10 85 1,065 1 0 1 0 1 0
4 652.32 68 11 67 1,065 0 1 1 0 12 0
5 642.23 68 11 78 1,065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0
11 350.63 68.58 12 64 560 0 0 0 0 3 0
12 402.59 68.75 13 47 790 0 1 0 0 6 0
13 412.18 68.42 15 62 530 0 0 1 0 2 0
14 495.58 68.92 17 52 1,050 0 0 0 0 7 0
15 394.36 68.92 13 65 850 0 0 0 1 16 0
16 423.32 68.42 11 67 778 0 0 0 0 3 0
17 712.27 69.5 18 60 845 0 1 0 0 17 0
18 289.66 68.42 15 76 530 1 0 1 0 2 0
19 881.24 69.17 15 67 1,090 0 0 0 0 1 0
20 490.88 68.92 16 59 1,050 1 0 0 0 8 0
21 567.79 68.75 11 70 913 0 0 1 1 15 0
22 665.99 70.92 22 57 828 1 1 0 0 20 0
23 621.45 69.67 16 59 786 0 0 1 0 18 0
24 608.8 70.08 19 58 821 1 0 0 0 3 0
25 473.64 70.42 19 44 538 0 0 1 0 19 0
26 697.14 71.08 20 57 1,130 0 0 1 0 21 0
27 207.51 67.25 13 63 745 0 0 0 0 8 1
28 288.48 67.17 9 48 821 0 0 1 0 7 1
29 284.88 67.83 12 63 886 0 0 0 1 11 1
30 280.36 67.83 12 71 886 1 0 0 1 11 1
31 217.38 67.25 13 72 745 1 0 0 0 8 1
32 270.71 67.83 7 80 886 1 0 0 1 11 1

Source: Cox and Snell (1981)
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Analyzing the data
A preliminary analysis of the data and economic theory indicates that the variation 
in cost should increase with the value of the cost variable. This theory along with 
the data plots suggests that the log-transformation of cost (LNC  log(C)) yields a 
response variable that is more likely to satisfy the model conditions required for a 
regression analysis. A scatterplot matrix is given here.

5.5 6.0 6.5 10 15 20 500 750 1,000
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Matrix plot of LNC, D, T1, T2, S, N

6.5
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750
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From the plot, there appears to be a strong correlation between several of the 
explanatory variables. In particular, D and T1 appear to have a strong positive rela-
tionship and T1 and T2 appear to have a negative relationship. Because of the concern 
about the impact of collinearity on the fitted regression line, the correlation between 
the explanatory variables is given here. Note that the correlations are not computed 
with the variables PR, NE, CT, BW, and PT. all of these variables are indicator vari-
ables and their correlation with the other variables would not be meaningful.

Correlations: D, T1, T2, S, N

          D      T1      T2      S
T1    0.858
T2   –0.404  –0.474
S     0.020  –0.094   0.313
N     0.549   0.400  –0.228  0.193

From the above matrix, the only pair of variables that would indicate a poten-
tial problem is (T1, D), which has a correlation of .858. This value is just below 
our threshold value of .90, and, hence, both variables will be kept in the model. 
The above matrix does not detect correlations between various linear com-
binations of the variables. The following SAS output for the model of LNC 
regressed on the 10 explanatory variables includes values for VIF, studentized 
residuals, and Cook’s D. 
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Dependent Variable: LNC

Analysis of Variance

Source

Model

Error

Corrected Total

Root MSE

Dependent

Coeff Var

DF

10

21

31

Mean

Sum of
Squares

3.82363

0.60443

4.42806

0.16965

6.06718

2.79626

Mean
Square

0.38236

0.02878

R-Square

Adj R-Sq

F Value

13.28

0.8635

0.7985

Pr > F

<.000l

Parameter Estimates

Variable

Intercept

D

T1

T2

S

PR

NE

CT

BW

N

PT

DF

1

1

1

1

1

1

1

1

1

1

1

Parameter
Estimate

-10.63398

0.22760

0.00525

0.00561

0.00088369

-0.10813

0.25949

0.11554

0.03680

-0.01203

-0.22197

Standard
Error

5.71026

0.08656

0.02230

0.00460

0.00018115

0.08351

0.07925

0.07027

0.10627

0.00783

0.13042

Variance
Inflation

0

8.31830

6.08159

2.45712

1.26727

1.66568

1.30924

1.32422

1.91292

2.64429

2.88092

t Value

-1.86

2.63

0.24

1.22

4.88

-1.29

3.27

1.64

0.35

-1.54

-1.70

0.0766

0.0157

0.8161

0.2360

<.0001

0.2094

0.0036

0.1150

0.7326

0.1394

0.1035

Pr > |t|

Dependent
 Variable

 6.1313
 6.1159
 6.0941
 6.4805
 6.4649
 5.8447
 5.6072
 5.7596
 6.1249
 6.5370
 5.8597
 5.9979
 6.0215
 6.2057
 5.9773
 6.0481
 6.5685
 5.6687
 6.7813
 6.1962
 6.3418
 6.5013
 6.4321
 6.4115
 6.1604
 6.5470
 5.3352
 5.6646
 5.6521
 5.6361
 5.3816
 5.6010

 Predicted
 Value

  6.0046
 6.1968
 6.1560
 6.4481
 6.4017
 5.9721
 5.8912
 5.7346
 5.8837
 6.4667
 5.8555
 6.2308
 5.9247
 6.2768
 6.0805
 6.0233
 6.4170
 5.8950
 6.5148
 6.1906
 6.2426
 6.5851
 6.2315
 6.3226
 6.1026
 6.8301
 5.4338
 5.5053
 5.6859
 5.6226
 5.3762
 5.6468

Std Error
Mean Predict

  0.0918
 0.0870
 0.0968
 0.0885
 0.1035
 0.0976
 0.0794
 0.0822
 0.0946
 0.1278
 0.0919
 0.0940
 0.0832
 0.0912
 0.1075
 0.0872
 0.0979
 0.1019
 0.1047
 0.0871
 0.0981
 0.1098
 0.0812
 0.1030
 0.1053
 0.1163
 0.1055
 0.1282
 0.0960
 0.0923
 0.1000
 0.1259

Residual

  0.1268
 -0.0809
 -0.0619
 0.0324
 0.0633

 -0.1274
 -0.2840
 0.0250
 0.2412
 0.0702

 0.004216
 -0.2329
 0.0968

 -0.0711
 -0.1032
 0.0248
 0.1515

 -0.2263
 0.2665

 0.005567
 0.0992

 -0.0839
 0.2006
 0.0889
 0.0578

 -0.2831
 -0.0987
 0.1594

 -0.0338
 0.0134

 0.005483
 -0.0458

 Std Error
 Residual

  0.143
 0.146
 0.139
 0.145
 0.134
 0.139
 0.150
 0.148
 0.141
 0.112
 0.143
 0.141
 0.148
 0.143
 0.131
 0.146
 0.139
 0.136
 0.134
 0.146
 0.138
 0.129
 0.149
 0.135
 0.133
 0.124
 0.133
 0.111
 0.140
 0.142
 0.137
 0.114

 Student
 Residual

  0.889
 -0.556
 -0.444
 0.224
 0.471
 -0.918
 -1.894
 0.168
 1.713
 0.629
 0.0296
 -1.649
 0.654
 -0.497
 -0.786
 0.171
 1.093
 -1.669
 1.996
 0.0382
 0.716
 -0.649
 1.347
 0.660
 0.435
 -2.292
 -0.743
 1.435
 -0.242
 0.0944
 0.0400
 -0.403

Cook's
 D

 0.030
 0.010
 0.009
 0.002
 0.012
 0.038
0.091
 0.001
 0.120
 0.047
 0.000
 0.110
 0.012
 0.009
 0.038
 0.001
 0.054
 0.143
 0.223
 0.000
 0,023
 0.028
 0.049
 0.023
 0.011
 0.423
 0.032
 0.249
 0.003
 0.000
 0.000
 0.018

 

Obs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
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The values of VIF range from 1.3 to 8.3. Thus, no value is above 10, the value 
that would indicate a potential collinearity problem. Based on the scatterplot 
matrix, the values of the correlations, and the values of VIF, there does not appear 
to be any indication of collinearity. From the previous output, there is an indica-
tion of an outlier. The observation associated with plant 26 has a relatively large 
standardized residual, 22.292. However, the value of Cook’s D is just .423, which 
would indicate that this observation does not have undue influence on the overall 
regression model.

The following output contains the results of fitting all possible regressions. Only 
the best (in terms of R2) four models of each size, k, are displayed. There are sub-
stantial differences among the fits of the models with k  1, 2, 3, and 4 variables. The 
maximum R2

adj were .436, .631, .733, and .781 for k  1, 2, 3, and 4,  respectively. For 
the models with k $ 5  variables in the model, the difference in maximum R2

adj is 
much smaller, ranging from .798 for k  5 to .815 for k  8. For k  5, the variables 
D, S, NE, CT, and PT yielded a model with R 2

adj  .798 and s2  .0289. For k  6, the 
variables D, S, NE, CT, N, and PT yielded a model with R 2

adj  .807 and s2  .0276. 
The two models are not very different with respect to these two measures. For the 
models with more than seven variables, there is very little increase in R2

adj or decrease 
in s2. Thus, in terms of fit, the five-variable model with variables D, S, NE, CT, and 
PT provides nearly as good a fit as any of the models with six or more variables. 
An examination of the Mallow Cp values yields the following conclusions. The best 
five-variable model, k  5, has Cp  6.06 < k 1 1.  For models with k , 5, the Cp 
value associated with the best model of each size is larger than the desired value of 
k 1 1. For example, with k  4, Cp  7.30 . 5  k 1 1. For models with k . 5, the 
Cp value associated with the best model of each size is smaller than the desired value 
of k 1 1. For example, the best six-variable model, k  6, has Cp  5.97, which is less 
than k 1 1  7.

Number in
 Model 

  
  1
  1
  1
  1

R-Square 
  
  0.4545
  0.3958
  0.2064
  0.1963

    C(p) 
  
 55.9169
 64.9572
 94.0922
 95.6423

     MSE 
  
 0.08051
 0.08918
 0.11714
 0.11862

Variables in Model 
  
PT
D
T1
S

Adjusted
R-Square 
  
  0.4364
  0.3756
  0.1799
  0.1695

--------------------------------------------------------------------------------------
  2
  2
  2
  2

  0.6552
  0.5814
  0.5656
  0.5530

 27.0471
 38.4031
 40.8243
 42.7701

 0.05265
 0.06392
 0.06632
 0.06825

S PT
D S
D PT
N PT

 13.1611
 19.5836
 20.7990
 22.3210

 0.03820
 0.04480
 0.04605
 0.04762

D S PT
T1 S PT
S N PT
S NE PT

  7.2969
 11.5221
 14.3043
 14.4112

 0.03123
 0.03574
 0.03870
 0.03882

D S NE PT
D S CT PT
D T2 S PT
T1 S NE PT

  6.0598
  7.4447
  8.0448
  8.4660

 0.02885
 0.03038
 0.03105
 0.03151

D S NE CT PT
D T2 S NE PT
D S NE CT N
D S NE N PT 

  5.9732
  6.9822
  7.1098
  7.6115

 0.02760
 0.02876
 0.02891
 0.02949

D S NE CT N PT
D T2 S NE CT PT
D T2 S PR NE PT
D S NE CT BW PT

  7.0461
  7.1232
  7.3459
  7.5058

 0.02764
 0.02773
 0.02800
 0.02819

D S NE CT BW N PT
D T2 S NE CT N PT
D S PR NE CT N PT
D T2 S PR NE CT PT

  7.1296
  8.4922
  8.6813
  8.9809

 0.02644
 0.02815
 0.02838
 0.02876

D T2 S PR NE CT N PT
D S PR NE CT BW N PT
D T2 S NE CT BW N PT
D T1 T2 S NE CT N PT

  9.0555
  9.1199
 10.4884
 10.6766

 0.02755
 0.02763
 0.02942
 0.02967

D T2 S PR NE CT BW N PT
D T1 T2 S PR NE CT N PT
D T1 S PR NE CT BW N PT
D T1 T2 S NE CT BW N PT

  0.6314
  0.5525
  0.5357
  0.5222

--------------------------------------------------------------------------------------
  3
  3
  3
  3

  0.7585
  0.7167
  0.7088
  0.6989

  0.7326
  0.6864
  0.6776
  0.6667

--------------------------------------------------------------------------------------
  4
  4
  4
  4

  0.8096
  0.7821
  0.7640
  0.7633

  0.7814
  0.7498
  0.7291
  0.7283

--------------------------------------------------------------------------------------
  5
  5
  5
  5

  0.8306
  0.8216
  0.8177
  0.8150

  0.7980
  0.7873
  0.7827
  0.7794

--------------------------------------------------------------------------------------
  6
  6
  6
  6

  0.8442
  0.8376
  0.8368
  0.8335

  0.8068
  0.7986
  0.7676
  0.7936

--------------------------------------------------------------------------------------
  7
  7
  7
  7

  0.8502
  0.8497
  0.8483
  0.8472

  0.8065
  0.8059
  0.8040
  0.8026

--------------------------------------------------------------------------------------
  8
  8
  8
  8

  0.8627
  0.8538
  0.8526
  0.8506

  0.8149
  0.8029
  0.8013
  0.7987

--------------------------------------------------------------------------------------
  9
  9
  9
  9

  0.8631
  0.8627
  0.8538
  0.8526

  0.8072
  0.8066
  0.7940
  0.7923

 10   0.8635  11.0000 0.02878 D T1 T2 S PR NE CT BW N PT  0.7985
--------------------------------------------------------------------------------------

       Dependent Variable: LNC

       R-Square Selection Method

Number of Observations Read          32
Number of Observations Used          32
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Number in
 Model 

  
  1
  1
  1
  1

R-Square 
  
  0.4545
  0.3958
  0.2064
  0.1963

    C(p) 
  
 55.9169
 64.9572
 94.0922
 95.6423

     MSE 
  
 0.08051
 0.08918
 0.11714
 0.11862

Variables in Model 
  
PT
D
T1
S

Adjusted
R-Square 
  
  0.4364
  0.3756
  0.1799
  0.1695

--------------------------------------------------------------------------------------
  2
  2
  2
  2

  0.6552
  0.5814
  0.5656
  0.5530

 27.0471
 38.4031
 40.8243
 42.7701

 0.05265
 0.06392
 0.06632
 0.06825

S PT
D S
D PT
N PT

 13.1611
 19.5836
 20.7990
 22.3210

 0.03820
 0.04480
 0.04605
 0.04762

D S PT
T1 S PT
S N PT
S NE PT

  7.2969
 11.5221
 14.3043
 14.4112

 0.03123
 0.03574
 0.03870
 0.03882

D S NE PT
D S CT PT
D T2 S PT
T1 S NE PT

  6.0598
  7.4447
  8.0448
  8.4660

 0.02885
 0.03038
 0.03105
 0.03151

D S NE CT PT
D T2 S NE PT
D S NE CT N
D S NE N PT 

  5.9732
  6.9822
  7.1098
  7.6115

 0.02760
 0.02876
 0.02891
 0.02949

D S NE CT N PT
D T2 S NE CT PT
D T2 S PR NE PT
D S NE CT BW PT

  7.0461
  7.1232
  7.3459
  7.5058

 0.02764
 0.02773
 0.02800
 0.02819

D S NE CT BW N PT
D T2 S NE CT N PT
D S PR NE CT N PT
D T2 S PR NE CT PT

  7.1296
  8.4922
  8.6813
  8.9809

 0.02644
 0.02815
 0.02838
 0.02876

D T2 S PR NE CT N PT
D S PR NE CT BW N PT
D T2 S NE CT BW N PT
D T1 T2 S NE CT N PT

  9.0555
  9.1199
 10.4884
 10.6766

 0.02755
 0.02763
 0.02942
 0.02967

D T2 S PR NE CT BW N PT
D T1 T2 S PR NE CT N PT
D T1 S PR NE CT BW N PT
D T1 T2 S NE CT BW N PT

  0.6314
  0.5525
  0.5357
  0.5222

--------------------------------------------------------------------------------------
  3
  3
  3
  3

  0.7585
  0.7167
  0.7088
  0.6989

  0.7326
  0.6864
  0.6776
  0.6667

--------------------------------------------------------------------------------------
  4
  4
  4
  4

  0.8096
  0.7821
  0.7640
  0.7633

  0.7814
  0.7498
  0.7291
  0.7283

--------------------------------------------------------------------------------------
  5
  5
  5
  5

  0.8306
  0.8216
  0.8177
  0.8150

  0.7980
  0.7873
  0.7827
  0.7794

--------------------------------------------------------------------------------------
  6
  6
  6
  6

  0.8442
  0.8376
  0.8368
  0.8335

  0.8068
  0.7986
  0.7676
  0.7936

--------------------------------------------------------------------------------------
  7
  7
  7
  7

  0.8502
  0.8497
  0.8483
  0.8472

  0.8065
  0.8059
  0.8040
  0.8026

--------------------------------------------------------------------------------------
  8
  8
  8
  8

  0.8627
  0.8538
  0.8526
  0.8506

  0.8149
  0.8029
  0.8013
  0.7987

--------------------------------------------------------------------------------------
  9
  9
  9
  9

  0.8631
  0.8627
  0.8538
  0.8526

  0.8072
  0.8066
  0.7940
  0.7923

 10   0.8635  11.0000 0.02878 D T1 T2 S PR NE CT BW N PT  0.7985
--------------------------------------------------------------------------------------

       Dependent Variable: LNC

       R-Square Selection Method

Number of Observations Read          32
Number of Observations Used          32

Based on the analysis given above, the model LNC  b0 1 b1D 1 b2S 1 b3NE 1
b4CT 1 b5PT 1 e was fit to the data, yielding the following plots and summary 
 information.

Dependent Variable: LNC

Analysis of Variance

         Sum of       Mean
Source                      DF         Squares     Square      F Value    Pr > F
Model                        5         3.67800    0.73560        25.50    <.0001
Error                       26         0.75007    0.02885
Corrected Total             31         4.42806

Root MSE                  0.16985   R-Square   0.8306
Dependent Mean            6.06718   Adj R-Sq   0.7980
Coeff Var                 2.79948

Parameter Estimates

Variable     DF
Intercept     1
D             1
S             1
NE            1
CT            1
PT            1

 Parameter
Estimate
-5.40584
 0.15640

 0.00086741
 0.19735
 0.11542
 -0.34777

Standard
Error

2.45673
0.03560

 0.00016128
0.07233
0.06423
0.09648

t Value
-2.20
4.39
5.38
2.73
1.80

-3.60

Pr > |t|
0.0369

 0.0002
 <.0001
 0.0113
 0.0839
 0.0013

Variance
Inflation

 0
 1.40405
 1.00220
 1.08796
 1.10370
 1.57282

Output Statistics

Dependent
 Variable
 6.1313
 6.1159
 6.0941
 6.4805
 6.4649
 5.8447
 5.6072
 5.7596
 6.1249
 6.5370
 5.8597
 5.9979
 6.0215
 6.2057
 5.9773
 6.0481
 6.5685
 5.6687
 6.7813
 6.1962
 6.3418
 6.5013
 6.4321
 6.4115
 6.1604
 6.5470
 5.3352
 5.6646
 5.6521
 5.6361
 5.3816
 5.6010

 Predicted
 Value

 6.1133
 6.1637
 6.1637
 6.4659
 6.4659
 5.9754
 5.9689
 5.6914
 6.0080
 6.2807
 5.8058
 6.2292
 5.8701
 6.2840
 6.1105
 5.9698
 6.3942
 5.8701
 6.3578
 6.2840
 6.2540
 6.6016
 6.2877
 6.2668
 6.1899
 6.8066
 5.4105
 5.5793
 5.6235
 5.6235
 5.4105
 5.6235

Std Error
Mean Predict

 0.0719
 0.0813
 0.0813
 0.0807
 0.0807
 0.0875
 0.0573
 0.0786
 0.0532
 0.0686
 0.0659
 0.0682
 0.0724
 0.0615
 0.0492
 0.0536
 0.0709
 0.0724
 0.0656
 0.0615
 0.0548
 0.0982
 0.0647
 0.0619
 0.0959
 0.1107
 0.0723
 0.0870
 0.0713
 0.0713
 0.0723
 0.0713

Residual
 0.0181

 -0.0479
 -0.0697
 0.0147

 -0.000926
 -0.1307
 -0.3617
 0.0682
 0.1169
 0.2563
 0.0540

 -0.2313
 0.1513

 -0.0783
 -0.1332
 0.0783
 0.1742

 -0.2014
 0.4236

 -0.0878
 0.0878

 -0.1003
 0.1444
 0.1447

 -0.0294
 -0.2596
 -0.0753
 0.0853
 0.0286
 0.0126

 -0.0288
 -0.0224

 Std Error
 Residual

 0.154
 0.149
 0.149
 0.149
 0.149
 0.146
 0.160
 0.151
 0.161
 0.155
 0.157
 0.156
 0.154
 0.158
 0.163
 0.161
 0.154
 0.154
 0.157
 0.158
 0.161
 0.139
 0.157
 0.158
 0.140
 0.129
 0.154
 0.146
 0.154
0.154

 0.154
 0.154

 Student
 Residual

 0.117
 -0.321
 -0.467
 0.0981
 -0.0062
 -0.898
 -2.263
 0.453
 0.725
 1.649
 0.345

 -1.487
 0.985

 -0.494
 -0.820
 0.486
 1.129

 -1.311
 2.703

 -0.554
 0.546

 -0.724
 0.919
 0.915

 -0.210
 -2.016
 -0.490
 0.585
 0.185

 0.0817
 -0.187
 -0.145

Cook's
 D

 0.001
 0.005
 0.011
 0.000
 0.000
 0.048
 0.110
 0.009
 0.010
 0.088
 0.004
 0.071
 0.036
 0.006
 0.010
 0.004
 0.045
 0.064
 0.213
 0.008
 0.006
 0.044
 0.024
 0.021
 0.003
 0.500
 0.009
 0.020
 0.001
 0.000
 0.001
 0.001

 

Obs
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
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25
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28
29
30
31
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Dependent Variable: LNC

Analysis of Variance

         Sum of       Mean
Source                      DF         Squares     Square      F Value    Pr > F
Model                        5         3.67800    0.73560        25.50    <.0001
Error                       26         0.75007    0.02885
Corrected Total             31         4.42806

Root MSE                  0.16985   R-Square   0.8306
Dependent Mean            6.06718   Adj R-Sq   0.7980
Coeff Var                 2.79948

Parameter Estimates

Variable     DF
Intercept     1
D             1
S             1
NE            1
CT            1
PT            1

 Parameter
Estimate
-5.40584
 0.15640

 0.00086741
 0.19735
 0.11542

 -0.34777

Standard
Error

2.45673
0.03560

 0.00016128
0.07233
0.06423
0.09648

t Value
-2.20
4.39
5.38
2.73
1.80

-3.60

Pr > |t|
0.0369

 0.0002
 <.0001
 0.0113
 0.0839
 0.0013

Variance
Inflation

 0
 1.40405
 1.00220
 1.08796
 1.10370
 1.57282

Output Statistics

Dependent
 Variable

 6.1313
 6.1159
 6.0941
 6.4805
 6.4649
 5.8447
 5.6072
 5.7596
 6.1249
 6.5370
 5.8597
 5.9979
 6.0215
 6.2057
 5.9773
 6.0481
 6.5685
 5.6687
 6.7813
 6.1962
 6.3418
 6.5013
 6.4321
 6.4115
 6.1604
 6.5470
 5.3352
 5.6646
 5.6521
 5.6361
 5.3816
 5.6010

 Predicted
 Value

 6.1133
 6.1637
 6.1637
 6.4659
 6.4659
 5.9754
 5.9689
 5.6914
 6.0080
 6.2807
 5.8058
 6.2292
 5.8701
 6.2840
 6.1105
 5.9698
 6.3942
 5.8701
 6.3578
 6.2840
 6.2540
 6.6016
 6.2877
 6.2668
 6.1899
 6.8066
 5.4105
 5.5793
 5.6235
 5.6235
 5.4105
 5.6235

Std Error
Mean Predict

 0.0719
 0.0813
 0.0813
 0.0807
 0.0807
 0.0875
 0.0573
 0.0786
 0.0532
 0.0686
 0.0659
 0.0682
 0.0724
 0.0615
 0.0492
 0.0536
 0.0709
 0.0724
 0.0656
 0.0615
 0.0548
 0.0982
 0.0647
 0.0619
 0.0959
 0.1107
 0.0723
 0.0870
 0.0713
 0.0713
 0.0723
 0.0713

Residual
 0.0181

 -0.0479
 -0.0697
 0.0147

 -0.000926
 -0.1307
 -0.3617
 0.0682
 0.1169
 0.2563
 0.0540

 -0.2313
 0.1513

 -0.0783
 -0.1332
 0.0783
 0.1742

 -0.2014
 0.4236

 -0.0878
 0.0878

 -0.1003
 0.1444
 0.1447

 -0.0294
 -0.2596
 -0.0753
 0.0853
 0.0286
 0.0126

 -0.0288
 -0.0224

 Std Error
 Residual

 0.154
 0.149
 0.149
 0.149
 0.149
 0.146
 0.160
 0.151
 0.161
 0.155
 0.157
 0.156
 0.154
 0.158
 0.163
 0.161
 0.154
 0.154
 0.157
 0.158
 0.161
 0.139
 0.157
 0.158
 0.140
 0.129
 0.154
 0.146
 0.154
0.154

 0.154
 0.154

 Student
 Residual

 0.117
 -0.321
 -0.467
 0.0981

 -0.0062
 -0.898
 -2.263
 0.453
 0.725
 1.649
 0.345

 -1.487
 0.985

 -0.494
 -0.820
 0.486
 1.129

 -1.311
 2.703

 -0.554
 0.546

 -0.724
 0.919
 0.915

 -0.210
 -2.016
 -0.490
 0.585
 0.185

 0.0817
 -0.187
 -0.145

Cook's
 D

 0.001
 0.005
 0.011
 0.000
 0.000
 0.048
 0.110
 0.009
 0.010
 0.088
 0.004
 0.071
 0.036
 0.006
 0.010
 0.004
 0.045
 0.064
 0.213
 0.008
 0.006
 0.044
 0.024
 0.021
 0.003
 0.500
 0.009
 0.020
 0.001
 0.000
 0.001
 0.001

 

Obs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

 -2-1 0 1 2
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 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
 |
 |
 |
 |
 |
 |
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There are three plants that have somewhat large studentized residuals: 
plants 7, 19, and 26. However, Cook’s D for the three plants is .110, .213, and 
.500. Therefore, the observations from these three plants do not have a large 
influence on the overall fit of the model. An assessment of the residuals from 
this model does not indicate the need for any higher-order or interaction terms 
in the five variables. The normal probability plot and a plot of residuals versus ŷ  
are given here.
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From the plots, there is no indication of a violation of the normality condition. 
There appears to be somewhat of an increase in the variance of the residuals for 
increasing values of the fitted values. However, the Breusch–Pagan test has a value of 
5.61, which has a p-value of .23 in testing the null hypothesis of homogeneity of the 
variance. Thus, the constant variance condition does not appear to be violated. There 
is not apparent spatial or temporal ordering in the data, so it is not appropriate to test 
for serial correlation. Finally, the least-squares model computed from the data is

 ŷ  25.40584 1 .15640D 1 .00086741S 1 .19735NE

                          1 .11542CT 2 .34777PT

Predicted construction costs can be computed from this equation, provided the 
values of D, S, NE, CT, and PT for the proposed plant fall within the space of these 
variables for the 32 plants used in the study. A more crucial conclusion from this 
study is the identification of those explanatory variables that most closely relate to 
construction costs. These variables can be used in planning the costs of construct-
ing future plants.

 13.6 Summary and Key Formulas

This key chapter presents some of the practical problems associated with multiple 
regression problems. Step 1 of the process is to decide on the dependent variable 
and a set of candidate independent variables for inclusion in the model. We dis-
cussed the invaluable nature of information from an expert in the subject matter 
field and the utility of some of the best subset regression techniques for choosing 
which variables to include in the model.

Step 2 involves the actual polynomial form of the particular multiple regres-
sion equation. In particular, attention should be paid to the lack of fit of a proposed 
model to the data collected on the dependent and independent variables of inter-
est. A formal test for lack of fit of a polynomial model is possible where there are 
repetitions of observations at one or more settings of the independent variables. 
Lack of fit can also be examined using residual plots.
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Following steps 1 and 2 as we’ve discussed them can sometimes be a prob-
lem depending on the data that are available. For example, if data are available 
on many variables at the time that the multiple regression model is being for-
mulated, then consultation with experts and application of one (or more) of the 
best subset regression techniques can be useful in culling the list of potential 
independent variables (step 1). The regression model is then modified in step 
2 based on the discussions and analyses of step 1. Sometimes, however, data 
are not available on many possible independent variables. For these situations, 
step 1 consists of discussions with experts to determine which variables may be 
important predictors; data are then gathered on these variables. After the data 
are obtained on these candidate independent variables, the subset regression 
techniques and the model formulation techniques of step 2 can be applied to 
refine the model.

The final step of the multiple regression problem is to check the underlying 
assumptions of multiple regression: zero expectation, constant variance, normality, 
and independence. Although some formal tests were presented, violation of the 
 assumption is checked best by closely examining the data using scatterplots, various 
residual plots, and normal probability plots. The more experience one gains in 
 examining and interpreting data with these plots, the better will be the resulting 
 regression equations.

Key Formulas
1. CP statistic

CP 
SS 1Residual 2p

s2
e

2 1n 2 2p 2

2. AIC statistic

AICk  nloge(SS(Residual) /n) 1 2k

3. BIC statistic

BICk   nloge(SS(Residual) /n) 1 kloge(n)

4. Backward elimination

Fj 
SSRj 2 SSR

MS 1Residual 2 ,  j  1, 2, . . .

5. Durbin–Watson statistic

d 
gn21

t1 1et11 2 et 2 2

g te
2
t

 13.7 Exercises

 13.2 Selecting the Variables (Step 1)
 Edu. 13.1 A recent lawsuit addressed the issue of whether student-athletes should receive a stipend 

above the costs of tuition and room and board to compensate them for the enormous amounts 
of money generated by university athletic departments using the student-athletes’ images in 
video games and other such products.  The NCAA wants to examine the economic feasibility 
of this added expense of intercollegiate athletics for the universities under its jurisdiction. 
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What explanatory variables  would be useful in predicting whether universities would be able 
to support this added expense? It may be useful to have several dummy variables in your 
model.

 H.R. 13.2  A large computer software firm wants to evaluate its employees’ satisfaction with the im-
mediate supervisors. A survey is to be designed to make this assessment. The company wants to 
relate the overall rating of the performance of the supervisor, as ascertained from a survey ques-
tion,  to explanatory variables that can be obtained from questions in the survey and the employ-
ees’ personnel files. What questions would you include in the survey? What personal information 
about the employees would be pertinent? Propose a model that would use the information ob-
tained from and about each employee to predict the employee’s satisfaction with their supervisor.

 Soc. 13.3  A sociologist is studying what factors may affect whether college students would support 
new laws that would make it a crime for students to purchase papers from the Internet and then 
turn in the papers as their own work. A random sample of 45 students at a large state university 
is interviewed and asked to provide a measure of their strength of support for criminalizing the 
purchase of term papers. A CRIME score from 0 to 25 is obtained from each student, with 0 
being totally opposed to criminal penalties and 25 being totally in favor of criminal penalties. 
Information on the following explanatory variables was also obtained from each student: age of 
student (A), number of years of college (C), income of parents (I) (in $1,000), and gender (G) 
(0  female).

    The data are shown here:

Stu CRIME A C I G Stu CRIME A C I G

 1  2 16 2 83 1 24  0 32 4 72 1
2  0 18 2 92 1 25  3 32 4 75 1
3  3 18 2 95 1 26  0 31 4 77 0
4  9 18 2 81 0 27  8 30 4 66 1
5  6 19 2 85 1 28 11 29 4 55 0
6  6 19 2 90 1 29 13 29 4 52 0
7  7 20 2 98 1 30 15 28 4 50 0
8  9 19 2 96 0 31 17 27 4 49 0
9 13 18 2 73 0 32 18 26 4 48 0

10 12 19 2 76 0 33 20 25 4 45 0
11  9 19 2 79 1 34 16 24 3 53 0
12 12 20 2 75 0 35 18 23 3 46 0
13 12 21 2 80 0 36 16 23 3 48 1
14 11 20 2 72 0 37 15 22 3 58 0
15 11 24 3 74 0 38 21 22 3 44 0
16 12 25 3 75 0 39 19 22 3 48 0
17  9 25 3 75 1 40 17 21 3 49 1
18  9 27 4 76 1 41 14 21 2 55 1
19 11 28 4 72 0 42 15 20 2 53 0
20  5 38 4 79 0 43 19 19 2 47 0
21  0 29 4 83 1 44 18 21 3 44 0
22  6 30 4 75 1 45 10 21 2 73 1
23  2 31 4 79 0

 a. Are there any collinearity problems based on the above data?
 b.  Use the output from a best subset regression software program to determine which  

explanatory variables should be included in the model.
 c.  What other explanatory variables may have been related to the response variable 

CRIME?
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  13.4  Refer to Exercise 13.3. Use the output from a stepwise regression software program to 
determine which explanatory variables should be included in the model. Compare the results of 
your conclusions from the stepwise program to your results from the best subset program.

 Bus. 13.5  A supermarket chain staged a promotion for organic vegetables. The actual sales (Sales) 
of organic vegetables for the weekend of the promotion were obtained from scanner data at the 
checkout. Three explanatory variables under consideration for modeling SALES were the size of 
the store (SqFeet) (in thousands of square feet), the number of customers processed in the store 
(NumCusts) (in hundreds), and the average size of purchase (AvgSize), which was also obtained 
from the scanner data. A scatterplot matrix is shown here.
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 a. Is there any evidence of collinearity in the scatterplots?
 b. Does the scatterplot matrix reveal any other problems associated with the data?
 c. What other diagnostics of collinearity would you suggest for this problem?

 Engin. 13.6  The basic process of making paper has not changed in more than 2,000 years. It involves 
two stages: the breaking up of raw material in water to form a suspension of individual fibers and 
the formation of felted sheets by spreading this suspension on a suitable porous surface, through 
which excess water can drain. Most paper is made from wood pulp that has been bleached with 
chlorine. This bleaching takes place for two reasons: to remove the last traces of a material called 
lignin from the raw pulp in order to make the paper stronger and to create a brilliant white writing 
surface. Chlorine is an ideal chemical for these tasks, but unfortunately its use in paper mills also 
results in a wide variety of toxic substances being released into the environment. Studies have 
been conducted to determine which factors in the paper process are most highly correlated with 
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the brightness of finished paper. The article “Advantages of CE-HDP Bleaching for High Bright-
ness Kraft Pulp production” [Tappi (1964) 47:170A–175A] contains the following data on these 
variables: y  brightness of finished paper, x1  hydrogen peroxide (% by weight), x2  sodium 
hydroxide (% by weight), x3  silicate (% by weight), and x4  process temperature (in °F). There 
were 31 runs in the study.

Run x1 x2 x3 x4 y Run x1 x2 x3 x4 y

1 .2 .2 1.5 145 83.9 17 .1 .3 2.5 160 82.9
2 .4 .2 1.5 145 84.9 18 .5 .3 2.5 160 85.5
3 .2 .4 1.5 145 83.4 19 .3 .1 2.5 160 85.2
4 .4 .4 3.5 145 84.2 20 .3 .5 2.5 160 84.5
5 .2 .2 3.5 145 83.8 21 .3 .3 2.5 160 84.7
6 .4 .2 3.5 145 84.7 22 .3 .3 2.5 160 85.0
7 .2 .4 3.5 145 84.0 23 .3 .3 2.5 160 84.9
8 .4 .4 1.5 175 84.8 24 .3 .3 2.5 160 84.0
9 .2 .2 1.5 175 84.5 25 .3 .3 2.5 160 84.5

10 .4 .2 1.5 175 86.0 26 .3 .3 2.5 160 84.7
11 .2 .4 1.5 175 82.6 27 .3 .3 2.5 160 84.6
12 .4 .4 3.5 175 85.1 28 .3 .3 2.5 160 84.9
13 .2 .2 3.5 175 84.5 29 .3 .3 2.5 160 84.9
14 .4 .2 3.5 175 86.0 30 .3 .3 2.5 160 84.5
15 .2 .4 3.5 175 84.0 31 .3 .3 2.5 160 84.6
16 .4 .4 3.5 175 85.4

 a.  Use scatterplots and VIF to determine if there is evidence of collinearity in the 
 explanatory variables.

 b.  This was a designed experiment with nonrandom explanatory variables. Was it  
really necessary to investigate collinearity in this type of study?

 c.  Use a variable selection procedure with minimum BIC as the criterion to formulate 
a model.

 d.  Use a variable selection procedure with maximum R2
adj as the criterion to formulate 

a model.
 e. Compare the results of parts (c) and (d).

  13.7  Refer to Exercise 13.6. Include the square of each of the explanatory variables and all 
cross-product terms in your model selection procedure.

 a.  Use a variable selection procedure with maximum BIC R2
adj as the criterion to for-

mulate a model.
 b. Use a variable selection procedure Cp as the criterion to formulate a model.
 c.  Use a variable selection procedure with minimum BIC statistic as the criterion to 

formulate a model.
 d.  Compare the included terms from the models formulated with the three criteria in 

parts (a)–(c).

 13.3 Formulating the Model (Step 2)
 Ag. 13.8  The cotton aphid is pale to dark green in cool seasons and yellow in hot, dry summers. 

Generally distributed throughout temperate, subtropic, and tropic zones, the cotton aphid occurs 
in all cotton-producing areas of the world. These insects congregate on lower leaf surfaces and 
on terminal buds, extracting plant sap. If weather is cool during the spring, populations of natural 
enemies will be slow in building up, and heavy infestations of aphids may result. When this occurs, 
leaves begin to curl and pucker; seedling plants become stunted and may die. Most aphid damage 
is of this type. If honeydew resulting from late-season aphid infestations falls onto open cotton, 
it can act as a growing medium for sooty mold. Cotton stained by this black fungus is reduced  
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in quality and brings a low price for the grower. Entomologists studied the aphids to determine 
weather conditions that may result in increased aphid density on cotton plants. The following 
data were reported in Statistics and Data Analysis (Peck, Olson, and Devore, 2005) and come 
from an extensive study as reported in the article “Estimation of the Economic Threshold of 
 Infestation for Cotton Aphid” [Mesopotamia Journal of Agriculture (1982): 10, 71–75]. In the 
following table,

   y  infestation rate (aphids/100 leaves)
  x1  mean temperature (°C)
  x2  mean relative humidity

Field y x1 x2 Field y x1 x2

  1  61 21.0 57.0 18  25 33.5 18.5
  2  77 24.8 48.0 19  67 33.0 24.5
  3  87 28.3 41.5 20  40 34.5 16.0
  4  93 26.0 56.0 21   6 34.3  6.0
  5  98 27.5 58.0 22  21 34.3 26.0
  6 100 27.1 31.0 23  18 33.0 21.0
  7 104 26.8 36.5 24  23 26.5 26.0
  8 118 29.0 41.0 25  42 32.0 28.0
  9 102 28.3 40.0 26  56 27.3 24.5
 10  74 34.0 25.0 27  60 27.8 39.0
 11  63 30.5 34.0 28  59 25.8 29.0
 12  43 28.3 13.0 29  82 25.0 41.0
 13  27 30.8 37.0 30  89 18.5 53.5
 14  19 31.0 19.0 31  77 26.0 51.0
 15  14 33.6 20.0 32 102 19.0 48.0
 16  23 31.8 17.0 33 108 18.0 70.0
 17  30 31.3 21.0 34  97 16.3 79.5

 a. Fit the model y  b0 1 b1x1 1 b2x2 1 e  to the aphid data.
 b.  Use residual plots, tests of hypotheses, and other diagnostic statistics to identify 

possible additional terms to add to the model fit in part (a).

  13.9  Refer to Exercise 13.8.
 a.  Fit the model y  b0 1 b1x1 1 b2x2 1 b3x1

2 1 b4x2
2 1 b5x1x2 1 e  to the aphid 

data.
 b.  Compare the fit of the linear model from Exercise 13.8 to the fully quadratic 

model fit in part (a) of this exercise.
 c.  Use residual plots, tests of hypotheses, and other diagnostic statistics to identify  

possible additional terms to add to the model fit in part (a).

  13.10  Refer to Exercise 13.9.
 a.  What is the incremental increase to R2 for the model of Exercise 13.8 as opposed 

to the model considered in part (a) of Exercise 13.9?
 b.  Is this incremental increase statistically significant as measured by an F test at 

a  .05?

  13.11  Refer to Exercise 13.8.
 a.  Take as the response variable ty  log(y), the natural logarithm of the aphid 

count. Fit the model ty  b0 1 b1x1 1 b2x2 1 e  to the aphid data.
 b.  Compare the fit of the quadratic model from Exercise 13.9 to the linear model fit 

in part (a) of this exercise.
 c.  Can we validly compare the R2

adj values from these two models? Justify your  
answer.
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 Bus. 13.12  A business analyst at a major real estate firm wants to build a regression model that will 
predict the price of a single-family home based on a number of explanatory variables. The real 
estate firm’s data base has an enormous amount of information on selling prices of homes and 
potential variables that are related to that price. After a number of discussions with experienced 
realtors, you decide to model price of a home as a function of the following variables: size of home 
in terms of floor space, lot size, number of bathrooms, number of bedrooms, age of home, garage 
size, number of months home has been on the market, distance to nearest elementary school, type 
of neighborhood, traffic volume on street, and racial mixture of neighborhood.

 a.  Would you expect any of these variables to be highly correlated?
 b.  How would you determine if there was a high correlation?
 c.  What impact would a high correlation between independent variables have on the 

fitted regression?

  13.13  Refer to Exercise 13.12. The analyst proposed the following variable to describe the type 
of roof on the home: 

  RoofType  d

 3 if roof has asphalt shingles
 2 if roof has metal shingles
 1 if roof has cedar shingles
 0 otherwise

 a. Discuss any problems with this variable.
 b.  How could type of roof be included in the model so as not to pose the problems 

associated with the above definition.

  13.14  Refer to Exercise 13.12. The realtors informed the analyst that the relation between sell-
ing price and age of home could vary greatly depending on the type of roof. What terms would 
need to be included in the regression model in order to be able to evaluate whether the relation 
between selling price and age of home varies depending on the type of roof?

  13.15  Refer to Exercise 13.12. The realtors suspect that the impact on selling price of  increasing 
age of home is itself increasing. That is, there is little difference in the selling prices of homes with 
age = 1 year to 10 years, but a larger decrease for homes from 11 years to 20 years old, a very large 
decrease for homes from 21 to 30 years old, and so on.

 a.  What terms would be needed in the regression model to evaluate whether the  
realtors’ suspicion is valid?

 b.  If the realtors’ suspicion is true, what type of pattern would you expect to see in a 
plot of the residuals versus age of home from a regression model having just a first 
order term in age of home?

  13.16  Refer to Exercise 13.12. After assembling the data set and fitting the regression model 
to the data, the analyst realizes that a number of the homes appear in the data set multiple times 
because the data set contains the selling price of homes over the past 20 years and a number of the 
homes had been sold multiple times. What types of problems would this cause in the regression 
model, and how could these problems be addressed?

 Ag. 13.17  Hops originate from the flowers of Humulus lupulus and are used primarily as a fla-
voring and stability agent in beer. Hops have several characteristics that are very favorable to 
beer: Hops contribute a bitterness that balances the sweetness of the malt, hops can contribute 
aromas, and hops have an antibiotic effect that favors the activity of brewer’s yeast over less 
desirable  microorganisms. The bitterness level of a particular hop variety is measured in percent 
alpha acid by weight. The higher the percentage, the more bitter the hop in direct proportion. 
Alpha acids are now the accepted method in the brewing industry for assessing the quality of 
hops. The European Brewery Company carried out trials in six countries on four varieties of 
hops to determine if the mean temperature and mean duration of sunshine between the date 
of the flower coming into hop and the date of picking (the critical dates) have an impact on 
the alpha acid content of hops. The following data were reported by Smith in the article “The 
Influence of Temperature and Sunshine on the Alpha-Acid Content of Hops” [Agricultural Meteo-
rology (1974) 13:375–382]. The variables in the following table are P (alpha acid %), T (mean 
temperature, °C), and S (mean sunshine, h/day), where the means are over the critical dates. 
There were four varieties of hops  included in the study.
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 Variety of Hops

 Fuggle Northern Brewer Hallertau Saaz

Field P T S Field P T S Field P T S Field P T S

1 7.2 16.7 4.4  1 12.1 16.8 4.4  1 5.5 16.5 4.4  1 6.8 16.7 4.4
2 5.8 17.4 5.8  2 10.7 17.0 6.2  2 5.3 17.1 5.8  2 4.9 18.5 7.5
3 5.7 17.1 5.9  3 10.6 17.9 5.9  3 4.7 18.4 7.0  3 4.7 18.1 7.8
4 5.5 18.9 6.2  4 10.2 18.0 7.7  4 4.6 17.4 5.8  4 4.6 17.1 5.7
5 5.2 17.7 6.6  5  9.6 18.0 6.9  5 4.5 18.3 7.5  5 4.1 18.7 7.1
6 5.1 18.4 6.9  6  9.1 21.3 6.1  6 4.4 18.6 7.5  6 3.9 17.9 5.9
7 4.8 16.8 6.9  7  8.8 18.5 7.2  7 4.0 19.3 6.7  7 3.8 19.1 7.1
8 4.8 18.2 6.2  8  8.8 19.1 6.5  8 3.8 19.2 6.5  8 3.5 21.4 5.9
9 4.8 20.7 8.4  9  8.1 19.9 8.5  9 3.2 21.4 6.1  9 3.4 19.0 7.6

10 4.7 21.3 6.2 10  8.0 19.1 6.6 10 3.3 20.6 8.7 10 3.1 17.7 7.1
11 4.3 21.2 7.4 11  7.6 21.1 7.3 11 3.0 19.8 8.5 11 3.0 20.9 7.8
12 3.7 17.3 6.9 12  6.4 17.4 6.9 12 2.9 21.2 7.9 12 2.7 19.0 8.8
13 3.2 18.5 8.6 13  5.8 19.2 8.4 13 2.8 17.3 6.9 13 2.5 20.1 8.5

    
 a.  Fit the model P  b0 1 b1T 1 b2S 1 e to the hops data with a separate equation 

for each variety.
 b.  Use residual plots, tests of hypotheses, and other diagnostic statistics to identify 

 possible additional terms to add to the four models fit in part (a).

  13.18  Refer to Exercise 13.17.
 a.  Using an indicator variable, fit a single model to the hops data for varieties Fuggle 

and Northern Brewer.
 b.  Using your results from part (a), obtain separate prediction equations for varieties 

Fuggle and Northern Brewer.
 c.  Interpret the values of the coefficients (bs) in the model.
 d.  Using your prediction equations in part (b), estimate the mean alpha acid percent-

age when the atmospheric conditions are a mean temperature of 19°C and a mean 
sunshine of 6.5. How different are the two estimates?

 e.  Place 95% confidence intervals on your estimates.

  13.19  Refer to Exercise 13.17.
 a.  Using an indicator variable, fit a single model to the hops data for varieties Hallertau 

and Saaz.
 b.  Using your results from part (a), obtain separate prediction equations for varieties 

Hallertau and Saaz.
 c.  Interpret the values of the coefficients (bs) in the model.
 d.  Using your prediction equations in part (b), estimate the mean alpha acid percent-

age when the atmospheric conditions are a mean temperature of 19°C and a mean 
sunshine of 6.5. How different are the two estimates?

 e. Place 95% confidence intervals on your estimates.

  13.20  Refer to Exercise 13.17.
 a.  Using the model fit in part (a) of Exercise 13.18, is there significant evidence 

(a  .05) that the mean sunshine partial slope coefficients are different?
 b.  Using the model fit in part (a) of Exercise 13.19, is there significant  

evidence (a  .05) that the mean temperature partial slope coefficients  
are different?

 c. Interpret the values of the coefficients (bs) in the model.
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 Bus. 13.21  A supermarket chain analyzed data on sales of a particular brand of snack cracker at 
104 stores in the chain for a certain 1-week period. The analyst tried to predict sales based on 
the total sales of all brands in the snack cracker category, the price charged for the particular 
brand in question, and whether or not there was a promotion for a competing brand at a given 
store (promotion  1 if there was such a promotion, 0 if not). (There were no promotions 
for the brand in question.) A portion of the JMP multiple regression output is shown in the 
figure.

 a. Interpret the coefficient of the promotion variable.
 b.  Should a promotion by a competing product increase or decrease sales of the 

brand in question? According to the coefficient, does it?
 c. Is the coefficient significantly different from 0 at usual a values?
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  13.22  Refer to Exercise 13.21. How accurately can sales be predicted for a particular week, with 
95% confidence?

 Bus. 13.23 Refer to Exercise 13.21. An additional regression model for the snack cracker data is 
run, incorporating products of the promotion variable with price and with category sales. The 
output for this model is given in the figure. What effect do the product term coefficients have 
in predicting sales when there is a promotion by a competing brand? In particular, do these 
coefficients affect the intercept of the model or the slopes?
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 13.4 Checking Model Assumptions (Step 3)
  13.24  Several different patterns of residuals are shown in the following plots. Indicate whether 

the plot suggests a problem, and, if so, indicate the potential problem and a possible solution.
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 Bus. 13.25  The book Small Data Sets reports on an article by Kadiyala, “Testing for the  Independence 
of Regression Disturbances” [Econometrica (1970) 38:97–117]. This article contains  information on 
ice cream consumption over 30 4-week periods from March through July. The  researchers were 
interested in determining what explanatory variables impacted the level of  consumption. The 
variables considered in the study are

     y, ice cream consumption, pints per capita x1, price of ice cream, $ per pint
     x2, weekly family income, $ x3, mean temperature, °F

 a.  Fit the model y  b0 1 b1x1 1 b2x2 1 b3x3 1 e  to the ice cream data. Is there 
evidence in the residual plots of serial correlation?

 b.  Perform a Durbin–Watson test for serial correlation. Does the test confirm your 
observations from the residual plots?

  13.26  Refer to Exercise 13.25. Form first differences in the data and then regress the y differences  
on the x differences.

Period y x1 x2 x3 Period y x1 x2 x3

1 .386 .270 78 41 16 .381 .287 82 63
2 .374 .282 79 56 17 .470 .280 80 72
3 .393 .277 81 63 18 .443 .277 78 72
4 .425 .280 80 68 19 .386 .277 84 67
5 .406 .272 76 69 20 .342 .277 86 60
6 .344 .262 78 65 21 .319 .292 85 44
7 .327 .275 82 61 22 .307 .287 87 40
8 .288 .267 79 47 23 .284 .277 94 32
9 .269 .265 76 32 24 .326 .285 92 27

10 .256 .277 79 24 25 .309 .282 95 28
11 .286 .282 82 28 26 .359 .265 96 33
12 .298 .270 85 26 27 .376 .265 94 41
13 .329 .272 86 32 28 .416 .265 96 52
14 .318 .287 83 40 29 .437 .268 91 64
15 .381 .277 84 55 30 .548 .260 90 71
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 a. Is there evidence in the residual plots of serial correlation?
 b.  Perform a Durbin–Watson test for serial correlation. Does the test confirm your 

 observations from the residual plots?

  13.27  Refer to the crime data in Exercise 13.3. Obtain the residuals from the model you 
 selected in Exercise 13.3.

 a. Is there evidence in the residuals of a violation of the normality condition?
 b.  Is there evidence in the residual plots of a violation of the constant variance  condition?
 c.  Perform a BP test for constant variance. Does the test agree with your observations 

in part (a)?
 d. Determine the appropriate Box–Cox transformation for this data.

  13.28  Refer to the papermaking data in Exercise 13.6. Obtain the residuals from the model you 
selected in Exercise 13.6.

 a. Is there evidence in the residuals of a violation of the normality condition?
 b.  Is there evidence in the residual plots of a violation of the constant variance  condition?
 c.  Perform a BP test for constant variance. Does the test agree with your observa-

tions in part (a)?
 d. Determine the appropriate Box–Cox transformation for these data.

  13.29  Refer to the aphid data in Exercise 13.8. Obtain the residuals from the model you 
 selected in Exercise 13.9.

 a. Is there evidence in the residuals of a violation of the normality condition?
 b.  Is there evidence in the residual plots of a violation of the constant variance  condition?
 c.  Perform a BP test for constant variance. Does the test agree with your observations  

in part (a)?
 d. Determine the appropriate Box–Cox transformation for these data.

  13.30  Refer to the hops data in Exercise 13.17. Obtain the residuals from each of the four models  
you selected in Exercise 13.17.

 a. Is there evidence in the residuals of a violation of the normality condition?
 b.  Is there evidence in the residual plots of a violation of the constant variance  condition?
 c.  Perform a BP test for constant variance. Does the test agree with your observations  

in part (a)?
 d. Determine the appropriate Box–Cox transformation for these data.

 Soc. 13.31  A researcher in the social sciences examined the relationship between the rate (per 
1,000) of nonviolent crimes y based on the rate of nonviolent crimes 5 years ago x1 and the pres-
ent unemployment rate x2 for cities. Data from 20 different cities are shown here.

PRESENT RATE PRESENT
CITY RATE 5 YEARS UNEMPLOYMENT

AGO RATE

1 13 14 5.1
2 8 10 2.7
3 14 16 4.0
4 10 10 3.4
5 12 16 3.1
6 11 12 4.3
7 7 8 3.8
8 6 7 3.2
9 10 12 3.2

10 16 20 4.1
11 16 14 5.9
12 9 10 4.0
13 11 10 4.1
14 18 20 5.0
15 9 13 3.1
16 10 6 6.3
17 15 10 5.7
18 14 14 5.2
19 17 16 4.9
20 6 8 3.0
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 a. Determine the fit to the model

              y  b0 1 b1x1 1 b2x2 1 b3x1x2 1 e

 b.  Examine the assumptions underlying the regression model. Discuss whether the 
 assumptions appear to hold. If they don’t, suggest possible remedies.

  13.32  Refer to Exercise 13.31. Predict the present crime rate for a city having a crime rate of 
9 (per 1,000) 5 years ago and an unemployment rate of 16%. Might there be a problem with this 
prediction? If so, why?

  13.33  Estimates (ŷs) and residuals from a securities firm’s regression model for the prediction of 
earnings per share (per quarter) are shown here for 25 different high-technology companies. Is there 
any evidence that the assumptions have been violated? Are any additional tests or plots warranted?
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Supplementary Exercises
 Sci. 13.34 A construction science researcher is interested in evaluating the relationship between energy 

consumption by the homeowner and the difference between the internal and external temperatures. 
There were 30 homes used in the study. During an extended period of time, the  average temperature 
difference (in °F) inside and outside the homes was recorded. The average energy consumption was 
also recorded for each home. The data are given here with y  energy consumption and x  mean 
temperature difference. Plot the data and suggest a polynomial model  between y and x.

 y 16  12   7 40  26  33  98 105  65 130  90 109 101 118 123

 x  1   1   1  3   3   3   6   6   6   9   9   9  12  12  12

 y 99 113 105 90 109 115 134 105 129 119 133  99 195 149 160

 x 15  15  15 18  18  18  21  21  21  24  24  24  30  30  30

  13.35  Refer to the data of Exercise 13.34.
 a.  Fit a cubic model y  b0 1 b1x 1 b2x

2 1 b3x
3 1 e.

 b. Test for lack of fit of the model at the a  .05 level.
 c. Evaluate the normality and constant variance assumptions.

  13.36  Refer to Exercise 13.34. As happens in many studies, not all the data are correctly collected. 
The researcher decides that errors are present in the information collected at several of the homes. 
After eliminating the questionable data values, the data appropriate for modeling are given here.

 y 16  12   7  40  26  33 105  65 130 101 118 123

 x  1   1   1   3   3   3   6   6   9  12  12  12

 y 99 113 105 109 115 134 105 133  99 195 149 160

 x 15  15  15  18  18  21  21  24  24  30  30  30

 a.  Fit a cubic model y  b0 1 b1x 1 b2x
2 1 b3x

3 1 e  to the reduced data set.
 b. Compare the fit of the model in Exercise 13.35 to the fit of the model in part (a).
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 Med. 13.37  A pharmaceutical firm wanted to obtain information on the relationship between the 
dose level of a drug product and its potency. To do this, each of 15 test tubes was inoculated with 
a virus culture and incubated for 5 days at 30°C. Three test tubes were randomly assigned to each 
of the five different dose levels to be investigated (2, 4, 8, 16, and 32 mg). Each tube was injected 
with only one dose level, and the response of interest (a measure of the protective strength of the 
product against the virus culture) was obtained. The data are given here.

Dose Level Response

  2     5, 7, 3
  4 10, 12, 14
  8 15, 17, 18
 16 20, 21, 19
 32 23, 24, 29

 a. Plot the data.
 b. Fit both a linear and a quadratic model to these data.
 c. Which model seems more appropriate?

 Med. 13.38  Refer to Exercise 13.37. A logarithmic transformation of the dose levels will often result 
in a linear relation with the response, y. Let d be the dose level of the drug and x = loge(d). Which 
of the following three models seems the most appropriate? Justify your answer.

   Model 1: y  bo 1 b1d 1 e

  Model 2: y  bo 1 b1d 1 b2d
2 1 e

  Model 3: y  bo 1 b1x 1 e

 Med. 13.39 The following example is from the book Residuals and Influence in Regression (Cook and 
Weisberg, 1982). An experiment was conducted to investigate the amount of drug that is 
 retained in the liver of a rat. In the experiment, rats were injected with a dose of a drug that 
was  approximately proportional to the body weight of the rat. The amount of the drug injected 
into the rat was determined as approximately 40 mg of the drug per kilogram of body weight. 
After a set  period of time, the rat was sacrificed, the animal’s liver was weighed, and the frac-
tion of the drug  recovered in the liver was recorded. The experimenters wanted to relate the 
proportion of the drug in the rat’s liver, y, to the explanatory variables: the body weight of the 
rat (gm), x1: liver weight of the rat (gm), x2: and relative dose level of the drug injected into the 
rat, x3. The data are given here.

Case x1    x2 x3 y Case x1 x2 x3 y

  1 176    6.5  .88 .42 11 158 6.9 .80 .27
  2 176    9.5  .88 .25 12 148 7.3 .74 .36
  3 190    9.0 1.00 .56 13 149 5.2 .75 .21
  4 176    8.9  .88 .23 14 163 8.4 .81 .28
  5 200    7.2 1.00 .23 15 170 7.2 .85 .34
  6 167    8.9  .83 .32 16 186 6.8 .94 .28
  7 188    8.0  .94 .37 17 146 7.3 .73 .30
  8 195 10  .98 .41 18 181 9.0 .90 .37
  9 176    8.0  .88 .33 19 149 6.4 .75 .46
 10 165    7.9  .84 .38

 a. Is there a problem with collinearity amongst the explanatory variables?
 b.  Fit the model y  b0 1 b1x1 1 b2x2 1 b3x3 1 e  to the data. Evaluate the fit of this 

model.
 c.  Is it possible to obtain essentially the same degree of fit as in part (b) using a 

model without some of the explanatory variables? Which subset of the variables 
yields the best fit?
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  13.40  Refer to Exercise 13.39.
 a. Are there any influential or leverage data values in the rat data?
 b.  Remove case 3 from the data set and repeat parts (b) and (c) from Exercise 13.39. 

Did removing case 3 greatly change your answers?
 c. Why do you think case 3 had such a large impact on the modeling?

 Engin. 13.41   The abrasive effect of a wear tester on a particular fabric was measured while the machine 
was run at six different speeds. Forty-eight identical 5-inch-square pieces of fabric were cut, with eight 
squares randomly assigned to each of the six machine speeds: 100, 120, 140, 160, 180, and 200 revolu-
tions per minute (rev/min). The order of assignment of the squares to the machines was random, with 
each square tested for a 3-minute period at the appropriate machine setting. The amount of wear was 
measured and recorded for each square. The data appear in the accompanying table.

 a. Plot the six mean wear values versus machine speed and suggest a model.
 b. Fit the suggested model to the data.
 c.  Suggest which residual plots might be useful in checking the assumptions 

underlying the model.

 Machine Speed
 (rev/min) Wear

 100 23.0, 23.5, 24.4, 25.2, 25.6, 26.1, 24.8, 25.6
 120 26.7, 26.1, 25.8, 26.3, 27.2, 27.9, 28.3, 27.4
 140 28.0, 28.4, 27.0, 28.8, 29.8, 29.4, 28.7, 29.3
 160 32.7, 32.1, 31.9, 33.0, 33.5, 33.7, 34.0, 32.5
 180 43.1, 41.7, 42.4, 42.1, 43.5, 43.8, 44.2, 43.6
 200 54.2, 43.7, 53.1, 53.8, 55.6, 55.9, 54.7, 54.5

  13.42  Refer to Exercise 13.41. Perform a test for lack of fit on the model you fit in Exercise 13.41.

  13.43  Refer to the data of Exercise 13.41. Suppose that another variable was controlled, that the 
first four squares at each speed were treated with a .2 concentration of protective coating, and that 
the second four squares were treated with a .4 concentration of the same coating. Given that x1 de-
notes the machine speed and x2 denotes the concentration of the protective coating, fit these models:

     y  b0 1 b1x1 1 b2x1
2 1 b3x2 1 e

     y  b0 1 b1x1 1 b2x1
2 1 b3x2 1 b4x1x2 1 b5x1

2x2 1 e

 Engin. 13.44  A laundry detergent manufacturer wished to test a new product prior to market release. 
One area of concern was the relationship between the height of the detergent suds in a washing 
machine as a function of the amount of detergent added and the degree of agitation in the wash 
cycle. For a standard size washing machine tub filled to the full level, random assignments of dif-
ferent agitation levels (measured in minutes) and amounts of detergent were made and tested on 
the washing machine. The data are shown in the accompanying table.

 a. Plot the data and suggest a model.
 b. Does the assumption of normality appear to hold?
 c. Fit an appropriate model.
 d. Use residual plots to detect possible violations of the assumptions.

Height, y Agitation, x1 Amount, x2 Height, y Agitation, x1 Amount, x2

 28.1 1  6  69.2 2  9
 32.3 1  7  72.9 2 10
 34.8 1  8  88.2 3  6
 38.2 1  9  89.3 3  7
 43.5 1 10  94.1 3  8
 60.3 2  6  95.7 3  9
 63.7 2  7 100.6 3 10
 65.4 2  8
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  13.45  Refer to Exercise 13.44. Would the following model be more appropriate? Why or 
why not?

  y  b0 1 b1x1 1 b2x1
2 1 b3x2 1 b4x2

2 1 b5x1x2 1 b6x1x2
2 1 b7x1

2x2 1 b8x1
2x2

2 1 e

  13.46  Refer to the data of Exercise 13.44.
 a. Can we test for lack of fit for the following model?

            y  b0 1 b1x1 1 b2x1
2 1 b3x2 1 b4x2

2 1 b5x1x2 1 b6x1x2
2 1 b7x1

2x2 1 b8x1
2x2

2 1 e

 b.  Write the complete model for the sample data. Note that if there was replication 
at one or more design points, the number of degrees of freedom for SSLack would 
be identical to the difference between the number of parameters in the complete 
model and the number of parameters in the model of part (a).

  13.47  Refer to Example 13.1.
 a. Use a variable selection procedure to determine a model for this study.
 b.  Do the model conditions appear to be valid for the model constructed in part (a)? 

Justify your answer.
 c.  Use your fitted model to predict the value of EHg for a lake having Alk  80, 

pH  6, Ca  60, and Chlo  40.

  13.48  The solubility of a solution was examined for six different temperature settings, shown in 
the accompanying table.

y, Solubility by Weight x, Temperature (°C)

 43, 45, 42   0
 32, 33, 37  25
 21, 28, 29  50
 15, 14, 9  75
 12, 10, 8 100
 7, 6, 2 125

 a. Plot the data, and fit as appropriate.
 b. Test for lack of fit if possible. Use a  .05.
 c. Examine the residuals and draw conclusions.

  13.49  Refer to Exercise 13.48. Suppose we are missing the following observations: y = 33, 28, 10.
 a. Fit the model y  b0 1 b1x 1 b2x

2 1 e.
 b. Test for lack of fit, using a  .05.
 c. Again examine the residuals.

  13.50  Refer to Exercise 13.41.
 a. Test for lack of fit of the model

      y  b0 1 b1x1 1 b2x1
2 1 b3x2 1 b4x1x2 1 b5x1

2x2 1 e

 b. Write the complete model for this experimental situation.

  13.51  Refer to the data of Exercise 13.37. Test for lack of fit of a quadratic model.

 Psy. 13.52  A psychologist wants to examine the effects of sleep deprivation on a person’s ability 
to perform simple arithmetic tasks. To do this, prospective subjects are screened to obtain 
individuals whose daily sleep patterns were closely matched. From this group, 20 subjects are 
chosen. Each individual selected is randomly assigned to one of five groups, four individuals 
per group.

  Group 1:  0 hours of sleep
  Group 2:  2 hours of sleep
  Group 3:  4 hours of sleep
  Group 4:  6 hours of sleep
  Group 5:  8 hours of sleep

  All subjects are then placed on a standard routine for the next 24 hours.
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   The following day after breakfast, each individual is tested to determine the number of arith-
metic additions done correctly in a 10-minute period. That evening the amount of sleep each 
person is allowed depends on the group to which he or she had been assigned. The following 
morning after breakfast, each person is again tested using a different but equally difficult set 
of additions.

    Let the response of interest be the number of correct responses on the first test day minus 
the number correct on the second test day. The data are presented here.

Group Response, y

 1 39, 33, 41, 40

 2 25, 29, 34, 26

 3 10, 18, 14, 17

 4 4, 6, 21, 9

 5 25, 0, 23, 28

 a. Plot the sample data and use the plot to suggest a model.
 b. Fit the suggested model.
 c. Examine the fitted model for possible violation of assumptions.

 Engin. 13.53  An experiment was conducted to determine the relationship between the amount of 
warping y for a particular alloy and the temperature (in °C) under which the experiment was 
conducted. The sample data appear in the accompanying table. Note that three observations 
were taken at each temperature setting. 

Amount of Warping Temperature (°C)

 10, 13, 12 15

 14, 12, 11 20

 14, 12, 16 25

 18, 19, 22 30

 25, 21, 20 35

 23, 25, 26 40

 30, 31, 34 45

 35, 33, 38 50

 a.  Plot the data to determine whether a linear or quadratic model appears more 
 appropriate.

 b.  Fit a linear model and display the prediction equation. Superimpose the prediction 
equation over the scatter diagram of y versus x.

 c.  Fit a quadratic model and display the prediction equation. Superimpose the quadratic 
prediction equation on the scatter diagram. Which fit looks better, the linear or the  
quadratic?

 d.  Predict the amount of warping at a temperature of 27°C, using both the linear and 
the quadratic prediction equations.

 Sci. 13.54  A soil scientist wants to relate the daily evaporation from the soil to air temperature, 
relative humidity, and wind speed. The scientist collects data at a number of locations in Texas on 
the variables maximum, minimum, and average soil temperature (x1, x2, x3); maximum, minimum, 
and average air temperature (x4, x5, x6); maximum, minimum, and average relative humidity (x7, 
x8, x9); and total wind (x10). The response is the daily amount of evaporation from the soil (y). The 
data are given below.
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Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

  1 84 65 147 85 59 151 95 40 398 273 30
  2 84 65 149 86 61 159 94 28 345 140 34
  3 84 66 142 83 64 152 94 41 388 318 33
  4 79 67 147 83 65 158 94 50 406 282 26
  5 81 68 167 88 69 180 93 46 379 311 41
  6 74 66 131 77 67 147 96 73 478 446   4
  7 73 66 131 78 69 159 96 72 462 294   5
  8 75 67 134 84 68 159 95 70 464 313 20
  9 84 68 161 89 71 195 95 63 430 455 31
 10 86 72 169 91 76 206 93 56 406 604 38
 11 88 73 178 91 76 208 94 55 393 610 43
 12 90 74 187 94 76 211 94 51 385 520 47
 13 88 72 171 94 75 211 96 54 405 663 45
 14 88 72 171 92 70 201 95 51 392 467 45
 15 81 69 154 87 68 167 95 61 448 184 11
 16 79 68 149 83 68 162 95 59 436 177 10
 17 84 69 160 87 66 173 95 42 392 173 30
 18 84 70 160 87 68 177 94 44 392   76 29
 19 84 70 168 88 70 169 95 48 398   72 23
 20 77 67 147 83 66 170 97 60 431 183 16
 21 87 67 166 92 67 196 96 44 379   76 37
 22 89 69 171 92 72 199 94 48 393 230 50
 23 89 72 180 94 72 204 95 48 394 193 36
 24 93 72 186 92 73 201 94 47 386 400 54
 25 93 74 188 93 72 206 95 47 389 339 44
 26 94 75 199 94 72 208 96 45 370 172 41
 27 93 74 193 95 73 214 95 50 396 238 45
 28 93 74 196 95 70 210 96 45 380 118 42
 29 96 75 198 95 71 207 93 40 365   93 50
 30 95 76 202 95 69 202 93 39 357 269 48
 31 84 73 173 96 69 173 94 58 418 128 17
 32 91 71 170 91 69 168 94 44 420 423 20
 33 88 72 179 89 70 189 93 50 399 415 15
 34 89 72 179 95 71 210 98 46 389 300 42
 35 91 72 182 96 73 208 95 43 384 193 44
 36 92 74 196 97 75 215 96 46 389 195 41
 37 94 75 192 96 69 198 95 36 380 215 49
 38 96 75 195 95 67 196 97 24 354 185 53
 39 93 76 198 94 75 211 93 43 364 466 53
 40 88 74 188 92 73 198 95 52 405 399 21
 41 88 74 178 90 74 197 95 61 447 232  1
 42 91 72 175 94 70 205 94 42 380 275 44
 43 92 72 190 95 71 209 96 44 379 166 44
 44 92 73 189 96 72 208 93 42 372 189 46
 45 94 75 194 95 71 208 93 43 373 164 47
 46 96 76 202 96 71 208 94 40 368 139 50

 a. Fit the following model to the data and display the fitted model.

  y  bo 1 b1 x1 1 b2 x2 1 b3 x3 1 b4 x4 1 b5 x5 1 b6 x6 1 b7 x7 1 b8 x8 1 b9 x9

        1 b10 x10 1 e

 b.  Produce a 95% confidence interval on the average evaporation for the following 
values of the explanatory variables:

      x1  90, x2  70,  x3  150, x4  85, x5  65

      x6  180, x7  95, x8  40, x9  375, x10  450
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  13.55  Refer to Exercise 13.54.
 a.  Is there a strong correlation between any of the pairs of explanatory variables? 

What problems may result if several of the explanatory variables are highly  
correlated?

 b.  Evaluate whether the conditions of normality and equal variance hold for your 
model in Exercise 13.54.

  13.56  Refer to Exercise 13.54.
 a.  Formulate a new model using a variable selection procedure with AIC and then 

BIC as the criterion to select the independent variables. Was there a large differ-
ence in the selected variables for the two methods?

 b.  Compare the standard errors of the estimated bs in the  model selected by BIC to 
those in the full model fit in Exercise 13.54. Was there an increase or a decrease in 
the standard errors of the estimated bs?

 c.  Produce a 95% confidence interval on the average evaporation for the  values of 
the explanatory variables given in Exercise 13.54. Was there a large difference in 
the two point estimators? Compare the widths of the two intervals.

  13.57  Refer to Exercise 13.54. The agronomist is concerned that there may be a distinct differ-
ence between the models for land in West Texas and  for land in East Texas. Observations 1–23 are 
data values from East Texas and 24-46 are from West Texas.

 a.  At the a  .05 level, are there differences between the models for the two  
regions?

 b.  For each of the two regions, produce a 95% confidence interval on the average 
evaporation for the  values of the explanatory variables given in Exercise 13.54.

 c.  Was the there a large difference in the point estimators for the two regions?  
Compare the widths of the intervals for the two regions.

 Eco. 13.58  A random sample of 22 residential properties was used in a regression of price on nine 
different independent variables. The variables used in this study were as follows:

 PRICE  selling price (dollars)

 BATHS  number of baths (powder room  1/2 bath)

 BEDA  dummy variable for number of bedrooms (1  2 bedrooms, 0  otherwise)

 BEDB  dummy variable for number of bedrooms (1  3 bedrooms, 0  otherwise)

 BEDC  dummy variable for number of bedrooms (1  4 bedrooms, 0  otherwise)

 CARA  dummy variable for type of garage (1  no garage, 0  otherwise)

 CARB  dummy variable for type of garage (1  one-car garage, 0  otherwise)

 AGE  age in years

 LOT  lot size in square yards

 DOM  days on the market

  In this study, homes had two, three, four, or five bedrooms and either no garage or one- or two-car 
garages. Hence, we are using two dummy variables to code for the three categories of garage.

    Fit a full regression model (nine independent variables), and then estimate the average differ-
ence in selling price between

 a. Properties with no garage and properties with a one-car garage.
 b. Properties with a one-car garage and properties with a two-car garage.
 c. Properties with no garage and properties with a two-car garage.

PRICE BATHS BEDA BEDB BEDC CARA CARB AGE LOT DOMProperty
1 25750 1.0 1 0 0 1 0 23 9680 164
2 37950 1.0 0 1 0 0 1 7 1889 67
3 46450 2.5 0 1 0 0 0 9 1941 315
4 46550 2.5 0 0 1 1 0 18 1813 61
5 47950 1.5 1 0 0 0 1 2 1583 234
6 49950 1.5 0 1 0 0 0 10 1533 116
7 52450 2.5 0 0 1 0 0 4 1667 162
8 54050 2.0 0 1 0 0 1 5 3450 80
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9 54850 2.0 0 1 0 0 0 5 1733 63
10 52050 2.5 0 1 0 0 0 5 3727 102
11 54392 2.5 0 1 0 0 0 7 1725 48
12 53450 2.5 0 1 0 0 0 3 2811 423
13 59510 2.5 0 1 0 0 1 11 5653 130
14 60102 2.5 0 1 0 0 0 7 2333 159
15 63850 2.5 0 0 1 0 0 6 2022 314
16 62050 2.5 0 0 0 0 0 5 2166 135
17 69450 2.0 0 1 0 0 0 15 1836 71
18 82304 2.5 0 0 1 0 0 8 5066 338
19 81850 2.0 0 1 0 0 0 0 2333 147
20 70050 2.0 0 1 0 0 0 4 2904 115
21 112450 2.5 0 0 1 0 0 1 2930 11
22 127050 3.0 0 0 1 0 0 9 2904 36

Descriptive Statistics: PRICE, BATHS, BEDA, BEDB, BEDC, CARA, CARB, AGE, LOT, DO

Variable N Mean Median TrMean StDev SE Mean
PRICE 22 62023 54621 60585 22749 4850
BATHS 22 2.182 2.500 2.200 0.524 0.112
BEDA 22 0.0909 0.0000 0.0500 0.2942 0.0627
BEDB 22 0.591 1.000 0.600 0.503 0.107
BEDC 22 0.2727 0.0000 0.2500 0.4558 0.0972
CARA 22 0.0909 0.0000 0.0500 0.2942 0.0627
CARB 22 0.1818 0.0000 0.1500 0.3948 0.0842

71.184.550.705.654.722EGA
893868142620522598222TOL
4.328.9019.2410.3216.94122MOD

Variable Minimum Maximum Q1 Q3
PRICE 25750 127050 49450 69600
BATHS 1.000 3.000 2.000 2.500
BEDA 0.0000 1.0000 0.0000 0.0000
BEDB 0.000 1.000 0.000 1.000
BEDC 0.0000 1.0000 0.0000 1.0000
CARA 0.0000 1.0000 0.0000 0.0000
CARB 0.0000 1.0000 0.0000 0.0000
AGE 0.00 23.00 4.00 9.25
LOT 1533 9680 1793 3060
DOM 11.0 423.0 66.0 181.5

Regression Analysis: PRICE versus BATHS, BEDA, BEDB, BEDC, CARA, CARB, AGE, LOT, DOM

The regression equation is
PRICE = 39617 + 11686 BATHS + 15128 BEDA + 2477 BEDB + 26114 BEDC – 44023 CARA

– 12375 CARB – 506 AGE + 3.40 LOT – 86.0 DOM

Predictor Coef SE Coef T P
Constant 39617 30942 1.28 0.225
BATHS 11686 10428 1.12 0.284
BEDA 15128 26254 0.58 0.575

PRICE BATHS BEDA BEDB BEDC CARA CARB AGE LOT DOMProperty

  13.59  Refer to Exercise 13.58. Conduct a test using the full regression model to determine 
whether the depreciation (decrease) in house price per year of age is less than $2,500. Give the 
null hypothesis for your test and the p-value. Draw a conclusion. Use a  .05.

  13.60  Refer to Exercise 13.58. Suppose that we wished to modify our nine-variable model to 
allow for the possibility that the relationship between PRICE and AGE differs depending on the 
number of bedrooms.

 a. Formulate such a model.
 b.  What combination of model parameters represents the difference  

between a five-bedroom, one-garage home and a two-bedroom,  
two-garage home?

  13.61  Refer to Exercise 13.58. What is your choice of a “best” model from the original set of 
nine variables? Why did you choose this model?

  13.62  Refer to Exercise 13.58. In another study involving the same 22 properties, PRICE was 
regressed on a single independent variable, LIST, which was the listing price of the property in 
thousands of dollars.

Data Display

Property PRICE LIST
1 25750 29900
2 37950 39900
3 46450 44900
4 46550 47500
5 47950 49900
6 49950 49900
7 52450 53000
8 54050 54900
9 54850 54900

10 52050 55900
11 54392 55900
12 53450 56000
13 59510 62000
14 60102 62500
15 63850 63900
16 62050 66900
17 69450 72500
18 82304 82254
19 81850 82900
20 70050 99900
21 112450 117000
22 127050 139000

Descriptive Statistics: PRICE, LIST

Variable N Mean Median TrMean StDev SE Mean
PRICE 22 62023 54621 60585 22749 4850
LIST 22 65521 55950 63628 25551 5447

Variable Minimum Maximum Q1 Q3
PRICE 25750 127050 49450 69600
LIST 29900 139000 49900 74939

Regression Analysis: PRICE versus LIST

The regression equation is
PRICE = 5406 + 0.864 LIST

Predictor Coef SE Coef T P
Constant 5406 3363 1.61 0.124
LIST 0.86411 0.04797 18.01 0.000

S = 5616 R-Sq = 94.2% R-Sq(adj) = 93.9%

B
A B B B C C
T E E E A A A L D
H D D D R R G O O

Vars R-Sq R-Sq(adj) C-p S S A B C A B E T M

8 69.8 51.2 8.0 15896 X X X X X X X X
8 69.3 50.4 8.2 16019 X X X X X X X X
9 69.8 47.2 10.0 16531 X X X X X X X X X

 a.  Fit a regression model and predict the selling price of a home that is listed 
at $70,000.

 b. What is the chance that your prediction is off by more than $3,000?

  13.63  Refer to Exercise 13.58, examine the relationship between the selling price (in thousands 
of dollars) of a home and two independent variables, the number of rooms and the number of 
square feet. Use the following data.
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Property Price Rooms Square Feet

   1  25.75  5    986
   2  37.95  5    998
   3  46.45  7 1,690
   4  46.55  8 1,829
   5  47.95  6 1,186
   6  49.95  6 1,734
   7  52.45  7 1,684
   8  54.05  7 1,846
   9  54.85  7 1,690
  10  52.05  7 1,910
  11  54.39  7 1,784
  12  53.45  6 1,690
  13  59.51  7 1,590
  14  60.10  8 1,855
  15  63.85  8 2,212
  16  62.05 10 2,784
  17  69.45  7 2,190
  18  82.30  8 2,259
  19  81.85  7 1,919
  20  70.05  7 1,685
  21 112.45 10 2,654
  22 127.05 10 2,756

 a.  Conduct a test to see whether the variables ROOMS and SQUARE FEET, taken 
together, contain information about PRICE. Use a  .05.

 b.  Conduct a test to see whether the coefficient of ROOMS is equal to 0.  
Use a  .05.

 c.  Conduct a test to see whether the coefficient of SQUARE FEET is equal to 0. 
Use a  .05.

  13.64 Refer to Exercise 13.63.
 a.  Explain the apparent inconsistency between the result of part (a) and the results 

of parts (b) and (c).
 b.  What do you think would happen to the t-value of SQUARE FEET if ROOMS 

was dropped from the model?

 Med. 13.65  A study was conducted to determine whether infection surveillance and control pro-
grams have reduced the rates of hospital-acquired infection in U.S. hospitals. This data set consists 
of a random sample of 28 hospitals selected from 338 hospitals participating in a larger study. 
Each line of the data set provides information on variables for a single hospital. The variables are 
as follows:

 RISK   output variable, average estimated probability of acquiring infection in 
hospital (in percent)

 STAY  input variable, average length of stay of all patients in hospital (in days)

 AGE  input variable, average age of patients (in years)

 INS   input variable, ratio of number of cultures performed to number of patients 
without signs or symptoms of hospital-acquired infection (times 100)

 SCHOOL  dummy input variable for medical school affiliation, 1  yes, 0  no

 RC1  dummy input variable for region of country, 1  northeast, 0  other

 RC2  dummy input variable for region of country, 1  north central, 0  other

 RC3  dummy input variable for region of country, 1  south, 0  other
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  (Note that there are four geographic regions of the country—northeast, north central, south, and 
west. These four regions of the country require only three dummy variables to code for them.) The 
data were analyzed using SAS with the following results.

  Does the set of seven input variables contain information about the output variable, RISK? Give 
a p-value for your test.

Based on the full regression model (seven input variables), can we be at least 95% certain 
that hospitals in the south have at least .5% higher risk of infection than hospitals in the west, all 
other things being equal?

  13.66  Refer to Exercise 13.65.
 a. Consider the following two statements:

    There is multicollinearity between region of the country and whether a hospital has  
a medical school.

    There is an interaction effect between region of the country and whether a hospital  
has a medical school.

   What is the difference between these two statements? What evidence is  
needed to ascertain the truth or falsity of the statements? Is this evidence  
present in the  accompanying output? If it is, do you think the statements are  
true or false? 

 b.  Construct a model that allows for the possibility of an interaction effect between 
 region of the country and medical school affiliation. For this model, what is the 
 difference in intercept between a hospital in the northeast affiliated with a medi-
cal school and a hospital in the west not affiliated with one?

  13.67  Refer to Exercise 13.65. Suppose that we decide to eliminate from the full model some 
variables that we think contribute little to explaining the output variable. What would your final 
choice of a model be? Why would you choose this model?

DATA LISTING

OBS RISK STAY AGE INS SCHOOL RC1 RC2 RC3

1 4.1 7.13 55.7 9.0 0 0 0 1
2 1.6 8.82 58.2 3.8 0 1 0 0
3 2.7 8.34 56.9 8.1 0 0 1 0
4 5.6 8.95 53.7 18.9 0 0 0 1
5 5.7 11.20 56.5 34.5 0 0 0 0
6 5.1 9.76 50.9 21.9 0 1 0 0
7 4.6 9.68 57.8 16.7 0 0 1 0
8 5.4 11.18 45.7 60.5 1 1 0 0
9 4.3 8.67 48.2 24.4 0 0 1 0

OBS RISK STAY AGE INS SCHOOL RC1 RC2 RC3

10 6.3 8.84 56.3 29.6 0 0 0 0
11 4.9 11.07 53.2 28.5 1 0 0 0
12 4.3 8.30 57.2 6.8 0 0 1 0
13 7.7 12.78 56.8 46.0 1 0 0 0
14 3.7 7.58 56.7 20.8 0 1 0 0
15 4.2 9.00 56.3 14.6 0 0 1 0
16 5.6 10.12 51.7 14.9 1 0 1 0
17 5.5 8.37 50.7 15.1 0 1 0 0
18 4.6 10.16 54.2 8.4 1 0 0 1
19 6.5 19.56 59.9 17.2 0 0 0 0
20 5.5 10.90 57.2 10.6 0 1 0 0
21 1.8 7.67 51.7 2.5 0 0 1 0
22 4.2 8.88 51.5 10.1 0 0 1 0
23 5.6 11.48 57.6 20.3 0 0 0 0
24 4.3 9.23 51.6 11.6 0 1 0 0
25 7.6 11.41 61.1 16.6 0 0 0 0
26 7.8 12.07 43.7 52.4 0 1 0 0
27 3.1 8.63 54.0 8.4 0 0 0 0
28 3.9 11.15 56.5 7.7 0 0 0 0
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  13.68  Refer to Exercise 13.65. Predict the infection risk of a patient in a medical school–affiliated 
hospital in the northeast, where the average stay of patients is 10 days, the average age is 64, and 
the routine culturing ratio is 20%. Is this prediction an interpolation or an extrapolation? How do 
you know?

 Sci. 13.69  Thirty volunteers participated in the following experiment. The subjects took their own 
pulse rates (which is easiest to do by holding the thumb and forefinger of one hand on the pair of 
arteries on the side of the neck). They were then asked to flip a coin. If their coin came up heads, 
they ran in place for 1 minute. Then all subjects took their own pulse rates again. The difference 
in the before and after pulse rates was recorded, as were other data on subject characteristics. 

  Fit a regression model to “explain’’ the pulse rate differences using the other variables as inde-
pendent variables. The variables were

 PULSE  difference between the before and after pulse rates

 RUN  dummy variable, 1  did not run in place, 0  ran in place

 SMOKE  dummy variable, 1  does not smoke, 0  smokes

 HEIGHT  height in inches

 WEIGHT  weight in pounds

 PHYS1  dummy variable, 1  a lot of physical exercise, 0  otherwise

 PHYS2  dummy variable, 1  moderate physical exercise, 0  otherwise

 a.  Perform an appropriate test to determine whether the entire set of independent 
variables explains a significant amount of the variability of PULSE. Draw a  
conclusion based on a  .01.

 b.  Does multicollinearity seem to be a problem here? What is your evidence? What  
effect does multicollinearity have on your ability to make predictions using  regression?

 c.  Based on the full regression model (six dependent variables), compute a point 
estimate of the average increase in PULSE for individuals who engaged in a lot of 
physical activity compared to those who engaged in little physical activity. Can we 
be 95% certain that the actual average increase is greater than 0?

LISTING OF DATA FOR EXERCISE 13.69
OBS PULSE RUN SMOKE HEIGHT WEIGHT PHYS1 PHYS2
1 –29 0 1 66 140 0 1
2 –17 0 1 72 145 0 1
3 –14 0 0 73 160 1 0
4 –22 0 0 73 190 0 0
5 –21 0 1 69 155 0 1
6 –25 0 1 73 165 0 0
7 –5 0 1 72 150 1 0
8 –9 0 1 74 190 0 1
9 –18 0 1 72 195 0 1

10 –23 0 1 71 138 0 1
11 –14 0 0 74 160 0 0
12 –21 0 1 72 155 0 1
13 8 0 0 70 153 1 0
14 –13 0 1 67 145 0 1
15 –21 0 1 71 170 1 0
16 –1 0 1 72 175 1 0
17 –16 0 0 69 175 0 1
18 –15 1 1 68 145 0 0
19 4 1 0 75 190 0 1
20 –3 1 1 72 180 1 0
21 2 1 0 67 140 0 1
22 –5 1 1 70 150 0 1
23 –1 1 1 73 155 0 1
24 –5 1 1 74 148 1 0
25 –6 1 0 68 150 0 1
26 –6 1 0 73 155 0 1
27 8 1 0 66 130 0 1
28 –1 1 1 69 160 0 1
29 –5 1 1 66 135 1 0
30 –3 1 1 75 160 1 0

Correlation Analysis

6 ‘VAR’ Variables: RUN SMOKE HEIGHT WEIGHT PHYS1 PHYS2
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  13.70  Refer to Exercise 13.69.
 a.  Give the implied regression line of pulse-rate difference on height and weight for 

a smoker who did not run in place and who has engaged in little physical activity.
 b. Consider the following two statements:
    There is multicollinearity between the smoke variable and the physical activity 

dummy variables.
    There is an interaction effect between the smoke variable and the physical 

 activity dummy variables.
   Is there any difference between these two statements? Explain the relationships  

that would exist in the data set if each of these two statements was correct.

  13.71  Refer to Exercise 13.69.
 a.  What is your choice of a good predictive equation? Why did you choose that par-

ticular equation?
 b.  The model as constructed does not contain any interaction effects. Construct a 

model that allows for the possibility of an interaction effect between each pair of 
qualitative variables.

 Sci. 13.72  The data for this exercise were taken from a chemical assay of calcium discussed in Brown, 
Healy, and Kearns (1981). A set of standard solutions is prepared, and these and the unknowns are 
read on a spectrophotometer in arbitrary units (y). A linear regression model is fit to the standards, 
and the values of the unknowns (x) are read off from this. The preparation of the standard and un-
known solutions involves a fair amount of laboratory manipulation, and the actual concentrations 
of the standards may differ slightly from their target values, the very precise instrumentation being 
capable of detecting this. The target values are 2.0, 2.0, 2.5, 3.0, 3.0 mmol per liter; the ‘’duplicates’’ 
are made up independently. The sequence of reading the standards and unknowns is repeated four 
times. Two specimens of each unknown are included in each assay, and the four sequences of read-
ings are done twice, first with the flame conditions in the instrument optimized and then with a 
slightly weaker flame. y is the spectrophotometer reading and x is the actual mmol per liter.

The data in the following table relate to assays on the above pattern of a set of six un-
knowns performed by four laboratories. The standards are identified as 2.0A, 2.0B, 2.5, 3.0A, and 
3.0B; the unknowns are identified as U1, U2, W1, W2, Y1, and Y2.

Laboratory/Solution Measurements Laboratory/Solution Measurements 

   1 W1 1,206 1,202 1,202 1,201 3 W1 1,090 1,098 1,090 1,100
   1 2.0A 1,068 1,071 1,067 1,066 3 2.0A 969 975 969 972
   1 W2 1,194 1,193 1,189 1,185 3 U2 1,088 1,092 1,087 1,085
   1 2.0B 1,072 1,068 1,064 1,067 3 2.0B 969 960 960 966
   1 U1 1,387 1,387 1,384 1,380 3 U1 1,270 1,261 1,261 1,269
   1 2.5 1,333 1,321 1,326 1,317 3 2.5 1,196 1,196 1,209 1,200
   1 U2 1,394 1,390 1,383 1,376 3 W2 1,261 1,268 1,270 1,273
   1 3.0A 1,579 1,576 1,578 1,572 3 3.0A 1,451 1,440 1,439 1,449
   1 Y1 1,478 1,480 1,473 1,466 3 Y1 1,352 1,349 1,353 1,343
   1 3.0B 1,579 1,571 1,579 1,567 3 3.0B 1,439 1,433 1,433 1,445
   1 Y2 1,483 1,477 1,482 1,472 3 Y2 1,349 1,353 1,349 1,355
   2 W1 1,017 1,017 1,012 1,020 4 2.0A 1,122 1,117 1,119 1,120
   2 2.0A 910 916 915 915 4 W2 1,256 1,254 1,256 1,263
   2 W2 1,012 1,018 1,015 1,023 4 W1 1,260 1,251 1,252 1,264
   2 2.0B 913 923 914 921 4 2.0B 1,122 1,110 1,111 1,116
   2 U1 1,188 1,199 1,197 1,202 4 U2 1,453 1,447 1,451 1,455
   2 2.5 1,129 1,148 1,136 1,147 4 2.5 1,386 1,381 1,381 1,387
   2 U2 1,186 1,196 1,193 1,199 4 U1 1,450 1,446 1,448 1,457
   2 3.0A 1,359 1,378 1,370 1,373 4 3.0A 1,656 1,663 1,659 1,665
   2 Y1 1,263 1,280 1,280 1,279 4 Y2 1,543 1,548 1,543 1,545
   2 3.0B 1,349 1,361 1,359 1,363 4 3.0B 1,658 1,658 1,661 1,660
   2 Y2 1,259 1,269 1,259 1,265 4 Y1 1,545 1,546 1,548 1,544
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 a. Plot y versus x for the standards, one graph for each laboratory.
 b.  Fit the linear regression equation y  b0 1 b1x 1 e  for each laboratory, and  

predict the value of x corresponding to the y for each of the unknowns. Compute 
the standard deviation of the predicted values of x based on the four predicted  
x-values for each of the unknowns.

 c.  Which laboratory appears to make better predictions of x, mmol of calcium per 
liter? Why?

  13.73  Refer to Exercise 13.72. Suppose you average the y-values for each of the unknowns and 
fit the ys in the linear regression model of Exercise 13.72.

 a. Do your linear regression lines change for each of the laboratories?
 b.  Will predictions of x change based on these new regression lines for the four labo-

ratories? Explain.

  13.74  Refer to Exercise 13.72. Using the independent variable x, suggest a single general linear 
model that could be used to fit the data from all four laboratories. Identify the parameters in this 
general linear model.

  13.75  Refer to Exercise 13.74.
 a. Fit the data to the model of Exercise 13.74.
 b. Give separate regression models for each of the laboratories.
 c.  How do these regression models compare to the previous regression equations for 

the laboratories?
 d.  What advantage(s) might there be to fitting a single model rather than separate 

models for the laboratories?

 Env. 13.76  The following data on air pollution in 41 U.S. cities are from Biometry (Sokal and Rohlf, 
1981). The type of air pollution under study is the annual mean concentration of sulfur dioxide. 
The values of six explanatory variables were recorded in order to examine the variation in the 
sulfur dioxide concentrations. They are as follows:
 y  annual mean concentration of sulfur dioxide (micrograms per cubic meter)
 x1  average annual temperature (°F)
 x2  number of manufacturing enterprises employing 20 or more workers
 x3  population size (1970) census (thousands)
 x4  average annual wind speed (mph)
 x5  average annual precipitation (inches)
 x6  average number of days with precipitation per year

City y x1 x2 x3 x4 x5 x6 

  1 10 70.3 213 582 6.0 7.05 36 
  2 13 61.0 91 132 8.2 48.52 100 
  3 12 56.7 453 716 8.7 20.66 67 
  4 17 51.9 454 515 9.0 12.95 86 
  5 56 49.1 412 158 9.0 43.37 127 
  6 36 54.0 80 80 9.0 40.25 114 
  7 29 57.3 434 757 9.3 38.89 111 
  8 14 68.4 136 529 8.8 54.47 116 
  9 10 75.5 207 335 9.0 59.80 128 
 10 24 61.5 368 497 9.1 48.34 115 
 11 110 50.6 3,344 3,369 10.4 34.44 122 
 12 28 52.3 361 746 9.7 38.74 121 
 13 17 49.0 104 201 11.2 30.85 103
 14 8 56.6 125 277 12.7 30.58 82
 15 30 55.6 291 593 8.3 43.11 123
 16 9 68.3 204 361 8.4 56.77 113
 17 47 55.0 625 905 9.6 41.31 111

(continued)
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City y x1 x2 x3 x4 x5 x6 

 18 35 49.9 1,064 1,513 10.1 30.96 129
 19 29 43.5 699 744 10.6 25.94 137
 20 14 54.5 381 507 10.0 37.00 99
 21 56 55.9 775 622 9.5 35.89 105
 22 14 51.5 181 347 10.9 30.18 98
 23 11 56.8 46 244 8.9 7.77 58
 24 46 47.6 44 116 8.8 33.36 135
 25 11 47.1 391 463 12.4 36.11 166
 26 23 54.0 462 453 7.1 39.04 132
 27 65 49.7 1,007 751 10.9 34.99 155
 28 26 51.5 266 540 8.6 37.01 134
 29 69 54.6 1,692 1,950 9.6 39.93 115
 30 61 50.4 347 520 9.4 36.22 147
 31 94 50.0 343 179 10.6 42.75 125
 32 10 61.6 337 624 9.2 49.10 105
 33 18 59.4 275 448 7.9 46.00 119
 34 9 66.2 641 844 10.9 35.94 78
 35 10 68.9 721 1,233 10.8 48.19 103
 36 28 51.0 137 176 8.7 15.17 89
 37 31 59.3 96 308 10.6 44.68 116
 38 26 57.8 197 299 7.6 42.59 115
 39 29 51.1 379 531 9.4 38.79 164
 40 31 55.2 35 71 6.5 40.75 148
 41 16 45.7 569 717 11.8 29.07 123

  A model relating y to the six explanatory variables is of interest in order to determine which of 
the six explanatory variables are related to sulfur dioxide pollution and to be able to predict air 
pollution for given values of the explanatory variables.

 a.  Plot y versus each of the explanatory variables. From your plots, determine if 
higher-order terms are needed in any of the explanatory variables.

 b.  Is there any evidence of collinearity in the data?
 c.  Obtain VIF for each of the explanatory variables from fitting a first-order model 

 relating y to x1 through x6. Do there appear to be any collinearity problems based 
on the VIF values?

  13.77  Refer to Exercise 13.76.
 a.  Use a variable selection program to obtain the best four models of all possible 

sizes using R2
adj as your criterion. Obtain values for R2 , MSE, and Cp for each of 

the models.
 b.  Using the information in part (a), select the model that you think best meets the 

 criteria of a good fit to the data and the minimum number of variables.
 c. Which variables were most highly related to sulfur dioxide air pollution?

  13.78  Use the model you selected in Exercise 13.77 to answer the following questions.
 a. Do the residuals appear to have a normal distribution? Justify your answer.
 b.  Does the condition of constant variance appear to be satisfied? Justify your answer.
 c. Obtain the Box–Cox transformation of this data set.

  13.79  Use the model you selected in Exercise 13.77 to answer the following questions.
 a.  Do any of the data points appear to have high influence? Leverage? Justify your  

answer.
 b.  If you identified any high leverage or high influence points in part (a), compare 

the estimated models with and without these points.
 c. What is your final model describing sulfur dioxide air pollution?
 d. Display any other explanatory variables that may improve the fit of your model.
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  13.80  Use the model you selected in Exercise 13.79 to complete the following.
 a.  Estimate the average level of sulfur dioxide content of the air in a city having the 

following values for the six explanatory variables: 

  x1  60  x2  150  x3  600  x4  10  x5  40   x6  100

 b. Place a 95% confidence interval on your estimated sulfur dioxide level.
 c. List any major limitations in your estimation of this mean.

 Edu. 13.81 In Chapter 3, a data set was presented that related math and reading scores to %minority 
and %poverty in 22 third-, fourth-, and fifth-grade classes. 

 a.  Fit a model that relates math scores to reading scores, %minority, and %poverty. 
Include two indicator variables that will allow separate slopes and intercepts for 
the  three grade levels.

 b.  Test at the .05 level whether the slopes were different for the three grade levels. 
Interpret your results.

 c.  Test at the .05 level whether the intercepts were different for the three grade  
levels. Interpret your results.

 d.  Do the conditions of normality and equal variances appear to be valid for your  
fitted model?

 e.  Note that the schools had an unequal number of students in each of the three 
grade levels. What is the impact on your fitted regression of ignoring the size of 
the school?

  13.82 Refer to Exercise 13.81.
 a.  Is reading scores, %minority, or %poverty the best predictor of math scores?
 b.  Estimate the average math score for a third-grade class having a reading score of 

170, %minority of 40%, and %poverty of 30%. Provide both a point estimator and 
a 95% confidence interval.

 c.  Repeat the question in part (b) for both fourth- and fifth-grade classes. How  
different were your point estimators for the three grade levels?

  13.83 Refer to Exercise 13.81.
 a.  Fit a second-order model relating math scores to reading scores, %minority, and 

%poverty with indicator variables for grade level. Does this model  
appear to provide a substantial improvement in fit over the first-order model? 

 b.  Using your fitted model, estimate the average math score for a third-grade class 
having a reading score of 170, %minority of 40%, and %poverty of 30%. Provide 
both a point estimator and a 95% confidence interval.

 c. Compare the estimators from the first- and second-order models.
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 14.1 Introduction and Abstract of Research Study

In Section 2.5, we introduced the concepts involved in designing an experiment. It 
would be very beneficial to review the material in Section 2.5 prior to reading the 
material in Chapters 14–19. The concepts covered in Section 2.5 are fundamental 
to the scientific process, in which hypotheses are formulated, experiments (studies) 
are planned, data are collected and analyzed, and conclusions are reached, which, 
in turn, leads to the formulation of new hypotheses. To obtain logical conclusions 
from the experiments (studies), it is mandatory that the hypotheses be precisely 
and clearly stated and that the experiments be carefully designed, appropriately 
conducted, and properly analyzed. The analysis of a designed experiment requires 
the development of a model of the physical setting and a clear statement of the 
conditions under which this model is appropriate. Finally, a scientific report of the 
results of the experiment should contain graphical representations of the data, a 
verification of model conditions, a summary of the statistical analysis, and con-
clusions concerning the research hypotheses. In this chapter, we will discuss some 
standard experimental designs and their analyses.

Section 14.2 reviews the analysis of variance for a completely randomized 
 design discussed in Chapter 8. Here the focus of interest is the comparison of treat-
ment means. Section 14.3 introduces experiments with a factorial treatment structure 
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where the focus is on the evaluation of the effects of two or more independent vari-
ables (factors) on a response rather than the on comparison of treatment means, as 
in the designs of Section 14.2. Particular attention is given to measuring the effects 
of each factor alone or in combination with the other factors. Not all designs focus 
on either the comparison of treatment means or the examination of the effects of 
factors on a response. Section 14.5 deals with estimation and comparisons of the 
treatment means for a completely randomized design with factorial treatments. 
Section 14.6 describes methodology for determining the number of replications.

Abstract of Research Study: Development of a Low-Fat  
Processed Meat
Dietary health concerns and consumer demand for low-fat products have prompted 
meat companies to develop a variety of low-fat meat products. Numerous ingre-
dients have been evaluated as fat replacements with the goal of maintaining 
product yields and minimizing formulation costs, while retaining acceptable palat-
ability. The paper “Utilization of Soy Protein Isolate and Konjac Blends in a Low-Fat 
Bologna (Model System)” Chin, Keeton, Longnecker, and Lamkey (1999) describes 
an experiment that examines several of these issues. The researchers determined 
that lowering the cost of production without affecting the quality of the low-fat 
meat product required the substitution of nonmeat ingredients such as soy pro-
tein isolates (SPI) for a portion of the meat block. Previous experiments have 
demonstrated SPI’s effect on the characteristics of comminuted meats, but stud-
ies evaluating SPI’s effect in low-fat meat applications are limited. Konjac flour 
has been incorporated into processed meat products to improve gelling properties 
and water-holding capacity, while reducing fat content. Thus, when replacing meat 
with SPI, it is necessary to incorporate konjac flour into the product to maintain 
the high-fat characteristics of the product.

The three factors identified for study were the type of konjac blend, amount 
of konjac blend, and percentage of SPI substitution in the meat product. There were 
many other possible factors of interest, including cooking time, temperature, type of 
meat product, and length of curing. However, the researchers selected the  commonly 
used levels of these factors in a commercial preparation of bologna and narrowed 
the study to the three most important factors. This resulted in an experiment having 
12 treatments, as displayed in Table 14.1.

TABLE 14.1
Treatment design for  

low-fat bologna study

 Level of Blend  SPI 
Treatment (%) Konjac Blend (%)

 1 .5 KSS 1.1
 2 .5 KSS 2.2
 3 .5 KSS 4.4
 4 .5 KNC 1.1
 5 .5 KNC 2.2
 6 .5 KNC 4.4
 7 1 KSS 1.1
 8 1 KSS 2.2
 9 1 KSS 4.4
10 1 KNC 1.1
11 1 KNC 2.2
12 1 KNC 4.4
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The objective of this study was to evaluate various types of konjac blends 
as a partial lean-meat replacement and to characterize their effects in a very low-
fat bologna model system. Two types of konjac blends (KSS  konjac flour/starch 
and KNC  konjac flour/carrageenan/starch), at levels .5% and 1%, and three 
meat protein replacement levels with SPI (1.1, 2.2, and 4.4%) were selected for 
evaluation.

The experiment was conducted as a completely randomized design with a 
2 3 2 3 3 three-factor factorial treatment structure and three replications of the 12 
treatments. There were a number of response variables measured on the 36 runs of 
the experiment, but we will discuss the results for the texture of the final product 
as measured by an Instron universal testing machine.

The researchers were interested in evaluating the relationship between the 
mean texture of low-fat bologna and the percentage of SPI and in comparing this 
relationship for the two types of konjac blends at the two set levels. We will discuss 
the analysis of the data in Section 14.7.

 14.2 Completely Randomized Design with a Single Factor

Recall that the completely randomized design is concerned with the comparison 
of t population (treatment) means m1, m2, . . . , mt. We assume that there are t dif-
ferent populations from which we are to draw independent random samples of 
sizes n1, n2, . . . , nt, respectively. In the terminology of the design of experiments, we 
 assume that there are n1 1 n2 1 . . . 1 nt homogeneous experimental units (people 
or  objects on which a measurement is made). The treatments are randomly allo-
cated to the experimental units in such a way that n1 units receive treatment 1, n2 
units receive treatment 2, and so on. The objective of the experiment is to make 
inferences about the corresponding treatment (population) means.

Consider the data for a completely randomized design as arranged in Table 14.2.
The model for a completely randomized design with t treatments and ni 

 observations per treatment can be written in the form

yij  mi 1 eij  with  mi  m 1 ti

where the terms of the model are defined as follows:

 yij: Observation on jth experimental unit receiving treatment i.

 mi: ith treatment mean.

 m: Overall treatment mean, an unknown constant.

 ti: An effect due to treatment i, an unknown constant.

 eij:  A random error associated with the response from the jth experimen-
tal unit receiving treatment i. We require that the eij 

s have a normal 
distribution with mean 0 and common variance s 2

e. In addition, the 
errors must be independent.

TABLE 14.2
A completely  

randomized design

Treatment     Mean

1 y11 y12 . . . y1n1 y1.

2 y21 y22 . . . y2n2
 y2.

. . . . . . . . . . . . . . . . . .
t yt1 yt2 . . . ytnt

 yt.
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One problem with expressing the treatment means as mi = m + ti is that we 
then have an overparameterized model; that is, there are only t treatment means, 
but we have t 1 1 parameters: m and t1, t2, . . . , tt. In order to obtain the least-
squares estimates, it is necessary to put constraints on these sets of parameters. A 
widely used constraint is to set tt  0. Then we have exactly t parameters in our 
description of the t treatment means. However, this results in the following inter-
pretation of the parameters:

m  mt, t1  m1 2 mt, t2  m2 2 mt, . . . , tt21  mt21 2 mt, tt  0

Thus, for i  1, 2, . . . , t 2 1, ti is comparing mi to mt. This is the parametrization 
used by most software programs.

The conditions given above for our model can be shown to imply that the 
jth recorded response from the ith treatment yij is normally distributed with mean 
mi  m 1 ti and variance s 2

e. The ith treatment mean differs from mt by an amount 
ti, the treatment effect. Thus, a test of

 H0: m1  m2  . . .  mt  versus  Ha: Not all m ri s are equal.

is equivalent to testing

 H0: t1  t2  . . .  tt  0  versus  Ha: Not all t ri s are 0.

Our test statistic is developed using the idea of a partition of the total sum 
of squares (TSS) of the measurements about their mean y..  g ij yij, which we 
defined in Chapter 8 as

TSS  a
ij

1yij 2 y.. 2 2

The total sum of squares is partitioned into two separate sources of variability: 
one due to the variability among treatments and one due to the variability among 
the yij 

s within each treatment. The second source of variability is called “error” 
because it accounts for the variability that is not explained by treatment differ-
ences. The partition of TSS can be shown to take the following form:

a
ij

1yij 2 y.. 2 2  a
i

ni 1yi. 2 y.. 2 2 1 a
ij

1yij 2 yi. 2 2

When the number of replications is the same for all treatments—that is,  
n1  n2  . . .  nt  n—the partition becomes

a
ij

1yij 2 y.. 2 2  na
i

1yi. 2 y.. 2 2 1 a
ij

1yij 2 yi. 2 2

The first term on the right side of the equal sign measures the variability of 
the treatment means yi. about the overall mean y... Thus, it is called the between-
treatment sum of squares (SST) and is a measure of the variability in the yijs due 
to differences between the treatment means, mis. It is given by

SST  na
i

1yi. 2 y.. 2 2

The second quantity is referred to as the sum of squares for error (SSE) and rep-
resents the variability in the yijs not explained by differences in the treatment 
means. This variability represents the differences in the experimental units prior 
to applying the treatments and the differences in the conditions that each experi-
mental unit is exposed to during the experiment. It is given by

SSE  a
ij

1yij 2 yi. 2 2

total sum of squares 

partition of TSS

between-treatment  
sum of squares 

sum of squares for 
error 
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Recall from Chapter 8 that we summarized this information in an analysis of vari-
ance (AOV) table, as represented in Table 14.3, with N  g ini.

When H0: t1  . . .  tt  0 is true, both MST and MSE are unbiased 
 estimates of s 2

e , the variance of the experimental error. That is, when H0 is true, 
both MST and MSE have a mean value in repeated sampling, called the expected 
mean squares, equal to s 2

e . We express these terms as

E 1MST 2  s 2
e  and  E 1MSE 2  s 2

e

Thus, we would expect F  MST/MSE to be near 1 when H0 is true. When Ha is 
true and there is a difference in the treatment means, the mean of MSE is still an 
unbiased estimate of s 2

e :

E 1MSE 2  s 2
e

However, MST is no longer unbiased for s 2
e . In fact, the expected mean square for 

treatments can be shown to be

E 1MST 2  s 2
e 1 nuT

where uT 
1

t 2 1 a
t

i1
 ni 1 

mi 2 m. 2 2. When Ha is true, some of the 1 mi 2 m.2 2 are not zero, 

and uT is positive. Thus, MST will tend to overestimate s 2
e . Hence, under Ha, the 

ratio  F  MST/MSE will tend to be greater than 1, and we will reject H0 in the 
upper tail of the distribution of F.

In particular, for selected values of the probability of Type I error a, we will 
reject H0: m1  m2  . . .  mt if the computed value of F exceeds Fa, t21, N2t, the 
 critical value of F found in Table 8 in the Appendix with Type I error probability 
a, df1  t 2 1, and df2  N 2 t. Note that df1 and df2 correspond to the degrees of 
freedom for MST and MSE, respectively, in the AOV table.

The completely randomized design has several advantages and disadvantages 
when used as an experimental design for comparing t treatment means.

unbiased estimates

expected mean 
squares

TABLE 14.3
Analysis of variance  

table for a completely  
randomized design

Source SS df MS F

Treatments SST t 2 1 MST  SST / (t 2 1) MST / MSE
Error SSE N 2 t MSE  SSE / (N 2 t)

Total TSS N 2 1

Advantages and  
Disadvantages of  

a Completely  
Randomized Design 

Advantages

1. The design is extremely easy to construct.
2. The design is easy to analyze even though the sample sizes might not be 

the same for each treatment.
3. The design can be used for any number of treatments.

Disadvantages

1. The experimental units to which treatments are applied must be as ho-
mogeneous as possible. Any extraneous sources of  variability will tend 
to inflate the error term, making it more difficult to detect differences 
among the treatment means.
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As discussed in previous chapters, the statistical procedures are based on the 
condition that the data from an experiment constitute a random sample from a 
population of responses. In most cases, we have further stipulated that the popu-
lation of responses have a normal distribution. When the experiment consists of 
randomly selected experimental units or responses from existing populations, we 
can in fact verify whether or not this condition is valid. However, in those experi-
ments in which we select experimental units to meet specific criteria or the experi-
mental units are available plots or land in an agricultural research farm, the idea 
that the responses from these units form a random sample from a specific popula-
tion is somewhat questionable. However, in the book The Design of Experiments, 
Fisher (1966), the author demonstrated that the random assignment of treatments 
to experimental units provided appropriate reference populations needed for the 
theoretical derivation of the estimation of parameters, confidence intervals, and 
tests of hypotheses. That is, the random assignment of treatments to experimental 
units simulates the effect of independence and allows the researcher to conduct tests 
and estimation procedures as if the observed responses were randomly selected 
from an existing population.

Other justifications for randomization are based on the need to minimize 
biases that may arise when comparing treatments due to systematic assignments of 
treatments to experimental units. A researcher may subconsciously assign the “pre-
ferred” treatment to the experimental units that are more likely to produce a desired 
response. The technician may find it is more convenient to perform the experiments 
using the 10 replications of treatment T1 in the morning, followed by the 10 replica-
tions of treatment T2 in the afternoon. Thus, if experiments in the morning tend to 
provide a higher response than experiments in the afternoon, treatment T1 would 
have an advantage over T2 before the experiment was even performed.

When we are dealing with the situation in which we are randomly assign-
ing treatments to the experimental units and then observing the responses, it is a 
requirement of the inference procedures discussed in this book that these obser-
vations be independent. In more advanced books, methods are available for deal-
ing with dependent data such as time-series data or spatially correlated data. To 
obtain valid results, it is necessary that the observations be independently distrib-
uted. The data values are often dependent when there are physical relationships 
between the experimental units, such as the manner in which pots of plants are 
placed on a greenhouse bench, the physical proximity of test animals in a labora-
tory, the fact that multiple animals feed from the same container, or the location 
of experimental plots in a field. To minimize the possibility of experimental biases 
and dependency in the data and to obtain valid reference distributions, it is nec-
essary to randomly assign the treatments to the experimental units. However, the 
random assignment of treatments to experimental units does not completely elim-
inate the problem of correlated data values. Correlation can also result from the 
other circumstances that may occur during the experiment. Thus, the experimenter 
must always be aware of any physical mechanisms that may enter the experimen-
tal setting and result in correlated responses—that is, the responses from a given 
experimental unit having an impact on the responses from other experimental units.

Suppose we have N homogeneous experimental units and t treatments. 
We want to randomly assign the ith treatment to ri experimental units, where 
r1 1 r2 1 . . . 1 rt  N. The random assignment involves the following steps:

1. Number the experimental units from 1 to N.
2. Use a random number table or a computer program to obtain a list 

of numbers that is a random permutation of the numbers 1 to N.
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3. Assign treatment 1 to the experimental units labeled with the first r1 
numbers in the list. Treatment 2 is assigned to the experimental units 
labeled with the next r2 numbers. This process is continued until 
treatment t is assigned to the experimental units labeled with the last 
rt numbers in the list.

We will illustrate this procedure in the Example 14.1.

EXAMPLE 14.1

An important factor in road safety on rural roads is the use of reflective paint 
to mark the lanes on highways. This provides lane references for drivers on roads 
with little or no evening lighting. A problem with the currently used paint is that 
it does not maintain its reflectivity over long periods of time. A researcher will be 
conducting a study to compare three new paints (P2, P3, P4) to the currently used 
paint (P1). The paints will be applied to sections of highway 6 feet in length. The 
 response variable will be the percentage decrease in reflectivity of the markings 
6 months after application. There are 16 sections of highway, and each type of paint 
is randomly applied to 4 sections of highway. How should the researcher assign the 
four paints to the 16 sections so that the assignment is completely random?

Solution  Following the procedure outlined above, we number the 16 sections from 
1 to 16. Next, we obtain a random permutation of the numbers 1 to 16. Using a 
software package, we obtain the following random permutation:

2  11  12  1  16  13  9  3  14  5  8  7  15  10  4  6

We thus obtain the assignment of paints to the highway sections as given in Table 14.4.

TABLE 14.4
Random assignments  

of types of paint

Section 2 11 12 1 16 13 9 3 14 5 8 7 15 10 4 6
Paint P1 P1 P1 P1 P2 P2 P2 P2 P3 P3 P3 P3 P4 P4 P4 P4

■

EXAMPLE 14.2

Suppose the researcher conducts the experiment as described in Example 14.1. The 
reflective coating is applied to the 16 highway sections, and 6 months later the 
decrease in reflectivity is computed at each section. The resulting measurements 
are given in Table 14.5. Is there significant evidence at the a = .05 level that the four 
paints have different mean reductions in reflectivity?

Solution

TABLE 14.5
Reflectivity  

measurements

Section 1 2 3 4 Mean

Paint P1 28 35 27 21 27 .75
 P2 21 36 25 18 25
 P3 26 38 27 17 27
 P4 16 25 22 18 20.25

Paint P4 has the smallest decrease in reflectivity, so it appears to be able to maintain 
its reflectivity longer than the other three paints. We will now attempt to confirm 
this observation by testing the hypotheses

H0: m1  m2  m3  m4 versus Ha: Not all mis are equal.
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We will construct the AOV table by computing the sum of squares using the for-
mulas given previously:

 y.. 
y..

N


400
16

 25

 TSS  a
ij

1yij 2 y.. 2 2

  128 2 25 2 2 1 135 2 25 2 2 1 . . . 1 122 2 25 2 2 1 118 2 25 2 2  692

 SST  na
i

1yi. 2 y.. 2 2

  4 3 127.75 2 25 2 2 1 125 2 25 2 2 1 127 2 25 2 2 1 120.25 2 25 2 2 4
 136.5

 SSE  TSS 2 SST  692 2 136.5  555.5

We can now complete the AOV table as shown in Table 14.6.

Source SS df MS F p-value

Treatments 136.5  3 45.5 .98 .4346
Error 555.5 12 46.292
Total 692 15

TABLE 14.6
AOV table for 
Example 14.2

Because p-value  .4346 . .05  a, we fail to reject H0. There is not a signifi-
cant difference in the mean decreases in reflectivity for the four types of paints. ■

The researcher is somewhat concerned about the results of the study 
described in Example 14.2 because he was certain that at least one of the paints 
would show some improvement over the currently used paint. He examines the 
road conditions and amount of traffic flow on the 16 sections used in the study and 
finds that the roadways had a very low traffic volume during the study period. He 
decides to redesign the study to improve the generalization of the results and will 
include four different locations having different amounts of traffic volumes in the 
new study. Chapter 15 will describe how to conduct this experiment, in which we 
may have a second source of variability, location of the sections.

 14.3 Factorial Treatment Structure

In this section, we will discuss how treatments are constructed from several fac-
tors rather than just being t levels of a single factor. These types of experiments 
are involved with examining the effect of two or more explanatory variables on a 
response variable y. For example, suppose a company has developed a new adhe-
sive for use in the home and wants to examine the effects of temperature and 
humidity on the bonding strength of the adhesive. Several treatment design ques-
tions arise in any study. First, we must consider what factors (explanatory vari-
ables) are of greatest interest. Second, the number of levels and the actual settings 
of these levels for each of the factors must be determined. Third, having separately 
selected the levels for each factor, we must choose the factor–level combinations 
(treatments) that will be applied to the experimental units.

The ability to choose the factors and the appropriate settings for each of the 
factors depends on the budget, the time to complete the study, and, most important, 
the  experimenter’s knowledge of the physical situation under study. In many cases, 
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this will involve conducting a detailed literature review to determine the current 
state of knowledge in the area of interest. Then, assuming that the experimenter 
has chosen the levels of each independent variable, he or she must decide which 
factor–level combinations are of greatest interest and are viable. In some situa-
tions, certain of the factor–level combinations will not produce an experimental 
setting that can elicit a reasonable response from the experimental unit. Certain 
combinations may not be feasible due to toxicity or practicality issues.

As discussed in Chapter 2, one approach for examining the effects of two or 
more factors on a response is the one-at-a-time approach. To examine the effect 
of a single variable, an experimenter changes the levels of this variable while hold-
ing the levels of the other independent variables fixed. This process is continued 
for each variable while holding the other independent variables constant. Suppose 
that an experimenter is interested in examining the effects of two independent 
variables, nitrogen and phosphorus, on the yield of a crop. For simplicity, we will 
assume two levels of each variable have been selected for the study: 40 and 60 
pounds per plot for nitrogen and 10 and 20 pounds per plot for phosphorus. For 
this study, the experimental units are small, relatively homogeneous plots that 
have been partitioned from the acreage of a farm. For our experiment, the fac-
tor–level combinations chosen might be as shown in Table 14.7. These factor–level 
combinations are illustrated in Figure 14.1.

From the graph in Figure 14.1, we see that there is one difference that can be 
used to measure the effects of nitrogen and phosphorus separately. The difference 
in responses for combinations 1 and 2 would estimate the effect of nitrogen; the 
difference in for combinations 2 and 3 would estimate the effect of phosphorus.

Hypothetical yields corresponding to the three factor–level combinations of 
our experiment are given in Table 14.8. Suppose the experimenter is interested in 

one-at-a-time 
approach

TABLE 14.7
Factor–level 

combinations for a one-
at-a-time approach

Combination Nitrogen Phosphorus

1 60 10
2 40 10
3 40 20

TABLE 14.8
Yields for the three  

factor–level combinations

Combination Nitrogen Phosphorus Yield

1 60 10 145
2 40 10 125
3 40 20 160
. 60 20 ?

20

P
h
o
s
p
h
o
r
u
s

10

40

2 1

3

Nitrogen 60

FIGURE 14.1
Factor–level  

combinations for a one- 
at-a-time approach
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using the sample information to determine the factor–level combination that will 
give the maximum yield. From the table, we see that crop yield increases when the 
nitrogen application is increased from 40 to 60 (holding phosphorus at 10). Yield 
also increases when the phosphorus setting is changed from 10 to 20 (at a fixed 
 nitrogen setting of 40). Thus, it might seem logical to predict that increasing both 
the nitrogen and the phosphorus applications to the soil will result in a larger crop 
yield. The fallacy in this argument is that our prediction is based on the assumption 
that the effect of one factor is the same for both levels of the other factor.

We know from our investigation what happens to yield when the nitrogen 
application is increased from 40 to 60 for a phosphorus setting of 10. But will the 
yield also increase by approximately 20 units when the nitrogen application is 
changed from 40 to 60 at a setting of 20 for phosphorus?

To answer this question, we could apply the factor–level combination of 60 
 nitrogen–20 phosphorus to another experimental plot and observe the crop yield. 
If the yield is 180, then the information obtained from the three factor–level combi-
nations would be correct and would have been useful in predicting the factor–level 
combination that produces the greatest yield. However, suppose the yield  obtained 
from the high settings of nitrogen and phosphorus turns out to be 110. If this hap-
pens, the two factors, nitrogen and phosphorus, are said to interact. That is, the 
 effect of one factor on the response does not remain the same for different  levels of 
the second factor, and the information obtained from the one-at-a-time approach 
would lead to a faulty prediction.

The two outcomes just discussed for the crop yield at the 60–20 setting are 
displayed in Figure 14.2, along with the yields at the three initial design points. Fig-
ure 14.2(a) illustrates a situation with no interaction between the two factors. The 
effect of nitrogen on yield is the same for both levels of phosphorus. In contrast, 
Figure 14.2(b) illustrates a case in which the two factors, nitrogen and phosphorus, 
do interact.

interaction

3

2

1

200

150

100

40 60Nitrogen

(a) No interaction

Phosphorus = 20

Phosphorus = 10

Y
ie

ld

3

2

1

200

150

100

40 60Nitrogen

(b) Interaction present

Phosphorus = 20

Phosphorus = 10

Y
ie

ld

FIGURE 14.2
Yields of the three design 
points and possible yield 

at a fourth design point



808 ChApteR 14 AnAlySIS of VARIAnCe foR Completely RAndomIzed deSIgnS

We have seen that the one-at-a-time approach to investigating the effect of 
two factors on a response is suitable only for situations in which the two factors do 
not interact. Although this was illustrated for the simple case in which two factors 
were to be investigated at each of two levels, the inadequacies of a one-at-a-time 
approach are even more salient when trying to investigate the effects of more than 
two factors on a response.

Factorial treatment structures are useful for examining the effects of two or 
more factors on a response y, whether or not interaction exists. As before, the 
choice of the number of levels of each variable and the actual settings of these 
variables is important. However, assuming that we have made these selections with 
help from an investigator knowledgeable in the area being examined, we must 
decide at what factor–level combinations we will observe y.

Classically, factorial treatment structures have not been referred to as 
designs because they deal with the choice of levels and the selection of factor–level 
combinations (treatments) rather than with how the treatments are assigned to 
 experimental units. Unless otherwise specified, we will assume that treatments are 
assigned to experimental units at random. The factor–level combinations will then 
correspond to the “treatments” of a completely randomized design.

DEFINITION 14.1 A factorial treatment structure is an experiment in which the response y is 
observed at all factor–level combinations of the independent variables.

Using our previous example, if we are interested in examining the effect of 
two levels of nitrogen, x1, at 40 and 60 pounds per plot and two levels of phospho-
rus, x2, at 10 and 20 pounds per plot on the yield of a crop, we could use a com-
pletely randomized design where the four factor–level combinations (treatments) 
of Table 14.9 are assigned at random to the experimental units.

Similarly, if we wished to examine x1 at two levels—40 and 60—and x2 at 
the three levels—10, 15, and 20—we could use the six factor–level combinations of 
Table 14.10 as treatments in a completely randomized design.

factorial treatment 
structures

TABLE 14.9
2 3 2 factorial treatment 

structure for crop yield

Factor–Level Combinations
x1 x2 Treatment

40 10 1
40 20 2
60 10 3
60 20 4

TABLE 14.10
2 3 3 factorial treatment 

structure for crop yield

Factor–Level Combinations
x1 x2 Treatment

40 10 1
40 15 2
40 20 3
60 10 4
60 15 5
60 20 6
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EXAMPLE 14.3

A horticulturist is interested in the impact of water loss due to transpiration on the 
yields of tomato plants. The researcher would provide covers for the tomato plants 
at various stages of their development. Small plots of land planted with tomatoes 
would be shaded to reduce the amount of sunlight to which the tomato plants 
were exposed. The levels of shading would be reductions of 0, 1/4, 1/ 2, and 3/4 in 
the normal sunlight that the plots naturally receive. Plant development would be 
divided into three stages: stage I, stage II, and stage III. Provide the factor–level 
combinations (treatments) to be used in a completely randomized experiment with 
a 3 3 4 factorial treatment structure.

Solution  The 3 3 4 factor–level combinations result in 12 treatments, as displayed 
in Table 14.11.

TABLE 14.11
Treatments from factorial 

combinations

 Treatment

Factor 1 2 3 4 5 6 7 8 9 10 11 12

Growth stage I I I I II II II II III III III III
Shading 0 1/4 1/ 2 3/4 0 1/4 1/ 2 3/4 0 1/4 1/ 2 3/4

■

The examples of factorial treatment structures presented in this section have 
concerned two independent variables. However, the procedure applies to any 
number of factors and levels per factor. Thus, if we had four different factors—F1, 
F2, F3, and F4—at two, three, three, and four levels, respectively, we could formu-
late a 2 3 3 3 3 3 4 factorial treatment structure by considering all 2 ? 3 ? 3 ? 4  
72 factor–level combinations.

One final comparison should be made between the one-at-a-time approach 
and a factorial treatment structure. Not only do we get information concerning 
factor interactions using a factorial treatment structure, but also, when there are 
no interactions, we get at least the same amount of information about the effects 
of each individual factor using fewer observations. To illustrate this idea, let us con-
sider the 2 3 2 factorial treatment structure with nitrogen and phosphorus. If there 
is no interaction between the two factors, the data appear as shown in Figure 14.3(a). 
For convenience, the data are reproduced in Table 14.12, with the four treatment 
combinations designated by the numbers 1 through 4. If a 2 3 2 factorial treatment 
structure is used and no interaction exists between the two factors, we can obtain 
two independent differences to use in examining the effects of each of the factors 
on the response. Thus, from Table 14.12, the differences between observations 1 
and 4 and the difference between observations 2 and 3 would be used to measure 
the effect of phosphorus. Similarly, the difference between observations 4 and 3 
and the difference between observations 1 and 2 would be used to measure the 
effect of the two levels of nitrogen on plot yield.

If we employed a one-at-a-time approach for the same experimental situation, 
it would take six observations (two observations at each of the three initial factor– 
level combinations shown in Table 14.12) to obtain the same number of indepen-
dent differences for examining the separate effects of nitrogen and phosphorus 
when no interaction is present.

The model for an observation in a completely randomized design with a two-
factor factorial treatment structure and n . 1 replications can be written in the form

yijk  mij 1 eijk  with  mij  m 1 ti 1 bj 1 tbij
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where the terms of the model are defined as follows:

 yijk:  The response from the kth experimental unit receiving the ith level 
of factor A and the jth level of factor B.

 mij: (i, j) treatment mean.
 m: Overall mean, an unknown constant.
 ti: An effect due to the ith level of factor A, an unknown constant.
 bj: An effect due to the jth level of factor B, an unknown constant.
 tbij:  An interaction effect of the ith level of factor A with the jth level 

of factor B, an unknown constant.
 eijk:  A random error associated with the response from the kth exper-

imental unit receiving the ith level of factor A combined with the 
jth level of factor B. We require that the eijs have a normal dis-
tribution with mean 0 and common variance s 2

e . In addition, the 
errors must be independent.

TABLE 14.12
Factor–level 

combinations for a 2 3 2 
factorial treatment 

structure 

Treatment Nitrogen Phosphorus Mean Yields 

1 60 10 145
2 40 10 125
3 40 20 165
4 60 20 180

Level 2Level 1
Factor A
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(a) No interaction
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(b) Interaction
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(c) Consistent interaction

FIGURE 14.3
Illustrations of the 

absence and presence 
of interaction in a 2 3 2 

factorial treatment 
structure: (a) Factors A 

and B do not interact. 
(b) Factors A and B 

interact. (c) Factors A and 
B interact.
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The conditions given for our model can be shown to imply that the recorded 
response from the kth experimental unit receiving the ith level of factor A com-
bined with the jth level of factor B is normally distributed with mean

mij  E 1yijk 2  m 1 ti 1 bj 1 tbij

and variance s 2
e .

To illustrate this model, consider the model for a two-factor factorial treat-
ment structure with no interaction, such as the 2 3 2 factorial experiment with 
nitrogen and phosphorus:

yijk  m 1 ti 1 bj 1 eijk

Expected values for a 2 3 2 factorial experiment are shown in Table 14.13.
This model assumes that the difference in population means (expected 

values) for any two levels of factor A is the same no matter what level of B we 
are considering. The same property holds when comparing two levels of factor B. 
For example, the difference in mean response for levels 1 and 2 of factor A is the 
same value,  t1 2 t2, no matter what level of factor B we are considering. Thus, a 
test for no differences among the two levels of factor A would be of the form H0: 
t1 2 t2  0. Similarly, the difference between levels of factor B is b1 2 b2 for either 
level of factor A, and a test of no difference between the factor B means is H0: 
b1 2 b2  0. This phenomenon was also noted for the randomized block design.

If the assumption of additivity of terms in the model does not hold, then we 
need a model that employs terms to account for interaction.

The expected values for a 2 3 2 factorial experiment with n observations per 
cell are presented in Table 14.14.

As can be seen from Table 14.14, the difference in mean response for levels 
1 and 2 of factor A on level 1 of factor B is

1t1 2 t2 2 1 1tb11 2 tb21 2
but for level 2 of factor B, this difference is

1t1 2 t2 2 1 1tb12 2 tb22 2
Because the difference in mean response for levels 1 and 2 of factor A is not the 
same for different levels of factor B, the model is no longer additive, and we say 
that the two factors interact.

interaction

TABLE 14.13
Expected values for a 

2 3 2 factorial treatment 
structure without 

interactions 

 Factor B

Factor A Level 1 Level 2

Level 1 m 1 t1 1 b1 m 1 t1 1 b2

Level 2 m 1 t2 1 b1 m 1 t2 1 b2

TABLE 14.14
Expected values 

for a 2 3 2 factorial 
treatment structure with 

interactions 

 Factor B

Factor A Level 1 Level 2

Level 1 m 1 t1 1 b1 1 tb11 m 1 t1 1 b2 1 tb12

Level 2 m 1 t2 1 b1 1 tb21 m 1 t2 1 b2 1 tb22
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Similar to the model for t treatments, this model is grossly overparametrized.  
There are ab treatment means, mij, which have been modeled by 1 1 a 1 b 1 
ab  (a 1 l)(b 1 1) parameters: m; a parameters t1, . . . , ta; b parameters b1, . . . ‚ bb 

and ab parameters tb11, . . . , tbab. In order to obtain the least-squares estimators,  
we place the following constraints on the effect parameters:

ta  0, bb  0, tbij  0 whenever i  a and/or j  b

This leaves exactly ab nonzero parameters to describe the ab treatment means, mij.
Under the above constraints, the relationship between the parameters m, ti, 

bi, and tbij and the treatment means mij  m 1 ti 1 bj 1 tbij becomes

a. Overall mean: m  mab.
b. Main effects of factor A: ti  mib 2 mab for i  l, 2, . . . , a 2 1.
c. Main effects of factor B: bj  maj 2 mab for j  l, 2, . . . , b 2 1.
d. Interaction effects of factors A and B: tbij  (mij 2 mib) 2 (maj 2 mab).

EXAMPLE 14.4

The treatments in an experiment are constructed by crossing the levels of factor 
A and factor B, both of which have two levels. Relate the parameters in the model  
yijk  m 1 ti 1 bj 1 tbij 1 eijk to the treatment means, mij.

Solution  The treatment means are related to the parameters by mij  m 1 ti 1 
bj 1 tbij. The parameter constraints—ta  0, bb  0, and tbij  0 whenever i  a 
and/ or j  b—imply that t2  0, b2  0, and tb12  tb21  tb22  0. Therefore,  
we have

m22  m 1 t2 1 b2 1 tb22  m, which implies that m  m22

m12  m 1 t1 1 b2 1 tb12  m 1 t1, which implies that t1  m12 2 m  m12 2 m22

m21  m 1 t2 1 b1 1 tb21  m 1 b1, which implies that b1  m21 2 m  m21 2 m22

m11  m 1 t1 1 b1 1 tb11  m22 1 (m12 2 m22) 1 (m21 2 m22) 1 tb11, which implies 

that tb11  m11 2 m22 2 (m12 2 m22) 2 (m21 2 m22)  (m11 2 m12) 2 (m21 2 m22) ■

DEFINITION 14.2 Two factors A and B are said to interact if the difference in mean responses 
for two levels of one factor is not constant across levels of the second factor.

In measuring the octane rating of gasoline, interaction can occur when two 
components of the blend are combined to form a gasoline mixture. The octane 
properties of the blended mixture may be quite different than would be expected 
by examining each component of the mixture. Interaction in this situation could 
have a positive or negative effect on the performance of the blend, in which case 
the components are said to potentiate, or antagonize, one another.

Suppose factors A and B both have two levels. In terms of the treatment 
means, mij, the concept of an interaction between factors A and B is equivalent to 
the following:

m11 2 m12  2  m21 2 m22

The equation is just a mathematical expression of Definition 14.2. That is, the 
 difference between the mean responses of levels 1 and 2 of factor B at level 1 of 
 factor A is not equal to the difference between the mean responses of levels 1 and 
2 of factor B at level 2 of factor A. This is what is depicted in Figures 14.3(b) and 
(c). In Figure 14.3(a), m11 2 m12  m21 2 m22, and, hence, we would conclude that 
factors A and B do not interact.
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When testing the research hypothesis of an interaction between the mean 
responses of factors A and B, we have the following set of hypotheses:

H0:  no interaction between A and B versus Ha: A and B have an  
interaction.

In terms of the treatment means, we have

H0:  m11 2 m12  m21 2 m22  versus  Ha: m11 2 m12 2 m21 2 m22

In terms of the model parameters, m, ti, bj, tbij, we have

H0:  tb11  0  versus  Ha: tb11 2 0

We can amplify the notion of an interaction with the profile plots shown 
 previously in Figure 14.3. As we see from Figure 14.3(a), when no interaction is 
present, the difference in the mean response between levels 1 and 2 of factor B (as 
indicated by the braces) is the same for both levels of factor A. However, for the 
two illustrations in Figures 14.3(b) and (c), we see that the difference between the 
levels of factor B changes from level 1 to level 2 of factor A. For these cases, we 
have an interaction between the two factors.

EXAMPLE 14.5

Suppose we have a completely randomized experiment with r replications of the 
treatments constructed by crossing factor A, having three levels, and factor B, 
having three levels. The model yijk  m 1 ti 1 bj 1 tbij 1 eijk was fit to the data. 
 Answer the following questions:

a. After imposing the necessary constraints on the parameters—m, ti, bj, and 
tbij—interpret these parameters in terms of the treatment means, mij.

b. State the null and alternative hypotheses for testing for an interaction in 
terms of the parameters m, ti, bj, and tbij.

c. State the null and alternative hypotheses for testing for an interaction in 
terms of the treatment means.

d. Provide two profile plots, one in which there is an interaction between 
factors A and B and one in which there is not an interaction.

Solution
a. The constraints yield t3  0, b3  0, tb13  0, tb23  0, tb31  0, tb32  0,  

and tb33  0. This then yields the following interpretation for the 
parameters:

m33  m 1 t3 1 b3 1 tb33  m 1 0 1  m  m33

m23  m 1 t2 1 b3 1 tb23  m 1 t2 1 0 1  t2  m23 2 m33

m13  m 1 t1 1 b3 1 tb13  m 1 t1 1 0 1  t1  m13 2 m33

m32  m 1 t3 1 b2 1 tb32  m 1 b2 1 0 1  b2  m32 2 m33

m31  m 1 t3 1 b1 1 tb31  m 1 b1 1 0 1  b1  m31 2 m33

m21  m 1 t2 1 b1 1 tb21  m33 1 1m23 2 m33 2 1 1m31 2 m33 2 1 tb21

     1 tb21  1m21 2 m23 2 2 1m31 2 m33 2
m12  m 1 t1 1 b2 1 tb12  m33 1 1m13 2 m33 2 1 1m32 2 m33 2 1 tb12

     1 tb12  1m12 2 m13 2 2 1m32 2 m33 2
m22  m 1 t2 1 b2 1 tb22  m33 1 1m23 2 m33 2 1 1m32 2 m33 2 1 tb22

     1 tb22  1m22 2 m23 2 2 1m32 2 m33 2
m11  m 1 t1 1 b1 1 tb11  m33 1 1m13 2 m33 2 1 1m31 2 m33 2 1 tb11

     1 tb11  1m11 2 m13 2 2 1m31 2 m33 2

profile plot



814 ChApteR 14 AnAlySIS of VARIAnCe foR Completely RAndomIzed deSIgnS

 From the above, we can observe that the intersection terms, tbij, are 
measuring differences in the mean responses of two levels of factor B at 
two levels of factor A. For example, tb21 is comparing the differences in 
the mean responses of levels 1 and 3 of factor B at level 2 of factor A with 
the differences in the mean responses at the same levels of factor B (1 and 
3) at level 3 of factor A. Thus, tb21  0 yields (m21 2 m23)  (m31 2 m33).

b. H0: tb12  tb21  tb22  tb11  0 versus Ha: tbij 2 0 for at least one 
pair (i, j)

c. H0: mij 2 mik  mhj 2 mhk for all choices of (i, j, h, k) versus  
Ha: mij 2 mik 2 mhj 2 mhk for at least one choice of (i, j, h, k)

 The null hypothesis is stating that all the vertical distances between any 
pair of lines in the profile plots are equal for all levels of factor A.

d. The two profile plots are given in Figures 14.4(a) and (b),

FIGURE 14.4(a)
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Note that an interaction is not restricted to two factors. With three factors—A, 
B, and C—we might have an interaction between factors A and B, A and C, and B and 
C, and the two-factor interactions would have interpretations that follow immediately 
from Definition 14.2. Thus, the presence of an AC interaction indicates that the differ-
ence in mean responses for levels of factor A varies across levels of factor C. A three-
way interaction among factors A, B, and C might indicate that the difference in mean 
responses for levels of C changes across combinations of levels for factors A and B.

The analysis of variance for a completely randomized design using a factorial 
treatment structure with an interaction between the factors requires that we have 
n . 1 observations on each of the treatments (factor–level combinations). We will 
construct the analysis of variance table for a completely randomized two-factor 
experiment with a levels of factor A, b levels of factor B, and n observations on 
each of the ab treatments. It is important to note that these results hold only when 
the number of replications is the same for all ab treatments. When the experiment 
has an unequal number of replications, the expressions for the sum of squares are 
much more complex, as will be discussed in Section 14.4. Before partitioning the 
total sum of squares into its components, we need the notation defined here:

 yijk:  Observation on the kth experimental unit receiving the ith level of 
factor A and jth level of factor B

 yi..: Sample mean for observations at the ith level of factor A, 

  yi.. 
1

bn
g jk yijk

 y.j.: Sample mean for observations at the jth level of factor B,

  y.j. 
1

an
g ik yijk

 yij.: Sample mean for observations at the ith level of factor A and the jth 

  level of factor B, yij. 
1
n
gk yijk

 y...: Overall sample mean, y... 
1

abn
g ijk yijk

The total sum of squares of the measurements about their mean y... is defined
as before:

TSS  a
ijk

1yijk 2 y... 2 2

This sum of squares will be partitioned into four sources of variability: two due 
to the main effects of factors A and B, one due to the interaction between factors 
A and B, and one due to the variability from all sources not accounted for by the 
main effects and interaction. We call this source of variability error.

It can be shown algebraically that TSS takes the following form:

 a
ijk

1yijk 2 y... 2 2  bna
i

1yi.. 2 y... 2 2 1 ana
j

1y.j. 2 y... 2 2

1 na
ij

1yij. 2 yi.. 2 y.j. 1 y... 2 2 1 a
ijk

1yijk 2 yij. 2 2

We will interpret the terms in the partition using the parameter estimates. The first 
quantity on the right-hand side of the equal sign measures the main effect of factor A 
and can be written as

SSA  bna
i

1yi.. 2 y... 2 2

total sum of squares

error

main effect of factor A
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SSA is a comparison of the factor A means, yi.., to the overall mean, y.... Similarly, 
the second quantity on the right-hand side of the equal sign measures the main 
 effect of factor B and can be written as

SSB  ana
j

1y.j. 2 y... 2 2

SSB is a comparison of the factor B means, y.j. to the overall mean y.... The third 
quantity measures the interaction effect of factors A and B and can be written as

SSAB  na
ij

1yij. 2 yi.. 2 y.j. 1 y... 2 2  na
ij

3 1yij. 2 y... 2 2 1yi.. 2 y... 2 2 1y.j. 2 y... 2 4  

2

SSAB is a comparison of treatment means, yij., after removing main effects. The 
final term is the sum of squares for error, SSE, and represents the variability in the 
yijks not accounted for by the main effects and interaction effects. There are sev-
eral forms for this term. Defining the residuals from the model as  before, we have 
eijk  yijk 2 m̂ij  yijk 2 yij.. Therefore,

SSE  a
ijk

1yijk 2 yij. 2 2  a
ijk

1eijk 2 2

Alternatively, SSE  TSS 2 SSA 2 SSB 2 SSAB. We summarize the partition of 
the sum of squares in the AOV table as given in Table 14.15.

From the AOV table, we observe that if we have only one observation on 
each treatment, n  1, then there are 0 degrees of freedom for error. Thus, if fac-
tors A and B interact and n  1, then there are no valid tests for interactions or 
main effects. However, if the factors do not interact, then the interaction term can 
be used as the error term, and we replace SSE with SSAB. However, it would be 
an exceedingly rare situation to run experiments with n  1, since in most cases 
the researcher would not know prior to running the experiment whether or not 
factors A and B interact. Hence, in order to have valid tests for main effects and 
interactions, we need n . 1.

EXAMPLE 14.6

An experiment was conducted to determine the effects of four different pesticides 
on the yield of fruit from three different varieties (B1, B2, and B3) of a citrus tree. 
Eight trees from each variety were randomly selected from an orchard. The four 
pesticides were then randomly assigned to two trees of each variety, and applica-
tions were made according to recommended levels. Yields of fruit (in bushels per 
tree) were obtained after the test period. The data appear in Table 14.16.

main effect of factor B

interaction effect of 
factors A and B

sum of squares for 
error

TABLE 14.15
AOV table for a 

completely randomized 
two-factor factorial 
treatment structure

Source SS df MS F

Main effect
A SSA a 2 1 MSA  SSA / (a 2 1) MSA / MSE
B SSB b 2 1 MSB  SSB / (b 2 1) MSB / MSE

Interaction
AB SSAB (a 2 1)(b 2 1) MSAB  SSAB / (a 2 1)(b 2 1) MSAB / MSE

Error SSE ab(n 2 1) MSE  SSE / ab(n 2 1)

Total TSS abn 2 1
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a. Write an appropriate model for this experiment.
b. Set up an analysis of variance table, and conduct the appropriate  

F tests of main effects and interactions using a  .05.
c. Construct a plot of the treatment means, called a profile plot.

Solution  The experiment described is a completely randomized 3 3 4 factorial 
treatment structure with factor A, pesticides, having a  4 levels and factor B, vari-
ety, having b  3 levels. There are n  2 replications of the 12 factor–level combi-
nations of the two factors.

a. The model for a 4 3 3 factorial treatment structure with interaction 
between the two factors is

 yijk  m 1 ti 1 bj 1 tbij 1 eijk, for i  1, 2, 3, 4; j  1, 2, 3; k  1, 2

 where m is the overall mean yield per tree, tis and bjs are main 
effects, and tbijs are interaction effects.

b. In most experiments, we would strongly recommend using a com-
puter software program to obtain the AOV table, but to illustrate 
the calculations, we will construct the AOV for this example using 
the definitions of the individual sums of squares. To accomplish this, 
we use the treatment means given in Table 14.17.

profile plot

TABLE 14.16
Data for the 3 3 4 
factorial treatment 

structure of fruit tree 
yield, n  2 observations 

per treatment

 Pesticide, A

Variety, B 1 2 3 4

1 49 50 43 53
 39 55 38 48

2 55 67 53 85
 41 58 42 73

3 66 85 69 85
 68 92 62 99

TABLE 14.17
Sample means for 

factor–level combinations 
(treatments) of A and B

 Pesticide, A

Variety, B 1 2 3 4 Variety Means

1 44 52.5 40.5 50.5 46.875
2 48 62.5 47 .5 79 59.25
3 67 88.5 65.5 92 78.25

Pesticide means 53 67 .83 51.17 73.83 61.46

We next calculate the total sum of squares. Because of rounding errors, 
the values for TSS, SSA, SSB, SSAB, and SSE are somewhat different 
from the values  obtained from a computer program.

 TSS  a
ijk

1yijk 2 y... 2 2  149 2 61.46 2 2 1 150 2 61.46 2 2 1 . . . 

1 199 2 61.46 2 2  7,187.96
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The main effect sums of squares are

 SSA  bna
a

i1

1yi.. 2 y... 2 2

  13 2 12 2 3 153 2 61.46 2 2 1 167.83 2 61.46 2 2 1 151.17261.46 2 2

 1 173.83 2 61.46 2 2 4  2,226.29

 SSB  ana
b

j1

1y.j.2y... 2 2

  14 2 12 2 3 146.875 2 61.46 2 2 1 159.25 2 61.46 2 2

1 178.25 2 61.46 2 2 4   3,996.08

The interaction sum of squares is

 SSAB  na
a

i1
a

b

j1

1yij. 2 yi.. 2 y.j. 1 y... 2 2

  (2)[(44 2 53 2 46.875 1 61.46)2 1 (48 2 53 2 59.25  
1 61.46)2 1 (67 2 53 2 78.25 1 61.46)2 1 (52.5 2 67.83  
2 46.875 1 61.46)2 1 (62.5 2 67.83 2 59.25 1 61.46)2  
1 (88.5 2 67.83 2 78.25 1 61.46)2 1 (40.5 2 51.17  
2 46.875 1 61.46)2 1 (47.5 2 51.17 2 59.25 1 61.46)2  
1 (65.5 2 51.17 2 78.25 1 61.46)2 1 (50.5 2 73.83  
2 46.875 1 61.46)2 1 (79 2 73.83 2 59.25 1 61.46)2  
1 (92 2 73.83 2 78.25 1 61.46)2]

 456.92
The sum of squares error is obtained as

SSE  TSS 2 SSA 2 SSB 2 SSAB  7,187.96 2 2,226.29  
2 3,996.08 2 456.92  508.67

The analysis of variance table for this completely randomized 
4 3 3 factorial treatment structure with n  2 replications per treat-
ment is given in Table 14.18.

TABLE 14.18
AOV table for fruit 
yield experiment of 

Example 14.6

Source SS df MS F

Pesticide, A 2,226.29 3 742.10 17 .51
Variety, B 3,996.08 2 1,998.04 47 .13
Interaction, AB 456.92 6 76.15 1.80
Error 508.67 12 42.39

Total 7,187 .96 23

The first test of significance must be to test for an interaction 
between factors A and B because if the interaction is significant, then 
the main effects may have no interpretation. The F statistic is

F 
MSAB
MSE


76.15
42.39

 1.80

The computed value of F does not exceed the tabulated value of 3.00 
for a  .05, df1  6, and df2  12 in the F tables. Hence, we have insuf-
ficient evidence to  indicate an interaction between pesticide levels 
and variety of trees levels. 

c. We can observe this lack of interaction by constructing a profile plot. 
Figure 14.5 contains a plot of the sample treatment means for this 
experiment.
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From the profile plot we can observe that the differences in mean 
yields among the three varieties of citrus trees remain nearly constant 
across the four pesticide levels. That is, the three lines for the three va-
rieties are nearly parallel lines, and, hence, the interaction between the 
levels of variety and pesticide is not significant. Because the interac-
tion is not significant, we can next test the main  effects of the two fac-
tors. These tests separately examine the differences among the levels 
of variety and the levels of pecticides. For pesticides, the F statistic is

F 
MSA
MSE


742.10
42.39

 17.51

The computed value of F does exceed the tabulated value of 3.49 for 
a  .05, df1  3, and df2  12 in the F tables. Hence, we have sufficient 
evidence to indicate a difference in the mean yields among the four 
pesticide levels. For  varieties, the F statistic is

F 
MSB
MSE


1,998.04

42.39
 47.13

The computed value of F does exceed the tabulated value of 3.89 for 
a  .05, df1  2, and df2  12 in the F tables. Hence, we have sufficient 
evidence to indicate a difference in the mean yields among the three 
varieties of citrus trees. ■

In Section 14.5, we will discuss how to explore which pairs of levels differ for 
both factors A and B.

The results of an F test for main effects for factors A or B must be interpreted 
very carefully in the presence of a significant interaction. The first thing we would 
do is to construct a profile plot using the sample treatment means, yij.. Consider the 
profile plot shown in Figure 14.6. There would have been an indication of an inter-
action between factors A and B. Provided that the MSE was not too large relative to 
MSAB, the F test for interaction would undoubtedly have been significant.
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Would F tests for main effects have been appropriate for the profile plot of 
Figure 14.6? The answer is no. Clearly, the profile plot in Figure 14.6 shows that 
the level 3 mean of factor B is always larger than the means for levels 1 and 2. Simi-
larly, the level 2 mean for factor B is always larger than the mean for level 1 for fac-
tor B, no matter which level of factor A we examine. A significant main effect for 
factor B may be misleading. If we find a significant difference in the levels of factor 
B, with the mean response at level 3 larger than at levels 1 and 2 of factor B across 
all levels of factor A, we may be led to conclude that level 3 of factor B produces 
significantly larger mean values than the other two levels of factor B. However, 
note that at level 1 of factor A, there is very little difference in the mean responses 
for the three levels of factor B. Thus, if we were to use level 1 of factor A, the three 
levels of factor B would produce equivalent mean responses. As a result, our con-
clusions about the differences in the mean responses among the levels of factor B 
are not consistent across the levels of factor A and may contradict the test for main 
effects of factor B at certain levels of factor A.

The profile plot in Figure 14.7 shows a situation in which a test of main 
effects in the presence of a significant interaction might be misleading. A disor-
derly interaction, such as in Figure 14.7, can obscure the main effects. It is not 
that the tests are statistically incorrect; it is that they may lead to a misinterpre-
tation of the results of the experiment. At level 1 of factor A, there is very little 
difference in the mean responses of the three levels of factor B. At level 3 of 
factor A, level 3 of factor B produces a much larger response than does level 2 of 
factor B. In contradiction to this result, at level 4 of factor A, level 2 of factor B 
produces a much larger mean response than does level 3 of factor B. Thus, when 
the two factors have significant interactions, conclusions about the  differences in 
the mean responses among the levels of factor B must be made separately at each 
level of factor A. That is, a single conclusion about the levels of  factor B does not 
hold for all levels of factor A.

When our experiment involves three factors, the calculations become con-
siderably more complex. However, interpretations about main effects and interac-
tions are similar to the interpretations when we have only two factors. With three 
factors—A, B, and C—we might have an interaction between factors A and B, 
A and C, and B and C. The interpretations for these two-way interactions would 
follow immediately from Definition 14.2. Thus, the presence of an AC interaction 
indicates that the differences in mean responses among the levels of factor A vary 
across the levels of factor C. The same care must be taken in making interpre-
tations among main effects, as we discussed previously. A three-way interaction 
among factors A, B, and C might indicate that the differences in mean responses 
for levels of factor C change across combinations of levels for factors A and B. A 
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second interpretation of a three-way interaction is that the pattern in the inter-
actions between factors A and B changes across the levels of factor C. Thus, if a 
three-way interaction was present and we plotted a separate profile plot for the 
two-way interaction between factors A and B at each level of factor C, we would 
see decidedly different patterns in several of the profile plots.

The model for an observation in a completely randomized design with a 
three-factor factorial treatment structure and n . 1 replications can be written in 
the form

yijkm  mijk 1 eijkm  m 1 ti 1 bj 1 gk 1 tbij 1 tgik 1 bgjk 1 tbgijk 1 eijkm

where the terms of the model are defined as follows:

 yijkm:  The response from the mth experimental unit receiving the ith 
level of factor A, the jth level of factor B, and the kth level of 
factor C.

 m: Overall mean, an unknown constant.

 ti: An effect due to the ith level of factor A, an unknown constant.

 bj: An effect due to the jth level of factor B, an unknown constant.

 gk: An effect due to the kth level of factor C, an unknown constant.

 tbij:  A two-way interaction effect of the ith level of factor A with the 
jth level of factor B, an unknown constant.

 tgik:  A two-way interaction effect of the ith level of factor A with the 
kth level of factor C, an unknown constant.

 bgjk:  A two-way interaction effect of the jth level of factor B with the 
kth level of factor C, an unknown constant.

 tbgijk:  A three-way interaction effect of the ith level of factor A, the 
jth level of factor B, and the kth level of factor C, an unknown 
constant.

 eijkm:  A random error associated with the response from the mth ex-
perimental unit receiving the ith level of factor A combined with 
the jth level of factor B and the kth level of factor C. We require 
that the es have a normal distribution with mean 0 and common 
variance s2

e . In addition, the errors must be independent.

Similarly to the model with the two factors, this model is grossly overparametrized. 
There are abc treatment means, mijk, which have been modeled by 1 1 a 1 b 1 c 1 
ab 1 ac 1 bc 1 abc  (a 1 1)(b 1 1)(c  1 1)  parameters: m; a parameters t1, . . . , 
ta; b parameters b1, . . . , bb; c parameters g1, . . . , gc; ab parameters tb11, . . . , tbab; 
ac parameters tg11, . . . , tgac; bc  parameters bg11, . . . , bgbc; and abc parameters 
tbg111, . . . , tbgabc. In order to obtain the least-squares estimators, we need to place 
constraints on the effect parameters:

 ta  0, bb  0, gc  0

tbij  0 whenever i  a and/or j  b

tgik  0 whenever i  a and/or k  c

bgjk  0 whenever j  b and/or k  c

tbgijk  0 whenever i  a and/or j  b and/or k  c

After imposing these constraints, there will be exactly abc nonzero parameters to 
describe the abc treatment means, mijk.
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The conditions given for our model can be shown to imply that the recorded 
response from the mth experimental unit receiving the ith level of factor A 
combined with the jth level of factor B and the kth level of factor C is normally 
 distributed with mean

mijk  E 1yijkm 2  m 1 ti 1 bj 1 gk 1 tbij 1 tgik 1 bgjk 1 tbgijk

and variance s2
e .

The following notation will be helpful in partitioning the total sum of squares 
into its components for main effects, interactions, and error.

 yijkm: Observation on the mth experimental unit receiving the ith level of 
factor A, jth level of factor B, and kth level of factor C

 yi...: Sample mean for observations at the ith level of factor A,

  yi... 
1

bcn ajkm yijkm

 y.j..: Sample mean for observations at the jth level of factor B,

  y.j.. 
1

acn aikm yijkm

 y..k.: Sample mean for observations at the kth level of factor C,

  y..k. 
1

abn aijm yijkm

 yij..:  Sample mean for observations at the ith level of factor A and jth 
level of factor B,

  yij.. 
1
cn a km yijkm

 yi.k.:  Sample mean for observations at the ith level of factor A and kth 
level of factor C,

  yi.k. 
1

bn ajm yijkm

 y.jk.:  Sample mean for observations at the jth level of factor B and kth 
level of factor C,

  y.jk. 
1

an aim yijkm

 yijk.:  Sample mean for observations at the ith level of factor A, jth level 
of factor B, and kth level of factor C,

  yijk. 
1
n am yijkm

 y....: Overall sample mean,

  y.... 
1

abcn aijkm yijkm

The residuals from the fitted model then become

eijkm  yijkm 2m̂ijk  yijkm 2 yijk.

Using the above expressions, we can partition the total sum of squares for a three-
factor factorial experiment with a levels of factor A, b levels of factor B, c levels 
of factor C, and n observations per factor–level combination (treatments) into 
the sums of squares for main effects (variability between levels of a single factor), 
two-way interactions, a three-way interaction, and error.
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The sums of squares for main effects are

SSA  bcn a
i

1yi... 2 y.... 2 2

SSB  acn a
j

1y.j.. 2 y.... 2 2

SSC  abn a
k

1y..k. 2 y.... 2 2

The sums of squares for two-way interactions are

SSAB  cn a
ij

1yij.. 2 y.... 2 2 2 SSA 2 SSB

SSAC  bn a
ik

1yi.k. 2 y.... 2 2 2 SSA 2 SSC

SSBC  an a
jk

1y.jk. 2 y.... 2 2 2 SSB 2 SSC

The sum of squares for the three-way interaction is

SSABC  na
ijk

1yijk. 2 y.... 2 2 2 SSAB 2 SSAC 2 SSBC 2 SSA 2 SSB 2 SSC

The sum of squares for error is given by

 SSE  a ijkm 1eijkm 2 2

  a ijkm 1yijkm 2 yijk. 2 2

 TSS 2 SSA 2 SSB 2 SSC 2 SSAB 2 SSAC 2 SSBC 2 SSABC

where TSS  a ijkm 1yijkm 2 y.... 2 2.

The AOV table for a completely randomized design using a factorial treat-
ment structure with a levels of factor A, b levels of factor B, c levels of factor C, 
and n  observations per each of the abc treatments (factor–level combinations) is 
given in Table 14.19.

From the AOV table, we observe that if we have only one observation on 
each treatment, n  1, then there are 0 degrees of freedom for error. Thus, if the 
interaction terms are in the model and n  1, then there are no valid tests for 

TABLE 14.19
AOV table for a completely randomized design with an a 3 b 3 c factorial treatment structure

Source SS df MS F

Main effects

A SSA a 2 1 MSA  SSA / (a 2 1) MSA / MSE

B SSB b 2 1 MSB  SSB / (b 2 1) MSB / MSE

C SSC c 2 1 MSC  SSC / (c 2 1) MSC / MSE

Interactions

AB SSAB (a 2 1)(b 2 1) MSAB  SSAB / (a 2 1)(b 2 1) MSAB / MSE

AC SSAC (a 2 1)(c 2 1) MSAC  SSAC / (a 2 1)(c 2 1) MSAC / MSE

BC SSBC (b 2 1)(c 2 1) MSBC  SSBC / (b 2 1)(c 2 1) MSBC / MSE

ABC SSABC (a 2 1)(b 2 1)(c 2 1) MSABC  SSABC / (a 2 1)(b 2 1)(c 2 1) MSABC / MSE

Error SSE abc(n 2 1) MSE  SSE / abc(n 2 1)

Total TSS abcn 2 1
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interactions or main effects. However, some of the interactions are known to be 0; 
then these interaction terms can be combined to serve as the error term in order to 
test the remaining terms in the model. However, it would be a rare situation to run 
experiments with n  1 because in most cases the researcher would not know prior 
to running the experiment which of the interactions would be 0. Hence, in order to 
have valid tests for main effects and interactions, we need n . 1.

The analysis of a three-factor experiment is somewhat complicated by the 
fact that if the three-way interaction is significant, then we must handle the two-way 
 interactions and main effects differently than when the three-way is not significant.  
Figure 14.8, from Analysis of Messy Data Vol. 1 (Milliken and Johnson, 2009), 
provides a general method for analyzing three-factor experiments.

We will illustrate the analysis of a three-factor experiment using Example 14.7.

START

Significant
three-factor
interaction?

YESNO

How many
significant
two-factor

interactions?

TWO
OR

MORENONE

Are there
other third factors

you would like
to consider?

ONE

Analyze one of the
two-factor treatment

structures at each
level of a selected

third factor

END

Answer all specific
hypotheses of interest using

multiple-comparison methods

Analyze two
factors that

interact as you
would analyze a

two-way treatment
structure

Analyze all
pairs of factors
that interact as

you would analyze
a two-way treatment

structure

Analyze main
effect of factor
not involved in
the significant

two-way interaction

Analyze
each main

effect

YESNO

FIGURE 14.8
Method for analyzing  

three-factor treatment  
structure

EXAMPLE 14.7

An industrial psychologist was studying work performance in a very noisy envi-
ronment. Three factors were selected as possibly being important in explaining 
the variation in worker performance on an assembly line. They were noise level, 
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with three levels: high (HI), medium (MED), and low (LOW); gender: female (F) 
and male (M); and amount of experience on the assembly line: less than 5 years 
(E1), 5–10 years (E2), and more than 10 years (E3). Three workers were ran-
domly  selected in each of the 3 3 2 3 3 factor–level combinations. We thus have a 
completely randomized design with a 3 3 2 3 3 factorial treatment structure and 
three replications on each of the t  18 treatments. The psychologist, process engi-
neer, and assembly line supervisor developed a work performance index that was 
recorded for each of the 54 workers. The data are given in Table 14.20.

TABLE 14.20
Noise level data Noise  Years of

 Performance Index Replication

Level Gender Experience y1 y2 y3

HI F E3 629 495 767
HI F E2 263 141 392
HI F E1 161 55 271
HI M E3 591 492 693
HI M E2 321 212 438
HI M E1 147 79 273

MED F E3 324 213 478
MED F E2 213 106 362
MED F E1 158 36 293
MED M E3 1,098 1,002 1,156
MED M E2 708 580 843
MED M E1 495 376 612
LOW F E3 1,037 902 1,183
LOW F E2 779 625 921
LOW F E1 596 458 732
LOW M E3 1,667 1,527 1,793
LOW M E2 1,192 1,005 1,306
LOW M E1 914 783 1,051

Use the data to determine the effect of the three factors on the mean work 
performance index. Use a  .05 in all tests of hypotheses.

Solution  The first step in the analysis is to examine the AOV table from the fol-
lowing SAS output and produce profile plots.

The GLM Procedure

Dependent Variable: C PERFORMANCE

Source
Model
Error
Corrected Total

DF
17
36
53

Sum of
Squares

8963323.704
571427.333
9534751.037

Mean
Square

527254.336
15872.981

F Value
33.22

Pr > F
<.0001

Source
N
G
G*N
E
N*E
G*E
N*G*E

DF
2
1
2
2
4
2
4

Type III SS
4460333.593
1422364.741
689478.481
2102606.259

75059.852
114623.593
98857.185

Mean
Square

2230166.796
1422364.741
344739.241
1051303.130

18764.963
57311.796
24714.296

F Value
140.50
89.61
21.72
66.23
1.18
3.61
1.56

Pr > F
<.0001
<.0001
<.0001
<.0001
0.3351
0.0372
0.2068
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From the AOV table, the p-value for the three-way interaction is .2068, which 
is considerably larger than a  .05; therefore, we fail to reject the null hypothesis 
of no three-way interaction. Because the three-way interaction was not significant, 
we now consider the three two-way interactions. The interaction of noise with 
gender  has p-value , .0001 , .05, which implies very significant evidence of an 
interaction. The interaction of noise with experience has p-value  .3351 . .05, 
which implies no significant evidence of an interaction. The interaction of gender 
with experience has p-value  .0372 , .05, which implies significant evidence of 
an interaction. In order to investigate the relationship among the three factors, the 
tables of mean responses will be presented here. Because the three-way interaction 
was not significant, only the two-way means will be reported in Table 14.21.

In order to confirm the lack of a three-way interaction in the three factors, 
the profile plots of experience by noise level, first for males and then for females, 
are given in Figure 14.9. The two plots are remarkably similar, except that the E3 
line for  females has an increase in its mean index when the noise level goes from 
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FIGURE 14.9(a)
Profile plot of experience 

by noise level for males

 Noise Level

Experience Low Medium High

E1 755.7 328.3 164.3
E2 971.3 468.7 294.5
E3 1,351.5 711.8 611.2

TABLE 14.21
Two-way treatment  

means for noise data

 Noise Level Experience

Gender Low Medium High E1 E2 E3

Female 803.7 242.6 352.7 306.7 422.4   669.8
Male 1,248.7 763.3 360.7 525.6 733.9 1,113.2
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medium to high, whereas the E3 line for males, displays a decrease in its mean 
index. However, after taking into account the standard  errors in the estimation of 
the treatment means, SE 1m̂ij 2  72.7, the graphs tend to confirm the conclusion of 
no significant interaction that was obtained from the AOV F test. If there would 
have been a three-way interaction, then the relationships between the three lines 
in the plot for males would have been different than the plot for  females. The three 
two-way profile plots are given in Figure 14.10. From the profile plot of experience 
by noise level, we can observe the nearly equal spacing between the three lines, 
thus confirming our conclusions from the AOV table. The profile plots depicting 
the interactions of gender and experience and of gender and noise level again con-
firm the tests from the AOV table. The lines are no longer equally spaced. The dif-
ference in the mean performance indices between females and males increases with 
increasing experience. The difference in the mean performance indices between 
females and males is relatively large for low levels of experience, but male and 
female performance is nearly equal at the higher level of experience.
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by noise level for females
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The output contains summary statistics, a plot of the residuals versus the pre-
dicted value, and a normal probability plot of the residuals. Although the tests of 
the normality of the residuals appear to indicate nonnormality, the plots do not 
indicate a strong deviation from a normal distribution. The residual plots do not 
indicate a violation of the equal variance condition, as the spread in the residuals 
appears nearly constant with increasing values of the predicted performance index.

Variable: RESID

N
Mean
Std Deviation
Skewness

54
0

103.834714
0.00981289

54
0

10781.6478
-1.4081028

Sum Weights
Sum Observations
Variance
Kurtosis

Tests for Normality

--Statistic---Test

Shapiro-Wilk
Anderson-Darling

Stem Leaf
14 026
12 711355778
10 17948
8
6 1
4
2 4
0 11453
-0 944443222111
-2
-4
-6
-8 73
-10 8270
-12 9755306541
-14 0
-16 3

-----p Value-----

W 0.885132 Pr < W  <0.0001
A-Sq 2.150291 Pr > A-Sq <0.0050

#  Boxplot
3     |
9     |
5  +-----+

1

1
5
12  *-----*

2

+

4  +-----+

----+----+----+----+

10
1
1

Multiply Stem.Leaf by 10**+l
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Profile plot of noise level 
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Tests for Normality

--Statistic---Test

Shapiro-Wilk
Anderson-Darling

Stem Leaf
14 026
12 711355778
10 17948
8
6 1
4
2 4
0 11453
-0 944443222111
-2
-4
-6
-8 73
-10 8270
-12 9755306541
-14 0
-16 3

-----p Value-----

W 0.885132 Pr < W  <0.0001
A-Sq 2.150291 Pr > A-Sq <0.0050
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 14.4 Factorial Treatment Structures with  
an Unequal Number of Replications

The analysis of a completely randomized design with an unequal number of repli-
cations for the t  ab factorial treatments is more complex than the analysis with 
equal number of replications. Suppose we have a two-factor experiment with fac-
tor A having a levels and factor B having b levels. Let nij be the number of repli-
cations for the treatment consisting of the ith level of factor A and the jth level of 
factor B. Generally, the nijs are designed to be the same value for all treatments; 
that is, nij  r for i  1, . . . , a and j  1, . . . , b. There may be special reasons to 
 design an experiment having unequal replications; for example, added information 
is required for certain combinations of the factor levels. However, in most cases, 
the unequal number of replications occurs due to problems that arise during the 
implementation of the experiment. Laboratory animals die, animals jump fences 
and destroy the crops on selected plots, volunteers decide not to participate in 
a study, or there is an unequal response rate in a study involving a mailed ques-
tionnaire. In all these situations, the researcher ends up with a data set having an 
unequal number of replications. This results in several problems. The formulas 
for the sums of squares for main effects and interactions are no longer valid. The 
estimation of the marginal means, mi. and m.j, are no longer just the corresponding 
sample means. The sum of squares for the main effects of factors A and B added to 
the sum of squares for interaction no longer total the model sum of squares. This 
is due to the nonorthogonality of the contrasts that compose these sum of squares. 
In these situations, we must rely on computer software to produce the AOV tables 
and the estimated main effects and their standard errors.

In a completely randomized design with a single factor having t levels and ni 
replications, the treatment means are estimated by

m̂i 
1
ni

 a
ni

j1
yij  yi.

The estimated standard errors of the estimated treatment means are given by  
SE 1m̂i 2  ËMSE /ni.

The tests of hypotheses and estimators are similar for designs with equal or 
unequal numbers of replications, provided ni . 1 for all i  1, . . . , t. The only dif-
ference is that the treatments with larger numbers of replications will have a more 
precise estimate of their mean and a smaller estimated standard error. The testing 
procedures are similar for equally and unequally replicated experiments.

When we have designs with factorial treatments, the test statistics and esti-
mation of marginal treatment means differ depending on whether we have equal 
or unequal numbers of replications. With equal replications, we can use the formu-
las given in Section 14.3 to obtain the sums of squares for main effects and inter-
actions. When the experiment involves unequal replications, it is necessary to use 
computer software to obtain those sums of squares.

The estimation of treatment means pose a similar problem. When we have 
equal replications, the estimates of the treatment means and marginal means are 
the corresponding sample means. However, in the case of unequal replications, 
this is no longer true. We will illustrate these formulas for the case of a two-factor 
experiment with factor A having a levels, factor B having b levels, and the number 
of replications, nij, depending on the particular factor-level combinations. The sam-
ple estimates of the treatment means, mij, are the same as in the equal replications 

8
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case, but the estimates of the marginal means, mi. and m.j, are different from the 
equal replications case.

The least-squares estimates are given here:

1. Treatment mean, mij: m̂ij  yij.  1
nij

 a
nij

k1yijk:

 The formula is the same for the equal replications case: nij  r

2. Factor A marginal mean, mi.  1
bgb

j1 mij:

m̂i. 
1
b

 a
b

j1
m̂ij 

1
b

 a
b

j1
yij. 

1
b

 a
b

j1
 
1
nij

  a
nij

k1
yijk

3. Factor B marginal mean, m.j  1
aga

i1
 mij:

 m̂.j 
1
a  a

a

i1
 

1
nij

 a
nij

k1
 yijk

From the above formula, we can see that when nij  r for all (i, j):

m̂i.   
1
b a

b

j1

1
r a

r

k1
yijk 

1
br a

b

j1
a

r

k1
yijk  yi..

Similarly, m̂.j  y.j. when nij  r for all (i, j). Thus, care must be taken when deal-
ing with factorial treatment structures with unequal replications. We will illustrate 
these ideas using the following example.

EXAMPLE 14.8

A horticulturist is interested in studying the effectiveness of fungicide treatments 
applied to plots on which roses are grown. Six treatments, consisting of one of three 
types of fungicide at one of two dose levels, were randomly assigned to 24 plots. This 
is a completely randomized design with a factorial (2 3 3) treatment structure and 
r  4 replications per treatment. Rose plants of the same health, size, and age were 
inoculated, planted, and, after 20 weeks, dug up and the root weights determined. 
However, a number of plants died during the 20 weeks. This resulted in an unbal-
anced  design with the number of replications per treatment varying from nij  2 to 
nij  4 (see Table 14.22).

TABLE 14.22
Root weight data  Fungicide

Dose Level 1 2 3

 19 24 22
1 20 26 25
 21  25
   19

 25 21 31
2 27 24 32
  24 33
   32

A profile plot is given in Figure 14.11. There appears to be an interaction 
between the two factors in that the two lines intersect. However, we need to test if 
there is significant evidence of an interaction after taking into account the level of 
variation in the estimation of the treatment means.
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The test of hypotheses and estimation of the treatment means will be 
obtained from the following output from SAS:

Class         Levels      Values
A                  2      1 2
B                  3      1 2 3

Dependent Variable: Y
                                    Sum of
Source                   DF        Squares    Mean Square    F Value    Pr > F
Model                     5    305.2500000     61.0500000      18.91    <.0001
Error                    12     38.7500000      3.2291667
Corrected Total          17    344.0000000

Source                   DF    Type III SS    Mean Square    F Value    PR > F
A                         1    81.02884615    81.02884615      25.09    0.0003
B                         2    67.92272727    33.96136364      10.52    0.0023
A*B                       2    95.74090909    47.87045455      14.82    0.0006

The GLM Procedure                                       Least Squares Means

A            N            Mean         Std Dev        LSMEAN      Standard Error
1            9      22.3333333      2.73861279      22.5833333    0.6234549
2            9      27.6666667      4.41588043      27.0000000    0.6234549

B            N            Mean         Std Dev        LSMEAN      Standard Error
1            5      22.4000000      3.43511281      23.0000000    0.8202092
2            5      23.8000000      1.78885438      24.0000000    0.8202092
3            8      27.3750000      5.31675250      27.3750000    0.6353313

A   B        N            Mean         Std Dev        LSMEAN      Standard Error
1   1        3      20.0000000      1.00000000      20.0000000    1.0374916
1   2        2      25.0000000      1.41421356      25.0000000    1.2706626
1   3        4      22.7500000      2.87228132      22.7500000    0.8984941
2   1        2      26.0000000      1.41421356      26.0000000    1.2706626
2   2        3      23.0000000      1.73205081      23.0000000    1.0374916
2   3        4      32.0000000      0.81649658      32.0000000    0.8984941
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From the SAS output, we obtain p-value  .0006 for testing for an interac-
tion between factors A and B. This confirms our observations from the profile plot.

Using our formulas for a balanced design,

 SSA  a
a

i1
 ni. 1yi.. 2 y... 2 2  SSB  a

b

i1

n.j 1y.j. 2 y... 2 2

 SSAB  a
a

i1
a
b

i1

 nij 1yij. 2 yi.. 2 y.j. 1 y... 2 2

we would obtain the following values for SSA, SSB, and SSAB:

SSA  128  SSB  86.125  SSAB  98.5917

These values certainly do not agree with the values given in the previous AOV 
table. The reason for the disagreement is that the least-squares estimates of the 
marginal means are not equal to the corresponding sample means. We will demon-
strate this result using the sample means in Table 14.23.

TABLE 14.23
Treatment sample means  Fungicide

Dose Level 1 2 3 yi..

1 20 25 22.75 22.333
2 26 23 32 27 .667

y.j. 22.4 23.8 27 .375

The least-squares estimates of the treatment means, m̂ij, are equal to yij. for 
all six treatments. However, the least-squares estimates of the treatment marginal 
means, mi. and m.j, are given by

m̂1. 
1
3 a

3

j1
 m̂1j 

1
3
320 1 25 1 22.75 4  22.583 2 22.333  y1..

m̂2. 
1
3 a

3

j1
 m̂2j 

1
3
326 1 23 1 32 4  27 2 27.667  y2..

m̂.1 
1
2 a

2

i1
 m̂i1 

1
2
320 1 26 4  23 2 22.4  y.1.

m̂.2 
1
2 a

2

i1
 m̂i2 

1
2
325 1 23 4  24 2 23.8   y.2.

m̂.3 
1
2 a

2

i1
m̂i3 

1
2
322.75 1 32 4  27.375  27.375  y.3.

In general, the least-squares estimates of the treatment marginal means are not 
equal to the corresponding sample means, m̂i 2 yi.. and m̂.j 2 y.j., although occa-
sionally the two estimates will agree, as is seen for m̂.3. ■

When all of the data for some treatments are completely deleted or missing 
in an experiment—that is, nij  0 for some combinations (i, j)—the standard anal-
ysis of the experiment will often lead to very misleading conclusions. The AOV 
table in the output from most software packages will provide sums of squares and 
tests that are not very meaningful. An excellent reference for the analysis of this 
type of experiment is the book Analysis of Messy Data (Milliken and Johnson, 
2009). Consider the following example from this book. 
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EXAMPLE 14.9

A bakery scientist wanted to study the effects of combining three different fats (F1) 
with each of three surfactants (F2) on the specific volume of bread loaves baked 
from doughs mixed from each of the nine treatment combinations. Four loaves were 
made from each of the nine treatment combinations. Unfortunately, one container 
of yeast turned out to be ineffective, and the data from the 15 loaves made with that 
yeast had to be removed from the analysis. The data are given in Table 14.24.

This experiment is a completely randomized design with a 3 3 3 factorial 
treatment structure and four replications. However, a number of the replications 
are not observed. This results in several treatments having no observations in the 
experiment. Often experimental data such as those in Table 14.24 are analyzed 
using computer software. The following analysis from SAS demonstrates the prob-
lems that result from such an analysis.

The model used in the following analysis is given here:

yijk  m 1 ti 1 bj 1 1tb 2 ij 1 eijk  with  i  1, 2, 3; j  1, 2, 3

This was designed as an equally replicated experiment with r  4; however, 
 because of problems that arose during the experiment, the numbers of actual obser-
vations per treatment are given below:

n11  3; n12  3; n13  0; n21  3; n22  0; n23  4; n31  2; n32  4; n33  2

The following output obtained from SAS contained no specification of missing 
treatments.

Analysis as a CR 3x3 factorial

Class        Levels        Values
fat               3        1 2 3
surf              3        1 2 3
Number of observations       36

NOTE: Due to missing values, only 21 observations can be used in this

analysis.

Dependent Variable: sv

Sum of

Squares

12.47142857

9.86666667

22.33809524

Source

Model

Error

Corrected Total

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

DF
6

14
20

DF

2

2

2

DF
2

2

2

DF

2

2

2

DF

2*

2*

2

Type I SS

7.45261905

0.29722997

4.72157956

Type II SS

6.47812282

0.29722997

4.72157956

Type III SS

6.00174091

0.99963357

4.72157956

Type IV SS

3.87252033

1.67022222

4.72157956

Mean Square

2.07857143

0.70476190

Mean Square

3.72630952

0.14861498

2.36078978

Mean Square

3.23906141

0.14861498

2.36078978

Mean Square

3.00087046

0.49981678

2.36078978

Mean Square

1.93626016

0.83511111

2.36078978

F Value
2.95

F Value

5.29

0.21

3.35

F Value

4.60

0.21

3.35

F Value

4.26

0.71

3.35

F Value

2.75

1.18
3.35

Pr > F
0.0447

Pr > F

0.0195

0.8124

0.0647

Pr > F

0.0292

0.8124

0.0647

Pr > F
0.0359

0.5089

0.0647

Pr > F

0.0985
0.3346

0.0647

* NOTE: Other Type IV Testable Hypotheses exist which may yield

different SS.

TABLE 14.24
Specific volumes  

from baking experiment

 Factors Loaf

Treatment Fat Surfactant 1 2 3 4 nij yij.

1 1 1 6.7 4.3 5.7 *  3 5.57
2 1 2 7 .1 * 5.9 5.6  3 6.20
3 1 3 * * * *  0 *
4 2 1 * 5.9 7 .4 7 .1  3 6.80
5 2 2 * * * *  0 *
6 2 3 6.4 5.1 6.2 6.3  4 6.00
7 3 1 7 .1 5.9 * *  2 6.50
8 3 2 7 .3 6.6 8.1 6.8  4 7 .00
9 3 3 * 7 .5 9.1 *  2 8.30

Total       21 6.58
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Analysis as a CR 3x3 factorial

Class        Levels        Values
fat               3        1 2 3
surf              3        1 2 3
Number of observations       36

NOTE: Due to missing values, only 21 observations can be used in this

analysis.

Dependent Variable: sv

Sum of

Squares

12.47142857

9.86666667

22.33809524

Source

Model

Error

Corrected Total

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

Source

fat

surf

fat*surf

DF
6

14
20

DF

2

2

2

DF
2

2

2

DF

2

2

2

DF

2*

2*

2

Type I SS

7.45261905

0.29722997

4.72157956

Type II SS

6.47812282

0.29722997

4.72157956

Type III SS

6.00174091

0.99963357

4.72157956

Type IV SS

3.87252033

1.67022222

4.72157956

Mean Square

2.07857143

0.70476190

Mean Square

3.72630952

0.14861498

2.36078978

Mean Square

3.23906141

0.14861498

2.36078978

Mean Square

3.00087046

0.49981678

2.36078978

Mean Square

1.93626016

0.83511111

2.36078978

F Value
2.95

F Value

5.29

0.21

3.35

F Value

4.60

0.21

3.35

F Value

4.26

0.71

3.35

F Value

2.75

1.18
3.35

Pr > F
0.0447

Pr > F

0.0195

0.8124

0.0647

Pr > F

0.0292

0.8124

0.0647

Pr > F
0.0359

0.5089

0.0647

Pr > F

0.0985
0.3346

0.0647

* NOTE: Other Type IV Testable Hypotheses exist which may yield

different SS.

Least Squares Means

fat
1
2
3

fat
1
1
2
2
3
3
3

surf
1
2
1
3
1
2
3

sv LSMEAN
Non-est
Non-est

7.33333333

sv LSMEAN
5.56666667
6.20000000
6.80000000
6.00000000
6.50000000
7.20000000
8.30000000

Standard
Error

.        

.        
 0.31286355

Pr > |t|
   .
   . 
  <.0001

surf
1
2
3

sv LSMEAN
6.28888889

Non-est
Non-est

Standard
Error

0.30225490
.        
.        

Pr > |t|
  <.0001
   . 
   .
  

Standard
Error

0.48468612
0.48468612
0.48468612
0.41975049
0.59361684
0.41975049
0.59361684

Pr > |t|
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

LSMEAN
Number

1
2
3
4
5
6
7

Type III and IV sums of squares are the mostly widely used in the analysis of 
experiments. They test the type of hypotheses of most interest to experimenters. 
When some of the treatments are not observed in the experiment—that is, nij  0 
for some treatments—the Type IV sum of squares adjusts factor effects by averag-
ing over one or more common levels of the other factor effects. In most cases, when 
some treatments are not observed, the Type IV sum of squares is testing hypotheses 
that are most likely to have reasonable interpretations. However, as is true for all 
four types of sums of squares, it is difficult to determine the actual hypotheses being 
tested. There are many other possible Type IV hypotheses that can be generated. 
PROC GLM in SAS automatically generates a set of Type IV hypotheses. Thus, it is 
impossible to interpret the significance of the effects using the p-value for the main 
and interaction effects because the set of hypotheses tested is not displayed. The 
interpretation problem is shown in the SAS output with the display of the statement 
“Other Type IV Testable Hypotheses exist which may yield different SS.”

■
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The more appropriate methodology is to ignore the factorial structure of the 
treatments and just consider the experiment as having a single factor with t levels. 
For example, in Example 14.9, the original design had t  (3)(3) treatments. How-
ever, after the completion of the experiment, only seven of the nine treatments 
were observed. Thus, we should analyze the data from the experiment as if there 
was just a single factor having t  7 treatments. It is still possible in many such 
experiments to construct contrasts that are testing hypotheses that are directly of 
interest to the researcher. Consider the following analysis.

Let yijk  specific volume of the kth loaf using ith level of fat and jth level 
of surfacant.

Model: yijk  mij 1 eijk; for i, j  1, 2, 3; k  1, . . . , rij

SSTOT  a
3

i1
a

3

j1
a
rij

k1

3yijk 2 y... 42  22.338095 dfTOT  21 2 1  20

SSE  a
3

i1
a

3

j1
a
rij

k1

3yijk 2m̂ij 42  9.8666667 dfE  N 2 t  21 2 7  14

SSMODEL  a
3

i1
a

3

j1
a
rij

k1

3m̂ij 2 y... 42  12.471429 dfM  t 2 1  7 2 1  6

We want to decompose SSMODEL into terms that represent differences in the t  7 
treatments: fat (F) main effect, surfactant (S) main effect, and F 3 S interaction.

I. First, test for overall difference in the seven treatments:

Test H0: m11  m12  m21  m23  m31  m32  m33 versus Ha: Not all mij are equal.

 F 
MSMODEL

MSE


12.471429 /6
9.866667 /14

 2.95 with df  6, 14 1 p-value  .0447

Therefore, there appears to be some evidence of a difference in the seven treatment 
means.

II. Construct contrasts that represent comparisons between treatment means that 
are main effects and two-way interactions:

Table 14.25 contains eight mutually orthogonal contrasts that would represent the 
t 2 1  9 2 1  8 df for decomposing SSMODEL into components for main  effects 
and interaction provided all nine treatments were observed.

Because not all factor combinations were observed, the contrasts which rep-
resent main effects and interactions are modified to the contrasts given in Table 14.26.

The choices for the contrasts are not unique as is illustrated with three possi-
ble sets of contrasts for evaluating the main effect of surfacant. Furthermore, the 
set of six contrasts is not a set of orthogonal contrasts.

The determination of whether there is significant evidence of a main effect for 
fat or surfacant and whether there is significant evidence of an interaction between 
fat and surfacant relies on testing the significance of the contrasts in Table 14.26. 
The following SAS output contains the tests for the six contrasts displayed in 
Table 14.26.

Contrast
Main Fat
Main Surf
Interaction

DF
2
2
2

Contrast SS
3.87252033
1.67022222
4.72157956

Mean Square
1.93626016
0.83511111
2.36078978

F Value
2.75
1.18
3.35

Pr > F
0.0985
0.3346
0.0647
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From the previous output, we can observe that there is not significant evi-
dence of pseudo-main effects and pseudo-interaction in this experiment. The 
p-values for the six contrasts in the SAS output are identical to the p-values asso-
ciated with the  Type IV sum of squares from the AOV table in the SAS output. 
Thus, we would reach the same conclusions that we reached using the SAS output. 
The important point is that using the contrast approach, we know what hypotheses 
are being tested, whereas the exact hypotheses being tested by the Type IV sum 
of squares may vary from analysis to analysis. Furthermore, the output from other 
software packages may not produce the Type IV sum of squares produced by SAS, 
so the researcher would not know the hypotheses being tested using the AOV F 
tests. Thus, no matter what software package is used to analyze the data, there is 
not direct information concerning what hypotheses are being tested when some of 
the factorial combinations are not observed in the experiment.

 14.5 Estimation of Treatment Differences  
and Comparisons of Treatment Means

We have emphasized the analysis of variance associated with factorial experiments. 
However, there are times when we might be more interested in estimating the 
difference in mean responses for two treatments (different levels of the same fac-
tor or different combinations of levels). For example, an environmental engineer 
might be more interested in estimating the difference in the mean dissolved oxy-
gen contents for a lake before and after rehabilitative work than in testing to see 

TABLE 14.25
Coefficients for mutually  

orthogonal contrasts  
in nine treatment means

 Treatment Means

Contrast Effect m11 m12 m*
13 m21 m*

22 m23 m31 m32 m33

Main fat C1 1 1 1 21 21 21 0 0 0
 C2 1 1 1 1 1 1 22 22 22

Main surf. C3 1 21 0 1 21 0 1 21 0
 C4 1 1 22 1 1 22 1 1 22

Interaction C5 1 21 0 21 1 0 0 0 0
 C6 1 1 22 21 21 2 0 0 0
 C7 1 21 0 1 21 0 22 2 0
 C8 1 1 22 1 1 22 22 22 4

Note: * indicates that treatment was not observed.

TABLE 14.26
Coefficients for contrasts 

in observed seven 
treatment means

 Treatment Means

Contrast Effect m11 m12 m21 m23 m31 m32 m33

Main, fat C1 1 1 0 0 21 21 0
 C2 0 0 1 1 21 0 21

Main, surf. 1 C3 1 21 0 0 1 21 0
 C4 0 0 1 21 1 0 21

Main, surf. 2 C3 0 0 0 0 1 0 21
 C4 0 0 0 0 1 22 1

Main, surf. 3 C3 0 0 0 0 0 1 21
 C4 0 0 1 21 1 0 21

Interaction C5 1 21 0 0 21 1 0
 C6 0 0 1 21 21 0 1
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whether there is a difference. Thus, the engineer is asking the question “What is 
the difference in mean dissolved oxygen contents?” instead of the question “Is there 
a difference between the mean contents before and after the cleanup project?”

The Tukey procedure can be used to evaluate the difference in treatment 
means for a k-factor treatment structure in a completely randomized design. Let 
yi denote the mean response for treatment i, y ri  denote the mean response for 
 treatment i r , and nt denote the number of observations in each treatment. A set 
of simultaneous 100(1 2 a)% confidence intervals on mi 2 mir , the difference in 
mean responses for the two treatments, is defined as shown here.

100(1 2 a)%  
Confidence Interval 
for the Difference in 

t Treatment Means

1yi 2 yi r 2 6 qa 1t, n 2Å
s2

e

nt

where s2
e  is the square root of MSE in the AOV table and qa 1t, n 2  can be obtained 

from Table 10 in the Appendix for the specified a and n, the degrees of freedom 
for MSE.

EXAMPLE 14.10

A company was interested in comparing three different display panels for use by air 
traffic controllers. Each display panel was to be examined under five different simu-
lated emergency conditions. Thirty highly trained air traffic controllers with similar 
work experience were enlisted for the study. A random assignment of controllers 
to display panel–emergency conditions was made, with two controllers assigned to 
each factor–level combination. The time (in seconds) required to stabilize the emer-
gency situation was recorded for each controller. These data appear in Table 14.27.

TABLE 14.27
Display panel data  

(time in seconds)

 Emergency Condition, A

Display Panel, B 1 2 3 4 5

1 18.8 32.7 25.1 41.7 14.9
 15.2 33.3 23.9 33.3 12.1
2 14.6 36.5 23.9 38.0 14.7
 13.4 26.5 21.1 35.0 11.3
3 27 .8 45.0 40.8 55.0 29.4
 24.2 43.0 36.2 54.0 22.6

TABLE 14.28
Mean reaction times for  

display panel–emergency  
condition study

 Emergency Condition, A

Display Panel, B 1 2 3 4 5 Means 
_
y.j.

1 17 33 24.5 37 .5 13.5 25.1
2 14 31.5 22.5 36.5 13 23.5
3 26 44 38.5 54.5 26 37 .8

Means yi..  19.0 36.2 28.5 42.8 17 .5 y...  28.8

a. Construct a profile plot.
b. Run an analysis of variance that includes a test for interaction.

Solution
a. The sample means are given in Table 14.28 and then displayed in a 

profile plot in Figure 14.12. From the profile plot, we observe that 
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the  difference in mean reaction times for controllers on any pair of 
different display panels remains relatively constant across all five 
emergency conditions. Panel 1 and panel 2 yield essentially the same 
mean reaction times across the five emergency conditions, whereas 
panel 3 produces mean reaction times that are consistently higher 
than the mean times for the other two panels. We will next confirm 
these observations using tests of hypotheses that take into account the 
variability of the reaction times about the observed mean times.

b. The computer output for the analysis of variance table is given in 
Table 14.29.

The first test of hypotheses is for an interaction between the two factors, 
emergency condition and type of display panel. The computed value 
of F  .55 is less than the critical value of F, 2.64, for a  .05, df1  8, 
and df2  15. Thus, have insufficient evidence (p-value  .8049) to indi-
cate an interaction between emergency conditions and type of display 
panel. This confirms our observations from the profile plot. Because the 
interaction was not significant, we will next test for a main effect due to 
type of display panel. The computed value of F, 59.73, is more than the 
critical value of F, 3.68, for a  .05, df1  2, and df2  15, so we have 
sufficient evidence (p-value , .0001) to indicate a significant difference 
in mean reaction times across the three types of display panels. ■

FIGURE 14.12
Plot of panel means for 

each emergency condition
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TABLE 14.29
AOV table for display 

panel–emergency 
condition study

General Linear Models Procedure

Dependent Variable: y, Stabilization Time

Sum of Mean
F>rPeulaVFerauqSserauqSFDecruoS
1000.028.657584.4920008.221441ledoM

10.2787154.180051rorrE
Corrected Total 29 4276.9800

R-Square C.V. Root MSE Y Mean
0.963951 11.132087 3.2060 28.800

F>rPeulaVFerauqSnaeMSSIepyTFDecruoS
1000.059.730009.3160008.72212D
1000.069.323335.2173331.05824E

0.80490.553806.57668.448E*D
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EXAMPLE 14.11

Refer to Example 14.10. The researchers were very interested in the size of the 
differences in mean reaction times among the three types of panels. Estimate these 
differences using 95% confidence intervals.

Solution  Because there is not a significant interaction between type of display 
panel and type of emergency condition, the sizes of the differences in mean reac-
tion times among the types of display panels would be relatively the same for all 
five types of emergency conditions. Thus, we can examine the main effect means for 
the three display panels, averaging over the five emergency conditions: m̂. j  y.j. , 
for j  1, 2, 3. From Table 14.28, we have

y.1.  25.1  y.2.  23.5  y.3.  37.8

The value of qa(t, n) for a  .05, t  3, and n  15 is 3.67; the estimate of se is

se  ËMSE  Ë10.2787  3.21

The formula for a 95% confidence interval on the difference between the mean 
 reaction times of two display panels, m.j 2 m r.j , is given by

y.j. 2 y r.j. 6 q.05 13, 15 2Å
s2

e

nt

For panels 2 and 3, we have nt  10 observations per panel; thus, we have

 37.8 2 23.5 6 3.67Å
10.2787

10

 14.3 6 3.72

that is, 10.58 to 18.02. Therefore, we are 95% confident that the difference in the 
mean reaction times between display panel 2 and display panel 3 is between 10.58 
and 18.02 seconds. Similarly, we can calculate confidence intervals on the differ-
ences between panels 1 and 3 and between panels 1 and 2. ■

After determining that there was a significant main effect using the F test, 
we would proceed with two further inference procedures. First, we would place 
confidence  intervals on the difference between any pair of factor–level means— 
mi. 2m ri.  for factor A or m.j 2 m r.j  for factor B—using the procedure illustrated in 
Example 14.11. This would estimate the effect sizes for these two factors. Next, 
we would want to determine which pairs of factor-level means are significantly 
different.

As discussed in Chapter 9, we would apply one of the multiple-comparison 
procedures in order to control the experimentwise error rate for comparing the 
pairs of factor levels. There would be a(a 2 1) /2 pairs for factor A and b(b 2 1) /2 
pairs for factor B. The choice of which procedure to use would once again depend 
on the experiment, as discussed in Chapter 9. All of the procedures discussed in 
Chapter 9, such as Tukey Scheffé, and Bonferroni, can be performed for a k-fac-
tor treatment structure in a completely randomized experiment. The quantity s2

w 
in the formulas given in Chapter 9 for these procedures is replaced with MSE, 
the degrees for MSE are obtained from the AOV table, and the sample size n 
refers to the number of observations per mean value in the comparison—that is, 
the number of data values averaged to obtain yi.., for example.
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EXAMPLE 14.12

Refer to Example 14.10 and the data in Tables 14.27 and 14.28. Use Tukey’s W pro-
cedure to locate significant differences among display panels.

Solution  For the Tukey’s W procedure, we use the formula presented in Chapter 9:

W  qa 1t, v 2  Å
s2

w

n

where s2
w is MSE from the AOV table, based on v  15 degrees of freedom, and 

qa(t, v) is the upper-tail critical value of the studentized range for comparing t 
 different population means. The value of qa(t, v) from Table 10 in the Appendix for 
comparing the three display panel means, each of which has 10 observations per 
sample mean, is

q.05 13, 15 2  3.67

For 10 observations per mean, the value of W is

W  qa 1t, v 2  Å
s2

w

n
 3.67 Å

10.28
10

 3.72

The display panel means are, from Table 14.28,

y.1.  25.1  y.2.  23.5  y.3.  37.8

First, we rank the sample means from lowest to highest:

Display panel 2 1 3

Means 23.5 25.1 37.8

For the two means that differ (in absolute value) by more than W  3.72,  
we declare them to be significantly different from each other. The results of our 
multiple-comparison procedure are summarized here:

Display panel 2 1 3

Thus, display panels 1 and 2 both have mean reaction times significantly lower 
than display panel 3, but we are unable to detect a difference in the mean reaction 
times between panels 1 and 2. ■

 14.6 Determining the Number of Replications 

The number of replications in an experiment is the crucial element in determining 
the accuracy of estimators of the treatment means and the power of tests of hypoth-
eses concerning differences between the treatment means. In most situations, the 
greater the number of replications, the greater the accuracy of the estimators, the 
more precise the confidence intervals on treatment means, and the greater the 
power of the tests of hypotheses. The conditions that constrain the researcher from 
using very large numbers of replications are the cost of running the experiment, the 
time needed to handle a large number of experimental units, and the availability 
of experimental units. Thus, the researcher must determine the minimum num-
ber of replications required to meet reasonable specifications on the accuracy of 
estimators or on the power of tests of hypotheses.
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Using the Accuracy of Estimator Specifications to Determine  
the Number of Replications
We can determine the number of replications by specifying the desired width of a 
100(1 2 a)% confidence interval on the treatment mean. In Chapter 5, we provided 
a formula for determining the sample size needed so that we were 100(1 2 a)% 
confident that the sample estimate was within E units of the true treatment mean. 
If we let r be the number of replications, s be the experimental standard deviation, 
and E be the desired accuracy of the estimator, then we can approximate the value 
of r using the following formula.

Sample Size r 
Required to Be 

100(1 2 a)% Confident 
That the Estimator Is 
Within E Units of the 

Treatment Mean m

r 
1za/2

2 2ŝ2

E2

In using this formula, the experimenter must specify 

1. The desired level of confidence, 100(1 2 a)%. 
2. The level of precision, E.
3. An estimate of s. The estimate of s may be obtained from a pilot 

study, similar past experiments, or literature on similar experiments, 
or a rough estimator can be used: ŝ  (largest value 2 smallest 
value) /4. The following example will illustrate these calculations.

EXAMPLE 14.13

A researcher is designing a project to study the yield of pecans under four rates 
of nitrogen application. The researcher wants to obtain estimates of the treatment 
means m1, m2, m3, and m4 such that she will be 95% confident that the estimates are 
within 4 pounds of the true mean yield. She wants to determine the necessary num-
ber of replications to achieve these goals.

Solution  From previous experiments, the yields have ranged from 40 pounds to 
70 pounds. Thus, an estimate of s is given by 

ŝ 
70 2 40

4
 7.5

From the normal tables, z.025  1.96. The value of E is 4 pounds, as specified by the 
researcher. Thus, we determine that the number of replications is 

r 
1za/2

2 2ŝ2

E 2 
11.96 2 2 17.5 2 2

14 2 2  13.51

Thus, the researcher should use 14 replications on each of the treatments to obtain 
the desired precision. ■

Using this technique to determine the number of replications does not take 
into account the power of the F test to detect specified differences in the treatment 
means. Thus, the following method of determining the number of replications is 
preferred in most studies.
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Using the Power of the F Test to Determine the  
Number of Replications
In a study involving t treatments, one of the goals is to test the hypotheses

 H0: m1  m2  c mt

 Ha: Not all ms are equal.

The test procedure is to reject H0 if F $ Fa, t21, N2t, with F  MST /MSE, where 
MST and MSE are the mean squares from the AOV table. The number of repli-
cations, with r1  r2  c rt  r, will be determined by specifying the following 
parameters with respect to the test statistic: 

1. The significance level, a
2. The size of the difference D  |mi 2 mj| in two treatment means, 

which is of practical significance
3. The probability of a Type II error if any pair of treatments has means 

that differ by more than D  |mi 2 mj|
4. The variance s2

The probability of a Type II error, b(l), is determine by using the noncentral 
F distribution with degrees of freedom v1 and v2 and the noncentrality parameter

l 
rg t

i1 1mi 2 m.2 2

s2

where m. 
1
t a

t

i1
mi. The minimum value of l for the situation in which at least one 

pair of treatments has means differing by D units or more is given by

l 
rD2

2s2

Table 13 in the Appendix contains the power of the F test, which is the same as 
1 2 b(l). The table uses the parameter f  Ël/t to specify the alternative values 
of the mis. Using this table, we can determine the necessary number of replications 
to meet the given specifications. The following example will illustrate the requisite 
calculations.

EXAMPLE 14.14

Refer to Example 14.13, in which a researcher is designing a project to study the 
yield of pecans under four rates of nitrogen application. The researcher knows that 
if the average pecan yields differ by more than 15 pounds, there is an economical 
advantage in using the treatment providing the higher yield. Thus, the researcher 
wants to determine the number of replications necessary to be 90% certain that 
the F test will reject H0 and hence detect a difference in the average yields 
whenever any pair of nitrogen rates produces average pecan yields differing by 
more than 15 pounds. The test must have a  .05.

Solution  From previous experiments, the yields have ranged from 40 pounds to 
70 pounds. Thus, an estimate of s is given by

ŝ 
70 2 40

4
 7.5
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We have a  .05, t  4, v1  t 2 1  4 2 1  3, and v2  N 2 t  rt 2 t  t(r 2 1)  
4(r 2 1), where r is the required number of replications. Furthermore, D  15, and, 
hence,

f  Å
rD2

2tŝ2  Å
r 115 2 2

2 14 2 17.5 2 2  .707Ër

Figure 14.13 contains the power curves needed to solve this problem. Note that 
v1  3, a  .05, and the curves are labeled v2. We will determine the value of r such 
that the power is at least .90 when f  .707Ër. We will accomplish this by selecting 
values of r until we reach the necessary threshold.

The method of determining the proper value for r is by trial and error. First, 
we guess r  6. Next, we compute v2  4(6 2 1)  20 and f  .707Ë6  1.73. In 
Figure 14.13, we locate f  1.73 on the axis labeled f and draw a vertical line from 
1.73 to the curve labeled 20. We then draw a horizontal line to the axis labeled 
power  1 2 b and read the value .75. Thus, if we used six replications in the ex-
periment, our power would only be .75 when D  15, which is too small. We next 
try r  10 and find that the power is .96. This value would be acceptable; however, a 
smaller value of r may achieve our goal. Thus, we try r  8 and find that the power 
equals .89. This value is just slightly too small. Finally, we find that the power is .93 
when r  9. Thus, the experiment requires nine replications to meet its specifica-
tions. The calculations are summarized in Table 14.30.

FIGURE 14.13
Power of the analysis of 

variance test (a  .05, 
t  4)
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TABLE 14.30
Determining the number  

of replications

 r v2 5 4(r 2 1) f 5 .707!r  Power

 6 20 1.73 .75
10 36 2.24 .96
 8 28 2.00 .89
 9 32 2.12 .93

■
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When the experiment has a factorial treatment structure, the calculation of the 
sample size for an equally replicated design could appear initially to involve rather 
complex calculations. Suppose we want to test for an interaction between the two fac-
tors A and B. This set of hypotheses expressed in terms of the treatment means, mij, is

 H0: mij 2 mik  mhj 2 mhk for all 1i, j, k, h 2 versus

 Ha: mij 2 mik 2 mhj 2 mhk for at least one set 1i, j, k, h 2

Reject H0 if F 
MSAB
MSE

$ Fa, 1a21 21b21 2, ab 1r21 2.

The calculation of the power of this test statistic involves the distribution of 
a  noncentral F distribution with df  (a 2 1)(b 2 1), ab(r 2 1), and noncentrality 
parameter

l 
r

s2
e
a

a

i1
a

b

j1

1mij 2 mi. 2 m.j 1 m.. 2 2

For specified values of the noncentrality parameter, l0, the probability of Type I 
error, a, and the power of the test, g0, determine the minimum value of r such that 
the power of the test exceeds g0 whenever l $ l0.

Use Table 13 in the Appendix with w  Ël/t  and t  ab to determine the 
appropriate value of r. The sample size is then given by n  rt.

The above approach is not very realistic because specifying appropriate val-
ues for l0 is not very intuitive to a researcher, businessperson, or engineer. The 
following approach follows the methodology used in single-factor experiments.

Determine r by specifying differences in the treatment means:

a. Let D  mij 2 mkh be the difference in any two treatments that the 
 researcher deems important to detect.

b. From our previous results, we know that the minimum value of l is

  l 
rg a

i1gb
j1 1mij 2 m.. 2 2

s2
e


rD2

i

2s2
e

c. Determine the minimum value of r such that the power of the test 
exceeds g0 whenever l $ l0  rD2

i /2s2
e. The result is obtained by using 

Table 13 in the Appendix, as was done in a single-factor experiment.

After determining the number of replications needed, the number of experi-
mental units may be such that it is physically impossible to conduct the complete 
experiment at the same time or in the same location. In this type of situation, we 
can use the concept of randomized complete block designs, with the blocks being 
 either time or location. In Example 14.14, we determined that nine replications 
of the four treatments or 36 experimental units were needed. Suppose that we 
had only 12 experimental units at a given location within an agricultural research 
center. However, there were three such locations, each containing 12 experimental 
plots. We could thus run three replications of each treatment at each of the three 
locations. The locations would serve as blocks for the experimental design. We will 
study the design of randomized block experiments in the next chapter.

EXAMPLE 14.15

An oil pipeline company researcher wishes to study the difference in response 
times (in milliseconds) for three different types of circuits used in an automatic 
value shutoff mechanism. There are three major manufacturers of circuits that 
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will participate in the study. In order to evaluate the difference in the performance 
of the circuits within each type of circuit from each of the three manufacturers, she 
decides it is necessary to evaluate r circuits of each type from each of the manufac-
turers. How large must r be in order to obtain an a  .05 test having a power of at 
least .90 whenever the difference in the mean response times between two of the 
nine circuits is greater than 2.5 milliseconds? From previous studies, the variation 
in response times is given by se  1.1 milliseconds.

Solution  There are t  (3)(3)  9 treatments in this study. The other parameters 
are given by

ŝe  1.1   D  2.5   g0  .90   v1  t 2 1  8   v2  t 1r 2 1 2  9 1r 2 1 2

   f  Å
rD2

2 t ŝ2
e

 Å
r 12 .5 2 2

2 19 2 11 .1 2 2  .5 3 6 Ër

For each value of r, compute v2 and f, and then obtain the power value from 
Table 13 (a  .05, t  9) in the Appendix. The results are summarized in Table 14.31.

From Table 14.31, the required number of replications is r  9. Thus, the exper-
iment would require n  tr  abr  (3)(3)(9)  81 experimental units to achieve 
the specified requirements. ■

 14.7 RESEARCH STUDy: Development  
of a Low-Fat Processed Meat

In Section 14.1, we described a research study in which meat scientists investigated 
methods by which a variety of low-fat meat products could be developed that main-
tained product yields and minimized formulation costs while retaining acceptable 
palatability. The researchers determined that lowering the cost of production with-
out affecting the quality of the low-fat meat product required the substitution of 
nonmeat ingredients such as soy protein isolates (SPI) for a portion of the meat 
block. When replacing meat with SPI, it is necessary to incorporate konjac flour into 
the product to maintain the appealing characteristics of high-fat products.

Designing the Data Collection
The three factors identified for study were the type of konjac blend, amount of 
konjac blend, and percentage of SPI substitution in the meat product. There were 
many other possible factors of interest, such as cooking time, temperature, type of 
meat product, and length of curing. However, the researchers selected the com-
monly used levels of these factors in a commercial preparation of bologna and 
narrowed the study to the three most important factors. This resulted in an exper-
iment having 12 treatments, as displayed in Table 14.32.

TABLE 14.31
Determining the number  

of replications

r v2 5 9(r 2 1) f 5 .536!r  Power

3 18  .93 .32
4 27 1.07 .47
5 36 1.20 .62
6 45 1.31 .73
7 54 1.42 .82
8 63 1.52 .88
9 72 1.61 .93
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The objective of this study was to evaluate various types of konjac blends as a 
partial lean meat replacement and to characterize its effect in a very low-fat bologna 
model system. Two types of konjac blends (KSS  konjac flour/starch and KNC  
konjac flour/carrageenan/starch), at levels .5% and 1%, and three meat protein 
replacement levels with SPI (1.1, 2.2, and 4.4%) were selected for evaluation.

The experiment was conducted as a completely randomized design with a 
2 3 2 3 3 three-factor factorial treatment structure and three replications of the 
12  treatments. There were a number of response variables measured on the 36 
runs of the experiment, but we will discuss the results for the texture of the final 
product as measured by an Instron universal testing machine. The responses and 
their means are given in Table 14.32.

Analyzing the Data
Because the number of calculations needed to obtain the sum of squares in a three-
factor experiment is substantial and consequently may lead to significant round-off 
error, we will use a software program to obtain the results shown in Table 14.33.

TABLE 14.32
Mean values for meat 

texture in low-fat bologna 
study

Konjac Level (%) Konjac Blend SPI (%) Texture Readings Mean Texture

.5 KSS 1.1 107 .3, 110.1, 112.6 110.0

.5 KSS 2.2 97 .9, 100.1, 102.0  100.0

.5 KSS 4.4 86.8, 88.1, 89.1   88.0

.5 KNC 1.1 108.1, 110.1, 111.8 110.0

.5 KNC 2.2 108.6, 110.2, 111.2 110.0

.5 KNC 4.4 95.0, 95.4, 95.5   95.3
1 KSS 1.1 97 .3, 99.1, 100.6   99.0
1 KSS 2.2 92.8, 94.6, 96.7   94.7
1 KSS 4.4 86.8, 88.1, 89.1   88.0
1 KNC 1.1 94.1, 96.1, 97 .8   96.0
1 KNC 2.2 95.7, 97 .6, 99.8   97 .7
1 KNC 4.4 90.2, 92.1, 93.7   92.0

TABLE 14.33
AOV table for data in 

case study, a three-factor 
factorial experiment

General Linear Models Procedure

Dependent Variable: Texture of Meat:

Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS

1000.004.2650711.98105782.080211ledoM

38030.300047.2742rorrE

Corrected Total 35 2153.02750

R-Square C.V. Root MSE Y Mean

0.966215 1.769387 1.74093 98.3917

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS

Main Effects:

1000.087.37105207.62505207.6251L

1000.024.7305224.31105224.3111B

1000.048.97105750.54500511.09012P

Interactions:

8000.095.4105222.4405222.441B*L

1000.011.0305762.1900535.2812P*L

1000.011.9105229.7500548.5112P*B

6013.032.105227.300544.72P*B*L
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The notation in the AOV table is as follows: L refers to the konjac level, B 
refers to the type of konjac blend, and P refers to the level of SPI. Since three-
way interaction in the AOV model was not significant (L*B*P, p  .3106), we 
next examine the two-way interactions. The three sets of two-way interactions 
had the following levels of significance: L*B, p  .0008  L*P, p , .0001 and B*P, 
p , .0001. Thus, all three were highly significant. To examine the types of relation-
ships that may exist among the three factors, we need to obtain the sample means, 
yij.., yi.k., and y.jk.. These values are given in Table 14.34.

The means in the table are then plotted in Figure 14.13 to yield the profile 
plots for the two-way interactions of level of konjac with type of konjac, level of 
konjac with level of SPI, and type of konjac with level of SPI.

From Figure 14.14, we can observe that there are considerable differences 
in the mean texture of the meat product depending on the type of konjac, the level 
of konjac, and the level of SPI in the meat product. When the level of konjac is 1%, 
there is very little difference in the mean textures of the meat; however, at the .5% 
level, the KNC blend of konjac produced a product with a higher mean texture 
than did the KSS blend of konjac. When considering the effect of level of SPI on 
the mean texture of the bologna, we can observe that at a level of 1.1% SPI, there 
was a sizable difference between using .5% konjac and 1% konjac. As the level 
of SPI increased, the size of the difference decreased markedly. Furthermore, at 
a 1.1% level of SPI, there was essentially no difference between the two blends of 
konjac, but as the level of SPI increased, the KNC blend produced a meat product 
having a higher texture than the KSS blend. These observations about the relation-
ships among the three factors and the mean textures of the meat product need to 
be confirmed using multiple-comparison procedures, which will be done after an 
analysis of the residuals.

Figure 14.15 contains the residuals analysis for the texture data. We obtain
the residuals using the formula

eijkm  yijkm 2 yijk.

TABLE 14.34
Table of means for  
data in case study

Level (%) Blend SPI (%) Two-Way Means

.5 KSS * 99.3

.5 KNC * 105.1

1 KSS * 93.9

1 KNC * 95.2

.5 * 1.1 110.0

.5 * 2.2 105.0

.5 * 4.4 91.7

1 * 1.1 97 .5

1 * 2.2 96.2

1 * 4.4 90.0

* KSS 1.1 104.5

* KSS 2.2 97 .4

* KSS 4.4 88.0

* KNC 1.1 103.0

* KNC 2.2 103.9

* KNC 4.4 93.7
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An examination of the stem-and-leaf plot and boxplot reveals that the residuals 
are nearly symmetric but have a sharp peak near 0. The Shapiro–Wilk test for 
normality has a p-value of .0349, which reflects the somewhat nonnormal nature 
of the residuals. However, because there are no outliers and very few residuals 
even near extreme in size, the normality assumption is nearly met. The plot of 
the residuals versus the estimated treatment means yijk.  reveals a slight increase 
in variability as the mean texture readings increased. However, this increase is 
not large enough to overcome the natural robustness of the F test for small devia-
tions from the model conditions. Thus, both the normality and the equal variance 
conditions appear to be satisfied, and we would conclude that the F tests in the 
Table  14.33 would be valid.
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Because the three-way interaction, L*B*P, was not significant (p-value  .3106), 
we will examine the two-way interactions of interest to the researchers. They 
wanted to investigate the effect on mean texture of increasing the percentage of SPI 
in the meat product. Thus, we need to examine the differences in mean texture as a 
function of the percentage of SPI. Because there was a significant (p-value , .0001) 
interaction between SPI and level of konjac and a significant (p-value , .0001) 
interaction between SPI and type of konjac, we need to conduct four different mean 
separations of the levels of the percentage of SPI. 

First, we will compare the mean textures across the percentage of SPI sepa-
rately for each of the two values of level of konjac: 0.5% and 1.0%. The value of 
Tukey’s W is given by

W  qa 1t, dferror 2  Å
s2

e

nt

where t  3, the number of levels of the percentage of SPI, dferror  24, s2
e  3.0308 

from Table 14.33, and nt  6, the number of observations in each of the percentage 
of SPI means at each of the values of level of konjac because yi.k. is based on six 
data values. Thus, from Table 10 in the Appendix, we find qa(t, dferror)     q.05(3, 
24)  3.53, which yields

W  3.53Å
3.0308

6
 2.51

FIGURE 14.15
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Thus, any pair of means yi.k. and yi.kr. that differ by more than 2.51 will be 
declared to be significantly different at the a  .05 level. A summary of results is 
given in Table 14.35.

For the 0.5% level of konjac, all three percentages of SPI yield significantly 
different mean textures; the higher the level of the percentage of SPI, the lower 
the value for mean texture. For the 1.0% level of konjac, the 1.1 and 2.2 per-
centages of SPI have nonsignificantly different mean textures, whereas the 4.4 
percentage of SPI has a significantly lower mean texture in comparison to the 
1.1 and 2.2 percentages. Thus, the relationship between the percentage of SPI 
and mean texture is different at the two levels of konjac. Similarly, we obtain the 
following results (Table 14.36) for the relationship between mean texture and the 
percentage of SPI at the two blends of konjac. The values of all the quantities in 
W remain the same as before, because the number of observations in each of the 
type of konjac– percentage of SPI means, yik, is nt  6. Thus, W  2.51.

For the KSS blend, all three percentages of SPI yield significantly different mean 
textures. For the KNC blend, the 1.1 and 2.2 percentages of SPI have nonsignificantly 
different mean textures, whereas the 4.4 percentage of SPI has a significantly lower 
mean texture in comparison to the 1.1 and 2.2 percentages. Thus, the relationship 
between percentage of SPI and mean texture is different for the blends of konjac.

 14.8 Summary and Key Formulas

In this chapter, we discussed the analysis of variance for various treatment struc-
tures in a completely randomized design. Included were single-factor, two-factor, 
and three-factor treatment structures. The factorial treatment structure is useful in 
investigating the effect of one or more factors on an experimental response. The 
crucial motivation in using factorial treatment structures is to determine whether 
or not an interaction exists between the factors.

For each of the treatment structures discussed in this chapter, we presented 
a description of the design layout (including the arrangement of treatments), a 
model, and the analysis of variance. We also discussed how one could conduct 
multiple comparisons between treatment means for both a single factor and a 

TABLE 14.35
Mean texture across 

levels of the percentage of 
SPI at each level of konjac

 SPI (%)

Level of Konjac 1.1 2.2   4.4

0.5% 110.0 105.0   9.17
 a b  c

1.0%  97 .5  96.2 90.0
 a a b

TABLE 14.36
Mean texture across levels  
of the percentage of SPI 

for each konjac blend

 SPI (%)

Konjac Blend 1.1 2.2 4.4

KSS 104.5  97 .4 88.0
 a b c

KNC 103.0 103.9 93.7
 a a b
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multiple-factor treatment structure. Finally, a method for determining the appro-
priate number of replications to achieve specified design criteria was presented.

For the most part, the development of the analysis of variance and the deter-
mination of replication size were for a balanced design—that is, a design in which 
each treatment (factor–level combination) is randomly assigned to the same num-
ber of experimental units. It is only in a balanced design that explicit formulas for 
the various sums of squares can be displayed. When the design is unbalanced, the 
methodology for obtaining the sums of squares is more complex and, in most cases, 
should be computed using an appropriate statistical software program.

Key Formulas
1. One factor in a completely randomized design

Model: yij  m 1 ti 1 eij

Sum of Squares (Equal replications):

Total    TSS  Sij 1yij 2 y.. 2 2

Treatment SST  n Si 1yi. 2 y.. 2 2

Error   SSE  Sij 1eij 2 2  Sij 1yij 2 yi. 2 2  TSS 2 SST

2. Two-factor factorial treatment structure in a completely randomized design
Model: yijk  m 1 ti 1 bj 1 tbij 1 eijk

Sum of Squares (Equal replications):

Total      TSS  Sijk 1yijk 2 y... 2 2

Factor A   SSA  bn Si 1yi.. 2 y... 2 2

Factor B    SSB  an Sj 1 y.j. 2 y... 2 2

Interaction  SSAB  n Sij 1yij. 2 yi.. 2 y.j. 1 y... 2 2

Error      SSE  Sijk 1yijk 2 yij. 2 2  TSS 2 SSA 2 SSB 2 SSAB

3. 100(1 2 a)% simultaneous confidence interval for difference in t treatment 
means 

 1yi 2 yir 2 6
qa 1t, n 2
!2 Ås2

e a
1
ni

1
1
nir

b  

 14.9 Exercises

 14.2 Completely Randomized Design with a Single Factor
 Edu. 14.1  Researchers in child development are interested in developing ways to increase the spatial– 

temporal reasoning of preschool children. Spatial–temporal reasoning relates to the child’s 
ability to visualize spatial patterns and mentally manipulate them over a time-ordered sequence 
of spatial transformations. This ability, often referred to as thinking in pictures, is important for 
generating and conceptualizing solutions to multistep problems and is crucial in early child devel-
opment. The researchers want to design a study to evaluate which of several methods proposed 
to accelerate the growth in spatial–temporal reasoning yields the greatest increase in a child’s 
 development in this area. There are three methods proposed: taking piano lessons for 3 months, 
playing specially developed computer video games for 3 months, and playing specially designed 
games in small groups supervised by a trained instructor. The researchers measure the effective-
ness of the three programs by assessing the children and assigning each one a reasoning score 
both before and after participation in the program. The difference in these two scores is the 

balanced design
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response variable. A control group is also included to measure the change in reasoning for chil-
dren not given any special instruction. A pilot study with only 20 students was to be conducted 
prior to the complete study to determine potential problems. Demonstrate how to assign 5 of the 
20 students to each of the four instructionalonditions—no instruction (control), piano lessons, 
computer video games, and instructor—so that the assignment is completely random.

  14.2  Refer to Exercise 14.1. The researchers decide to use the following model, which relates 
the response variable y to the four instructional conditions.

y  m 1 ti 1 eij  for  i  1, 2, 3, 4  and  j  1, 2, 3, 4, 5

 a.  Write an equation relating the mean reasoning score, mi, to the parameters in the 
above model without any constraints on the model parameters.

 b.  Rewrite the equation relating the mean reasoning score, mi, to the parameters in 
the above model after imposing the standard constraints placed on the model  
parameters.

  14.3  Refer to Exercise 14.1. After running the pilot study, the researchers conduct a study involv-
ing 100 students. Twenty-five students were randomly assigned to each of the four instructional 
conditions. The data are given here.

 a. Conduct an analysis of variance, and summarize your results in an AOV table.
 b.  Test the research hypothesis that there is a difference in the effectiveness means of 

the methods of instruction. Use a  .05.
 c.  Apply a multiple-comparison procedure to determine pairwise differences in the 

three instructional methods. Use a  .05.
 d.  Was there significant evidence that all three methods of instruction produced 

higher mean reasoning scores than the mean reasoning score for the control?

 Method of Instruction

Student Control Piano Computer Instructor

1 23.4 2.2 7 .7 12.0
2 22.8 5.2 5.5 4.1
3 2.2 6.6 2.8 5.9
4 2.8 5.2 7 .4 13.5
5 2.8 2.6 .1 7 .5
6 25.9 5.4 11.7 9.3
7 7 .8 3.1 1.2 7 .1
8 23.5 6.5 3.8 2.9
9 2.9 2.4 5.1 8.3

10 1.9 6.2 4.3 9.8
11 2.2 7 .9 3.9 11.1
12 1.5 7 .9 6.9 4.9
13 .4 6.6 2.8 5.8
14 2.5 .2 5.4 2.8
15 1.1 1.9 2.5 12.0
16 5.3 1.3 5.2 8.6
17 24.0 1.8 3.1 2.0
18 21.3 3.1 6.6 5.9
19 2.6 1.4 .2 5.6
20 2.9 2.1 7 .1 11.6
21 2.6 6.6 9.2 7 .8
22 25.0 7 .0 3.0 7 .2
23 2.4 2.7 2.3 8.3
24 2.1 4.1 10.2 6.5
25 24.7 3.8 4.7 8.3
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  14.4  In order for the conclusions reached in Exercise 14.3 to be valid, the conditions of normal-
ity, equal variance, and independence must be satisfied. Use the residuals from the fitted model to 
assess the three conditions. (Refer to the discussion in Section 8.4.)

 a. Was there significant evidence of a violation of the normality condition?
 b.  Was there significant evidence that the variance in reasoning scores was different 

for the three methods and the control?
 c.  What is the justification for concluding that the 100 reasoning scores are 

independent?
 d.  If the condition of normality and/or equal variance is violated, what are some 

alternative methods of analysis?

 Engin. 14.5  The production manager of a large casting firm is studying different methods to increase 
productivity in the workforce of the company. The process engineer and personnel in the human 
resources department develop three new incentive plans (plans B, C, and D) and design a study 
to compare these incentive plans with the current plan (plan A). Twenty workers are randomly 
assigned to each of the four plans. The response variable is the total number of units produced by 
each worker during 1 month on the incentive plan. The data are given in the following table.

 Incentive Plan

Worker A B C D

 1 422 521 437 582
 2 431 545 422 639
 3 784 600 473 735
 4 711 406 478 800
 5 641 563 397 853
 6 709 361 944 748
 7 344 387 394 622
 8 599 700 890 514
 9 511 348 488 714
 10 381 944 521 627
 11 349 545 387 548
 12 387 337 633 644
 13 394 427 627 736
 14 621 771 444 528
 15 328 752 1,467 595
 16 636 810 828 572
 17 388 406 644 627
 18 901 537 1,154 546
 19 394 816 430 701
 20 350 369 508 664

 Mean 514.1 557 .2 628.3 649.8
 St Dev 171.8 184.4 290.2 93.1

 a.  State the null and alternative hypotheses being tested by the F statistic in the 
AOV table.

 b.  Is there significant evidence (a  .05) that the mean output associated with the 
four incentive plans is different?

 c.  Use Tukey’s W procedure to identify the pairs of incentive plans that have different 
output means.
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  14.6  In order for the conclusions reached in Exercise 14.5 to be valid, the conditions of normal-
ity, equal variance, and independence must be satisfied. Use the residuals from the fitted model to 
assess the three conditions. Refer to the discussion in Section 8.4.

 a. Is there significant evidence of a violation of the normality condition?
 b.  Is there significant evidence that the variances in reasoning scores were different 

for the three methods and the control?
 c.  What is the justification for concluding that the 100 reasoning scores are independent?
 d.  If the condition of normality and/or equal variance is violated, what are some alter-

native methods of analysis?

  14.7  Refer to Exercise 14.5. When the normality condition is violated, an alternative to the  
F test is the Kruskal–Wallis test (see Section 8.6).

 a. Test for differences in the median outputs of the four incentive plans. Use a  .05.
 b.  Why do you think the conclusions reached using the Kruskal–Wallis test differ 

from the conclusions reached using the F test from the AOV table in Exercise 14.5?

 14.3 Factorial Treatment Structure
 Bus. 14.8  A large advertising firm specializes in creating television commercials for children’s prod-

ucts. The firm wants to design a study to investigate factors that may affect the lengths of time a 
commercial is able to hold a child’s attention. A preliminary study determines that two factors 
that may be important are the age of the child and the type of product being advertised. The firm 
wants to determine whether there were large differences in the mean length of time that the com-
mercial is able to hold the child’s attention depending on these two factors. If there proves to be a 
difference, the firm would then attempt to determine new types of commercials depending on the 
product and targeted age group. Three age groups are used:

A1: 5–6 years    A2: 7–8 years    A3: 9–10 years

  The types of products selected are

P1: breakfast cereals    P2: video games

  A group of 30 children is recruited in each age group, and 10 are randomly assigned to watch 
a 60-second commercial for each of the two products. Researchers record their attention spans 
during the viewing of the commercial. The data are given here.

Child A1–P1 A2–P1 A3–P1 A1–P2 A2–P2 A3–P2

1 19 19 37 39 30 51
2 36 35 6 18 47 52
3 40 22 28 32 6 43
4 30 28 4 22 27 48
5 4 1 32 16 44 39
6 10 27 16 2 26 33
7 30 27 8 36 33 56
8 5 16 41 43 48 43
9 34 3 29 7 23 40

10 21 18 18 16 21 51

Mean 22.9 19.6 21.9 23.1 30.5 45.6

Mean by age group: A1 A2 A3 Mean by product type: P1 P2

 23.0 25.05 33.75  21.47 33.07

 a. Identify the design.
 b. Write a model for this situation, identifying all the terms in the model.
 c. Estimate the parameters in the model.
 d.  Compute the sum of squares for the data, and summarize the information in an 

AOV table.
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  14.9  Refer to Exercise 14.8.
 a. Draw a profile plot for the two factors, age and product type.
 b.  Perform appropriate F tests and draw conclusions from these tests concerning  

the  effects of age and product type on the mean attention spans of the  
children.

  14.10  Refer to Exercise 14.8.
   Use residual plots to determine whether any of the conditions required for the 

validity of the F tests have been violated.

 Bus. 14.11  Commercially produced ice cream is made from a mixture of ingredients:

 ●	 A minimum of 10% milk fat
 ●	 	9–12% milk solids: this component, also known as the serum solids, contains  

the proteins (caseins and whey proteins) and carbohydrates (lactose) found  
in milk

 ●	  12–16% sweeteners: usually a combination of sucrose and/or glucose-based corn 
syrup sweeteners

 ●	  0.2–0.5% stabilizers and emulsifiers—e.g., agar or carrageenan extracted from  
seaweed

 ●	 55%–64% water, which comes from milk solids or other ingredients

  Air is incorporated with the above ingredients during the mixing process. Less-expensive ice 
creams contain lower-quality ingredients, and more air is incorporated during the mixing pro-
cess. The finest ice creams have between 3% and 15% air. Because most ice cream is sold by 
volume, it is economically advantageous for producers to reduce the density of the product 
in order to cut costs. A food scientist is investigating how varying the amounts of the above 
ingredients impacts the sensory rating of the final product. The scientist decides to use three 
levels of milk fat: 10%, 12%, 15%; three amounts of air: 5%, 10%, 15%; and two levels of 
sweeteners: 12%, 16%. Three replications of each of the formulations were produced and the 
sensory ratings (0–40) obtained; a higher number implies a more favorable sensory rating. The 
data are given here.

 Sweetener

 12% 16%

 Milk Fat Milk Fat

Air 10% 12% 15% 10% 12% 15%

 23 27 31 24 38 34
5% 24 28 32 23 36 36

 25 26 29 28 35 39

 36 34 33 37 34 34
10% 35 38 34 39 38 36

 36 39 35 35 36 31

 28 35 26 26 36 28
15% 24 35 27 29 37 26

 27 34 25 25 34 24

 a.  Identify the design and treatment structure for this study.
 b. Write a model for this study, identifying all the terms in the model.
 c.  For each of the two levels of sweetener, draw profile plots of the effects of the  

percentages of air and milk fat on the sensory rating of ice cream.
 d.  From the profile plots, does there appear to be a three-way interaction among  

the effects of the percentages of sweetener, air, and milk fat on the mean sensory 
ratings?
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  14.12  Refer to the study described in Exercise 14.11.
 a.  Perform appropriate F tests and draw conclusions from these tests concerning the 

effects of the percentages of sweetener, air, and milk fat on the sensory ratings. 
Use a  .05.

 b.  Are the conclusions from the F tests consistent with your observations from the 
 profile plots?

  14.13  Refer to the study described in Exercise 14.11. Use the residuals from the fitted model to 
answer the following questions.

 a. Is there significant evidence that the residuals have a nonnormal distribution?
 b. Is there significant evidence that the residuals do not have constant variances?
 c.  How could we assess whether or not the residuals are independently  

distributed?

 14.5  Estimation of Treatment Differences and Comparisons  
of Treatment Means

  14.14  Refer to the study described in Exercise 14.8. Use Tukey’s W procedure to identify sig-
nificant differences in the means.

 a.  Use Tukey’s W procedure to identify significant differences in the mean attention 
spans of the three age groups of children.

 b.  Use Tukey’s W procedure to identify significant differences in the mean attention 
spans for the types of products.

 c. Are your conclusions in part (a) the same for both types of products?

  14.15  Refer to the study described in Exercise 14.11.
 a.  Use Tukey’s W procedure to identify significant differences in the mean sensory 

ratings of the three levels of percentage of milk fat.
 b.  Use Tukey’s W procedure to identify significant differences in the mean sensory 

ratings of the three levels of percentage of air.
 c.  Which combination of percentage of milk fat, air, and sweetener appears to yield 

the highest mean sensory rating?

 14.6 Determining the Number of Replications
 Edu. 14.16  A state legislature mandates the each school district in its state must conduct an audit 

of the performance of the district’s students on the state reading exam. The purpose is to 
determine if there are any extreme increases in the individual schools in the district. There 
are currently four software programs that are capable of conducting the audits with varying 
degrees of efficiency. The state board of education hires an analyst to design a study to evalu-
ate each of the software programs. The study will involve a random sample of schools running 
the software on their records. One of the metrics in the evaluation will be the amount of time 
that the software takes to complete the audit. From the application of the software in other 
states, the standard deviation in the time to complete the audit was 122.5 minutes. Determine 
how many schools are required in the study for each software program in order to be able to 
detect a difference in any pair of software programs of 5 hours using a level .05 test with a 
power of 90%.

 Edu. 14.17  A researcher seeks funding for a study from a federal agency. The study will involve 
the evaluation of three factors, each having two levels. From the literature, the researcher  
approximates the standard deviation in the responses to be approximately 9 units. How 
many experimental units should be included in the budget for the study so that a difference 
of 20 units or more in any pair of treatment means will be detected with a probability of .80 
using an a  .05 test?

  14.18  Refer to the study described in Exercise 14.8. Determine the number of replications 
needed to obtain an a  .05 test having power of at least 80% that detects a difference of 10 in 
any pair of treatment means. Use the data from Exercise 14.8 to estimate the value of s2

e .
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  14.19  Refer to the study described in Exercise 14.11. Suppose a new study is to be designed in 
which only three levels of milk fat and three levels of air will be used. Determine the number of 
replications needed to obtain an a  .05 test having a power of at least 90% that detects a differ-
ence of 5 in any pair of treatment means. Use the data from Exercise 14.11 to estimate the value 
of s2

e .

Supplementary Exercises
 Ag. 14.20  A study was conducted to compare the effect of four manganese rates (from MnSO4) 

and four copper rates (from CuSO4 5H2O) on the yield of soybeans. A large field was subdivided 
into 32 separate plots. Two plots were randomly assigned to each of the 16 factor–level combi-
nations (treatments) and the treatments were applied to the designated plots. Soybeans were 
then planted over the entire field in rows 3 feet apart. The yields from the 32 plots are given here 
(in kilograms/hectare).

 Mn

Cu 20 50 80 110 Cu Mean

 1,558 2,003 2,490 2,830
1 1,578 2,033 2,470 2,810 2,221.5

 1,590 2,020 2,620 2,860
3 1,610 2,051 2,632 2,841 2,278.0

 1,558 2,003 2,490 2,830
5 1,550 2,010 2,690 2,910 2,255.1

 1,328 2,010 2,887 2,960
7 1,427 2,031 2,832 2,941 2,302.0

Mn Mean 1,524.9 2,020.1 2,638.9 2,872.8 2,264.2

 a. Identify the design for this experiment.
 b. Write an appropriate statistical model for this experiment.
 c.  Construct a profile plot and describe what this plot says about the effect of Mn 

and Cu on soybean yield.

  14.21  Refer to Exercise 14.20.
 a.  Test for an interaction between the effects of Mn and Cu on soybean yield. Use 

a  .05.
 b. What level of Mn appears to produce the highest yield?
 c. What level of Cu appears to produce the highest yield?
 d. What combination of Cu–Mn appears to produce the highest yield?

  14.22  Suppose we have a completely randomized three-factor factorial experiment with levels 
3 3 4 3 6, with three replications of each of the 72 treatments. Assume that the three-way inter-
action is not significant.

 a. Write a model to describe the response yijkm for this type of experiment.
 b. Provide a complete AOV table for this type of experiment.
 c.  Sketch three profile plots to depict the following three two-way interactions:  

F1*F2 significant but orderly, F2*F3 nonsignificant, and F1*F3 significant and  
disorderly.

 Ag. 14.23  An experiment was set up to compare the effects of different soil pH and calcium addi-
tives on the increase in trunk diameters for orange trees. Elemental sulfur, gypsum, soda ash, and 
other ingredients were applied annually to provide pH value levels of 4, 5, 6, and 7. Three levels 
of a calcium supplement (100, 200, and 300 pounds per acre) were also applied. All factor–level 
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pH
 Calcium

Value 100 200 300

 5.2 7 .4 6.3
4.0 5.9 7 .0 6.7

 6.3 7 .6 6.1
 7 .1 7 .4 7 .3

5.0 7 .4 7 .3 7 .5
 7 .5 7 .1 7 .2
 7 .6 7 .6 7 .2

6.0 7 .2 7 .5 7 .3
 7 .4 7 .8 7 .0
 7 .2 7 .4 6.8

7.0 7 .5 7 .0 6.6
 7 .2 6.9 6.4

 a. Construct a profile plot. What do the data suggest?
 b. Write an appropriate statistical model.
 c.  Perform an analysis of variance and identify the experimental design. Use a  .05.

  14.24  Refer to Exercise 14.23.
 a.  Test for interactions and main effects. Use a  .05.
 b.  What can you conclude about the effects of pH and calcium on increases in mean 

trunk diameter for orange trees?

  14.25  Refer to Exercise 14.23.
 a.  Use Tukey’s W procedure to determine differences in mean increases in trunk  

diameter among the three calcium rates. Use a  .05.
 b.  Are your conclusions about the differences in mean increases in diameter among 

the three calcium rates the same for all four pH values?

  14.26  Refer to Exercise 14.23.
 a.  Use residual analysis to determine whether any of the conditions required to conduct 

an appropriate F test have been violated.
 b.  If any of the conditions have been violated, suggest ways to overcome these  

difficulties.

 Med. 14.27  Researchers conducted an experiment to compare the average oral body temperatures 
for  persons taking one of nine different medications often prescribed for high blood pressure. 
The  researchers were concerned that the effect of the drug may be different depending on the 
severity of the patient’s high blood pressure disorder. Patients with high blood pressure who 
satisfied the study’s entrance criteria were classified into one of the three levels of severity of 
the blood pressure disorder. The patients were then randomly assigned to receive one of the 
nine medications. Each patient in the study was given the assigned medication at 6:00 a.m. of 
the designated study day. Temperatures were taken at hourly intervals beginning at 8:00 a.m. 
and continuing for 10 hours. During this time, the patients were not allowed to do any physical 
activity and had to lie in bed. To eliminate the variability of temperature readings within a day, 
the average of the hourly determinations was the recorded response for each patient. These 
data are given in the accompanying table.

 a. Identify the design for this experiment.
 b.  Write an appropriate statistical model and identify the parameters of the  

model.

combinations of these two variables were used in the experiment. At the end of a 2-year  period, 
three diameters were examined at each factor–level combination. The data appear next.
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 Medication

Severity A B C D E F G H I

 97 .8 98.1 98.0 97 .3 97 .9 97 .9 97 .1 98.0 97 .8
 97 .2 98.1 97 .8 97 .3 97 .8 97 .9 97 .6 97 .8 98.0

1 97 .6 98.0 98.1 97 .5 97 .8 97 .8 97 .3 98.0 97 .7
 97 .2 97 .7 97 .8 97 .5 97 .7 97 .8 97 .7 97 .9 97 .9
 97 .6 97 .7 97 .9 97 .6 97 .8 97 .6 97 .5 98.0 97 .8

 97 .6 97 .8 97 .9 97 .5 97 .8 98.0 97 .6 97 .9 98.0
 97 .4 97 .7 98.1 97 .4 97 .8 97 .7 97 .5 98.0 97 .6

2 97 .3 97 .6 97 .8 97 .5 97 .7 97 .8 97 .6 97 .9 98.0
 97 .5 97 .7 97 .8 97 .6 97 .7 97 .9 97 .5 97 .9 97 .9
 97 .5 97 .7 97 .6 97 .7 97 .8 97 .8 97 .3 97 .8 97 .9

 97 .5 97 .6 98.0 97 .9 97 .7 97 .9 97 .4 97 .8 98.0
 97 .9 97 .7 97 .8 97 .8 97 .8 98.0 97 .8 97 .8 98.1

3 97 .6 97 .9 98.1 97 .8 97 .9 97 .7 97 .4 98.0 97 .9
 97 .6 97 .9 97 .7 97 .8 98.0 97 .9 97 .6 97 .9 98.1
 97 .7 97 .8 98.7 97 .6 98.1 97 .9 97 .6 97 .8 97 .9

  14.28  Refer to Exercise 14.27.
 a. Construct an AOV table for the experiment.
 b.  Are the differences in mean temperatures for the nine medications the same for 

all three severities of the blood pressure disorders? Use a  .05.
 c.  Is there a significant difference in mean temperatures for medications and severity 

of the disorder? Use a  .05.
 d.  Use a profile plot to assist in discussing your conclusions concerning the effects of 

medication and severity on the mean temperatures of the patients.

 Med. 14.29  A physician was interested in examining the relationship between the work performed 
by  individuals in an exercise tolerance test and the excess weight (as determined by standard 
weight–height tables) they carried. To do this, a random sample of 28 healthy adult females, rang-
ing in age from 25 to 40, was selected from the community clinic during routine visits for physical 
 examinations. The selection process was restricted so that seven persons were selected from each 
of the following weight classifications:

      Normal weight (less than 10% underweight)

     1%–10% overweight

     11%–20% overweight

     More than 20% overweight

  As part of the physical examination, each person was required to exercise on a bicycle ergometer 
until the onset of fatigue. The time to fatigue (in minutes) was recorded for each person. The data 
are given next.

Classification Fatigue Time

Normal 25, 28, 19, 27, 23, 30, 35
1%–10% overweight 24, 26, 18, 16, 14, 12, 17
11%–20% overweight 15, 18, 17, 25, 12, 10, 23
More than 20% overweight 10, 9, 18, 14, 6, 4, 15

 a. Identify the experimental design and write an appropriate statistical model.
 b. Use a  .05 and perform an analysis of variance.
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  14.30  Refer to Exercise 14.29.
 a.  How would you design an experiment to investigate the effects of age, gender,  

and excess weight on fatigue time?
 b.  Suppose the physician wanted to investigate the relationship among the  

quantitative variables percentage overweight, age, and fatigue time. Write a  
possible model.

 Env. 14.31  An experiment was conducted to investigate the heat loss for five different designs for 
commercial thermal panes. The researcher, in order to obtain results that would be applicable 
throughout most regions of the country, decided to evaluate the panes at five temperatures: 0°F, 
20°F, 40°F, 60°F, and 80°F. A sample of 10 panes of each design was obtained. Two panes of each 
design were randomly assigned to each of the five exterior temperature settings. The interior 
temperature of the test was controlled at 70°F for all five exterior temperatures. The heat losses 
associated with the five pane designs are given here.

 Pane Design

Exterior Temperature Setting (°F) A B C D E

 80 7 .2, 7 .8 7 .1, 7 .9 8.1, 8.8 8.3, 8.9 9.3, 9.8
 60 8.1, 8.1 8.0, 8.9 8.2, 8.9 8.1, 8.8 9.2, 9.9
 40 9.0, 9.9 9.2, 9.8 10.0, 10.8 10.2, 10.7 9.9, 9.0
 20 9.2, 9.8 9.1, 9.9 10.1, 10.8 10.3, 10.9 9.3, 9.8
  0 10.2, 10.8 10.1, 10.9 11.1, 11.8 11.3, 11.9 9.3, 9.9

 a. Identify the experimental design and write an appropriate statistical model.
 b.  Is there a significant difference in the mean heat losses of the five pane designs?  

Use a  .05. 
 c.  Are the differences in the five designs consistent across the five temperatures? 

Use a  .05 and a profile plot in reaching your conclusion.
 d.  Use Tukey’s W procedure at an a  .05 level to compare the mean heat losses for 

the five pane designs.

 Psy. 14.32  An experiment was conducted to examine the effects of different levels of reinforcement 
and different levels of isolation on children’s ability to recall. A single analyst was to work with 
a random sample of 36 children selected from a relatively homogeneous group of fourth-grade 
students. Two levels of reinforcement (none and verbal) and three levels of isolation (20, 40, and 
60 minutes) were to be used. Students were randomly assigned to the six treatment groups, with a 
total of six students being assigned to each group.

Each student was to spend a 30-minute session with the analyst. During this time, the stu-
dent was to memorize a specific passage, with reinforcement provided as dictated by the group 
to which the student was assigned. Following the 30-minute session, the student was isolated for 
the time specified for his or her group and then tested for recall of the memorized passage. The 
data appear next.

Level of
 Time of Isolation (minutes)

Reinforcement 20 40 60

 26 19 30 36  6 10
None 23 18 25 28 11 14

 28 25 27 24 17 19

 15 16 24 26 31 38
Verbal 24 22 29 27 29 34
 25 21 23 21 35 30
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 a.  What can you conclude about the effects of level of reinforcement and time of  
isolation on the average recall test score?

 b.  Verify that the conditions needed to validly apply your tests in part (a) are not 
violated.

 Med. 14.33  Researchers were interested in the stability of a drug product stored for four lengths of 
time (1, 3, 6, and 9 months). The drug was manufactured with 30 mg/mL of the active ingredient 
of a drug product, and the amount of the active ingredient in the drug at the end of the storage 
period was to be determined. The drug was stored at a constant temperature of 30°C. Two lab-
oratories were used in the study, with three 2-mL vials of the drug randomly assigned to each of 
the four storage times. At the end of the storage time, the amount of the active ingredient was 
determined for each of the vials. A measure of the pH of the drug was also recorded for each vial. 
The data are given here.

Time  mg/mL  Time  mg/mL
(in months  of Active  (in months  of Active

at 30°C) Laboratory Ingredient pH at 30°C) Laboratory Ingredient pH

1 1 30.03 3.61 1 2 30.12 3.87
1 1 30.10 3.60 1 2 30.10 3.80
1 1 30.14 3.57 1 2 30.02 3.84
3 1 30.10 3.50 3 2 29.90 3.70
3 1 30.18 3.45 3 2 29.95 3.80
3 1 30.23 3.48 3 2 29.85 3.75
6 1 30.03 3.56 6 2 29.75 3.90
6 1 30.03 3.74 6 2 29.85 3.90
6 1 29.96 3.81 6 2 29.80 3.90
9 1 29.81 3.60 9 2 29.75 3.77
9 1 29.79 3.55 9 2 29.85 3.74
9 1 29.82 3.59 9 2 29.80 3.76

 a.  Write a model relating the pH measured on each vial to the factors of length of 
storage time and laboratory.

 b.  Display an analysis of variance table for the model of part (a).

  14.34  Refer to Exercise 14.33. Obtain an analysis of variance for both dependent variables 
(i.e., y1  mg/mL of active ingredient and y2  pH). Draw conclusions about the stability of these 
2-mL vials based on these analyses. Use a  .05.

 Bus. 14.35  A manufacturer whose daily supply of raw materials is variable and limited can use 
the material to produce two different products in various proportions. The profit per unit of raw 
material obtained by producing each of the two products depends on the length of a product’s 
manufacturing run and hence on the amount of raw material assigned to it. Other factors—such 
as worker productivity, machine breakdown, and so on—can affect the profit per unit as well, 
but their net effect on profit is random and uncontrollable. The manufacturer has conducted an 
experiment to investigate the effects of the level of supply of raw material, S, and the ratio of its 
assignment, R, to the two product manufacturing lines on the profit per unit of raw material. The 
ultimate goal is to be able to choose the best ratio, R, to match each day’s supply of raw materials, 
S. The levels of supply of the raw material chosen for the experiment were 15, 18, and 21 tons. The 
levels of the ratio of allocation to the two product lines were 1 /2, 1, and 2. The response was the 
profit (in cents) per unit of raw material supply obtained from a single day’s production. Three 
replications of each combination were conducted in a random sequence. The data for the 27 days 
are shown in the following table.
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     Ratio of Raw
 Raw Material Supply (tons)

Material Allocation (R) 15 18 21

1/2 22, 20, 21 21, 19, 20 19, 18, 20
1 21, 20, 19 23, 24, 22 20, 19, 21
2 17, 18, 16 21, 11, 20 20, 22, 24

 a. Draw conclusions from an analysis of variance table. Use a  .05.
 b.  Identify the two best combinations of R and S. Are these two combinations  

significantly different? Use a procedure that limits the error rate of all pairwise 
comparisons of combinations to be no more than 0.05.

 Ag. 14.36  A horticulturalist at a large research institution designs a study to evaluate the effect 
on tomato yields of water loss due to transpiration. She decides to examine four levels of shad-
ing of the tomato plants at three stages of the tomato plant’s development. The four levels of 
shading (0, 25%, 50%, and 75%) were selected to reduce the solar exposure of the plants. The 
shading remained in place for 20 days during the early, middle, and late phases of the tomato 
plants’ growth. There were four plots of tomatoes randomly assigned to each of the combina-
tions of shading and growth stage. At the end of the study, the yields per plot in pounds were 
recorded. However, due to a problem in the harvesting of the tomatoes, a few of the plot yields 
were not recorded.

 Percent Shading

Growth Stage 0 25% 50% 75%

Early 70.6  57 .2 69.5  57 .2
 56.3 53.2 55.4 62.9
  44.2  59.0
 55.1  36.7  40.8

Middle 50.5  42.3 78.3 

 50.1 67 .1 66.0 62.6
 52.7    57 .1 58.5
 60.0 62.4 42.5 

Late 69.1 56.8 57 .3 61.3 
 55.8  67 .4  73.3 
 43.5 62.1  72.8 

 75.3 75.0 63.0 57 .2

 a.  Identify the design for this experiment.
 b.  Construct an AOV table for the experiment, and test for the main effects of 

shading and growth stage and an interaction between shading and growth stage.
 c.  Is there a linear trend in the mean yields across the levels of percent shading?
 d.  Which level of shading would you recommend for maximum yield? 
 e.  During which growth stage would you apply the shading?

 Env. 14.37  Refer to Exercise 14.36.
 a.  Are the computational formulas for obtaining the sum of squares appropriate for 

the data in the tomato experiment? Justify your answer.
 b.  Verify that there are no major violations in the conditions necessary to conduct 

the F tests in the AOV table. 
 c.  Write a linear model for this experiment, and estimate all the terms in your model 

using the data in Exercise 14.36.
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 Env. 14.38  The following experiment is from Kuehl (2000). Sludge is a dried product remaining from 
processed sewage; it contains nutrients beneficial to plant growth. It can be used for fertilizer on 
agricultural crops provided it does not contain toxic levels of certain elements such as heavy met-
als (such as zinc, not rock groups). Typically, the levels of metals in sludge are assayed by growing 
plants in media containing different doses of the sludge. 
   A soil scientist hypothesized the concentration of certain heavy metals in sludge would dif-
fer among the metropolitan areas from which the sludge was obtained. The variation could result 
from any number of reasons, including the different industrial bases surrounding the areas and 
the efficiency of the various sewage treatment facilities. If this was true, then recommendations 
for applications on crops would have to be preceded by knowledge about the source of the sludge 
material. An assay was planned to determine whether there was significant variation in heavy 
metal concentrations among diverse metropolitan areas. 
   The investigator obtained sewage sludge from treatment plants located in three different 
metropolitan areas. Barley plants were grown in a sand medium to which sludge was added as fer-
tilizer. The sludge was added to the sand at three different rates: 0.5, 1.0, and 1.5 metric tons /acre. 
Each of the nine treatment combinations was randomly assigned to four replicate containers. The 
containers were arranged completely at random in a growth chamber. At a certain stage of growth, 
the zinc contents in parts per million were determined for the barley plants grown in each of the 
containers. The data are given below.

 City A City B City C
 Sludge Rate Sludge Rate Sludge Rate

0.5 1.0 1.5 0.5  1.0 1.5  0.5 1.0 1.5

26.4 25.2 26.0 30.1 47 .7 73.8  19.4 23.2 18.9
23.5  39.2 44.6 31.0 39.1 71.1  19.3 21.3 19.8
25.4  25.5 35.5 30.8 55.3 68.4 18.7 23.2 19.6
22.9 31.9 38.6 32.8  50.7 77 .1 19.0 19.9  21.9

 a.  Identify the design for this experiment.
 b.  Write a model for this study. Identify all the terms in your model and any condi-

tions that are placed on the terms. 
 c. Display estimates of all the parameters in your model.

 Env. 14.39  Refer to Exercise 14.38.
 a.  Construct an AOV table for the experiment, and test for the main effects of sludge 

rate and source of sludge and an interaction between sludge rate and source of 
sludge. 

 b.  Is there a linear trend in the mean yields across the sludge rates?
 c.  Which pairs of sludge rates have significant differences in their mean zinc  

contents?

 Env. 14.40  Refer to Exercise 14.38. Verify that there are no major violations in the conditions nec-
essary to conduct the tests in the AOV table.
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 15.1 Introduction and Abstract of Research Study

In this chapter, we will discuss some standard experimental designs and their 
analyses. Sections 15.2 and 15.3 introduce extensions of the completely randomized 
design, where the focus remains the same—namely, treatment mean comparisons—
but where other ‘‘nuisance’’ variables must be controlled. In Section 15.4, we discuss 
 designs that combine the attributes of the ‘‘block’’ designs of Sections 15.2 and 15.3 
with a factorial treatment structure. The remaining sections of the chapter deal with  
procedures to check the validity of model conditions and alternative procedures to 
use when the standard model conditions are not satisfied.

Abstract of Research Study: Control of Leatherjackets
Lawns develop yellow patches during the spring and summer months when the grass 
has died as a result of leatherjackets (Tipula species) eating the roots. Adult leather
jackets of the species (also known as grubs) that damage lawns mainly emerge in late 
summer and early autumn. The females deposit eggs in the turf and these hatch in 
the autumn and begin feeding on grass roots. In cold winters, little feeding or devel
opment takes place, so signs of damage may not be seen until the summer. However, 
mild winters can allow the grubs to develop over the winter and sometimes cause 
damage in late winter or early spring. The larvae have no legs or obvious head, and 
they have a tough, leathery outer skin. Leatherjackets complete their feeding dur
ing the summer and pupate in the soil. Before the adult fly emerges, the pupa wrig
gles half out of the soil, so the brown pupal case is left sticking out of the turf.

An experiment (designed to evaluate methods for dealing with leatherjackets) 
is described in the book A Handbook of Small Data Sets (Hand et al., 1993). It 
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TABLE 15.1
Leatherjacket counts  

on test sites

 Treatment

Plot Control 1 2 3 4

1 33  30 8 12 6 17
 59  36 11 17 10 8
2 36  23 15 6 4 3
 24  23 20 40 7 2
3 19  42 10 12 4 6
 27  39 7 10 12 3
4 71  39 17 5 5 1
 49  20 26 8 5 1
5 22  42 14 12 2 2
 27  22 11 12 6 5
6 84  23 22 16 17 6
 50  37 30 4 11 5

TABLE 15.2
Random assignment of  

the four paints to the  
16 sections

Location

1 2 3 4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

involved a  control and four potential chemicals to eliminate the leatherjackets. 
The data are presented in Table 15.1, and their analysis will be given in Section 15.6.

 15.2 Randomized Complete Block Design

In Example 14.1, the researcher was investigating four types of reflective paint used 
to mark the lanes on rural highways. The paints were applied to sections of highway 
6 feet in length. Six months after application of the paint, the percentage decrease in 
reflectivity was recorded for each of the sections. In this experiment, the researcher 
had 16 sections of highway for use in the study. The sections were all in the same 
general location. This type of design did not allow for varying levels of road usage, 
weather conditions, and maintenance. A new study has been proposed, and the 
researcher wants to incorporate four different locations into the design of the new 
study. The researcher identifies 4 sections of roadway 6 feet in length at each of the 
four locations. If we randomly assigned the four paints to the 16 sections, we might 
end up with a randomization scheme like the one listed in Table 15.2.

Even though we still have four observations for each treatment in this design, 
any differences that we may observe among the reflectivities of the road markings 
for the four types of paint may be due entirely to differences in the road conditions 
and traffic volumes among the four locations. Because the factors location and type 
of paint are confounded, we cannot determine whether any observed  differences 
in the decrease in reflectivity of the road markings are due to differences in the 

confounded
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locations of the markings or due to differences in the types of paint used in creating 
the markings. This example illustrates a situation in which the 16 road markings 
are  affected by an extraneous source of variability: the location of the road mark
ings. If the four locations present different environmental conditions or different 
traffic volumes, the 16 experimental units would not be a homogeneous set of units 
on which we could base an evaluation of the effects of the four treatments, the four 
types of paint.

The completely randomized design just described is not appropriate for 
this experimental setting. We need to use a randomized complete block design 
in order to take into account the differences that exist in the experimental units 
prior to  assigning the treatments. In Chapter 2, we described how we can restrict 
the randomization of treatments to experimental units in order to reduce the vari
ability between experimental units receiving the same treatments. This methodol
ogy can be used to ensure that each location has a section of roadway painted with 
each of the four types of paint. One such randomization is listed in Table 15.3. 
Note that each location contains four sections of roadway, each section treated 
with one of the four paints. Hence, the variability in the reflectivity of paints due 
to differences in roadway conditions at the four locations can now be addressed 
and controlled. This will allow pairwise comparisons among the four paints that 
utilize the sample means to be free of the variability among locations. For exam
ple, if we ran the test

 H0: mP1
2 mP2

 0 versus   Ha: mP1
2 mP2

2 0

and rejected H0, the differences between mP1
 and mP2

 would be due to a difference 
between the reflectivity properties of the two paints and not due to a difference 
among the locations, since both paint P1 and paint P2 were applied to a section of 
roadway at each of the four locations.

In a randomized complete block design, the random assignment of the treat
ments to the experimental units is conducted separately within each block—the 
location of the roadways in this example. The four sections within a given location 
would tend to be more alike with respect to environmental conditions and traffic 
volume than sections of roadway in two different locations. Thus, we are in essence 
conducting four independent completely randomized designs, one for each of the 
four locations. By using the randomized complete block design, we have effec
tively filtered out the variability among the locations, enabling us to make more 
precise comparisons among the treatment means mP1

, mP2
, mP3

, and mP4
.

In general, we can use a randomized complete block design to compare t treat
ment means when an extraneous source of variability (blocks) is present. If there are 
b different blocks, we would randomly assign each of the t treatments to an experi
mental unit in each block in order to filter out the blocktoblock variability. In our 
example, we had t  4 treatments (types of paint) and b  4 blocks (locations).

TABLE 15.3
Randomized complete 

block assignment of  
the four paints to the  

16 sections

Location

1 2 3 4

P2 P2 P1 P1

P1 P4 P3 P2

P3 P1 P4 P4

P4 P3 P2 P3
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We can formerly define a randomized complete block design as follows.

DEFINITION 15.1 A randomized complete block design is an experimental design for compar
ing t treatments in b blocks. The blocks consist of t homogeneous experimen
tal units. Treatments are randomly assigned to experimental units within a 
block, with each treatment appearing exactly once in every block.

The randomized complete block design has certain advantages and disadvan
tages, as shown here.

Advantages and  
Disadvantages of 
the Randomized 
Complete Block 

Design

Advantages

1. The design is useful for comparing t treatment means in the pres
ence of a single extraneous source of variability.

2. The statistical analysis is simple.
3. The design is easy to construct.
4. The design can be used to accommodate any number of treatments 

in any number of blocks.

Disadvantages

1. Because the experimental units within a block must be homogeneous, 
the design is best suited for a relatively small number of treatments.

2. This design controls for only one extraneous source of variability 
(due to blocks). Additional extraneous sources of variability tend 
to increase the error term, making it more difficult to detect treat
ment differences.

3. The effect of each treatment on the response must be approxi
mately the same from block to block.

Consider the data for a randomized complete block design as arranged in 
Table 15.4. Note that although these data look similar to the data presentation for 
a completely randomized design (see Table 14.2), there is a difference in the way 
treatments were assigned to the experimental units.

TABLE 15.4
Data for a randomized 
complete block design

Block

Treatment 1 2 . . . b Mean

1 y11 y12 . . . y1b y1.

2 y21 y22 . . . y2b y2.

(  (  (  (  (  (
t yt1 yt2 . . . ytb yt.

Mean y.1 y.2 . . . y.b y.. 
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The model for an observation in a randomized complete block design can be 
written in the form

yij  m 1 ti 1 bj 1 eij

where the terms of the model are defined as follows:

yij: Observation on experimental unit in jth block receiving treatment i.

m: Overall mean, an unknown constant.

ti: An effect due to treatment i, an unknown constant.

bj: An effect due to block j, an unknown constant.

eij:  A random error associated with the response from an experimental 
unit in block j receiving treatment i. We require that the eijs have a 
normal distribution with mean 0 and common variance s2

e. In addi
tion, the errors must be independent.

The conditions given above for our model can be shown to imply that the 
recorded  response from the ith treatment in the jth block, yij, is normally distrib
uted with mean

mij  E 1yij 2  m 1 ti 1 bj

and variance s2
e. Table 15.5 gives the population means (expected values) for the 

data of Table 15.4.
Similarly to the model for a completely randomized design, the above model 

is overparametrized. In order to obtain the leastsquares estimators, we need to 
place the following constraints on the effect parameters: tt  0 and bb  0.

Under the above constraints, the relationship among the parameters 
m, ti, and bi and the treatment means, mij  m 1 ti 1 bj, becomes 

 a. Overall mean: m  mtb

 b. Main effects of factor A: ti  mib 2 mtb for i  1, 2, . . . , t 2 1
 c. Main effects of blocks: bj  mtj 2 mtb for j  1, 2, . . . , b 2 1

Several comments should be made concerning the table of expected values. 
First, any pair of observations that receive the same treatment (appear in the same 
row of Table 15.5) has population means that differ only by their block effects 
1bjs 2 . For example, the expected values associated with y11 and y12 (two observa
tions receiving treatment 1) are

m11  m 1 t1 1 b1     m12  m 1 t1 1 b2

Thus, the difference in their means is

m11 2 m12  1m 1 t1 1 b1 2 2 1m 1 t1 1 b2 2  b1 2 b2

TABLE 15.5
Expected values for the 

yijs in a randomized block 
design

 Block

Treatment 1 2 . . . b

1 m11  m 1 t1 1 b1 m12  m 1 t1 1 b2 . . . m1b  m 1 t1 1 bb

2 m21  m 1 t2 1 b1 m22  m 1 t2 1 b2 . . . m2b  m 1 t2 1 bb

(  (  (   (  (
t mt1  m 1 tt 1 b1 mt2  m 1 tt 1 b2 . . . mtb  m 1 tt 1 bb
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which accounts for the fact that y11 was recorded in block 1 and y12 was recorded 
in block 2 but both were responses from experimental units receiving treatment 1. 
Thus, there is no treatment effect, but a block effect may be present. Second, two 
observations appearing in the same block (in the same column of Table 15.5) have 
means that differ by a treatment effect only. For example, y11 and y21 both  appear 
in block 1. The difference in their means, from Table 15.5, is

m11 2 m21  1
 
m 1 t1 1 b1 2 2 1

 
m 1 t2 1 b1 2  t1 2 t2

which accounts for the fact that the experimental units received different treat
ments but were observed in the same block. Hence, there may be a treatment 
effect but no block effect. Finally, when two experimental units receive different 
treatments and are observed in different blocks, their expected values differ by 
effects due to both treatment differences and block differences. Thus, observations 
y11 and y22 have expectations that differ by

m11 2 m22  1
 
m 1 t1 1 b1 2 2 1

 
m 1 t2 1 b2 2  1t1 2 t2 2 1 1

 
b1 2 b2 2

Using the information we have learned concerning the model for a rand
omized block design, we can illustrate the concept of filtering and show how the 
randomized block design filters out the variability due to blocks. Consider a ran
dom ized block design with t  3 treatments (1, 2, and 3) laid out in b  3, blocks, 
as shown in Table 15.6.

The model for this randomized block design is

yij  m 1 ti 1 bj 1 eij    1i  1, 2, 3; j  1, 2, 3 2
Suppose we wish to estimate the difference in mean responses for treatments 2 and 
1—namely, m2. 2 m1.. The difference in sample means, y2. 2 y1., would represent a 
point estimate of m2. 2 m1.. By substituting into our model, we have

 y1. 
1
3 a

j

y1j

 
1
3

 3 1 m 1 t1 1 b1 1 e11 2 1 1
 
m 1 t1 1 b2 1 e12 2 1 1

 
m 1 t1 1 b3 1 e13 2 4

  m 1 t1 1 b. 1 e1.

where b. represents the mean of the three block effects—b1, b2, and b3—and e1. 
represents the mean of the three random errors—e11, e12, and e13. Similarly, it is 
easy to show that

y2.  m 1 t2 1 b. 1 e2.

and hence

y2. 2 y1.  1t2 2 t1 2 1 1e2. 2 e1. 2
Note how the block effects cancel, leaving the quantity 1e2. 2 e1. 2  as the error of 
 estimation using y2. 2 y1. to estimate 1m2. 2 m1. 2 .

filtering

TABLE 15.6
Randomized complete  

block design with  
t  3 treatments and  

b  3 blocks

Block Treatment

1 1 2 3
2 1 3 2
3 3 1 2
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If a completely randomized design had been employed instead of a randomized 
block design, treatments would have been assigned to experimental units at ran
dom, and it is quite likely that a treatment will appear more than once in some 
block and hence one or more of the treatments will not appear in that block. When 
the same treatment appears more than once in a block and we calculate an estimate 
of 1m2. 2 m1. 2  using y2. 2 y1., all block effects would not cancel out as they did pre
viously. Then the error of estimation would include not only e2. 2 e1. but also the 
block effects that do not cancel; that is, 

y2. 2 y1.  t2 2 t1 1 3 1e2. 2 e1. 2 1 1block effects that do not cancel 2 4
Hence, the randomized block design filters out variability due to blocks by decreas
ing the error of estimation for a comparison of treatment means.

A plot of the expected values, mij in Figure 15.1, demonstrates that the size 
of the difference between the means of observations receiving the same treatment 
but in different blocks (say, j and j9) is the same for all treatments. That is, 

mij 2 mijr  bj 2 bjr     for all i  1, . . . t

A consequence of this condition is that the lines connecting the means having the 
same treatment form a set of parallel lines.

The main goal in using the randomized complete block design was to examine 
differences in the t treatment means m1., m2., . . . , mt., where mi is the mean response 
of treatment i. The null hypothesis is no difference among treatment means versus 
the research hypothesis, which is treatment means differ. That is,

H0:  m1.  m2.  c mt. versus Ha:  At least one mi. differs from the rest.

This set of hypothesis is equivalent to testing

H0: t1  t2  c tt  0 versus Ha: At least one ti differs from 0.

FIGURE 15.1
Treatment means in a 

 randomized block design 
with four blocks
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The two sets of hypotheses are equivalent because, as we observed in Table 15.5, 
when comparing the mean responses of two treatments (say, i and i9) observed in 
the same block, the difference in their mean responses is

mi. 2 mir.  ti 2 tir

Thus, under H0, we are assuming that treatments have the same mean responses 
within a given block. Our test statistic will be obtained by examining the model for a 
randomized block design and partitioning the total sum of squares to include terms 
for treatment effects, block effects, and random error effects. Using Table 15.4, 
we can introduce notation that is needed in the partitioning of the total sum of 
squares. This notation is presented here.

yij: Observation for treatment i in block j

  t: Number of treatments

 b: Number of blocks

yi.: Sample mean for treatment i, yi. 
1
b a

b
j1 yij

y.j: Sample mean for block j, y.j 
1
t a

t
i1 yij

y..: Overall sample mean, y.. 
1
tb a ij yij

The total sum of squares of the measurements about their mean y.. is defined 
as before:

TSS  a
ij

1
 
yij 2 y.. 2 2

This sum of squares will be partitioned into three separate sources of variability: 
one due to the variability among treatments, one due to the variability among 
blocks, and one due to the variability from all sources not accounted for by either 
treatment differences or block differences. We call this source of variability error. 
The partition of TSS is similar to the partition from Chapter 14 for a twofactor 
treatment structure without an interaction term.

It can be shown algebraically that TSS takes the following form:

a
ij

1 yij 2 y.. 2 2  ba
i

1 yi. 2 y.. 2 2 1 ta
j

1 y.j 2 y.. 2 2 1 a
ij

1 yij 2 yi. 2 y.j 1 y.. 2 2

The first quantity on the righthand side of the equal sign measures the variability 
of the treatment means yi. from the overall mean y... Thus,

SST  ba
i

1yi. 2 y.. 2 2

called the between-treatment sum of squares, is a measure of the variability in the 
yijs due to differences in the treatment means. Similarly, the second quantity,

SSB  ta
j

1y.j 2 y.. 2 2

measures the variability between the block means y.j and the overall mean. It is 
called the between-block sum of squares. The third source of variability, referred 

total sum of squares

error
partition of TSS

between-treatment  
sum of squares

between-block  
sum of squares
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to as the sum of squares for error, SSE, represents the variability in the yijs not 
accounted for by the block and treatment differences. There are several forms for 
this term:

SSE  a
ij

1eij 2 2  a
ij

1
 
yij 2 yj. 2 y.j 1 y.. 2 2  TSS 2 SST 2 SSB

where eij  yij 2m̂ 2 t̂i 2b̂j are the residuals used to check model conditions. We 
can summarize our calculations in an AOV table, as given in Table 15.7 .

The hypotheses for testing differences in the treatment means are 

H0: t1  t2  c tt  0 versus Ha: At least one ti is different from zero.

In terms of the treatment means, mi., H0 and Ha can be written as

H0: m1.  m2.  c mt.  Ha: At least one mi. is different from the rest.

The test statistic for testing these hypotheses is the ratio

F 
MST
MSE

When H0: m1.  m2.  c mt. is true, both MST and MSE are unbiased esti-
mates of s2

e , the variance of the experimental error. That is, when H0 is true, both 
MST and MSE have mean values in repeated sampling, called the expected mean 
squares, equal to s2

e . We express these terms as

E 1MST 2  s2
e  E 1MSE 2  s2

e

We would thus expect F  MST/MSE to have a value near 1.
When Ha is true, the expected value of MSE is still s2

e . However, MST is no 
longer unbiased for s2

e . In fact, the expected mean square for treatments can be 
shown to be

E 1MST 2  s2
e 1 buT,  where uT 

1
t 2 1

 a
t

i1

1
 
mi. 2 m.. 2 2

Thus, a large difference in the treatment means will result in a large value for uT. 
The expected value of MST will then be larger than the expected value of MSE, 
and we would expect F  MST /MSE to be larger than 1. Thus, our test statistic F 
rejects H0 when we observe a value of F larger than a value in the upper tail of the 
F distribution.

The above discussion leads to the following decision rule for a specified prob-
ability of a Type I error:

Reject H0:  m1.  m2.  . . .  mt. when F  MST /MSE exceeds Fa, df1, df2

where Fa, df1, df2
 is from the F tables in Appendix Table 8 with a  specified value of 

probability of Type I error, df1  dfMST  t 2 1, and df2  dfMSE  1b 2 1 2 1t 2 1 2 . 

sum of squares  
for error

unbiased estimates

expected mean 
squares

TABLE 15.7
Analysis of variance  

table for a randomized  
complete block design

Source SS df MS F

Treatments SST t 2 1 MST  SST /(t 2 1) MST /MSE
Blocks SSB b 2 1 MSB  SSB /(b 2 1) MSB /MSE
Error SSE (b 2 1)(t 2 1) MSE  SSE /(b 2 1)(t 2 1)

Total TSS bt 2 1
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Alternatively, we can compute the pvalue for the observed value of the test sta
tistic Fobs by computing

pvalue  P 1Fdf1, df2
. Fobs 2   1 pf(Fobs, t 2 1, (b 2 1)(t 2 1))

where the F distribution with df1  t 2 1 and df2  (b 2 1)(t 2 1) is used to com
pute the probability. We would then compare the pvalue to a selected value for the 
probability of Type I error, with small pvalues supporting the research hypothesis 
and large pvalues failing to reject H0.

The block effects are generally assessed only to determine whether or not the 
blocking was efficient in reducing the variability in the experimental units. Thus, 
hypotheses about the block effects are not tested. However, we might still ask 
whether blocking has increased our precision for comparing treatment means in a 
given experiment. Let MSERCB and MSECR denote the mean square errors for a 
randomized complete block design and a completely randomized design, respec
tively. One measure of precision for the two designs is the variance of the estimate 
of the ith treatment mean, m̂i.  yi. 1i  1, 2, . . . , t 2 . For a randomized complete 
block design, the estimated variance of yi. is MSERCB /b. For a completely rand
omized design, the estimated variance of yi. is MSECR /r, where r is the number of 
observations (replications) of each treatment required to satisfy the relationship

MSECR

r


MSERCB

b
  or  

MSECR

MSERCB


r
b

The quantity r /b is called the relative efficiency of the randomized complete 
block design compared to a completely randomized design RE(RCB, CR). The 
larger the value of MSECR is compared that of to MSERCB, the larger r must be to 
obtain the same level of precision for estimating a treatment mean in a completely 
randomized design as obtained using the randomized complete block design. Thus, 
if the blocking is effective, we would expect the variability in the experimental units 
to be smaller in the randomized complete block design than in a completely rand
omized design. The ratio MSECR /MSERCB should be large, which would result in 
r being much larger than b. Thus, the amount of data needed to obtain the same 
level of precision in estimating mi would be larger in the completely randomized 
design than in the randomized complete block design. When the blocking is not 
effective, then the ratio MSECR /MSERCB would be nearly 1, and r and b would be 
equal.

In practice, evaluating the efficiency of the randomized complete block 
design relative to that of a completely randomized design cannot be accomplished 
because the completely randomized design was not conducted. However, we can 
use the mean squares from the randomized complete block design, MSB and MSE, 
to obtain the relative efficiency RE(RCB, CR) by using the formula

RE 1RCB, CR 2 
MSECR

MSERCB


1b 2 1 2MSB 1 b 1t 2 1 2MSE
1bt 2 1 2MSE

When RE(RCB, CR) is much larger than 1, then r is greater than b, and we would 
conclude that the blocking was efficient because many more observations would 
be required in a completely randomized design than would be required in the ran
domized complete block design.

relative efficiency
RE(RCB, CR)
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TABLE 15.8
Number of seedlings  

by insecticide and plot  
for Example 15.1

 Plot

Insecticide 1 2 3 4 Insecticide Mean

1 56 48 66 62 58
2 83 78 94 93 87
3 80 72 83 85 80

Plot mean 73 66 81 80 75

EXAMPLE 15.1

A researcher conducted an experiment to compare the effects of three different 
insecticides on a variety of string beans. To obtain a sufficient amount of data, it was 
necessary to use four different plots of land. Since the plots had somewhat differ
ent soil fertility, drainage characteristics, and sheltering from winds, the researcher 
decided to conduct a randomized complete block design with the plots serving as 
the blocks. Each plot was subdivided into three rows. A suitable distance was main
tained between rows within a plot so that the insecticides could be confined to a 
particular row. Each row was planted with 100 seeds and then maintained under 
the insecticide assigned to the row. The insecticides were randomly assigned to the 
rows within a plot so that each insecticide appeared in one row within all four plots. 
The response yij of interest was the number of seedlings that emerged per row. The 
data and means are given in Table 15.8.

a. Write an appropriate statistical model for this experimental situation.
b. Run an analysis of variance to compare the effectiveness of the three 

insecticides. Use a  .05.
c. Summarize your results in an AOV table.
d. Compute the relative efficiency of the randomized block design rela

tive to a completely randomized design.

Solution  We recognize this experimental design as a randomized complete block 
design with b  4 blocks (plots) and t  3 treatments (insecticides) per block. The 
appropriate statistical model is

a. yij  m 1 ti 1 bj 1 eij   i  1, 2, 3; j  1, 2, 3, 4

From the information in Table 15.8, we can estimate the treatment means, mi., by 
m̂i.  yi., which yields

m̂1.  58 m̂2.  87 m̂3.  80

It would appear that the rows treated with insecticide 1 yielded many fewer 
plants than the other two insecticides. We will next construct the AOV table.

b. Substituting into the formulas for the sum of squares, we have

 TSS  a
ij

1
 
yij 2 y.. 2 2  156 2 75 2 2 1 148 2 75 2 2 1 c1 185 2 75 2 2  2,296

 SST  ba
i

1 yi. 2 y.. 2 2  4 3 158 2 75 2 2 1 187 2 75 2 2 1 180 2 75 2 2 4  1,832

 SSB  ta
j

1 y.j 2 y.. 2 2 3 3 173 2 75 2 2 1 166 2 75 2 2 1 181 2 75 2 2 1 180 2 75 2 2 4

  438
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TABLE 15.9
AOV table for the data  

of Example 15.1

Source SS df MS F p-value

Treatments 1,832  2 916 211.38 .0001
Blocks 438  3 146 33.69 .0004
Error 26  6 4.3333

Total 2,296 11

By subtraction, we have

SSE  TSS 2 SST 2 SSB  2,296 2 1,832 2 438  26

The analysis of variance table in Table 15.9 summarizes our results. Note that 
the mean square for a source in the AOV table is computed by dividing the sum 
of squares for that source by its degrees of freedom.

c. 

The F test for differences in the treatment means

H0: m1.  m2.  m3.  versus Ha: At least one mi.
 is different from the rest.

Makes use of the F statistic MST /MSE. Since the computed value of F, 
211.38, is greater than the tabulated F-value, 5.14, based on df1  2, df2  6, 
and a  .05, we reject H0 and conclude that there is significant evidence 
( p-value  1 2 pf(211.38, 2, 6)  .0000027) of a difference in the mean number 
of seedlings among the three insecticides.

d. We will next assess whether the blocking was effective in increasing the precision 
of the analysis relative to a completely randomized design. From the AOV 
table, we have MSB  146 and MSE  4.3333. Hence, the relative efficiency of 
this randomized block design relative to a completely randomized design is

 RE 1RCB, CR 2 
1b 2 1 2MSB 1 b 1t 2 1 2MSE

1bt 2 1 2MSE

 
14 2 1 2 1146 2 1 4 13 2 1 2 14.3333 2

3 14 2 13 2 2 1 4 14.3333 2  9.92

That is, approximately 10 times as many observations of each treatment would 
be required in a completely randomized design to obtain the same precision 
for estimating the treatment means as with this randomized complete block 
design. The plots were considerably different in their physical characteristics, 
and, hence, it was crucial that blocking be used in this experiment. ■

The results in Example 15.1 are valid only if we can be assured that the con-
ditions placed on the model are consistent with the observed data. Thus, we use 
the residuals eij  yij 2 m̂ 2 t̂i 2 b̂j to assess whether the conditions of normality, 
equal variance, and independence appear to be satisfied for the observed data. The 
following example includes the computer output for such an analysis.

EXAMPLE 15.2

The computer output for the experiment described in Example 15.1 is displayed here. 
Compare the results to those obtained using the definition of the sum of squares, 
and assess whether the model conditions appear to be valid.
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Variable=RESIDUALS

Normal Probability Plot
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RESIDUAL ANALYSIS

Variable=RESIDUALS

Moments
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Skewness –0.54037 Kurtosis –0.25385
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Solution  Note that our hand calculations yielded the same values as are given 
in the computer output. Generally, there will be some rounding errors in our hand 
calculations, which can lead to values that will differ from those given in the com
puter output. It is strongly recommended that a computer software program be 
used in the analysis of variance calculations because of the potential for rounding 
errors. In assessing whether the model conditions have been met, we first note that 
in regard to the normality condition, the test of H0: residuals have normal distribu
tion; the pvalue from the Shapiro–Wilks test is pvalue  .4938. Thus, we would 
not reject H0, and the normality condition appears to be satisfied. Also, the stem 
and leaf plot, boxplot, and normal probability plot are consistent with the  condition 
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FIGURE 15.2
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that the residuals have a normal distribution. Figure 15.2 is a plot of the residuals 
versus the estimated treatment means. From this plot, it would appear that the vari
ability in the residuals is somewhat constant across the treatments.

 ■

 15.3 Latin Square Design

The randomized complete block design is used when there is one factor of interest 
and the experimenter wants to control a single source of extraneous variation. 
When there are two possible sources of extraneous variation, a Latin square design 
is the appropriate design for the experiment. Consider the following example.

Latin square design

EXAMPLE 15.3

A nonprofit consumerproduct testing organization is in the process of evaluating 
five major brands of room air cleaners. In order to make the ratings as realistic as 
possible, the organization’s engineers decided to evaluate the air cleaners outside 
the testing laboratory in residential homes. To control for variations due to the dif
fering air qualities in the homes and due to the timeoftheyear characteristics of 
external air pollution, the engineers decided to use a cleaner of each brand in each of 
five homes and to run the tests at five different months. The factors to be considered 
in the study are

 1. Brand of air cleaner: B1, B2, B3, B4, B5

 2. Residential home: H1, H2, H3, H4, H5

 3. Month: M1, M2, M3, M4, M5

The two factors, home and month of the year, are extraneous sources of varia
tion that are important to include in the study in order to provide a more precise 
evaluation of the differences in the five brands. However, these factors are not of 
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TABLE 15.10
A randomized complete  

block design for the  
air cleaner study

 Home

Month 1 2 3 4 5

M1 B2 B2 B3 B2 B2

M2 B1 B4 B4 B4 B5

M3 B3 B1 B2 B5 B4

M4 B5 B3 B1 B3 B1

M5 B4 B5 B5 B1 B3

TABLE 15.11
A Latin square design for  

the air cleaner study

 Home

Month 1 2 3 4 5

M1 B1 B2 B3 B4 B5

M2 B2 B3 B4 B5 B1

M3 B3 B4 B5 B1 B2

M4 B4 B5 B1 B2 B3

M5 B5 B1 B2 B3 B4

central importance to the engineers. The response variable is the clean air delivery 
rate (CADR). CADR is a measure of the air cleaner’s ability to reduce smoke, dust, 
and pollen particles from the air. CADR is defined as the rate of contaminant reduc
tion in the room when the air cleaner is turned on, minus the rate of natural decay 
when the unit is not running, multiplied by the volume of air in the room, measured in 
cubic feet. The engineers initially considered using the completely randomized block 
design displayed in Table 15.10, with brands as treatments and homes as blocks.

In this design, the brand of air cleaner is randomly assigned to the month 
separately for each of the five homes. Suppose the time of the year, month, has an 
important impact on the performance of the air cleaner. In the spring, the pollen 
count may be very high in some areas of the country, or because of wind patterns, 
industrial air pollution could be considerably higher during some months and very 
low during other months. The design in Table 15.10 would then produce a strong 
positive bias for brand B2 if month M1 had the lowest levels of air particles rela
tive to the other four months because B2 was observed four times in this month. 
Similarly, brand B4 would have a strong negative bias if month M2 had higher lev
els of air particles relative to the other four months. Thus, if it is found that brand 
B2 produced the highest average CADR, the organization could not be certain 
whether the brand B2 was the better air cleaner or whether the results were due 
to having four of the five tests run during a month in which the air particle level 
was very low.

This example illustrates a situation in which the experimental units (rooms 
in home) are affected by two sources of extraneous variation, the home and the 
month of the year. We can modify the randomized complete block design to filter 
out this second source of variability, the variability among months, in addition to 
filtering out the first source, variability among homes. To do this, we restrict our 
randomization to ensure that each treatment appears in each row (month) and in 
each column (home). One such randomization is shown in Table 15.11. Note that 
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Advantages and  
Disadvantages of the  
Latin Square Design

Advantages

1. The design is particularly appropriate for comparing t treatment 
means in the presence of two sources of extraneous variation,  
each measured at t levels.

2. The analysis is quite simple.
3. A Latin square can be constructed for any value of t.

Disadvantages

1. Any additional extraneous sources of variability tend to inflate the 
error term, making it more difficult to detect differences among the 
treatment means.

2. The effect of each treatment on the response must be approxi-
mately the same across rows and columns.

DEFINITION 15.2 A t 3 t Latin square design contains t rows and t columns. The t treatments 
are randomly assigned to experimental units within the rows and columns so 
that each treatment appears in every row and in every column.

the brands of air cleaners have been assigned to month and home so that each 
brand is evaluated once in each of the months and homes. Hence, pairwise com-
parisons among brands that involve the sample means have been adjusted for the 
variability among months and homes. ■

This experimental design is called a Latin square design. In general, a Latin 
square design can be used to compare t treatment means in the presence of two 
 extraneous sources of variability, which we block off into t rows and t columns. 
The t treatments are then randomly assigned to the rows and columns so that each 
treatment appears in every row and every column of the design (see Table 15.11).

The advantages and disadvantages of the Latin square design are listed here.

Latin square design

The definition of a Latin square design is given here.

The model for a response in a Latin square design can be written in the form

yijk  m 1 tk 1 bi 1 gj 1 eijk

where the terms of the model are defined as follows:

yijk:  Observation on experimental unit in the ith row and jth column 
receiving treatment k.

 m: Overall mean, an unknown constant.

 tk: An effect due to treatment k, an unknown constant.

 bi: An effect due to row i, an unknown constant.

 gj: An effect due to column, j, an unknown constant.
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eijk:  A random error associated with the response from an experi
mental unit in row i and column j. We require that the eijks have 
a normal distribution with mean 0 and common variance s2

e. In 
addition, the errors must be independent.

The conditions given above for our model can be shown to imply that the 
recorded response in the ith row and jth column, yijk, is normally distributed with 
mean

mijk  E 1yijk 2  m 1 tk 1 bi 1 gj

and variance s2
e. This model is a completely additive model in that there are no 

 interaction terms. The rowblocking variable and columnblocking variable do not 
interact with the treatment or with each other. Because we have only one observa
tion in each of the cells, only two of the three subscripts on yijk are necessary to 
denote a particular response. For example, in Table 15.11 for the response in row 2 
and column 4, we have i  2 and j  4; then we automatically know that brand B5 
was used—that is, k  5. This result occurs because each treatment appears  exactly 
once in each row and in each column.

We can use the model to illustrate how a Latin square design filters out 
extraneous variability due to row and column sources of variability. Here we will 
consider a Latin square design with t  4 treatments (I, II, III, and IV) and two 
sources of extraneous variability, each with t  4 levels. This design is displayed 
in Table 15.12.

If we wish to estimate m..3 2 m..1, the difference in the mean responses for 
treatments III and I, using the difference in sample means y..3 2 y..1, we can substi
tute into our model to obtain expressions for y..3 and y..1, carefully noting in which 
rows and columns the treatments appear. With yijk denoting the observation in row 
i and column j, we have, from Table 15.12,

 y..1 
1
4

 1 y111 1 y241 1 y331 1 y421 2

  m 1 t1 1
1
4

 1 b1 1 b2 1 b3 1 b4 2 1
1
4

 1g1 1 g2 1 g3 1 g4 2 1 e..1

where e..1 is the mean of the random errors for the four observations on treatment I. 
Similarly,

 y..3 
1
4

 1 y133 1 y223 1 y313 1 y443 2

  m 1 t3 1
1
4

 1 b1 1 b2 1 b3 1 b4 2 1
1
4

 1g1 1 g2 1 g3 1 g4 2 1 e..3

additive 

filtering

TABLE 15.12
 A 4 3 4 Latin  
square design

 Column

Row 1 2 3 4

 1 I II III IV
 2 II III IV I
 3 III IV I II
 4 IV I II III
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Then the sample difference is

y..3 2 y..1  t3 2 t1 1 1e..3 2 e..1 2
and the error of estimation for t3 2 t1 is e..3 2 e..1.

If a randomized block design had been used with blocks representing col
umns, treatments would be randomized within the columns only. It is quite pos
sible for the same treatment to appear more than once in the same row. Then the 
sample  difference would be

y..3 2 y..1  t3 2 t1 1 3 1e..3 2 e..1 2 1 (row effects that do not cancel)]

Thus, the error of estimation would be inflated by the row effects that do not 
 cancel out.

TABLE 15.13
A randomized block  

design for four treatments  
(columns are blocks)

 Column

Row 1 2 3 4

 1 II II III II
 2 I IV IV IV
 3 III I II I
 4 IV III I III

EXAMPLE 15.4

Suppose the design displayed in Table 15.12 would have been run as a randomized 
block design with the four treatments randomly assigned to the rows within each 
column. One possible randomization is presented in Table 15.13. Show that the dif
ference in the sample means for treatments I and III involves row effects and hence 
that treatment effects are confounded with row effects.

Solution  We first compute

 y..3 
1
4

 1 y133 1 y313 1 y423 1 y443 2

  m 1 t3 1
1
4

 1 b1 1 b3 1 b4 1 b4 2 1
1
4

 1g3 1 g1 1 g2 1 g4 2 1 e..3

 y..1 
1
4

 1 y211 1 y321 1 y341 1 y431 2

  m 1 t1 1
1
4

 1 b2 1 b3 1 b3 1 b4 2 1
1
4

 1g1 1 g2 1 g4 1 g3 2 1 e..1

The estimated difference in the mean responses of treatments 3 and 1 is

 m̂..3 2m̂..1  y..3 2 y..1  t3 2 t1 1 B 1e..3 2 e..1 2 1
1
4

 1 b1 2 b2 2 b3 1 b4 2 R

Thus, the estimated difference between the mean responses from treatment III and 
treatment I would involve row effects. Thus, we have treatment effects confounded 
with row effects. This results from treatment I not appearing in row 1 but appearing 
twice in row 3 and from treatment III not appearing in row 2 but appearing twice 
in row 4. ■
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Following the same reasoning, if a completely randomized design was used 
when a Latin square design was appropriate, the error of estimation would be 
 inflated by both row and column effects that do not cancel out.

We can test specific hypotheses concerning the parameters in our model. 
In particular, we may wish to test the hypothesis of no difference among the  
t treatment means. This hypothesis can be stated in the form

H0:  t1  t2  c t1  0

The alternative hypothesis would be

Ha: At least one of the tks is not equal to zero.

In terms of the treatment means, the hypotheses are

H0: m..1  m..2  c m..t

Ha: At least one m..k differs from rest.

Our test statistic will be obtained by examining the model for a Latin square design 
and partitioning the total sum of squares to include terms for treatment effects, 
row effects, column effects, and random error effects.

The total sum of squares of the measurements about their mean y... is defined 
as before:

TSS  a
ij

1
 
yijk 2 y... 2 2

This sum of squares will be partitioned into four separate sources of variability: one 
due to the variability among treatments, one due to the variability among rows, 
one due to the variability among columns, and one due to the variability from all 
sources not accounted for by either treatment differences or block differences. We 
call this source of variability error. The partition of TSS follows.

 TSS  a
i
a

j

1
 
yijk 2 y... 2 2

 TSS  ta
k

1 y..k 2 y... 2 2 1 ta
i

1yi.. 2 y... 2 2 1 ta
j

1y.j. 2 y... 2 2 1 SSE

We will interpret the terms in the partition using the parameter estimates. 
The first quantity on the righthand side of the equal sign measures the variability 
of the treatment means y..k from the overall mean y.... Thus,

SST  ta
k

1y..k 2 y... 2 2

called the between-treatment sum of squares, is a measure of the variability in the 
yijks due to differences in the treatment means. The second quantity,

SSR  ta
i

1yi.. 2 y... 2 2

measures the variability between the row means yi.. and the overall mean. It is 
called the between-rows sum of squares. The third source of variability, referred 
to as the between-columns sum of squares, measures the variability between the 
column means y.j. and the overall mean. It is given by

SSC  ta
j

1y. j. 2 y... 2 2

test for treatment 
effects

 total sum of squares 

error 
partition of TSS

between-treatment 
sum of squares

between-rows sum  
of squares

between-columns  
of sum of squares
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The final source of variability, designated as the sum of squares for error, SSE, 
 represents the variability in the yijks not accounted for by the row, column, and 
treatment differences. It is given by

SSE  TSS 2 SST 2 SSR 2 SSC a
i
a

j
a

k

1
 
yijk 2 yi.. 2 y.j. 2 y..k 1 2y... 2

We can summarize our calculations in an AOV table, as given in Table 15.14.
The test statistic for testing

H0: m..1  m..2  c m..t versus Ha: At least one m..k differs from the rest 
or equivalently, 
H0: t 1  t2  . . .  tt  0 versus Ha: At least one tk differs from zero

is the ratio

F 
MST
MSE

For our model,

E 1MSE 2  s2
e  and  E 1MST 2  s2

e 1 tuT

where uT  1 / 1t 2 1 2gk 1m..k 2 m... 2 2. When H0 is true, m..k  m... for all k  1, . . . , t,  
and, hence, uT  0. Thus, when H0 is true, we would expect MST/MSE to be close 
to 1. However, under the research hypothesis, Ha, uT would be positive, since at 
least one of the differences 1m..k 2 m... 2  is not 0. Thus, a large difference in the treat-
ment means will result in a large value for uT. The expected value of MST will then 
be larger than the expected value of MSE, and we would expect F  MST /MSE to 
be larger than 1. As a result, our test statistic F rejects H0 when we observe a value 
of F larger than a value in the upper tail of the F distribution.

The above discussion leads to the following decision rule for a specified prob-
ability of a Type I error:

Reject H0: m..1  m..2  c m..t when F  MST /MSE exceeds Fa, df1, df2

where Fa, df1, df2
 is from the F tables of Appendix Table 8 with a  specified value 

of the probability of a Type I error, df1  dfMST  t 2 1, and df2  dfMSE  (t 2 1) 
(t 2 2). Alternatively, we can compute the p-value for the observed value of the 
test statistic Fobs by computing

p-value  P 1Fdf1, df2
. Fobs 2   1 2 pf(Fobs, t 2 1, (t 2 1)(t 2 2)).

where the F distribution with df1  t 2 1 and df2  (t 2 1)(t 2 2) is used to compute 
the probability. We would then compare the p-value to a selected value for the 
probability of a Type I error, with small p-values supporting the research hypoth-
esis and large p-values failing to reject H0.

TABLE 15.14
Analysis of variance table 

for a t 3 t Latin square 
design

Source SS df MS F

Treatments SST t 2 1 MST  SST /(t 2 1) MST /MSE
Rows SSR t 2 1 MSR  SSR /(t 2 1) MSR /MSE
Columns SSC t 2 1 MSC  SSC /(t 2 1) MSC /MSE
Error SSE (t 2 1)(t 2 2) MSE  SSE /(t 2 1)(t 2 2)

Total TSS t2 2 1
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TABLE 15.15
CADR value for five 

brands of air cleaners in a 
5 3 5 Latin square design

   Home  

Month 1 2 3 4 5 Month Mean Brand Mean

M1 B1(162) B2(89) B3(160) B4(146) B5(241) 159.6 182.2
M2 B2(115) B3(192) B4(164) B5(296) B1(142) 181.8 139.8
M3 B3(149) B4(273) B5(238) B1(227) B2(103) 198.0 165.6
M4 B4(229) B5(273) B1(175) B2(71) B3(119) 173.4 229.0
M5 B5(328) B1(205) B2(321) B3(208) B4(333) 279.0 275.2

Home mean 196.6 206.4 211.6 189.6 187 .6

a. Write an appropriate statistical model for this experimental situation.
b. Conduct an analysis of variance to compare the mean CADRs for the 

five brands of air cleaners. Use a  .05.

Solution  a. The experiment was conducted as a Latin square design with t  5 rows 
(months), t  5 columns (homes), and t  5 treatments (brands of air cleaners). An 
appropriate statistical model for this study is

yijk  m 1 tk 1 bi 1 gj 1 eijk with  i, j, k  1, 2, 3, 4, 5

b. From the information in Table 15.15, the treatment means m..k are estimated by 
m̂..k  y..k, yielding

m̂..1  182.2  m̂..2  139.8  m̂..3  165.6  m̂..4  229.0  m̂..5  275.2

From the above estimated treatment means, it appears that brand B5 has a some
what larger mean CADR value than brand B4 and a considerably larger mean 
CADR value than the other three brands. From the data in Table 15.15, the sum 
of squares can be computed using the following formulas (note that y...  198.36):

 TSS  a
ijk

1 yijk 2 y... 2 2

  1162 2 198.36 2 2 1 1115 2 198.36 2 2 1 c1 1333 2 198.36 2 2

  139,372

 SST  ta
k

1y..k 2 y... 2 2

  5 3 1182.2 2 198.36 2 2 1 1139.8 2 198.36 2 2 1 1165.6 2 198.36 2 2

 1 1229.0 2 198.36 2 2 1 1275.2 2 198.36 2 2 4  58,034.16

 SSR  ta
i

1 yi.. 2 y... 2 2

  5 3 1159.6 2 198.36 2 2 1 1181.8 2 198.36 2 2 1 1198.0 2 198.36 2 2

 1 1173.4 2 198.36 2 2 1 1279.0 2 198.36 2 2 4  44,512.56

EXAMPLE 15.5

The consumerproduct rating organization decided to design the study of home air 
cleaners as a Latin square design using five homes and five months as blocking vari
ables. The response variable is the CADR value obtained from a room air cleaner in a 
given home during a given month. Each brand of cleaner is observed in all five homes 
during all five months. The data from this study are given in Table 15.15. According to 
industry standards, a CADR value above 300 is considered excellent, and a CADR 
value below 100 is considered poor. Use these data to answer the following questions.
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TABLE 15.16
Analysis of variance  

for  Example 15.5

Source df SS MS F p-value

Month 4 44,512.56 11,128.14 3.85 .031

Home 4 2,177 .76 544.44   .19 .940

Brand 4 58,034.16 14,508.54 5.02 .013

Error 12 34,647 .52 2,887 .29  

Total 24 139,372.00

 SSC  ta
j

1 y.j . 2 y... 2 2

  5 3 1196.6 2 198.36 2 2 1 1206.4 2 198.36 2 2 1 1211.6 2 198.36 2 2

 1 1189.6 2 198.36 2 2 1 1187.6 2 198.36 2 2 4  2,177.76

By subtraction, we obtain the sum of squares error:

 SSE  TSS 2 SST 2 SSR 2 SSC

  139,372 2 58,034.16 2 44,512.56 2 2,177.76  34,647.52

The analysis of variance is summarized in Table 15.16.

Note that the mean square for a source of variation in the AOV table is computed 
by dividing the sum of squares for that source by its degrees of freedom. The F test 
for differences in the five brands of air cleaners is F  MST /MSE. The computed 
value of F  5.02 is greater than F4, 12, .05  3.26, the tabulated Fvalue, based on 
df1  4, df2  12, and a  .05. Therefore, we conclude that there is significant evi
dence (pvalue  .013) of a difference in the mean CADR values for the five brands 
of air cleaners. It appears that brands B4 and B5 have higher mean CADR  values 
than the other three brands. It is possible that brand B5 has a higher mean CADR 
value than brand B4. This could be confirmed by using a multiplecomparison  
procedure. ■

In order to validly make the inferences described in Example 15.5, it is necessary 
to verify that the conditions of independence, normality, and equal variances hold. 
This would involve a residual analysis using the residuals from the Latin square  
model—namely, eijk  yijk 2 yi.. 2 y.j. 2 y..k 1 2y.... The condition of independ
ence can be assessed only if there is a variable that allows us to sequence the 
residuals. Such variables are generally the order in which the measurements in the 
experiment were taken or a spatial relationship between the experimental units. 
If no such variable exists, the condition of independence needs to be  confirmed 
subjectively by the researchers. The condition of normality can be assessed by a 
normal probability plot of the residuals and/or a test of normality of the residuals. 
The constancy of variance can be ascertained by plotting the residuals versus the 
predicted values of the observations, ŷijk  yi.. 1 y.j. 1 y..k 2 2y... . If the spread in 
the residuals stays relatively constant with increasing ŷijk , then the condition of 
constant variance would appear not to be violated. A residual analysis of the data 
from Example 15.5 is presented in Example 15.6.
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FIGURE 15.3(a)
Normal probability plot 

of air cleaner data
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EXAMPLE 15.6

The normal probability plot of the residuals and a plot of the residuals versus the 
predicted values are given here. Is there evidence that the conditions of normality 
and constant variance appear to be violated?

Solution  From the normal probability plot, Figure 15.3(a), the plotted points are 
in close proximity to a straight line. The pvalue for the test of normality is given 
to be pvalue ..10, which indicates that there is not significant evidence of a viola
tion of the normality condition. The plot of the residuals versus the fitted values, 
Figure  15.3(b), does not indicate a violation of the constant variance condition. 
Thus, the consumerproduct testing organization can feel confident in publishing 
the conclusions from the AOV table.

■
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The row and column effects are generally assessed only to determine whether 
or not accounting for the two extraneous sources of variability was efficient in 
 reducing the variability in the experimental units. Thus, hypotheses about the row 
and column effects are not generally tested. As with the randomized block design, 
we can compare the efficiency of the Latin square design to that of the completely 
randomized design. We want to determine whether accounting for the row and 
column sources of variability has increased our precision for comparing treatment 
means in a given experiment. Let MSELS and MSECR denote the mean square 
errors for a Latin square design and a completely randomized design, respectively. 
The relative efficiency of the Latin square design compared to that of a completely 
randomized design is denoted RE(LS, CR). We can use the mean squares from 
the Latin square design—MSR, MSC, and MSE—to obtain the relative efficiency 
RE(LS, CR) by using the formula

RE 1LS, CR 2 
MSECR

MSELS


MSR 1 MSC 1 1t 2 1 2MSE
1t 1 1 2MSE

When RE(LS, CR) is much larger than 1, we conclude that accounting for the row 
and/or column sources of variability was efficient, since many more observations 
would be required in a completely randomized design than in a Latin square design 
to obtain the same degree of precision in estimating the treatment means.

The following example will illustrate the calculations of the relative efficiency.

relative efficiency

 RE(LS, CR)

EXAMPLE 15.7

Refer to Example 15.5. Assess whether taking into account the two extraneous 
sources of variation, months and homes, was effective in increasing the precision of 
the analysis relative to a completely randomized design.

Solution  From the AOV table in Example 15.5, we have MSR  MSMONTH  
11,128.14, MSC  MSHOME  544.44, and MSE  2,887.29. Thus, the relative 
 efficiency of this Latin square design relative to a completely randomized design is 
given by

RE 1LS, CR 2 
MSR 1 MSC 1 1t 2 1 2MSE

1t 1 1 2MSE

 
11,128.14 1 544.44 1 15 2 1 2 12,887.29 2

15 1 1 2 12,887.29 2  1.34

That is, approximately 34% more observations per treatment would be required in a 
completely randomized design to obtain the same precision in estimating the treat
ment means as with this Latin square design. The Latin square design has provided a 
considerable increase in the precision of estimation over a completely randomized 
design. However, this does not mean that both the row and columnblocking factors 
are equally effective. In fact, it would appear from the relative sizes of the mean 
squares for months and for homes that the major portion of the gain in precision is 
from the month blocking factor. The differences in the means for the five homes are 
relatively small compared to the differences in the five monthly means. ■

EXAMPLE 15.8

To illustrate the output from a software package, the data from Example 15.5 were 
analyzed using the Minitab software. The output is given here.
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General Linear Model: CADR versus MONTH, HOME, BRAND

Factor    Type     Levels  Values
MONTH     fixed         5  1, 2, 3, 4, 5
HOME      fixed         5  1, 2, 3, 4, 5
BRAND     fixed         5  1, 2, 3, 4, 5

Analysis of Variance for CADR, using Adjusted SS for Tests

Source
MONTH
HOME
BRAND
Error
Total

DF
4
4
4

12
24

Seq SS
44513
2178

58034
34647
139372

Adj SS
44513
2178
58034
34647

Adj MS
11128
544

14509
2887

F
3.85
0.19
5.02

P
0.031
0.940
0.013

S = 53.7334   R–Sq = 75.14%   R–Sq(adj) = 50.28%

BRAND
1
2
3
4
5

Unusual Observations for CADR

R denotes an observation with a large standardized residual.

Obs
 23

CADR
321.000 233.680 38.748 87.320 2.35 R

Fit SE Fit Residual St Resid

Least Squares Means for CADR

Mean
182.2
139.8
165.6
229.0
275.2

SE Mean
24.03
24.03
24.03
24.03
24.03

Note that in the output from Minitab, there are two types of sums of squares listed: Seq 
SS and Adj SS. In nearly all situations, the Adj SS will be the sum of squares that will 
be used in assessing treatment differences. Also, observation 23—month  5, home 
 3, brand  B2—has been identified as an unusual observation. This data point 
can be seen in the two plots of the residuals displayed in Figure 15.3. Although this 
observation has a moderately large standardized residual, 2.35, it is not large enough 
to cause too much concern about its impact on the validity of the F test. ■

 15.4 Factorial Treatment Structure in a Randomized 
Complete Block Design

In Chapter 14, we discussed a completely randomized design with a factorial treat
ment structure in which the response y is observed at all factor–level combinations 
of the independent variables. The factor–level combinations of the independent 
variables (treatments) were randomly assigned to the experimental units in order 
to investigate the effects of the factors on the response.

Sometimes the objectives of a study are such that we wish to investigate the 
effects of certain factors on a response while blocking out certain other extraneous 
sources of variability. Such situations require a block design with treatments from 
a factorial treatment structure. We will draw on our knowledge of block designs 
(randomized block designs and Latin square designs) to effectively block out the 
extraneous sources of variability in order to focus on the effects of the factors on 
the response of interest. This can be illustrated with the following example.
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TABLE 15.17
Protein content data  Day

 1 2 3

Flour Temperature Temperature Temperature
Type 1 2 3  1 2 3  1 2 3

A  5.8 4.6 4.6  11.4 5.2 5.2  10.5  9.7 4.7
B  8.4 5.4 4.7   7 .5 7 .9 7 .2  14.6  7 .9 6.9
C 16.0 5.2 4.2  17 .8 7 .0 6.3  16.9 11.5 7 .2

EXAMPLE 15.9

A nutritionist wants to study the percentage of protein content in bread made from 
three new types of flours and baked at three different temperatures. She would like 
to bake 3 loaves of bread from each of the nine flour–temperature combinations 
for a total of 27 loaves from which the percentage of protein would be determined. 
However, she is able to bake only 9 loaves on any given day. Propose an appropri
ate experimental design.

Solution  Because nine loaves can be baked on a given day, it would be possible to 
run a complete replication of the 3 3 3 factorial treatment structure on three different 
days to obtain the desired number of observations. The design is shown in Table 15.17.

Note that this design is really a randomized block design, where the blocks are 
days and the treatments are the nine factor–level combinations of the 3 3 3 facto
rial treatment structure. So, with the randomized block design, we are able to block 
or filter out the variability due to the nuisance variable, days, while comparing the 
treatments. Because the treatments are factor–level combinations from a factorial 
treatment structure, we can examine the effects of the two factors (flour and tem
perature) on the response while filtering out the daytoday variability.

The analysis of variance for this design follows from our discussions in 
 Sections 14.3 and 15.2. ■

The model for a randomized complete block design with an a 3 b factorial 
treatment structure is given here:

yijk  m 1 bi 1 tj 1 gk 1 tgjk 1 eijk

where the terms in the model are defined as follows:

  yijk:  Response from the experimental unit in the ith block receiving the jth 
level of factor A and kth level of factor B.

  m: Overall mean, an unknown constant.

  bi:  Effect due to the ith block, an unknown constant.

  tj: Effect due to the jth level of factor A, an unknown constant.

  gk: Effect due to the kth level of factor B, an unknown constant.

  tgjk:  Interaction effect of the jth level of factor A with the kth level of 
 factor B, an unknown constant.

  eijk:  Random error associated with the response from the experimental 
unit in the ith block receiving the jth level of factor A and the kth level 
of factor B. We require that the eijks have a normal distribution with 
a mean of 0 and a common variance of s2

e. In addition, the eijks must 
be  independently distributed.
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The conditions given above for our model can be shown to imply that the responses, 
yijk, have a normal distribution with mean 

mijk  E 1 yijk 2  m 1 bi 1 tj 1 gk 1 tgjk

and variance s2
e.

The sums of squares can be computed using the following formulas:

  TSS  a
ijk

1 yijk 2 y... 2 2

 SST  ra
jk

1 y.jk 2 y... 2 2

 SSBL  aba
i

1 yi.. 2 y... 2 2

 SSA  rba
j

1 y.j. 2 y... 2 2

 SSB  raa
k

1 y..k 2 y... 2 2

 SSAB  ra
jk

1 y.jk 2 y... 2 2 2 SSA 2 SSB

By subtraction, we obtain the sum of squares error:
SSE  TSS 2 SSBL 2 SSA 2 SSB 2 SSAB

Furthermore, we have
SST  SSA 1 SSB 1 SSAB 

The AOV table for a randomized complete block design with r blocks and 
two factors, factor A with a levels and factor B with b levels, is given in Table 15.18.

TABLE 15.18
AOV for a randomized 
complete block design  

with two factors

Source df SS MS F

Blocks r 2 1 SSBL MSBL MSBL/MSE
Treatments ab 2 1 SST MST MST/MSE

A a 2 1 SSA MSA MSA/MSE
B b 2 1 SSB MSB MSB/MSE
AB (a 2 1)(b 2 1) SSAB MSAB MSA/MSE

Error (ab 2 1)(r 2 1) SSE MSE

Total abr 2 1 SST 

EXAMPLE 15.10

Construct an analysis of variance table for the experiment described in Example 15.9.

Solution  The following output from Minitab is given here.

General Linear Model: Protein% versus Day, Temperature, FlourType

Factor       Type  Levels  Values
Day          fixed      3  1, 2, 3
Temperature  fixed      3  1, 2, 3
FlourType    fixed      3  A, B, C

Analysis of Variance for Protein%, using Adjusted SS for Tests

Source
Day
Temperature
FlourType
Temperature*FlourType
Error
Total

DF
2
2
2
4

16
26

Seq SS
53.479

204.156
54.376
56.913
45.555

414.479

Adj SS
53.479

204.156
54.376
56.913
45.555

Adj MS
26.739

102.078
27.188
14.228
2.847

F
9.39

35.85
9.55
5.00

P
0.002
0.000
0.002
0.008

Least Squares Means for Protein%

Temperature
FlourType

Mean SE Mean

Temp.
1
1
1
2
2
2
3
3
3
--------------------------------------
1
2
3

FlourType
A
B
C
A
B
C
A
B
C

A
B
C

9.233
10.167
16.900
6.500
7.067
7.900
4.833
6.267
5.900

12.100
7.156
5.667
6.856
7.833

10.233

0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742

0.5625
0.5625
0.5625
0.5625
0.5625
0.5625
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General Linear Model: Protein% versus Day, Temperature, FlourType

Factor       Type  Levels  Values
Day          fixed      3  1, 2, 3
Temperature  fixed      3  1, 2, 3
FlourType    fixed      3  A, B, C

Analysis of Variance for Protein%, using Adjusted SS for Tests

Source
Day
Temperature
FlourType
Temperature*FlourType
Error
Total

DF
2
2
2
4

16
26

Seq SS
53.479

204.156
54.376
56.913
45.555

414.479

Adj SS
53.479

204.156
54.376
56.913
45.555

Adj MS
26.739

102.078
27.188
14.228
2.847

F
9.39

35.85
9.55
5.00

P
0.002
0.000
0.002
0.008

Least Squares Means for Protein%

Temperature
FlourType

Mean SE Mean

Temp.
1
1
1
2
2
2
3
3
3
--------------------------------------
1
2
3

FlourType
A
B
C
A
B
C
A
B
C

A
B
C

9.233
10.167
16.900
6.500
7.067
7.900
4.833
6.267
5.900

12.100
7.156
5.667
6.856
7.833

10.233

0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742
0.9742

0.5625
0.5625
0.5625
0.5625
0.5625
0.5625

From the output, we can observe that there is a significant interaction ( pvalue  .008) 
between temperature and flour type. This interaction is displayed in the profile plot 
in Figure 15.4.

Because of the significant interaction in Example 15.10, we would compare 
the mean percentages of protein for the three flour types separately at each tem
perature. Alternatively, we could compare the mean percentages of protein for the 
three temperatures separately at each level of flour type.

The Tukey W procedure could be used to obtain simultaneous confidence 
intervals on the differences in the mean responses for pairs of flour types at a fixed 
temperature 1m.jk 2 m.jrk 2 . These confidence intervals are given by

y.jk 2 y.jrk 6 W  where  W  qa 1t, n 2  Å
s2

w

r

with s2
w  MSE, t  ab, n  dferror, and qa 1t, n 2  is the value from Table 10 in the  

 Appendix.
Also, any pair of treatment means with |y.jk 2 y.jrkr| $ W  would imply that 

there is significant evidence that the treatment means, m.jk 2 m.jrkr, are different.

FIGURE 15.4
Profile plot displaying the  

interaction between  
temperature and  

flour type 
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 15.5 A Nonparametric Alternative—Friedman’s Test

In a randomized block experiment with b blocks and t treatments, when the con
dition that the residuals have a normal distribution is violated, one alternative 
is to   attempt a transformation of the data. In some situations, it is not possible 
to  determine an appropriate transformation. In a more extreme situation, the 
response variables may not have a continuous scale but only be ordinal. That is, the 
experimental units are simply ordered without a scale. This type of response often 
occurs when the responses are obtained as ratings by experts, such as in food tast
ing or sports in which judges are used to assess the performance of the athletes. In 
both the case of nonnormally distributed data and the case of purely ordinal data, 
an appropriate test of no treatment difference is the Friedman test. The conditions 
under which the Friedman test is valid are listed here.

1.   The experimental design is a randomized block design, with the t treat
ments randomly assigned to exactly one experimental unit per block, 
yielding N  tb responses.

2. The N responses, yij, are mutually independent.
3.  The N responses are related by the model yij  u 1 ti 1 bj 1 eij, where 

u is the overall median, ti is an effect due to the ith treatment,  
bj is an effect due to the jth block, and the N eijs are a random sample 
from a continuous distribution with a median equal to 0.

Note that if we further required that the eijs have a normal distribution, then we 
would have the same requirements as in the standard AOV model.

TABLE 15.19
Pairwise comparisons of  

flour types for each  
temperature level

Temperature Flour Type Difference | y.jk 2 y.jrkr| Conclusion

1 A versus B .934 Not significantly different
1 A versus C 7 .667 Significantly different
1 B versus C 6.733 Significantly different

2 A versus B .567 Not significantly different
2 A versus C 1.4 Not significantly different
2 B versus C .833 Not significantly different

3 A versus B 1.434 Not significantly different
3 A versus C 1.067 Not significantly different
3 B versus C .367 Not significantly different

EXAMPLE 15.11

For the experiment in Example 15.9, determine which pairs of treatments have 
significantly different means.

Solution  Because there was significant evidence of an interaction, the compari
sons of the mean responses for flour types are made separately at each temperature. 
After determining that r  3, a  b  3, t  9, n  16, and MSE  2.847, for a  .05 
Table 10 in the Appendix yields qa(t, n)  q.05(9, 16)  5.03. Thus, we have

W  qa 1t, n 2  Å
s2

w

r
 15.03 2Å

2.847
3

 4.9

As a result, any pair of treatment means having a difference between corre
sponding sample means exceeding 4.9 would be declared significantly different. 
The pairwise differences are displayed in Table 15.19.

 ■
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The hypotheses being tested by Friedman’s test involve the medians of the 
population distributions, whereas in the standard AOV we are testing hypothe
ses concerning the population means. In the normal distribution, the mean and 
median are the same and hence the equivalence between the two sets of hypotheses. 
The Friedman test is requires that the distributions of the responses differ only 
with respect to their medians and that all other aspects of the distributions be the 
same. This is equivalent to the distributional requirements in the standard AOV 
hypotheses, where we required the distributions of the residuals to reside within a 
normal family of distributions and to have the same variances. Thus, the distribu
tions could differ only with respect to their medians.

In Chapter 8, we introduced the Kruskal–Wallis test for comparing t treat
ments when the experimental design was completely randomized. The Friedman 
test very similar to the Kruskal–Wallis test in that the procedures for the Friedman 
test replace the observed responses, yij, with their ranks. The difference between 
the two procedures lies in how the data values are ranked. The Kruskal–Wallis test 
ranks the N data values as a whole, thus replacing the responses, yij, with the inte
gers 1, 2, . . . , N. The Friedman test obtains a separate ranking of the data values 
within each of the b blocks. Thus, the data values in each block are replaced with 
the integers 1, 2, . . . , t.

The steps for conducting the Friedman test are as follows:

1. Order the t observations from smallest to largest separately within 
each of the b blocks.

2. Replace the observations with Rij, the ranks of yij in the joint ranking 
of the data values y1j, y2j, . . . , ytj in the jth block.

3. Compute the sum of the ranks and then the mean rank for the ith 
treatment:

Ri.  a
b

j1
 Rij  and  Ri. 

Ri.

b

  Thus, R1. is the sum of the ranks of the b observations on treatment 
1, and R1. is the average rank of the observations on treatment 1.

4. The Friedman test is then given by

FR 
12b

t 1t 1 1 2 a
t

i1
aRi. 2

t 1 1
2

b
2

 a 12
bt 1t 1 1 2 a

t

i1
R2

i.b 2 3b 1t 1 1 2

  where 
t 1 1

2
 is the average rank within each of the b blocks.

To test the research hypothesis that the t treatments do not have the same median—
that is, to test H0: t1  t2  c tt versus Ha:  t1, t2, . . ., tt  are not all equal.—

Reject H0 if FR $ FRa

where the critical value FRa is selected to achieve a type I error rate of a. Values of 
FRa can be obtained from the book Nonparametric Statistical Methods (Hollander 
and Wolfe, 1999). An approximation based on large sample theory is to

Reject H0 if FR $ x2
a, t21

where x2
a, t21 is the upper a percentile from the chisquare distribution, Table 7 in 

the Appendix.
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TABLE 15.20
Skin potential readings 

by emotion

Subjects (Blocks)

Emotion 1 2 3 4 5 6 7 8

Fear 26.1 81.0 10.5 26.6 12.9 57 .2 25.0 20.3
Happiness 22.7 53.2  9.7 19.6 13.8 47 .1 13.6 23.6
Depression 22.5 53.7 10.8 21.1 13.7 39.2 13.7 16.3
Calmness 22.6 53.1  8.3 21.6 13.3 37 .0  14.8  14.8

EXAMPLE 15.12

The paper “Physiological Effects During Hypnotically Requested Emotions” (Damaser, 
Shor, and Orue, 1963) reported the following data on skin potential (millivolts) when 
the emotions of fear, happiness, depression, and calmness were reported from each 
of eight subjects. In this study, the subjects serve as the blocks and the treatments are 
the four emotions. Perform a preliminary analysis of the data (shown in Table 15.20) 
to determine if the normalbased procedures can be applied. Then apply the Fried
man test at the a  .05 level to determine if there is a difference in the median skin 
potentials of the four emotions. Finally, compare the results from the two methods of 
testing for skin potential differences across the four emotions.

Solution  The responses were analyzed using the normalbased procedures, yield
ing the following Minitab output. 

 

Source
Blocks
Emotion
Error
Total

S = 5.217  R-Sq = 93.96%  R-Sq(adj) = 91.09%  

Two–way ANOVA: Potential versus Blocks, Emotion

DF
7
3

21
31

SS
8465.80
433.28
571.61

9470.69

MS
1209.40
144.43
27.22

F
44.43
5.31

P
0.000
0.007

 The following residual plots were obtained also.
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The F test from the AOV table yields a pvalue  .007 for testing the difference 
in the mean skin potentials among the four emotions. This would indicate that there 
is significant evidence of a difference in the mean skin potentials among the four 
emotions. However, an examination of the residuals should be made prior to plac
ing much confidence in this conclusion. From the normal probability plot of the 
residuals, it would appear there is a violation of the requirement that the residu
als have a normal distribution. The test of normality has a pvalue  .018, which 
confirms our observation from the plot. The next step is to test for a difference in 
 median skin potentials using the Friedman test.

The skin potential readings were ranked from smallest to largest separately 
for each subject, with the smallest value receiving a ranking of 1 and the largest 
value receiving a ranking of t  4. The rankings are given in Table 15.21.

From the rankings in Table 15.21, the Friedman test result is calculated as follows:

 FR 
12 1b 2

t 1t 1 1 2 a
t

i1
aRi. 2

t 1 1
2

b
2

 FR 
12 18 2

4 14 1 1 2 a
4

i1
aRi. 2

4 1 1
2

b
2

 FR  4.80a
4

i1

1Ri. 2 2.5 2 2

  4.8 3 13.375 2 2.5 2 2 1 12.5 2 2.5 2 2 1 12.375 2 2.5 2 2 1 11.75 2 2.5 2 2 4
  6.45

Reject H0 if FR $ x2
t21, a  x2

3, .05  7.815 

FR  6.45 , 7.815 and pvalue  Pr 3x2
3 $ 6.45 4  .092. Therefore, we fail to reject 

H0 and conclude there is not significant evidence of a difference in the median 
skin potentials for the four emotions. This conclusion differs from the  conclusion 
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TABLE 15.21
Ranks of treatments 

within each subject

 Subjects (Blocks) Sum of Ranks Mean Rank

Emotion 1 2 3 4 5 6 7 8 Ri. Ri

Fear 4 4 3 4 1 4 4 3 27 3.375
Happiness 3 2 2 1 4 3 1 4 20 2.5
Depression 1 3 4 2 3 2 2 2 19 2.375
Calmness 2 1 1 3 2 1 3 1 14 1.75

reached using the AOV F test, where a significant difference was found in the 
mean skin potentials across the four emotions. An examination of the residuals 
reveals a few extreme values, which may have caused of the difference in the two 
conclusions. The skin potentials for fear for subject 2 and subject 6 were much 
larger than the values obtained from the other six subjects. These two large skin 
potentials would result in an inflated value for the mean skin potential for the fear 
emotion. The influence of these two values is greatly moderated in the Friedman 
test and hence the difference in the two conclusions. ■

 15.6 RESEARCH STuDy: Control of Leatherjackets

Adult leatherjackets damage lawns by feeding on grass roots. A description of the 
types of problems resulting from these insects was given in Section 15.1. A study 
was designed to evaluate several proposed treatments for reducing the impact of 
leatherjackets on lawns.

Collecting the Data
The following experiment is described in the book A Handbook of Small Data Sets 
(Hand et al., 1993). It involved a control and four potential chemicals to eliminate 
the leatherjackets. Initially, the researchers were planning on evaluating the four 
new treatments on lawns at their research center. However, in order to broaden the 
level of inference of their study, they wanted to evaluate the chemicals on a variety 
of soils and terrains. Thus, plots of land at six different sites were selected for use 
in the experiment. A convenient way to conduct the experiment would be to use 
the same chemical at all test sites at a given location. However, this would result in 
the confounding of the effectiveness of the chemical with the location of the test 
sites. Therefore, the following experimental protocol was implemented. Within 
each of the six plots, there were 12 test sites, with 2 test sites randomly assigned to 
each of four treatments and 4 test sites randomly assigned to the control. A week 
after applying the treatments to the test sites, the researchers returned to the test 
sites and counted the number of surviving leatherjackets on each of the 72 test 
sites. The researchers were interested in determining if the average numbers of 
leatherjackets on the test sites receiving the four treatments were less than the 
average numbers on the control sites. Furthermore, they wanted to determine if 
there were differences in the four treatments relative to their average counts. The 
data collected during the experiment were given in Table 15.1. The treatment and 
block means are presented in Table 15.22.
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Analyzing the Data
This is a randomized block experiment with t  5 treatments. The blocks are the 
six plots of land, and the treatments are the four chemical pesticides and one con
trol. Referring to Table 15.1, the model for this experiment would be

Cijk  m 1 ti 1 bj 1 eijk

with   i  1, 2, 3, 4, 5; j  1, 2, 3, 4, 5, 6; k  1, 2, 3, 4 for   i  1;    
and   k  1, 2  for   i  2, 3, 4, 5

where Cijk is the leatherjacket count on the kth test site in block j receiving treat
ment i. The data were analyzed using the above model, yielding the following AOV 
table and residual plots.

General Linear Model: Count versus Block, Treatment

Factor       Type     Levels    Values    
Block        fixed         6    1, 2, 3, 4, 5, 6     
Treatment    fixed         5    CNT, TRT1, TRT2, TRT3, TRT4

Analysis of Variance for Count, using Adjusted SS for Tests

Source       DF     Seq SS    Adj SS   Adj MS       F       P
Block         5      937.1     937.1    187.4    1.58   0.179
Treatment     4    11945.6   11945.6   2986.4   25.19   0.000
Error        62     7349.3    7349.3    118.5     
Total        71    20231.9

S = 10.8874    R–Sq = 63.67%    R–Sq(adj) = 58.40%

Unusual Observations for Count

Obs      Count        Fit    SE Fit    Residual    St Resid
  2    59.0000    38.0972    3.6291     20.9028        2.04 R
 20    40.0000    10.7222    4.2556     29.2778        2.92 R
 37    71.0000    38.0972    3.6291     32.9028        3.21 R   
 61    84.0000    42.9306    3.6291     41.0694        4.00 R

R denotes an observation with a large standardized residual.

TABLE 15.22
Mean leatherjacket  
counts on test sites

 Treatment

Plot Control 1 2 3 4 Block Mean

1 39.5 9.5 14.5 8 12.5 20.58

2 26.5 17 .5 23.0 5.5 2.5 16.92

3 31.75 8.5 11.0 8.0 4.5 15.92

4 44.8 21.5  6.5 5.0 1.0 20.58

5 28.25 12.5 12.0 4.0 3.5 14.75

6 48.5 26.0 10.0 14.0 5.5 25.42

Treatment mean 36.54 15.92 12.83 7 .42 4.92 19.03
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From the plot of the residuals versus the fitted values, it would appear 
that the variances are increasing with increasing fitted values. Also, the normal 
probability plot and the pvalue , .01 for the test of normality both indicate 
that the conditions for using the F test in the AOV table are not satisfied. The 
output from Minitab also indicates that four test sites have large standardized 
residuals.

Thus, the conditions for validly using the F test to evaluate the differences 
in  the mean counts for the five treatments do not appear to hold. Because the 
 response variable is a count of the number of leatherjackets, two transformations 
are strongly suggested, the square root and log transformations. Both of these 
transformations were applied to the data, and the log transformation was the more 
effective in producing residuals having a normal distribution with constant vari
ance. The following AOV table and residual plots were thus obtained.
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General Linear Model: Log(Count) versus Block, Treatment

Factor     Type     Levels  Values
Block      fixed         6  1, 2, 3, 4, 5, 6
Treatment  fixed         5  CNT, TRT1, TRT2, TRT3, TRT4

Analysis of Variance for Log(Count), using Adjusted SS for Tests

Source
Block
Treatment
Error
Total

DF
5
4

62
71

Seq SS
3.2501
48.2335
18.6209
70.1045

Adj SS
3.2501

48.2335
18.6209

Adj MS
0.6500

12.0584
0.3003

F
2.16

40.15

P
0.069
0.000

S = 0.548030   R–Sq = 73.44%   R–Sq(adj) = 69.58%

Obs
 11
 20
 47
 48
 68

R denotes an observation with a large standardized residual.

Unusual Observations for Log(Count)

Log(Count)
2.83321
3.68888
0.00000
0.00000
1.38629

Fit
1.52253
2.27961
1.06017
1.06017
2.69892

SE Fit
0.21421
0.21421
0.21421
0.21421
0.21421

Residual
1.31068
1.40927

–1.06017
–1.06017
–1.31263

St Resid
    2.60 R
    2.79 R
   –2.10 R
   –2.10 R
   –2.60 R

Fitted value

Residuals versus the fitted values
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From the preceding plots and with a pvalue . .10, the conditions of normality 
and constant variance appear to hold for the transformed response, Log(Count). 
An examination of the AOV table reveals a pvalue , .0001; thus, there is signifi
cant evidence of a difference in the five treatments. To further explore this differ
ence, Tukey’s W was applied to the treatment means with the following results.

Tukey Simultaneous Tests
Response Variable Log(Count)
All Pairwise Comparisons among Levels of Treatment
Treatment = CNT  subtracted from:

            Difference        SE of             Adjusted
Treatment     of Means   Difference   T–Value    P–Value
TRT1            –0.844       0.1938     –4.35     0.0005
TRT2            –1.148       0.1938     –5.92     0.0000
TRT3            –1.662       0.1938     –8.58     0.0000
TRT4            –2.240       0.1938    –11.56     0.0000

Treatment = TRT1  subtracted from:

            Difference        SE of             Adjusted
Treatment     of Means   Difference   T-Value    P–Value
TRT2            –0.304       0.2237    –1.358     0.6563
TRT3            –0.818       0.2237    –3.657     0.0047
TRT4            –1.396       0.2237    –6.239     0.0000

Treatment = TRT2  subtracted from:

            Difference        SE of             Adjusted
Treatment     of Means   Difference   T-Value    P-Value
TRT3            –0.514       0.2237    –2.299     0.1592
TRT4            –1.092       0.2237    –4.881     0.0001

Treatment = TRT3  subtracted from:

            Difference        SE of             Adjusted
Treatment     of Means   Difference   T-Value    P-Value
TRT4           –0.5778       0.2237    –2.583     0.0861



902 Chapter 15 analysis of VarianCe for BloCked designs 

The preceding output provides a pairwise comparison of the four new chemi-
cal treatments and a comparison of the treatments versus the control test sites. 
Using an experimentwise Type I error rate of a  .05, the above p-values reveal 
that the mean for the control was significantly greater than all four treatment 
means. Next, examining the four treatment means, the mean for treatment 1 is not 
significantly different from that for treatment 2 but is significantly different from 
those for treatments 3 and 4. Treatment 2 is not significantly different from treat-
ment 3 but is significantly different from treatment 4. Finally, treatment 3 is not 
significantly different from treatment 4. We can summarize these results as shown 
in Table 15.23.

The researchers plan on examining other potential chemicals for controlling 
insect infestations in residential lawns. A question of interest is whether it would 
be necessary to use all six locations in future experiments or if a single location 
would suffice. Using the data from the current study, the relative efficiency of 
using the six locations as the levels of a blocking factor compared to just running 
the  experiment as a completely randomized design is computed as follows:

 RE 1RCB, CR 2 
1b 2 1 2MSB 1 b 1t 2 1 2MSE

1bt 2 1 2MSE

 
16 2 1 2 1187.4 2 1 6 15 2 1 2 1118.5 2

1 16 2 15 2 2 1 2 1118.5 2  1.10

Thus, it would take 10% more observations in a completely randomized 
 design to achieve the same level of precision in estimating the treatment means as 
was achieved in the randomized complete block design:

 15.7 Summary and Key Formulas

In this chapter, we discussed the analysis of variance presented for several dif-
ferent experimental designs and treatment structures. The designs considered 
were the randomized complete block design and the Latin square design. These 
designs  illustrated how we can minimize the effect of undesirable variability from 
extraneous variables so as to obtain more precise comparisons among treatment 
means. The factorial treatment structure is useful in investigating the effect of one 
or more factors on an experimental response. Factorial treatments can be used in 
completely randomized, randomized complete block, and Latin square designs. 
Thus, an experimenter may wish to examine the effects of two or more factors on a 
response while blocking out one or more extraneous sources of variability.

TABLE 15.23
Comparison of mean  
leatherjacket counts  

by treatment

 Treatment

Control 1 2 3 4

36.54 15.92 12.83 7 .42 4.92
A B B  
  C C 
   D D
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For each design discussed in this chapter, we presented a description of the 
design layout (including arrangement of treatments), potential advantages and dis-
advantages, a model, and the analysis of variance. Finally, we discussed how one 
could conduct multiple comparisons between treatment means for each of these 
designs.

We discussed the importance of examining whether the conditions of inde-
pendence, normality, and equal variance were satisfied in a given experimental 
setting. In the randomized complete block design, an alternative to the AOV F 
test, the Friedman text, should be implemented when the condition of normality is 
violated; otherwise, the level of the AOV F test may be incorrect.

Key Formulas
1. One factor in a randomized complete block design

 Model: yij  m 1 ti 1 bj 1 eij; i  1, . . . , t; j  1, . . . , b

 Sum of Squares:

 Total TSS  gij 1 
yij 2 y.. 2 2

 Treatment SST  bgi 1 yi. 2 y.. 2 2

 Block SSB  tgj 1 y.j 2 y.. 2 2

 Error SSE  g
 ij 1eij 2 2  gij 1 

yij 2 yi. 2 y.j 1 y.. 2 2  TSS 2 SST 2 SSB

2. Relative efficiency of a randomized complete block design

RE 1RCB, CR 2 
1b 2 1 2MSB 1 b 1t 2 1 2MSE

1bt 2 1 2MSE

3. One factor in a Latin square design

 Model: yijk  m 1 tk 1 bi 1 gj 1 eijk; i  j  k  1, . . . , t

 Sum of Squares:

 Total  TSS  g
 ijk 1 

yijk 2 y... 2 2

 Treatment  SST  tgk 1 y.. k 2 y... 2 2

 Row   SSR  tgi 1 yi.. 2 y... 2 2

 Column  SSC  tgj 1 y.j. 2 y... 2 2

 Error  SSE  TSS 2 SST 2 SSR 2 SSC

4. Relative efficiency of a Latin square design

RE 1LS, CR 2 
MSR 1 MSC 1 1t 2 1 2MSE

1t 1 1 2MSE

5. Friedman’s test in a randomized complete block design

FR 
12b

t 1t 1 1 2 a
t

i1
aRi. 2

t 1 1
2

b
2
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 15.8 Exercises

 15.2 Randomized Complete Block Design
 Ag.  15.1  A horticulturist is designing a study to investigate the effectiveness of five methods for the 

irrigation of blueberry shrubs. The methods are surface, trickle, center pivot, lateral move, and 
subirrigation. There are 10 blueberry farms available for the study, representing a wide variety of 
types of soil, terrains, and wind gradients. The horticulturist wants to use each of the five methods 
of irrigation on all 10 farms to moderate the effect of the many extraneous sources of variation 
that may impact the blueberry yields. On each farm, five 1acre plots are randomly selected, and 
a method of irrigation is randomly assigned to each plot. The response variable will be the weight 
of the harvested fruit from each of the plots of blueberry shrubs.

 a.  Show the details of how you would randomly assign the five methods of irrigation 
to the plots.

 b.  How many different arrangements of the five methods of irrigation are possible in 
each of the farms?

 c. How many different arrangements are possible for the whole study of 10 farms?

 Ag.  15.2  Refer to Exercise 15.1. The study was conducted and the yields in pounds of blueberries 
over a growing season are given in the following table.

 Method of Irrigation

 Farm Surface Trickle Center Point Lateral Subirrigation Farm Mean

 1 597 248 391 423 350 401.9
 2 636 382 434 461 370 456.6
 3 591 348 492 504 460 478.9
 4 603 366 468 580 452 493.9
 5 649 258 457 449 343 430.9
 6 512 321 406 464 340 408.7
 7 588 423 466 550 327 470.8
 8 689 406 502 526 378 500.0
 9 690 400 559 469 419 507 .3
 10 608 380 469 550 458 493.2

 Method Mean   616.3   353.2   464.3   497 .6   389.6 464.2

 a.  Use residual plots to determine if there appear to be a violations in the conditions 
of normality and equal variance of the residuals.

 b.  What is the standard error in estimating the mean yield for each of the five methods 
of irrigation?

 c.  What is the standard error in estimating the difference in the mean yields of two 
of the methods of irrigation?

 d.  Is there significant evidence at the a  .05 level that the five methods of irrigation 
 differ in their mean yields?

 e.  Use a multiplecomparison procedure to determine which pairs of the five meth
ods of  irrigation have different means.

 Ag. 15.3  Refer to Exercise 15.2. The horticulturist is planning a new study involving modifications 
to several of the methods of irrigation. In the previous study, it was somewhat cumbersome having 
blueberry growers implement five different methods of irrigation on their farms, and she wants 
to know if using the 10 farms as levels of a blocking factor was necessary. If not, she plans to use 
a single irrigation method on each of n farms.

 a. Compute the relative efficiency of the farms as a blocking variable.
 b.  How many farms would she need in a completely randomized design to have the 

same precision as was achieved in the randomized block design?
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 Env. 15.4  Two devices have been proposed to reduce the air pollution resulting from the emission 
of carbon monoxide (CO) from the exhaust of automobiles. To evaluate the effectiveness of the 
devices, 48 cars of varying age and mechanical condition were selected for the study. The amount 
of carbon monoxide in the exhaust (in ppm) was measured prior to installing the device on each 
of the cars. Because there were considerable differences in the mechanical conditions of the cars, 
the cars were paired based on the level of CO in their exhaust. The two devices were then ran
domly assigned to the cars within each pair of cars. Five months after installation, the amount of 
CO in the exhaust was again measured on each of the cars. The reductions in carbon monoxide 
from the initial measurements are given here.

Pair 1 2 3 4 5 6 7 8 9 10 11 12
Before 2.37 3.17 3.07 2.73 3.49 4.35 3.65 3.97 3.21 4.46 3.81 4.55
After 2.51 2.65 2.60 2.40 2.31 2.28 0.94 2.21 3.29 1.92 3.38 2.43

Pair 13 14 15 16 17 18 19 20 21 22 23 24
Before 4.51 3.03 4.47 3.44 3.52 3.05 3.66 3.81 3.13 3.43 3.26 2.85
After 1.83 2.63 2.31 1.85 2.92 2.26 3.11 1.90 2.50 3.18 3.24 2.16

 a.  Does there appear to be a difference between the two devices with respect to 
their ability to reduce the average amount of CO in the exhaust of the cars? Use 
a  .05.

 b.  Compute the relative efficiency of the randomized complete block design (block
ing on car) compared to a completely randomized design in which the 48 cars 
would have been randomly assigned to the two devices without regard to any pair
ing. Interpret the value of the relative efficiency.

 c.  Based on the relative efficiency computed in part (b), would you recommend pair
ing the cars in future studies?

 Env. 15.5  Refer to Exercise 15.4.
 a.  In Chapter 6, we introduced the paired t test. Analyze the above data using this 

test statistic.
 b.  Show that the paired t test is equivalent to the F test from the randomized block 

AOV by showing that your computed values for the t test and F test satisfy t2  F. 
Furthermore, show that the critical values from the t table and F table satisfy the 
following  relationship: t2

.05/2, 23  F.05, 1, 23. Therefore, the paired t test and F test 
from the randomized block AOV must be equivalent.

 Psy. 15.6  An industrial psychologist working for a large corporation designs a study to evaluate the 
effect of background music on the typing efficiency of secretaries. The psychologist selects a 
random sample of seven secretaries from the secretarial pool. Each subject is exposed to three 
types of background music: no music, classical music, and hard rock music. The subject is given 
a standard typing test that combines an assessment of speed with a penalty for typing errors. 
The particular order of the three experiments is randomized for each of the seven subjects. The 
results are given here, with a high score indicating a superior performance. This is a special type 
of randomized complete block design in which a single experimental unit serves as a block and 
receives all treatments.

 Subject

Type of Music 1 2 3 4 5 6 7

No music 20 17 24 20 22 25 18
Hard rock 20 18 23 18 21 22 19
Classical 24 20 27 22 24 28 16

 a.  Write a statistical model for this experiment and estimate the parameters in  
your model.
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 b.  Are there differences in the mean typing efficiencies for the three types of music?  
Use a  .05.

 c.  Does the additive model for a randomized complete block design appear to be  
appropriate? (Hint: Plot the data as was done in Figure 15.1.)

 d.  Compute the relative efficiency of the randomized block design compared to a 
completely randomized design. Interpret this value. Were the blocks effective in 
reducing the variability in experimental units? Explain.

 Psy. 15.7  Refer to Exercise 15.6. Do the model conditions appear to be satisfied?

 15.3 Latin Square Design
 Ag. 15.8  An experiment compared two different fertilizer placements (broadcast, band) and two 

different rates of fertilizer flow on watermelon yields. Recent research has shown that broad
cast  application (scattering over the outer area) of fertilizer is superior to bands of fertilizer 
 applied near the seed for watermelon yields. For this experiment, the investigators wished to 
compare two nitrogen–phosphorus–potassium fertilizers applied (broadcast and band) at a rate 
of 160–70–135 pounds per acre and including two brands of micronutrients (A and B). These four 
combinations were to be studied in a Latin square field plot.

The treatments were randomly assigned according to a Latin square design conducted over 
a large farm plot, which was divided into rows and columns. A watermelon plant dry weight was 
obtained for each row–column combination 30 days after the emergence of the plants. The data 
are shown next.

 Column

Row 1 2 3 4

 1 1  1.75 3  1.43 4  1.28 2  1.66
 2 2  1.70 1  1.78 3  1.40 4  1.31
 3 4  1.35 2  1.73 1  1.69 3  1.41
 4 3  1.45 4  1.36 2  1.65 1  1.73

Treatment 1–broadcast, A  Treatment 3–band, A
Treatment 2–broadcast, B  Treatment 4–band, B

 a. Write an appropriate statistical model for this experiment.
 b.  Use the data to run an analysis of variance. Give the pvalue for each test, and 

draw conclusions.

 Ag. 15.9  Refer to Exercise 15.8.
 a.  Describe how the four fertilizer placement–rate combinations are randomly  

assigned to the rows and columns in the farm plot.
 b.  Compute the relative efficiency of the Latin square design compared to a com

pletely randomized design. Were the row and columnblocking variables effective 
in reducing the variability in the responses from the experimental units? Justify  
your answer.

 c.  If future studies were to be conducted, would you recommend using both rows 
and columns as blocking variables? Explain your answer.

 Engin. 15.10  A petroleum company was interested in comparing the miles per gallon achieved by four 
 different gasoline blends (A, B, C, and D). Because there can be considerable variability due to 
differences in driving characteristics and car models, these two extraneous sources of variability 
were  included as blocking variables in the study. The researcher selected four different brands 
of cars and four different drivers. The drivers and brands of cars were assigned to blends in the 
manner displayed in the following table. The mileage (in mpg) obtained over each test run was 
recorded as follows.
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 Car Model

 Driver 1 2 3 4

 1 A(15.5) B(33.8) C(13.7) D(29.2)
 2 B(16.3) C(26.4) D(19.1) A(22.5)
 3 C(10.5) D(31.5) A(17 .5) B(30.1)
 4 D(14.0) A(34.5) B(19.7) C(21.6)

 a. Write a model for this experimental setting.
 b. Estimate the parameters in the model.
 c. Conduct an analysis of variance. Use a  .05.
 d. What conclusions can you draw concerning the best gasoline blend?
 e.  Compute the relative efficiency of the Latin square design compared to a completely 

randomized design. Interpret this value. Were the blocking variables effective in 
 reducing the variability in experimental units? Explain.

 f.  If future studies were to be conducted, would you recommend using both car 
model and driver as blocking variables? Explain.

 Engin. 15.11  Refer to Exercise 15.10.
 a. Do the model conditions appear to be satisfied for this set of data? Explain.
 b.  If the model conditions appear to be violated, suggest an alternative method of 

analysis.

 15.4  Factorial Treatment Structure in a Randomized Complete  
Block Design

 Med. 15.12  A psychologist is designing a study to evaluate three new treatments for a behaviorial 
problem in children. The psychologist will include a second factor, which will classify the subjects 
according to four levels of socioeconomic status. There are 30 children available for each level of 
socioeconomic level, which will provide 10 replications of each of the treatments by socioeconomic 
combinations. At the end of the treatment period, the children will be assessed and assigned a score 
reflecting the degree of improvement in their behavior. There are five trained evaluators who will 
assign the scores to the children. The psychologist knows from past studies that some evaluators 
tend to assign uniformly higher scores than other evaluators, and, hence, he wants to be able to 
control for the evaluator effect in the analysis of the treatment–socioeconomic status effect.

 a.  Display how you would randomly assign the children to the 12 treatment– 
socioeconomic status combinations.

 b.  Provide an analysis of variance table for this experiment (source of variation and 
degrees of freedom). 

 Ag. 15.13  An entomologist employed by a chemical company is planning a study to evaluate two 
new chemicals that are potential agents for eliminating fire ants. The chemicals will be evalu
ated at three different dose levels under four different environmental conditions. One hundred 
ants will be exposed to each of the combinations of a chemical, dose level, and environmental 
condition, and the number of surviving ants after 3 hours of exposure will be recorded. It is well 
documented in the literature that there is large variability in the degree of tolerance of fire ants to 
various chemicals previously used as insecticides. Thus, the company’s statistician recommended 
that five colonies of ants be used in the study. There are thousands of fire ants per colony.

 a.  Display how you would randomly assign the groups of 100 ants to the various 
combinations of chemical–dose–environmental condition.

 b.  Provide an analysis of variance table for this experiment (source of variation and 
degrees of freedom).

 Gov. 15.14  The transportation research division of a northern state is examining the amount of road 
damage associated with various methods used to clear snow and ice from the roadways. The 
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division engineers have selected two levels of each of the following substances that are applied 
to the roadways: sodium chloride, calcium chloride, and sand. The response variable measured on 
each of the treated roads is the number of new cracks per mile of roadway. Because traffic volume 
is highly variable and could impact the response variable, the engineers decide to use a random-
ized block design with the traffic volume during the previous winter as the blocking factor. Each 
of the six treatments is randomly assigned to five roadways. The data are given here.

 Sodium Chloride  Calcium Chloride Sand

 Roadway Low High Low High Low High

 1 37 49 43 47 27 33
 2 39 50 42 48 27 31
 3 48 52 47 50 36 37
 4 44 57 45 54 34 37
 5 54 68 56 63 45 44

 a. Write a statistical model for this experiment.
 b. Use a profile plot to display the interaction between treatment and level.
 c.  Perform appropriate F tests, and draw conclusions from these tests concerning the 

effect of treatment and level on the mean number of cracks.
 d.  Use a normal probability plot and a plot of the residuals to determine if there are vio-

lations in the appropriate conditions for validly drawing conclusions from the F tests.

 Gov. 15.15  Refer to Exercise 15.14.
 a. Describe how the treatments would be randomly assigned to the roadways.
 b.  Compute the relative efficiency of the randomized block design compared to a com-

pletely randomized design. Was the blocking of the roadways based on traffic vol-
ume effective in reducing the variability in the counts of number of cracks? Explain.

 c.  If this study was repeated during the next winter, would you recommend that traf-
fic volume be used to block the roadways, or would it be more efficient to  
design the study as a completely randomized design?

 Ag. 15.16  An agricultural experiment station is investigating the appropriate planting density for three 
commercial varieties of tomatoes: celebrity, sunbeam, and trust. The researcher decides to examine 
the effects of four planting densities: 5, 20, 35, and 50 thousand plants per hectare. The experiment 
station has three large fields that would be appropriate for the study. At each of the fields, 12 plots 
are prepared, and the 12 treatments are randomly assigned to the plots. A separate randomization is 
done at each of the three fields. The yield, in tons, from the 36 one hectare plots are given here.

  Variety

 Celebrity Sunbeam Trust

 Density Density Density

Field 5k 20k 35k 50k 5k 20k 35k 50k 5k 20k 35k 50k

1 32.5 39.9 42.5 38.2 32.2 43.2 47 .6 43.5 49.9 59.0 66.3 58.3
2 33.4 47 .2 44.5 43.5 33.4 51.3 52.2 44.1 60.8 66.1 70.7 60.6
3 41.1 48.7 53.5 48.4 41.8 51.2 55.9 55.9 60.8 67 .6 73.2 67 .8

 a. Identify the design, and write a statistical model for this experiment.
 b. Use a profile plot to display the level of interaction between treatment and level.
 c.  Perform appropriate F tests, and draw conclusions from these tests concerning the 

effect of variety and planting density on the mean yield of the tomato plants.
 d.  Use a normal probability plot and a plot of the residuals to determine if  

there are violations in the appropriate conditions for validly drawing conclusions 
from the F tests.
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 Ag.  15.17  Refer to Exercise 15.16.
 a.  Describe how the varieties of plants and planting densities would be randomly 

 assigned to the plots of land.
 b.  Compute the relative efficiency of the randomized block design compared to a 

completely randomized design. Do you think it was necessary for the researchers 
to block on fields? Explain.

 c.  During the summer months when the experiment was conducted, it was unusually 
hot, and the researcher decides to repeat the experiment during the next growing 
season. The researcher would like to use the same three fields, but this time he 
would like to plant celebrity plants on field 1, sunbeam on field 2, and trust on  
field 3. Explain to the researcher why this design may not be appropriate.

 Ag.  15.18  Refer to Exercise 15.16.
 a.  Which pairs of varieties appear to have significantly different mean yields at the 

a  .05 level?
 b.  Which pairs of planting densities appear to have significantly different mean 

yields at the a  .05 level?
 c. Which variety appears to produce the largest mean yield?
 d. Which planting density appears to produce the largest mean yield?
 e.  Explain what aspect of your model allows you to answer part (c) without referring 

to planting density?

 15.5 A Nonparametric Alternative—Friedman’s Test
  15.19  Refer to Exercise 15.2.

 a.  What are the conditions under which it is appropriate to use the Friedman test in 
comparing the mean yields from the five irrigation methods?

 b.  Use the Friedman test to determine if there is significant evidence of a difference 
in the mean yields for the five irrigation methods.

 c.  Compare the conclusions obtained from the Friedman test to the conclusions ob
tained from the AOV F test.

 d. Explain why the conclusions should be different (or the same).

  15.20  Refer to Exercise 15.14.
 a.  Use the Friedman test to determine if there is significant evidence of a difference 

in the mean number of counts for the six potential treatments for removing ice 
and snow from the roadway.

 b.  Compare the conclusions obtained from the Friedman test to the conclusions  
obtained from the AOV F test.

  15.21  Refer to Exercise 15.16.
 a.  Use the Friedman test to determine if there is significant evidence of a difference 

in the mean yields for the 12 combinations of variety–planting density.
 b.  Compare the conclusions obtained from the Friedman test to the conclusions  

obtained from the AOV F test.

Supplementary Exercises
 Sci. 15.22  An experiment compares four different mixtures of the components oxidizer, binder, and 

fuel used in the manufacturing of rocket propellant. The four mixtures under test, corresponding 
to settings of the mixture proportions for oxide, are shown here.

Mixture Oxidizer Binder Fuel

 1 .4 .4 .2
 2 .4 .2 .4
 3 .6 .2 .2
 4 .5 .3 .2
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To compare the four mixtures, five different samples of propellant are prepared from each 
mixture and readied for testing. Each of five investigators is randomly assigned one sample of each 
of the four mixtures and asked to measure the propellant thrust. These data are summarized next.

 Investigator

 Mixture 1 2 3 4 5

 1 2,340 2,355 2,362 2,350 2,348
 2 2,658 2,650 2,665 2,640 2,653
 3 2,449 2,458 2,432 2,437 2,445
 4 2,403 2,410 2,418 2,397 2,405

 a. Identify the blocks and treatments for this experimental design.
 b. Indicate the method of randomization.
 c. Why would this design be preferable to a completely randomized design?

 Sci. 15.23  Refer to Exercise 15.22.
 a. Write a model for this experimental setting.
 b. Estimate the parameters in the model.
 c. Display a complete analysis of variance table. Use a  .05.
 d.  What conclusions can you draw concerning the best mixture from the four tested? 

(Note: The higher the response value, the better the rocket propellant’s thrust.)
 e.  Compute the relative efficiency of the randomized block design compared to a 

completely randomized design. Interpret this value. Were the blocks effective in 
reducing the variability in experimental units? Explain.

 Engin. 15.24  A quality control engineer is considering implementing a workshop to instruct workers 
on the principles of total quality management (TQM). The program would be quite expensive to 
implement across the whole corporation; hence, the engineer has designed a study to evaluate 
which of four types of workshops would be most effective. The response variable will be the in
crease in productivity of the worker after participating in the workshop. Since the effectiveness of 
the workshop may depend on the worker’s preconceived attitude concerning TQM, the workers 
are given an examination to determine their attitudes prior to taking the workshop. Their attitudes 
are classified into five groups. There are four workers in each group, and the type of workshop is 
randomly assigned to the workers within each group. The increases in productivity are given here.

 Attitude

Type of Workshop 1 2 3 4 5 Mean

    A  33 38 39 42 62 42.8
    B  35 37 43 47 71 46.6
    C  40 42 45 52 74 50.6
    D  54 50 55 62 84 61.0

    Mean 40.5 41.75 45.5 50.75 72.75 50.25

 a.  Write a statistical model for this experiment, and estimate the parameters in your 
model.

 b.  Are there differences in the mean increases in productivity for the four types of 
workshops? Use a  .05.

 c.  Does the additive model for a randomized complete block design appear to be  
appropriate? (Hint: Plot the data as in Figure 15.1.)

 d.  Compute the relative efficiency of the randomized block design compared to a 
completely randomized design. Interpret this value. Were the blocks effective in 
reducing the variability in experimental units? Explain.
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 Engin. 15.25  Refer to Exercise 15.24. Based on the residuals from the fitted model, do the model con
ditions appear to be satisfied?

 Engin. 15.26  An experimenter is interested in examining the bond strength of a new adhesive product 
prepared under three different temperature settings (280°F, 300°F, and 320°F) and four different 
pressure settings (100, 150, 200, and 250 psi). The experimenter will prepare a sufficient amount of 
the adhesive so that each temperature–pressure setting combination is tested on three samples of 
the adhesive. Suppose that the experimenter can test only 12 samples per day and that the condi
tions in the laboratory are somewhat variable from day to day. Describe an experimental design 
that takes into account the daytoday variation in the laboratory. Include a diagram that displays 
the assignment of the temperature–pressure setting combinations to adhesive samples.

 Edu. 15.27  A study was conducted to study the impact of child abuse on performance in school. 
Three categories of child abuse were defined as follows:

Abused child—a child who is physically abused.

Neglected child—a child receiving inadequate care.

Nonabuse—a child receiving normal care and not physically abused.

  The researchers randomly selected 30 boys and 30 girls from each of the three categories using the 
records of the state childwelfare agency for the abused and neglected children and the records of 
a local school for the nonabused children. The scores on a standard gradelevel assessment test of 
reading, mathematics, and general science were recorded for all the selected children.

 a. Suppose the children were all in the seventh grade. Identify the design.
 b.  Suppose the children were equally divided among the third, fifth, and seventh 

grades. Identify the design.

 Gov. 15.28  The city manager of a large midwestern city was negotiating with the three unions that 
represented the police, firefighters, and building inspectors over the salaries for these groups of 
employees. The three unions claimed that the starting salaries were substantially different among 
the three groups, whereas in most cities there was not a significant difference in starting salaries 
among the three groups. To obtain information on starting salaries across the nation, the city man
ager decided to randomly select one city in each of eight geographical regions. The starting yearly 
salaries (in thousands of dollars) were obtained for each of the three groups in each of the eight 
regions. The data appear here.

Region 1 2 3 4 5 6 7 8 Mean

Police 32.3 33.2 30.8 30.5 30.1 30.2 28.4 27 .9 30.42
Firefighters 31.9 32.8 31.6 31.2 30.8 30.6 28.7 27 .5 30.64
Inspectors 27 .9 27 .8 26.5 26.8 26.4 26.8 25.3 25.9 26.68

Region mean 30.7 31.3 29.6 29.5 29.1 29.2 27 .5 27 .1 29.25

 a. Write a model for this study, identifying all the terms in the model.
 b.  Do the data suggest a difference in mean starting salaries for the three groups of 

employees? Use a  .05.
 c. Give the level of significance for your test.
 d. Which pairs of jobs types have significantly different starting salaries?

 Gov. 15.29  Refer to Exercise 15.28.
 a.  Plot the data in a profile plot with factors job type and region. Does there appear 

to be an interaction between the two factors? If there was an interaction, would 
you be able to test for it using the given data? If not, why not?

 b.  Did the geographical region variable increase the efficiency of the design over 
conducting the study as a completely randomized design in which the city man
ager would have randomly selected eight cities regardless of their location?

 c.  Identify additional sources of variability that may need to be included in future studies.

 Ag. 15.30  Refer to Exercise 14.23. In the description of this experiment, the researchers failed to 
note that the experiment in fact had been conducted at four different orange groves, which were 
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located in different states. Grove 1 had a soil pH of 4.0, grove 2 had a soil pH of 5.0, grove 3 had 
a soil pH of 6.0, and grove 4 had a soil pH of 7.0. At each of the groves, three trees were randomly 
assigned to one of the calcium levels: 100, 200, or 300 pounds per acre. The data are given here.

 Calcium

Grove pH Value 100 200 300

 1 4.0 5.2, 5.9, 6.3 7 .4, 7 .0,  7 .6 6.3, 6.7, 6.1
 2 5.0 7 .1,  7 .4, 7 .5 7 .4, 7 .3,  7 .1 7 .3,  7 .5, 7 .2
 3 6.0 7 .6,  7 .2, 7 .4 7 .6, 7 .5,  7 .8 7 .2,  7 .3, 7 .0
 4 7 .0 7 .2,  7 .5, 7 .2 7 .4, 7 .0, 6.9 6.8, 6.6, 6.4

 a.  How would this new information alter the conclusions reached in Exercise 14.23 
concerning the effect of soil pH and calcium on the mean increases in tree diameter?

 b.  Design a new experiment in which the effects of soil pH and calcium on the mean 
increases in tree diameter could be validly evaluated. All four groves must be used 
in your design, along with the four levels of pH and three levels of calcium.

 Bus. 15.31  A foodprocessing plant has tested several different formulations of a new breakfast 
drink. Each of six panels rated the 12 different formulations obtained from combining one of 
three levels of sweetness, one of two levels of caloric content, and one of two colors. The mean 
ratings are given in the following table.

 Color
 1 2

Sweetness Caloric Level Caloric Level
 Level 1 2 1 2

 1 59.5 42.5 54.5 40.1
 2 66.8 49.6 64.7 50.1
 3 52.0 39.3 35.1 30.2

 a. Identify the design.
 b. Write an appropriate model.
 c. Give the analysis of variance table for this design.

 Bus. 15.32  The following AOV table was computed for the experimental design described in Exercise 
15.31. What is missing from the table?

  Source SS df MS F-Value Pr + F

Main effects
 A 4,149.55556 2 2,074.76389 75.51 .0001
 B 624.22222 1 624.22222 22.72 .0001
 C 3,200.00000 1 3,200.00000 116.46 .0001
Interactions
 AB 488.52778 2 244.26389 8.89 .0004
 AC 203.08333 2 101.54167 3.70 .0307
 BC 80.22222 1 80.22222 2.92 .0927
 ABC 24.19444 2 12.09722 .44 .6459
Error  1,648.66667 60 27 .47778

 Engin. 15.33  Three dye formulas for a certain synthetic fiber are under consideration by a textile man
ufacturer who wishes to know whether the three are in fact different in quality. To aid in this 
decision, the manufacturer conducts an experiment in which five specimens of fabric are cut into 
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thirds, and one third is randomly assigned to be dyed by each of the three dyes. Each piece of fab
ric is later graded and assigned a score measuring the quality of the dye. The results are as follows.

 Fabric Specimen

Dye 1 2 3 4 5

 A 74 78 76 82 77
 B 81 86 90 93 73
 C 95 99 90 87 93

 a. Identify the design.
 b. Run an analysis of variance, and draw conclusions about the dyes. Use a  .05.
 c.  Give a measure of the efficiency of this design compared to one not blocking on  

fabric specimens.

 Psy. 15.34  An experiment tested the effect of music on factory workers’ production. Four music 
programs (A, B, C, and D) were compared with no music (E). Each program was played for an 
entire day, and five replications for each program were desired. The length of the experiment was 
thus 5 weeks. To control for variation in week and day of the week, a Latin square design was 
adopted for the 25 days of the experiment. Each program was played once on each day of the 
week and once each week.

Week Monday Tuesday Wednesday Thursday Friday

 1 133 (E) 139 (B) 140 (C) 140 (D) 145 (A)
 2 139 (A) 136 (E) 141 (B) 143 (C) 146 (D)
 3 138 (B) 139 (D) 140 (E) 139 (A) 142 (C)
 4 137 (C) 140 (A) 136 (D) 129 (E) 132 (B)
 5 142 (D) 143 (C) 142 (A) 144 (B) 132 (E)

 a.  Does there appear to be a difference in mean workers’ production totals among 
the five types of music? Use a  .05.

 b.  If there is a difference in mean workers’ production totals, which of the four music 
programs  appear to be associated with higher mean workers’ production totals in 
comparison to no music?

 Ag. 15.35  The yields of wheat (in pounds) are shown here for five farms. Five plots are selected 
based on their soil fertility at each farm, with the most fertile plots designated as 1. The treatment 
 (fertilizer) applied to each plot is shown in parentheses.

 Plot

Farm 1 2 3 4 5

  1 (D) 10.3 (E) 8.6 (A) 6.7 (C) 7 .6 (B) 5.8
  2 (E)  8.8 (B) 6.7 (C) 6.7 (A) 4.8 (D) 6.0
  3 (A)  6.3 (C) 8.3 (B) 6.8 (D) 8.0 (E) 8.8
  4 (C)  8.9 (D) 7 .4 (E) 8.2 (B) 6.2 (A) 4.4
  5 (B)  7 .3 (A) 4.4 (D) 7 .7 (E) 6.8 (C) 6.7

 a. Identify the design.
 b.  Do an analysis of variance, and draw conclusions concerning the five fertilizers.  

Use a  .01.

 Ag. 15.36  Refer to Exercise 15.35. Run a multiplecomparison procedure to make all pairwise com
parisons of the treatment means.

 Med. 15.37  A medical researcher designed an experiment to study the impact of three exercise regi
mens (30, 60, and 90 minutes per week) on the total blood cholesterol level in active adult males. 
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The researcher was concerned that the effect of the type of exercise program on cholesterol 
might also depend on the age of the individual. Nine participants in each of three age groups  
(A1: 20–29, A2: 30–39, A3: 40–49) were obtained from five fitness centers. The total blood cholesterol 
level of the participants were measured both prior to the start of the study and after 6 months on 
the exercise regimens. The reductions in total blood cholesterol level are given in the following table.

 Exercise Regimen

 90 min. 60 min. 30 min. 

 Center A1 A2 A3 A1 A2 A3 A1 A2 A3

 1 82 49 54 52 57 67 39 46 –3
 1 50 41 17 32 7 7 30 55 –3
 1 31 36 47 26 17 29 –9 –28 18
 2 43 60 51 3 25 –8 4 32 23
 2 34 24 3 64 –13 –14 –26 7 –6
 2 –18 14 –23 34 30 30 45 53 2
 3 38 41 15 –3 15 7 17 3 23
 3 –6 65 0 –4 9 –10 56 –9 3
 3 30 18 23 –15 24 0 –30 –7 –16
 4 38 –7 51 –2 35 –12 –13 19 15
 4 –7 7 –3 21 –13 –11 –14 –18 –32
 4 –30 –36 –36 –44 –9 10 15 –4 14
 5 –3 18 35 3 –13 –22 26 3 –28
 5 –3 –4 –55 –37 –1 –30 11 –7 –19
 5 –37 4 –12 8 –20 –43 –38 –22 –32

 a. Identify the design by name.
 b. Write a model for this study, identifying all the terms in the model.
 c.  Do the data support the research hypothesis that the mean reduction in cholesterol 

increases with an increase in exercise? Use a  .05 in reaching your conclusion.
 d.  Is your answer in part (c) consistent across all three age groups? Support your an

swer with a pvalue from an appropriate test of hypotheses.
 e.  Assume that the effectiveness of the three exercise regimens differed for the three 

age groups. Group the three exercise regimens separately for each age group using 
an overall Type I error rate of .05.

 Med. 15.38  Refer to Exercise 15.37.
 a.  If this experiment was conducted again, would you recommend including the fac

tor associated with center in your model and analysis?
 b.  What was the relative efficiency of the center factor in the analysis of the data in 

Exercise 15.37?

 Med. 15.39  Refer to Exercise 15.37.
 a.  Does a residual analysis support the conditions necessary to conduct your tests in 

Exercise 15.37?
 b.  Conduct an analysis of the data, assuming that the normality condition does not 

hold, using a rankbased procedure.
 c.  Compare your conclusions about exercise regimens and age groups reached using 

the rankbased procedure to your conclusions reached using the normalbased 
procedures. Which set of conclusions would be more easily supported using the 
given data?

 Engin. 15.40  Mason, Gunst, and Hess (2003) describe the following study. A traffic engineer designs a 
study to compare the total unused redlight times for five methods of trafficlight signaling (A, B, 
C, D, and E). The engineer randomly selects five intersections in a major city and five time periods 
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spaced across the day. The following table contains the unused redlight time in minutes, with the 
letter in parentheses indicating the method of signaling.

 Period of Day

Intersection 1 2 3 4 5

 1 15.2(A) 33.8(B) 13.5(C) 27 .4(D) 29.1(E)
 2 16.5(B) 26.5(C) 19.2(D) 25.8(E) 22.7(A)
 3 12.1(C) 31.4(D) 17 .0(E) 31.5(A) 30.2(B)
 4 10.7(D) 34.2(E) 19.5(A) 27 .2(B) 21.6(C)
 5 14.6(E) 31.7(A) 16.7(B) 26.3(C) 23.8(D)

 a. Identify the design by name.
 b. Write a model for this study, identifying all the terms in the model.
 c. Describe how randomization could be conducted in this study.
 d.  Is there significant evidence of a difference in the mean unused redlight times for 

the five signaling methods? Use a  .05.
 e. Group the five intersections on the basis of their mean unused redlight times.

 Engin. 15.41 Refer to Exercise 15.40.
 a.  What was the relative efficiency of the period of day factor in the analysis of the 

data in Exercise 15.40?
 b.  What was the relative efficiency of the intersection factor in the analysis of the 

data in Exercise 15.40?
 c.  In future traffic studies, would you recommend including factors to control for the 

variation in intersection and /or period of day?

 Engin. 15.42 Refer to Exercise 15.41. Based on a residuals analysis, do the necessary conditions for 
conducting the test of hypotheses appear to be valid?

 Edu. 15.43  An educational researcher designs a study to evaluate the effect of providing students 
with a laptop containing supplemental material to assist them in learning specified mathemati
cal concepts. The researcher wants to also evaluate the effect of grade level of the students and 
their mathematical ability on the benefit of using the supplemental materials. The principals of 
two schools, one junior high and one high school, agree to participate in the study. Within each 
school, 12 classrooms are selected, with 2 classrooms randomly assigned to each of the combina
tions of two factors: supplemental materials (yes or no) and student math scores in the previous 
school years (low, medium, and high). Twenty students in each of the 24 classrooms are given a 
test to evaluate their mathematical proficiency both at the beginning and at the end of the se
mester in which the study was conducted. The difference in the two test scores will be used as the 
response variable to measure whether the supplemental materials provided a benefit in learning 
mathematical concepts. The mean responses of the students in the 24 classrooms are given in the 
following table.

 School Supplements Math Ability Response School Supplements Math Ability Response

JunHigh Yes Low 22.3 HighSch Yes Low 24.2
JunHigh Yes Low 14.7 HighSch Yes Low 35.6
JunHigh Yes Med 29.1 HighSch Yes Med 38.9
JunHigh Yes Med 31.8 HighSch Yes Med 49.5
JunHigh Yes Hgh 29.6 HighSch Yes Hgh 44.7
JunHigh Yes Hgh 42.3 HighSch Yes Hgh 54.3
JunHigh No Low 12.9 HighSch No Low 11.5
JunHigh No Low 17 .3 HighSch No Low 24.3
JunHigh No Med 16.8 HighSch No Med 34.1
JunHigh No Med 22.7 HighSch No Med 28.4
JunHigh No Hgh 27 .1 HighSch No Hgh 34.2
JunHigh No Hgh 25.3 HighSch No Hgh 31.0
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 a.  The researcher analyzed the data as a completely randomized experiment with 
two replications of the complete crossing of the three factors: type of school ( junior 
high or high school), supplemental materials (yes or no), and math ability of the 
students (low, medium, or high). If possible, test for the main effects, twoway  
interactions, and threeway interaction of the three factors at the a  .05 level.

 b.  If you determined that it was not possible to conduct all the tests requested in part 
(a), modify the analysis so that a complete analysis can be conducted on two of the 
three factors.
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 16.1 Introduction and Abstract of Research Study

In some experiments, the experimental units are nonhomogeneous, or there is vari-
ation in the experimental conditions that is not due to the treatments. For example, 
a study is designed to evaluate different methods of teaching reading to 8-year-
old children. The response variable is final scores of the children after participat-
ing in the reading program. However, the children participating in the study will 
have different reading abilities prior to entering the program. Also, there will be 
many factors outside the school that may have an influence on the reading score 
of the children, such as socioeconomic variables associated with a child’s family. 
The variables that describe the differences in experimental units or experimental 
conditions are called covariates. The analysis of covariance is a method by which 
the influence of the covariates on the treatment means is reduced. This will often 
result in increased precision for parameter estimates and increased power for tests  
of hypotheses.

In Chapter 15, we addressed this problem through the use of randomized 
complete block and Latin square designs. The experimental units were grouped 
into blocks of experimental units, which provided for greater homogeneity of the 
experimental units within each block than was present in the collection of exper-
imental units as a whole. Thus, we achieved a reduction in the variation of the 
responses due to factors other than the treatments. 

In many experiments, it may be difficult or impossible to block the experi-
mental units. The characteristics that differentiate the experimental units may not 
be known prior to running the experiment, or the variables that affect the response 
may not surface until after the experiments have started. In some cases, there may 

covariates
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be too few experimental units in each block to examine all the treatments. Several 
examples of these types of experiments include the following:

●● A clinical trial is run to evaluate the several traditional methods 
for treating chronic pain and some new alternative approaches. The 
patients included in the trial would have different levels of pain 
depending on the length of time they have been inflicted with the 
syndrome, their ages, their physical conditions, and many other fac-
tors that can affect the performance of the treatment. Researchers 
could block on several of these factors, but the influence of the other 
covariates may have an undue influence on the outcome of the trial.

●● The aerial application of insecticides to control fire ants is proposed 
for large pasturelands in Texas. There are a number of possible 
methods for applying the insecticide to the pastures. Because the 
EPA is concerned about the spray drifting off the target areas, a 
study is designed to evaluate the accuracy of the spraying techniques. 
The amount of the insecticide, y, landing within the target areas is 
recorded for each of the four methods of applying the insecticide. The 
testing is to be conducted only on those days in which there is little 
or no wind. However, in Texas there are always wind gusts that may 
affect the accuracy of the spraying. Thus, an important covariate is the 
wind speed at the target area during the spraying.

●● A fiber-optic cable manufacturer is investigating three new 
machines used in coating the cable. The response of interest is the 
tensile strength, y, of the cable after the coating is applied. Although 
the coating is set at a uniform thickness of 1.5 mm, there is some 
variation in thickness along the length of a 100-meter cable. This 
variation in thickness may affect the tensile strength of the cable. 
The testing is conducted in a laboratory with a constant tempera-
ture. The experiments are run over a 5-day period of time. Because 
there are some environmental and technician differences in the lab-
oratory from day to day, the researchers decide to block on day and 
to record the thickness of the coating at the break point in the cable. 
Thus, both a blocking variable and a covariate will be involved in 
the experiment.

The following research study involves an experiment in which the measured 
response is related not only to the assigned treatment but also to a covariate, which 
was measured on the experimental unit during the study.

Abstract of Research Study: Evaluation of Cool-Season 
Grasses for Putting Greens
A problem confronting greenskeepers on golf courses is the prevalence of viral 
diseases, which damage putting greens. The diseases are particularly dangerous 
during the early spring when the weather is cool and wet and the grasses on the 
greens have not completely recovered from winter dormancy. Several new cultivars 
of turfgrass for use on golf course greens have been developed. These cultivars are 
resistant to the type of viral diseases that are of concern to the greenskeepers. Prior 
to adopting the grasses for use on golf course greens, it was necessary to evalu-
ate the cultivars with respect to their appropriateness for use on the putting sur-
faces. From previous studies, three cultivars (C1, C2, and C3) were found to have the 



16.1 introduction and abstract of research study    919

greatest resistance to the early spring viral diseases. The researchers determined 
from discussions with golf course superintendents that the performance measure 
of greatest interest was the speed that a ball rolls on the green after being struck 
by a putter. The United States Golf Association (USGA) has developed a device 
called the Stimpmeter to evaluate the speed of the greens. The Stimpmeter is a 
36-inch extruded aluminum bar with a grooved runway on one side. A notch in the 
runway is used to support a golf ball until one end of the Stimpmeter is lifted to 
an angle of roughly 20 degrees. The average distance the golf ball travels after two 
opposing rolls down the Stimpmeter is referred to as the speed of the green. The 
farther the ball rolls, the faster the green. Important factors that affect speed are 
the length of the grass, hardness of the surface, and slope of the surface.

The researchers decided to study eight different regions of the country. In 
each region, a golf course was selected, and three putting greens were constructed. 
The three greens had the same soil composition and slope. The three cultivars were 
randomly assigned to a single green at each of the eight golf courses. Thus, the 
factors affecting green speed that are associated with geographical location were 
controlled through the use of blocking. A factor that was considered to be impor-
tant but that the researchers were not able to control was the humidity during the 
testing period. Thus, it was decided to record humidity and use it as a covariate. 
The measurements of green speed (in feet) and humidity at the eight locations are 
given in Table 16.1.

The speed measurement for each of the greens is plotted in Figure 16.1 versus 
the humidity reading during the testing period. The plotted points suggest a nega-
tive relationship between speed and humidity level, with the relationship similar 
for all three cultivars. However, cultivar C3 appears to yield a uniformly greater 
speed value than the other two cultivars.

In Section 16.5, we will present a model that will enable us to adjust the speed 
readings for both the region of the country in which the greens were located and 
the humidity during the time in which the tests were conducted. The three cultivars 
will then be compared using the adjusted mean speed readings.

Since the analysis of covariance combines features of the analysis of variance 
and regression analysis, we will make use of a general linear model formulation 
for the analysis of this type of data. By referring to and building on our work with 
general linear models in preceding chapters, we can more easily understand the 
blending of analysis of variance with regression modeling. We begin our presenta-
tion with a single covariate in a completely randomized design.

TABLE 16.1
Green speed of  
three cultivars

 C1 C2 C3

Region Humidity Speed Humidity Speed Humidity Speed

1 31.60 7 .56 29.42 8.88 89.60 8.20
2 54.12 7 .41 44.44 8.20 37 .17 9.15
3 42.34 7 .64 84.38 7 .20 37 .32 9.24
4 53.82 6.81 88.42 7 .12 89.21 8.31
5 86.70 6.86 71.33 8.16 58.57 9.42
6 76.27 6.86 45.50 8.68 66.68 9.26
7 68.66 7 .22 66.79 8.25 82.78 8.93
8 47 .27 7 .64 58.34 8.22 29.52 9.89



920 Chapter 16 the analysis of CovarianCe 

 16.2 A Completely Randomized Design  
with One Covariate

A completely randomized design is used to compare t population means. To do this, 
we obtain a random sample of ni observations on the variable y in the ith popula-
tion (i  1, 2, . . . , t). Now, in addition to measuring the response variable y on each 
experimental unit, we measure a second variable, x, often called a covariable or a 
covariate. For example, in studying the effects of different methods of reinforce-
ment on the reading achievement levels of 8-year-old children, we could measure 
not only the final achievement level y for each child but also the prestudy reading 
performance level x. Ultimately, we would want to make comparisons among the 
different methods while taking into account information on both y and x.

Note that x can be thought of as an independent variable, but unlike most 
situations discussed in previous chapters, here we cannot control the value of x (as 
we controlled settings of temperature or pressure) prior to observing the variable. 
In spite of this, we may still write a model for the completely randomized design, 
treating the covariate as an independent variable.

We will examine an experiment comparing t  3 treatments from a com-
pletely randomized experiment with one covariate to illustrate the analysis of 
covariance procedures.

EXAMPLE 16.1

In this study, the effects of two treatments, a slow-release fertilizer (S) and a fast-
release fertilizer (F), on seed yield (grams) of peanut plants were compared with 
a control (C), a standard fertilizer. Ten replications of each treatment were to be 
grown in a greenhouse study. When setting up the experiment, the researcher 
recognized that the 30 peanut plants were not exactly at the same level of devel-
opment or health. Consequently, the researcher recorded the height (cm) of the 
plant, a measure of plant development and health, at the start of the experiment, 
as shown in Table 16.2. Plot seed yield versus plant height for the 30 peanut plants.

FIGURE 16.1
Speed of golf greens for  

three cultivars with  
humidity readings

10.0

Humidity

Sp
ee

d

30 40 50 60 70 80 90

9.5

9.0

8.5

8.0

Cultivar

7.5

7.0

1

3

2

Scatterplot of speed versus humidity with 3 cultivars



16.2 a Completely randomized Design with one Covariate     921

Solution A plot of the yields for each treatment is shown in Figure 16.2, with the 
covariate, plant height, given on the horizontal axis.

FIGURE 16.2
Seed yield for three 
treatments with the  

covariate, plant height
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TABLE 16.2
Peanut plant growth data  Control (C) Slow Release (S) Fast Release (F)

Yield Height Yield Height Yield Height

  12.2 45 16.6 63 9.5 52
  12.4 52 15.8 50 9.5 54
  11.9 42 16.5 63 9.6 58
  11.3 35 15.0 33 8.8 45
  11.8 40 15.4 38 9.5 57
  12.1 48 15.6 45 9.8 62
  13.1 60 15.8 50 9.1 52
  12.7 61 15.8 48 10.3 67
  12.4 50 16.0 50 9.5 55
  11.4 33 15.8 49 8.5 40

The experiment described in Example 16.1 was conducted using a com-
pletely randomized design with three treatment groups and a single covariate. If 
we assume a straight-line relationship between seed yield, yij, and the covariate, 
plant height, xij, the model for the completely randomized design with a single 
covariate is given by

yij  mi 1 b1 1xij 2 x.. 2 1 eij

or

yij  b0 1 ti 1 b1xij 1 eij

■
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with i  1, 2, . . . , t and j  1, 2, . . . , n, where mi is the ith treatment mean, b1 is the 
slope of the regression of yij on xij, b0 is intercept of the regression of yij on xij, 
ti is the ith treatment effect, and eij are random independent, normally distrib-
uted experimental errors with mean 0 and variance s2

e. The other major conditions 
imposed on the model in an analysis of covariance are as follows:

 1. The relationship between the response y and the covariate x is linear.
2. The regression coefficient b1 is the same for all treatments.
3. The treatments do not have an effect on the covariate, xij.

The analysis of covariance involves fitting a number of models to the response 
variable, y. First, we evaluate whether the covariate, x, provides a significant reduc-
tion in the experimental error. If the reduction is significant, then we replace the 
observed treatment means, yi., with estimated adjusted treatment means,  ̂mAdj, i, 
which are adjusted for the effect of the covariate on the response variable. Infer-
ences about the treatment differences are then made on the basis of the adjusted 
means and not the observed means.

We will formulate the required models needed in the analysis of covariance. 
The model relating yij to the t treatments and the covariate can be written in the 
form of an analysis of variance model and then reformulated in regression form.

Full model:  yij  b0 1 ti 1 b1xij 1 eij

Next, we will formulate two reduced models, one without the covariate and 
then one without treatment differences but with the covariate.

Reduced model I:  yij  b0 1 ti 1 eij

Reduced model II:  yij  b0 1 b1xij 1 eij

These three models also can be written in the form of the regression (general 
linear) models of Chapter 12. We make this transition to regression models because 
it facilitates analysis using various statistical software packages.

Full model:  y  b0 1 b1x1 1 b2x2 1 . . . 1 btxt 1 e

where

x1  covariate

x2  1 if treatment 2 is used    x2  0 otherwise

x3  1 if treatment 3 is used    x3  0 otherwise
. . .
xt  1 if treatment t is used     xt  0 otherwise

It is helpful with these models to refer to a table of expected values, mi, as shown in 
Table 16.3, based on the full model. Note that the treatments have the same slope 
(b1) but different intercepts, b0 1 bi, i  2, . . . , t.

adjusted treatment 
means

TABLE 16.3
Expected values for 

the full model

Treatment Expected Value

1 m1  b0 1 b1x1

2 m2  (b0 1 b2) 1 b1x1

 (  (
t mt  (b0 1 bt) 1 b1x1
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We next fit a reduced model in which the covariate is removed in order to 
determine the influence of the covariate.

Reduced model I:  y  b0 1 b2x2 1 b3x3 1 . . . 1 btxt 1 e

A second reduced model is fit in which the treatment effects are removed but the 
covariate remains in the model.

Reduced model II:  y  b0 1 b1x1 1 e

From each of these models, we obtain the sum of squares error, which we will 
denote as follows:

  SSEF  sum of squares error from the full model

 SSERI  sum of squares error from reduced model I

SSERII  sum of squares error from reduced model II

The significance of the influence of the covariate on the response variable is 
determined by testing the hypothesis that the regression lines for the treatments 
have a slope of zero. This hypothesis is

H0: b1  0  versus  Ha: b1 ?  0

for the full model. Our test statistic is based on the sum of squares reduction due to 
the addition of the covariate x to the model and is given as

SSCov  SSERI 2 SSEF

We then form the F test

F 
SSCov

SSEF / 1N 2 t 2 1 2
where N is the number of observations in the experiment. Our decision rule is then 
given by

Reject H0: b1  0  if  F $ Fa, 1, N  –  t  –  1

If we determined that the covariate does have a significant linear relationship 
with the response variable, we would next test for a significant treatment effect 
using the adjusted treatment means. That is, we want to test the hypotheses

H0: t1  t2  . . .  tt  0  versus  Ha: Not all tis are 0.

In the regression model, this is equivalent to testing that the regression lines have 
the same intercept (b0). Thus, from Table 16.3, we are testing

H0: b2  b3  . . .  bt  0  versus  Ha: Not all of b2, b3, . . . , bt are 0.

Our test statistic is based on the sum of squares reduction due to the addition of the 
differences in the treatment means to the model and is given

SSTrt  SSERII 2 SSEF

We then form the F test

F 
SSTrt / 1t 2 1 2

SSEF / 1N 2 t 2 1 2
Our decision rule is then given by

Reject H0: b2  b3   
c  bt  0 if F $ Fa, t 2 1, N 2 t 2 1
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If we reject H0, then we can evaluate treatment differences by examining the esti-
mated adjusted treatment means using the formula

 m̂Adj, i  yi. 2b̂1 1xi. 2 x.. 2
which adjusts the observed treatment means for the effect of the covariate. This 
effect is estimated by considering how large a difference exists between the mean 
value of the covariate observed for the experimental units receiving treatment i 
and the average value on the covariate over all treatments.

We can also estimate the adjusted treatment means using the regression 
model. From Table 16.3, for treatments i  2, 3, . . . , t,

mi  E 1 y 2  b0 1 bi 1 b1x1

and for i  1,

m1  E 1 y 2  b0 1 b1x1

The estimated adjusted treatment means are obtained by estimating the mean 
value of y for each treatment group corresponding to the overall mean value of the 
covariate, x1  x... It follows that

 m̂Adj, i b̂0 1b̂i 1b̂1x..

for treatments i  2, 3, . . . , t and

 m̂Adj, 1 b̂0 1b̂1x..

for treatment 1. The estimated standard error of the estimated ith treatment mean, 
 m̂Adj, i, is given by

SE 1  ̂mAdj, i 2  ÅMSEF a
1
n

1
1xi. 2 x.. 2 2

Exx
b

where Exx  ggij 1xij 2 xi. 2 2. The estimated standard error of the difference between 
two adjusted treatment means,  m̂Adj, i 2m̂Adj, h, is given by

SE 1  ̂mAdj, i 2m̂Adj, h 2  ÅMSEF a
2
n

1
1xi. 2 xh. 2 2

Exx
b

where MSEF is the MSE from the full model. These estimated standard errors can 
now be used to place confidence intervals on the adjusted treatment means and 
their differences.

The following example will illustrate the ideas of analysis of covariance.

EXAMPLE 16.2

Refer to Example 16.1, where we had three treatments—a control (C), a slow- 
release fertilizer (S), and a fast-release fertilizer (F)—and we used plant height at 
the beginning of the study as a covariate. Our response variable was the seed yield 
of peanut plants, and we had 10 replicates.

 a. Write the model for an analysis of covariance.
b. Use the computer output shown here to test whether the covariate 

provides a significant reduction in experimental error.
 c. Give the linear regression equations for the three treatment groups.
d. Compute the observed and adjusted treatment means for the three 

treatment groups.
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e. Does there appear to be a significant difference among the three 
treatments after adjusting for the covariate?

The computer printout for the analysis is given here.

FULL MODEL

General Linear Models Procedure

Dependent Variable: Y YIELD
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS

1000.058.744456854.1759573.4123ledoM

70610.017714.062rorrE

Corrected Total 29 214.79367

T for H0: Pr > |T| Std Error of
INTERCEPT 9.529256364 71.34 0.0001 0.13357349
X1 (COV) 0.055809949 20.41 0.0001 0.00273429
X2 (S) 3.571637117 62.62 0.0001 0.05703267
X3 (F) –3.144155615 –52.08 0.0001 0.06037390
----------------------------------------------------------------------

----------------------------------------------------------------------

REDUCED MODEL I

General Linear Models Procedure

Dependent Variable: Y YIELD
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS

1000.082.49333148.30176286.7022ledoM

73362.000111.772rorrE

Corrected Total 29 214.79367

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 12.13000000 74.74 0.0001 0.16228690
X2 (S) 3.70000000 16.12 0.0001 0.22950833
X3 (F) –2.72000000 –11.85 0.0001 0.22950833

REDUCED MODEL II

General Linear Models Procedure

Dependent Variable: Y YIELD
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS

7508.060.04941274.04941274.01ledoM

9933456.72715123.41282rorrE

Corrected Total 29 214.7936667

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 13.14900450 4.64 0.0001 2.83300563
X1 (COV) –0.01387451 –0.25 0.8057 0.05586395
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Solution

a. We have a completely randomized design with three treatments, 10 
replications per treatment, and a single covariate. The model is thus 
given by yij  mi 1 b1 1xij 2 x.. 2 1 eij, for i  1, 2, 3 and j  1, . . . , 10.

 The full model using regression notation is

 Full model (in which the regression lines have different intercepts 
but a common slope):

y  b0 1 b1x1 1 b2x2 1 b3x3 1 e

 where
 y  yield
 x1  plant height
 x2  1 if treatment is S    x2  0 otherwise
 x3  1 if treatment is F    x3  0 otherwise

 The expected values of the response for the three treatments are 
shown here.

Treatment Expected Responses

C b0 1 b1x1

S (b0 1 b2) 1 b1x1

F (b0 1 b3) 1 b1x1

 The corresponding reduced models are

 Reduced model I (in which the regression lines have a slope 
equal to zero; that is, the covariate is unrelated to the response 
variable):

y  b0 1 b2x2 1 b3x3 1 e

 Reduced model II (in which the regression lines have a common 
intercept, b0, and common slope, b1):

y  b0 1 b1x1 1 e

b. We want to test whether the covariate provides a reduction in the 
experimental error. That is, we need to test that the common slope 
(b1) is zero:

H0: b1  0  versus  Ha: b1 ? 0

 From the computer output,

SSEF  .41771  SSERI  7.11100

 Thus, we have

SSCov  SSERI 2 SSEF  7.111 2 .41771  6.69329

 Our F test is

 F 
6.69329

.41771 / 130 2 3 2 1 2  416.62 and F.05, 1, 26  4.23

 Because 416.62 is greater than 4.23, we reject H0 and conclude, with 
p-value , .0001, that the plant height (the covariate) is significantly 
related to plant seed yield (i.e., the slope b1 is different from zero).
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c. From the output for the full model, we obtain the least-squares estimates:

   b̂0  9.53,   ̂b1  .0558,   b̂2  3.57,   b̂3  23.14

 The estimated seed yields, with adjustments for initial plant height 
for the three treatments, are

 Control:     ŷ   b̂0 1  ̂b1x1  9.53 1 .0558x1

 Slow release:  ŷ  1  ̂b0 1  b̂2 2 1 ^ b1x1  19.53 1 3.57 2 1 .0558x1

  13.1 1 .0558x1

 Fast release:  ŷ  1  ̂b0 1  b̂3 2 1  b̂1x1  19.53 2 3.14 2 1 .0558x1

  6.39 1 .0558x1

d. The observed sample means are given in Table 16.4.

TABLE 16.4
Sample means for  

Example 16.2

 Control Slow Release Fast Release Overall

y 12.13 15.83  9.41 12.457
x 46.60 48.90 54.20 49.900

 We can obtain the estimated adjusted means by substituting the 
overall mean plant height for x1 in the separate regression equations:

 Control:          m̂Adj, 1  9.53 1 .0558 149.90 2  12.31

 Slow release:  m̂Adj, 2  13.1 1 .0558 149.90 2  15.88

 Fast release:   m̂Adj, 3  6.39 1 .0558 149.90 2  9.17

 Alternatively, we could obtain the estimated adjusted means using 
the formula

 m̂Adj, i  yi. 2 b̂1 1xi. 2 x.. 2
 Control:          m̂Adj, 1  12.13 2 .0558 146.60 2 49.90 2  12.31

 Slow release:  m̂Adj, 2  15.83 2 .0558 148.9 2 49.90 2  15.88

 Fast release:   m̂Adj, 3  9.41 2 .0558 154.20 2 49.90 2  9.17

 Because the slow-release fertilizer plants had an average plant height 
less than the overall average height, the observed average seed yield 
was adjusted upward from 15.83 to 15.88, whereas the fast-release fer-
tilizer’s average seed yield was adjusted downward from 9.41 to 9.17.

e. We can test for a difference in the average seed yields of the three 
treatments by examining the sum of squares error in reduced model II. 
We want to test the following hypotheses:

H0:  mAdj, 1  mAdj, 2  . . .  mAdj, t versus Ha:  Not all mAdj, is are equal.

 This is equivalent to testing the null hypothesis that the regression 
lines have a common intercept (b0); that is, we want to test

H0: b2  b3 = 0 versus Ha: b2 ? 0 and/or b3 ? 0

 From the computer output,

SSEF  .41771    SSERII  214.3215
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 Thus, we have
SSTrt  SSERII 2 SSEF  214.3215 2 .41771  213.90

 Our F test thus is

 F 
213.90 / 13 2 1 2

.41771 / 130 2 3 2 1 2  6,657.13 and F.05, 2, 26  3.37

 Because 6,657.13 is greater than 3.37, we reject H0 and conclude, 
with p-value , .0001, that the intercepts are not equal, and, hence, 
there is significant evidence of a difference in the adjusted plant 
seed yields for the three types of fertilizers. ■

The conclusions we reached in Example 16.2 are dependent on the validity of 
the conditions we placed on the model. We can evaluate the condition of indepen-
dent and homogeneous, normally distributed error terms by examining the residu-
als from the fitted model:

eij  yij 2 b̂0 2 b̂1x1ij 2 b̂2x2ij 2 c2 b̂t 
xtij

We can then apply plots and tests of normality to the eijs to evaluate the equal 
variance and normality conditions.

The three added conditions for the analysis of covariance are evaluated in the 
following manner.

The Relationship Between the Response and the Covariate Is Linear  We can 
evaluate this condition as we did in regression analysis through the use of plots and 
tests of hypotheses. We can plot y versus x separately for each treatment and assess 
whether the plotted points follow a straight line. A separate regression line can be 
fitted for each treatment using the methods of Chapter 12. We can then assess the 
residuals from the t fitted lines and conduct tests of lack of fit to determine whether 
any of the t fitted lines need higher-order terms in the covariate xij. The situation of 
higher-order relationships will be discussed in Section 16.4.

The Regression (Slope) Coefficient Is the Same for All t Treatments  Consider 
the following model:

Model A: y  b0 1 b1x1 1 b2x2 1 b3x3 1 c1 btxt 1 bt11x1x2

  1 bt12x1x3 1 c1 b2t21x1xt 1 e

where x2, . . . , xt are the indicator variables for the treatments and x1 is the covari-
ate. This regression model yields separate regression lines, with possibly different 
slopes and different intercepts, for each treatment. (See the expected responses for 
model A shown in Table 16.5.)

We next consider a reduced model, in which we require the slopes to be the 
same for all treatments but allow for different intercepts.

Model B: y  b0 1 b1x1 1 b2x2 1 b3x3 1 c1 btxt 1 e

TABLE 16.5
 Expected values 

for model A

Treatment Expected Response

1 m1        b0 1 b1x1

2 m2  (b0 1 b2) 1 (b1 1 bt11)x1

3 m3  (b0 1 b3) 1 (b1 1 bt12)x1

(  (
t mt  (b0 1 bt) 1 (b1 1 b2t21)x1
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The test for equal slopes would involve testing

H0: bt 1 1  bt 1 2  . . .  b2t 2 1  0
Ha: At least one of bt 1 1, bt 1 2, . . . , b2t 2 1  is not 0.

The test statistic would be obtained by fitting models A and B.

F 
1SSEB 2 SSEA 2 / 1t 2 1 2

SSEA / 1N 2 2t 2   with df1  t 2 1, df2  N 2 2t

This would determine whether the regression lines relating the response to the 
covariate have the same slope. This is a crucial assumption because if the slopes 
are different, then the difference in the adjusted treatment means is highly depend-
ent on the level of the covariate chosen for adjustment. This situation is similar to 
experiments in which we have two factors with significant interactions and infer-
ences about one factor depending on the level of the second factor. The situation 
in which the lines relating the response to the covariate have different slopes is dis-
played in Figure 16.3. From this figure, we can observe that amount of adjustment 
varies greatly depending on which treatment and which value of the covariate are 
selected for adjustment.

When the treatments have different slopes, then our conclusion concerning 
which treatment has the largest (smallest) adjusted treatment mean depends on the 
value of the covariate. In Figure 16.3, when the covariate has value x1, treatment T2 
has a larger estimated mean response; at x2, the two estimated mean responses are 
equal; and at x3, treatment T1 has a larger mean response than does treatment T2. 
This situation is considerably different from the case in which the treatments have 
the same slope. With equal slopes, the difference between the treatments remains 
consistent across the values of the covariate. When the treatments have different 
slopes, then the differences between the treatments vary depending on the value of 
the covariate. Thus, all conclusions about the difference in the treatments must be 
made conditional on the value of the covariate. In this situation, the researcher pro-
vides a value of the covariate; then comparisons of the adjusted treatment means 
can be made. This process is repeated over as many values of the covariate as are of 
interest to the researcher. Of course, multiple comparison adjustments to the type 
I error rates must be made.

FIGURE 16.3
Regression lines relating 
the response and covari-
ate with different slopes

T1

T2

y

x

y1.

y2.

x3x2x1
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The Treatments Do Not Affect the Covariate, xij In experiments where both the  
covariate x and the response variable y are affected by the treatments, we cannot 
validly apply the methods of analysis of covariance. The appropriate method of 
analysis would involve multivariate analysis where we treat the response as a 
bivariate variable (x, y). When the covariate is measured prior to the random 
assignment of treatments to the experimental units, the analysis of covariance 
model would be appropriate because it would be impossible for the treatment to 
affect the covariate. When the covariate is measuring conditions in the experi-
mental setting—that is, the covariate is measured during the running of the exper-
iment—the experimenter must decide whether the treatments have an affect on 
the covariate. Only after the experimenter determines that the treatments have 
not affected the covariate can we correctly adjust the treatment means for the 
covariate.

EXAMPLE 16.3

Refer to Example 16.1. Evaluate the necessary conditions in the analysis of covari-
ance model, using the computer output given here.

MODEL A: DIFFERENT SLOPES FOR EACH TREATMENT

General Linear Models Procedure
Number of observations in data set 30

Dependent Variable: Y YIELD
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS
1000.007.788244788.2422734.4125ledoM

58410.044653.042rorrE
Corrected Total 29 214.79367

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS

1000.091.6718717616.28717616.211X
1000.034.4714995095.24995095.212X
1000.039.0014400994.14400994.113X
8862.082.12920910.02920910.011X*2X
5223.020.18351510.08351510.011X*3X

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 9.491768741 46.88 0.0001 0.20245904
X1 0.056614405 13.27 0.0001 0.00426518
X2 3.906558043 13.21 0.0001 0.29578964
X3 –3.519620102 –10.05 0.0001 0.35033468
X2*X1 –0.006886936 –1.13 0.2688 0.00608421
X3*X1 0.006814587 1.01 0.3225 0.00674632
---------------------------------------------------------------------------
MODEL B: SAME SLOPE FOR ALL TREATMENTS

General Linear Models Procedure
Number of observations in data set = 30

Dependent Variable: Y YIELD
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS
1000.058.744456854.1759573.4123ledoM

70610.017714.062rorrE
Corrected Total 29 214.79367



16.3 the extrapolation problem    931

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
1000.026.614782396.6782396.611X
1000.028.1293424700.36424700.3612X
1000.021.2172456275.34456275.3413X

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 9.529256364 71.34 0.0001 0.13357349
X1 0.055809949 20.41 0.0001 0.00273429
X2 3.571637117 62.62 0.0001 0.05703267
X3 –3.144155615 –52.08 0.0001 0.06037390

Solution From Figure 16.2, we can see that the lines relating seed yield to plant 
height for the three treatments appear to be adequately fit by a straight line and 
the three slopes appear to be the same; that is, we have three parallel lines with 
possibly different intercepts. The computer output is obtained by fitting model A 
(different slopes and different intercepts) and model B (same slopes but different 
intercepts) to the plant seed yield data. 

From the output, we can compute

F 
1SSEB 2 SSEA 2 / 1t 2 1 2

SSEA / 1N 2 2t 2 
1.41771 2 .35644 2 / 13 2 1 2

.35644 / 130 2 6 2  2.06

with df1  2 and df2  24. Because F.05, 2, 24  3.40, we fail to reject H0 and conclude, 
with p-value  .1494, that there is not significant evidence of a difference in the 
slopes of the three lines. Because the covariate, plant height, was measured prior 
to assigning the type of fertilizer to the plants, the treatments cannot have an affect 
on the covariate. The remaining conditions of equal variance and normality can be 
assessed using a residual analysis. ■

 16.3 The Extrapolation Problem

In the previous section, we discussed how to compare two (or more) treatments 
from a completely randomized design with one covariable. If the regression equa-
tions for the treatments are linear in terms of the covariable and parallel, we said 
we could compare the treatments using the adjusted treatment means. However, as 
with most methods, the analysis of covariance methods should not be used blindly. 
Even if the linearity and parallelism assumptions hold, we can have problems if the 
values of the covariable do not have considerable overlap for the treatment groups. 
We will illustrate this with an example.

Suppose that we were interested in comparing self-esteem scores for alcohol-
ics and drug addicts. We collected a sample of nine alcoholics and a sample of nine 
drug addicts, and for each individual, we obtained his or her self-esteem score and 
age. The data are shown in Table 16.6.

If we blindly followed the analysis of covariance procedures without look-
ing at the data, we would find the regression equations for alcoholics and drug 
addicts to be reasonably linear and parallel. From the computer output displayed 
in Figure 16.4, we would note from the plotted data that the data values for 
alcoholics (A) would fall near a straight line, as would the points for drug addicts 
(D). If we used the sum of squares error for the two models, we would obtain

F 
130.88 2 27.39 2 / 12 2 1 2

1.9567
 1.78
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with df1  1 and df2  14. The p-value for the observed F-value would be P(F $ 
1.78)  0.2035. Thus, we would fail to reject the hypothesis that the slopes of the 
lines relating self-esteem to age are the same for the alcoholics and the drug 
addicts. Furthermore, from the computer output for model B, we would find that 
the p-value for testing a difference in the adjusted mean self-esteem scores is P(F $ 
34.14) , 0.0001. The two groups of addicts would appear to have different adjusted 
mean self-esteem scores.

MODEL A: DIFFERENT SLOPES AND TREATMENT DIFFERENCES

Dependent Variable: Y SELF-ESTEEM

Sum of Mean
F>rPeulaVFerauqSserauqSFDecruoS
1000.028.8473535.5911606.6823ledoM

17659.198393.7241rorrE
Corrected Total 17 314.00000

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
1000.043.6939515.88139515.88111X
4546.022.056234.056234.012X
5302.087.148284.348284.311X*2X

FIGURE 16.4
Self-esteem scores as a 
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TABLE 16.6
Self-esteem scores and 

ages for a sample of 
alcoholics and drug 

addicts

 Alcoholics Drug Addicts

Self-Esteem Age Self-Esteem Age

25 15 20 30
22 17 17 31
24 18 18 33
20 19 15 35
21 21 14 36
17 22 15 37
14 23 12 38
16 24 10 40
15 25 11 41
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T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 44.18390805 B 9.49 0.0001 4.65570471
X1 –0.82758621 B –6.37 0.0001 0.12987748
X2 –2.60800443 B –0.47 0.6454 5.54628759
X2*X1 –0.26036560 B –1.33 0.2035 0.19515497
---------------------------------------------------------------------------
MODEL B: SAME SLOPES AND TREATMENT DIFFERENCES

Dependent Variable: Y SELF-ESTEEM

Sum of Mean
F>rPeulaVFerauqSserauqSFDecruoS
1000.077.8636165.14172321.3822ledoM

54850.237678.0351rorrE
Corrected Total 17 314.00000

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
1000.039.9872321.58172321.58111X
1000.041.4382972.0782972.0712X

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 48.29686944 B 13.50 0.0001 3.57834982
X1 –0.94290288 –9.48 0.0001 0.09942750
X2 –9.68641053 B –5.84 0.0001 1.65775088

REDUCED MODEL I: TREATMENT DIFFERENCES WITH NO COVARIATE

General Linear Models Procedure

Dependent Variable: Y SELF-ESTEEM
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS
0610.062.7000000.89000000.891ledoM

000005.31000000.61261rorrE
Corrected Total 17 314.000000

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
0610.062.7000000.89000000.8912X

---------------------------------------------------------------------------
SECNEREFFIDTNEMTAERTONTUBETAIRAVOC:IILEDOMDECUDER

General Linear Models Procedure

Dependent Variable: Y SELF-ESTEEM
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS
1000.076.3389348.21289348.2121ledoM

52223.620651.10161rorrE
Corrected Total 17 314.00000

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
1000.076.3389348.21289348.21211X

T for H0: Pr > |T| Std Error of
etamitsE0=retemaraPetamitsEretemaraP

INTERCEPT 28.57258960 13.73 0.0001 2.08069635
X1 –0.41248834 –5.80 0.0001 0.07109137

Do alcoholics and drug addicts really have different self-esteem scores? One 
possible explanation for the difference in scores is that we are dealing with two 
different age groups: The alcoholics sampled ranged in age from 15 to 25 years, 
whereas the drug addicts were between the ages of 30 and 41. This difference in 
ages for the two groups is borne out in the scatterplot shown in Figure 16.4.



934 Chapter 16 the analysis of CovarianCe 

The mean ages for the alcoholics and drug addicts are 20.44 and 35.67 years, 
respectively, while the combined mean age is 28.06 years. Note that the combined 
mean is outside the age range for each of the separate samples. We have no informa-
tion about self-esteem scores for drug addicts under 30 years of age and no infor-
mation about self-esteem scores for alcoholics above the age of 25. Hence, it would 
be inappropriate to compare the predicted self-esteem scores at the ‘‘adjusted’’ age 
(28.06) because this involves an extrapolation beyond the ages observed for the 
separate samples. For this example, it would be difficult to make any comparison 
between the alcoholics and drug addicts because of the age differences and other 
possible (unmeasured) differences between the two groups.

In situations where there is the potential for the ranges of values for the covar-
iate to not have a considerable overlap, how should a researcher design the study to 
avoid the problems described above? When designing the study, examine the value 
of the covariate for each experimental unit, and if the range of values is large, then 
use a randomized block design to assign the experimental units to the treatments. 
In the above study, the researcher could have avoided the confounding of age group 
with type of addiction by blocking on age prior to measuring the self-esteem of the 
participants. This design would consist of two stratified random samples, one from 
the population of people who were alcoholics and the other from the population 
of drug addicts. The stratification would be based on age—with three or four age 
groups. This would then guarantee that there would be considerable overlap of the 
ages over the two types of addiction. We will discuss how to analyze an experiment 
in which both blocking and covariates are present in the next section.

So don’t forget to look at your data. The potential for extrapolation, although 
not as obvious as for our example, should become apparent with plots of the 
data. Then you can avoid using an analysis of covariance to make comparisons 
of adjusted treatment means (or, in fact, any comparison) when the adjustment 
may be inappropriate. These same problems can occur with the extensions of these 
methods to include more than one covariable and more complicated experimental 
designs—but it is more difficult to detect the problem.

 16.4 Multiple Covariates and More  
Complicated Designs

The sample procedures discussed in Section 16.2 can also be applied to completely 
randomized designs with one or more covariates. Including more than one covari-
ate in the model merely means that we have more than one quantitative independ-
ent variable in our model. For example, we might wish to compare the social status 
y of several different occupational groups while incorporating information on the 
number of years x1 of formal education beyond high school and the income level 
x2 of each individual in a group. As mentioned previously, we need not restrict our-
selves to linear terms in the covariate(s). Thus, we might have a response related to 
two covariates (x1 and x2) and t  3 treatments using the model

y  b0 1 b1x1 1 b2x
2
1 1 b3x2 1 b4x3 1 b5x4 1 b6x1x3 1 b7x1x4 1 b8x

2
1x3

   1 b9 
x2

1x4 1 b10 
x2x3 1 b11x2x4 1 e 

where

x3  1 if treatment 2    x3  0 otherwise
x4  1 if treatment 3    x4  0 otherwise

We can readily obtain an interpretation of the bs by using a table of expected val-
ues similar to Table 16.3.
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EXAMPLE 16.4

For the model with t  3 treatments, two covariates, (x1 and x2) and the response 
equation

y  b0 1 b1x1 1 b2x
2
1 1 b3x2 1 b4x3 1 b5x4 1 b6x1x3 1 b7x1x4 1 b8x

2
1x3

   1 b9 
x2

1x4 1 b10 
x2x3 1 b11x2x4 1 e 

relate the parameters in the model to the expected responses for each of the 
treatments.

Solution The table of expected values is given in Table 16.7.

TABLE 16.7
Expected responses for  

the model in Example 16.4 

Treatment Expected Response

  1 b0 1 b1x1 1 b2x
2
1 1 b3x2

  2 1b0 1 b4 2 1 1b1 1 b6 2x1 1 1b2 1 b8 2x2
1 1 1b3 1 b10 2x2

  3 1b0 1 b5 2 1 1b1 1 b7 2x1 1 1b2 1 b9 2x2
1 1 1b3 1 b11 2x2 

Thus, the y-intercepts of the three adjusted treatment lines for treatments 1, 2, and 3 
are b0, b0 1 b4, and b0 1 b5, respectively. Similarly, the partial slopes for the covar-
iate x1 are b1, b1 1 b6, and b1 1 b7, respectively. The partial slopes for the covariate 
x2

1 are b2, b2 1 b8, and b2 1 b9, respectively. The partial slopes for the covariate x2 
are b3, b3 1 b10, and b3 1 b11, respectively. The hypotheses for testing for differences 
in the partial slopes for x1 would be

H0:  b6  0, b7  0  versus  Ha:  b6 2 0 and /or b7 2 0

The hypotheses for testing for differences in the partial slopes for x2
1 would be

H0:  b8  0, b9  0  versus  Ha:  b8 2 0 and /or b9 2 0

The hypotheses for testing for differences in the partial slopes for x2 would be

H0:  b10  0, b11  0  versus  Ha:  b10 2 0 and /or b11 2 0

If one or more of the three null hypotheses are rejected, then we would conclude 
that the adjusted treatment mean planes are not parallel and conclusions about 
treatment differences cannot be made without specifying values of the covariates. ■

An analysis of covariance for more-complicated designs can also be obtained 
using general linear model methodology. The techniques for handling adjust-
ments for covariates in randomized complete block designs and Latin squares 
are similar to the methods we discussed for completely randomized designs. The 
following example will illustrate the modeling for a randomized complete block 
design. 

EXAMPLE 16.5

Suppose we have a randomized complete block design with two blocks, three treat-
ments, one covariate x, and n . 1 observations per treatment in each block. Write 
the model for this experimental situation, assuming the response is linearly related 
to the covariate for each treatment. Identify the parameters in the model.

Solution The model is written as

yijk  b0 1 gi 1 tj 1 dj 
x ijk 1 eijk

where i  1, 2, 3; j  1, 2; and k  1, . . . , n. The parameters are identified as follows: 
b0 is the intercept of the regression of y on x, tj is the jth treatment effect, gi is the 
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ith block effect, dj is the slope of the regression of y on x for treatment j, and the eijks 
are the random error variables. We can write this in a generalized linear model as 

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x1x3 1 b6x1x4 1 e
where

x1  covariate
x2  1 if block 2 x2  0 otherwise
x3  1 if treatment 2 x3  0 otherwise
x4  1 if treatment 3 x4  0 otherwise

We immediately recognize this as a model relating a response y to a quantita-
tive variable x1 and two qualitative variables: blocks and treatments. An interpreta-
tion of the bs in the model is obtained from the table of expected responses shown 
in Table 16.8.

TABLE 16.8
Expected values for the  

randomized block design  
with one covariate

Block Treatment Expected Response

 1 b0 1 b1x1

1 2 (b0 1 b3) 1 (b1 1 b5)x1

 3 (b0 1 b4) 1 (b1 1 b6)x1

 1 (b0 1 b2) 1 b1x1

2 2 (b0 1 b2 1 b3) 1 (b1 1 b5)x1

  3 (b0 1 b2 1 b4) 1(b1 1 b6)x1

The model we formulated in Example 16.5 not only provides for a linear rela-
tionship between y and x1 for each of the treatments in each block but also allows 
for differences among intercepts and slopes. If we wanted to test for the equality of 
the slopes across treatments, we would use the null hypothesis

H0:  b5  b6  0

If there is insufficient evidence to reject H0, we would proceed with the reduced
model (obtained by setting b5  b6  0 in our model)

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 e

A test for differences among treatments adjusted for the covariate, when slopes 
are equal, could be obtained by fitting a complete and a reduced model for the null 
hypothesis

H0:  b3  b4  0

 16.5 RESEARCH STuDy: Evaluation of Cool-Season  
Grasses for Putting Greens
The objective of the study was to compare the mean speed of putted golf balls 
on three cultivars used on golf course greens. In Section 16.1 we described the 
research problem and why the study was being conducted. The next step in the 
process would be designing the data collection process.

Designing the Data Collection
The researchers considered the following issues in designing an appropriate exper-
iment to evaluate the cultivars:

1. What performance measures should be used to evaluate the cultivars?
2. Does the geographical region of the country affect the performance 

of the cultivar?

■
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3. Do the cultivars perform differently during differing times of the golf 
season?

4. What soil factors affect the performance characteristics of the 
cultivars?

5. How many replications per cultivar are needed to obtain a reliable 
estimate of cultivar performance?

6. What environmental factors may affect the performance of the culti-
vars during the test period?

7. What are the valid statistical procedures for evaluating differences in 
the cultivars?

8. What type of information should be included in a final report to 
document the differences in the suitability of the cultivars for use on 
golf course putting greens?

The experiment was conducted, and the data were given in Table 16.1. A plot of the 
data was presented in Figure 16.1.

Analyzing the Data
From the plot in Figure 16.1, it would appear that the response variable, speed of 
putted ball, was linearly related to relative humidity, with similar slope coefficients 
for the three cultivars. We will model the data, evaluate the model conditions, and 
then test for differences in the adjusted mean speeds for the three cultivars. Because 
there were regional differences in soil characteristics and climatic conditions, eight 
different regions of the country were selected for testing sites. At each site, there 
was a single green for each of the three cultivars. A covariate, relative humidity, was 
recorded during the time when the speed measurements were obtained on each 
green. Thus, we have a randomized complete block design with eight blocks (region 
of country), three treatments (cultivars), and a single covariate (relative humidity). 
We’ll assume a model that relates the response variable (speed of green) to the 
blocks, treatments, and covariate and that allows for different slopes for the treat-
ments (cultivars) within a region; however, we’ll also assume that a green treatment 
has the same slope across regions.

Model I: Region and cultivar differences with covariate having different slopes.

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x5 1 b6x6 1 b7x7 1 b8x8 1 b9 
x9

   1 b10 
x10 1 b11x9 

x1 1 b12x10 
x1 1 e

where

 x1  relative humidity (covariate)
 x2  1 if region 1 is used  x2  0 otherwise
 x3  1 if region 2 is used  x3  0 otherwise
 x4  1 if region 3 is used  x4  0 otherwise
 x5  1 if region 4 is used   x5  0 otherwise
 x6  1 if region 5 is used   x6  0 otherwise
 x7  1 if region 6 is used  x7  0 otherwise
 x8  1 if region 7 is used  x8  0 otherwise
 x9  1 if cultivar 1 is used  x9  0 otherwise
x10  1 if cultivar 2 is used x10  0 otherwise

The expected values for model I are shown in Table 16.9.
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Note that the cultivars have different slopes but that each cultivar has the 
same slope across regions.

To test whether the linear relationship between speed of putted ball and rela-
tive humidity is the same for the three cultivars—that is, whether the three lines 
have equal slopes—we fit a model to the data in which the three lines have the 
same slope but different intercepts.

Model II: Region and cultivar differences with covariate having equal slopes

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x5 1 b6x6 1 b7x7 1 b8x8 1 b9x9

    1 b10 
x10 1 e

The computer output from fitting these two models is given here.

MODEL I: REGION AND TREATMENT DIFFERENCES WITH COVARIATE HAVING UNEQUAL SLOPES

The GLM Procedure

Dependent Variable: S SPEED
Sum of Mean

F>rPeulaVFerauqSserauqSFDecruoS
18.57446432
0.31203151
18.88649583

1.54787203
0.02836650

54.57 <.000112Model
11rorrE

Corrected Total 23

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
0.84623766
0.21498101
0.18539490
0.13629629
0.27240763
0.05024586
0.00154873
0.01972964
0.48434458
0.02495287
0.09110959
0.13467594

0.84623766
0.21498101
0.18539490
0.13629629
0.27240763
0.05024586
0.00154873
0.01972964
0.48434458
0.02495287
0.09110959
0.13467594

29.83
7.58
6.54
4.80
9.60
1.77
0.05
0.70

17.07
0.88
3.21
4.75

0.0002
0.0188
0.0267
0.0508
0.0101
0.2101
0.8195
0.4220
0.0017
0.3684
0.1006
0.0520

1
1
1
1
1
1
1
1
1
1
1
1

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1*X9
X1*X10

------------------------------------------------------------------------------
MODEL II: REGION AND TREATMENT DIFFERENCES WITH COVARIATE HAVING EQUAL SLOPES

The GLM Procedure

Dependent Variable: S SPEED
Sum of Mean

F>rPeulaVFerauqSserauqSFDSource
Model
Error
Corrected Total

<.000118.41522972
0.47126611

18.88649583

1.84152297
0.03625124

50.8010
13
23

TABLE 16.9
 Expected values for 

model I in the case study

 Cultivar

Region 1 2 3

1 (b0 1 b2 1 b9) 1(b1 1 b11)x1 (b0 1 b2 1 b10) 1 (b1 1 b12)x1 (b0 1 b2) 1 b1x1

2 (b0 1 b3 1 b9) 1(b1 1 b11)x1 (b0 1 b3 1 b10) 1 (b1 1 b12)x1 (b0 1 b3) 1 b1x1

(  (  (  (
7 (b0 1 b8 1 b9) 1(b1 1 b11)x1 (b0 1 b8 1 b10) 1 (b1 1 b12)x1 (b0 1 b8) 1 b1x1

8 (b0 1 b9) 1(b1 1 b11)x1 (b0 1 b10) 1 (b1 1 b12)x1 b0 1 b1x1 
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DFSource

1
1
1
1
1
1
1
1
1
1

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10

Type III SS

3.12245889
0.09497230
0.15887210
0.16679129
0.23014999
0.04177024
0.01075404
0.04107013
14.08930137
3.74477234

3.12245889
0.09497230
0.15887210
0.16679129
0.23014999
0.04177024
0.01075404
0.04107013
14.08930137
3.74477234

Mean Square F Value

86.13
2.62
4.38
4.60
6.35
1.15
0.30
1.13

388.66
103.30

Pr > F

<.0001
0.1295
0.0565
0.0514
0.0256
0.3026
0.5952
0.3065
<.0001
<.0001

A test for equal slopes is obtained by testing in model I the hypotheses

H0:  b11  b12  0   versus  Ha:  b11 2 0 and /or b12 2 0

The test statistic for H0 versus Ha is

F 
1SSEII 2 SSEI 2 / 1dfEII 2 dfEI 2

MSEI


1.4713 2 .3120 2 / 113 2 11 2
.0284

 2.80

The p-value is given by P(F2, 11 $ 2.80)  .1040. Thus, the data support the hypoth-
esis that the three cultivars have the same slope. Next, we can test for differences in 
the adjusted means of the three cultivars. We fit a model in which the covariate has 
equal slopes for the three cultivars, but we remove any differences in the cultivars 
and retain differences due to the blocking variable, regions. 

Model III: Covariate with equal slopes, region differences, but no cultivar differences

y  b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x5 1 b6x6 1 b7x7 1 b8x8 1 e

The computer output from fitting this model is given here.

MODEL III: COVARIATE WITH EQUAL SLOPES, REGION DIFFERENCES,
BUT NO TREATMENT DIFFERENCES

The GLM Procedure

Dependent Variable: S SPEED

Source

Model
Error
Corrected Total

Source

X1
X2
X3
X4
X5
X6
X7
X8

DF

8
15
23

DF

1
1
1
1
1
1
1
1

Sum of
Squares

4.32038575
14.56611008
18.88649583

Type III SS

2.00762325
0.11376059
0.15977479
0.21374424
0.41270875
0.00400793
0.00004833
0.00350604

Mean Square

0.54004822
0.97107401

Mean Square

2.00762325
0.11376059
0.15977479
0.21374424
0.41270875
0.00400793
0.00004833
0.00350604

F Value

0.56

F Value

2.07
0.12
0.16
0.22
0.43
0.00
0.00
0.00

Pr > F

0.7971

Pr > F

0.1710
0.7369
0.6907
0.6457
0.5243
0.9496
0.9945
0.9529

A test for differences in the adjusted cultivar means is a test of

H0: mAdj, C1  mAdj, C2  mAdj, C3  versus  Ha: mAdj, C is not all equal.

This set of hypotheses is equivalent to testing in model II the hypotheses

H0:  b9  b10  0  versus  Ha:  b9 2 0 and /or b10 2 0

The test statistic for H0 versus Ha is

F 
1SSEIII 2 SSEII 2 / 1dfEIII 2 dfEII 2

MSEII


114.5661 2 .4713 2 / 115 2 13 2
.0363

 194.14
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The p-value is given by P(F2, 13 $ 194.14) , .0001. Thus, the data strongly sup-
port the research hypothesis that there is a difference in the adjusted mean speeds 
for the three cultivars. We can further investigate what type of differences exist in 
the three cultivars by examining the plot of the speed and relative humidity data 
values in Figure 16.5. The lines drawn through the data values were obtained from 
the parameter estimates in model II. We can observe that cultivar C3 consistently 
yields higher speeds than the other two cultivars, with cultivar C2 yielding higher 
speeds than cultivar C1.

The estimated adjusted mean speeds are given in Table 16.10 along with 
their estimated standard errors, which were used to construct 95% confidence 
intervals on the mean speeds. From the results in Table 16.10, cultivar C3 has an 
adjusted mean speed about one unit larger than that of cultivar C2, which has 
an adjusted mean speed about one unit larger than that of cultivar C1. Differ-
ences of this size in the mean speed are considered to be practical differences 
and will greatly assist golf course designers in selecting the proper cultivar for 
their course. 

FIGURE 16.5
Cultivar speeds plotted 

versus relative humidity 
readings along with fitted 
lines from the regression 

model 
C3

C3

C3

C3

C3 C3

C3

C2

C2
C2C2

C2

C2

C2

C2
C2

C1

C1
C1

C1

C1

C1C1
C1

C1

C3
C3

HUMIDITY

SPEED

Plot of SPEED by HUMIDITY
(plotting symbol is type of cultivar)

9080706050403020

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

TABLE 16.10
Estimated adjusted 

cultivar speeds with 95%  
confidence intervals

Cultivar m̂Adj SE( m̂Adj) 95% Confidence Interval

C1 7 .20 .0676 (7 .05, 7 .35)
C2 8.13 .0674 (7 .98, 8.28)
C3 9.08 .0674 (8.93, 9.23)
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Prior to using the results obtained above, the researchers must check whether 
the conditions placed on the analysis of covariance model are satisfied in this 
experiment. An examination of the following plots of the residuals and plots of 
the observed data will assist in checking on the validity of the model conditions. 
The computer printouts of the plots and analysis of the residuals from model II are 
given here.

Variable-RESIDUALS

Variable-RESIDUALS

Moments
N
Mean
Std Dev
Skewness

W:Normal

24
0

0.142759
0.522974

0.954191

Sum Wgts
Sum
Variance
Kurtosis

Pr<W

24
0

0.02038
–0.22996

0.3405

Stem Leaf
2
2
1
1
0
0

–0
–0
–1
–1
–2

79
12

3
8
11134
220
8755
433
6
40

#
2
2

1
1
5
3
4
3
1
2

Boxplot

Multiply Stem.Leaf by 10 -1

0.025

–0.225

–2 –1 0 +2+1

0.275 ++
+
+

++
++

+
++

+
+

+

++
+ ++

+

+
+

+

++

Normal Probability Plot

Univariate Procedure

+ + + +

PREDICTED

RESIDUALS

0.3

0.2

0.1

0.0

–0.2

–0.3

–0.1

A
A

A A

A

AA

A
A

AA
A

AA
A

A
A
A

A
AA

A

A

A

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Plot of RESIDUALS versus PREDICTED
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The boxplot and stem-and-leaf plot of the residuals do not indicate any 
extreme values. The normal probability plot indicates that a few residuals are some-
what deviant from the fitted line. However, the test of normality yields a p-value 
of .3405, so there is strong support for the normality of the residuals. The plot of 
the residuals versus predicted values does not indicate a violation of the equal 
variances of the residuals assumption because the spread in the residuals remains 
reasonably constant across the predicted values. The equal slopes assumption was 
tested and found to be satisfied. From the plotted values in Figure 16.5, we can 
observe that there is a linear relationship between speed and relative humidity. 
Thus, it would appear that the requisite conditions for an analysis of covariance 
have not been violated in this experiment.

 16.6 Summary

In this chapter, we presented a procedure called the analysis of covariance. Here, 
for each value of y, we also observe a value of concomitant variable x. This second 
variable, called a covariate, is recognized as an uncontrolled quantitative independ-
ent variable. Because of this fact, we can formulate models using the general linear 
model methodology of previous chapters.

In most situations when reference is made to an analysis of covariance, it 
is assumed that the response is linearly related to the covariate x, with the slope 
of the line the same for all treatment groups. Then a test for treatments adjusted 
for the covariate is performed. Actually, many people run analyses of covariance 
without checking the assumptions of parallelism. Rather than trying to force a par-
ticular model onto an experimental situation, it would be much better to postulate 
a reasonable (not necessarily linear) model relating the response y to the covariate 
x through the design used. Then by knowing the meanings of the parameters in 
the model, we can postulate hypotheses concerning the parameters and test these 
hypotheses by fitting complete and reduced models.

 16.7 Exercises

 16.2 A Completely Randomized Design with One Covariate
 Basic 16.1 A researcher designs a study to evaluate three dietary supplements that are reputed to 

lower the systolic blood pressure reading for people who have high blood pressure. A inert sup-
plement is included to evaluate the placebo effect. Twenty subjects all having systolic readings 
higher than 160 mmHg are randomly assigned to each of the supplements and to the control. The 
researcher is concerned with the disparity in age of the 80 subjects (20–60 years old) and thus 
wants to include the effect of age in the model also. Write a general linear model in which the 
response variable y, the change in systolic blood pressure after 6 months of treatment, is linearly 
related to the age of the subject A for each of the three supplements and the placebo. From previ-
ous studies, the researcher determines that the relationship between the reduction in blood pres-
sure readings and age may be substantially different for the three supplements and the placebo. 
Identify all the parameters in your model.

 Basic 16.2 Refer to Exercise 16.1. For each of the following situations, display the expected change in 
blood pressure for each of the four treatments (three supplements and placebo) in terms of your 
model parameters.

  a. The four treatment lines are not parallel.
 b. The four treatment lines are parallel but do not coincide.
 c. The four treatment lines coincide.
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 Basic 16.3 Refer to Exercise 16.1. Suppose you failed to reject the hypothesis that the four treatment 
lines are parallel, that is, the data indicates that the four slopes are equal.

 a.  Describe how would you test for differences in the adjusted treatment means. 
Make sure to include all necessary models.

 b.  Provide the form of the estimated mean response for supplement 1 for subjects of 
age 45 years.

 Basic 16.4 Refer to Exercise 16.1. After collecting the data and testing for parallelism of the four lines 
relating the reduction in blood pressure to the age of the subject, the researcher finds that there is 
significant evidence that the lines are not parallel.

 a. Describe how would you test for differences in the adjusted treatment means?
 b.  Provide the form of the estimated mean response for supplement 1 for subjects of 

age 45 years.
 c.  The researcher wants to evaluate the supplements for subjects of age 80 years or 

older. What problems may she encounter using the data in her current study, if any?

 Med. 16.5  A study was designed to evaluate treatments for hypertension. The researchers were con-
cerned that whether the patient smoked might impact the effectiveness of the treatments, so 
they also recorded the number of cigarettes smoked daily by the patients. After 1 month on 
the treatment, the treating doctors assigned each patient an index based on blood pressure, 
cholesterol level, and amount of exercise, which reflected the patient’s risk of cardiovascular 
disease (CVD). The index ranged from 0 to 100, with the higher values indicating a greater risk 
of CVD. The data are presented here with the following notation: RISK  risk index for CVD, 
NOCIG  number of cigarettes smoked daily, C  standard treatment, I  new treatment 1, 
II  new treatment 2.

Patient RISK NOCIG Treatment  Patient RISK NOCIG Treatment

  1 22  0 C  16 42  9  I
  2 26  2 C  17 50 12  I
  3 49  6 C  18 54 13  I
  4 67  8 C  19 70 17  I
  5 72 12 C  20 82 25  I
  6 19  0 C  21 12  0 II
  7 28  2 C  22 14  0 II
  8 97 20 C  23 17  2 II
  9 88 18 C  24 29  5 II
 10 30  3 C  25 37  7 II
 11  7  0  I  26 45  9 II
 12  9  0  I  27 53 11 II
 13 14  3  I  28 81 18 II
 14 18  4  I  29 93 21 II
 15 30  7  I  30 94 23 II

 a.  Write a model for the above experiment. Make sure to identify all variables and 
parameters in your model.

 b.  Provide a scatterplot of the data with regression lines that would allow a visual 
assessment of whether there is a significant relationship between the CVD risk 
index and the number of cigarettes smoked.

 c. From your scatterplot in part (b), do the three lines appear to have similar slopes?
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  16.6  Refer to Exercise 16.5.

 a.  Test the hypothesis that the relationships between risk index and number of ciga-
rettes have equal slopes for the three treatments at the a  .05 level.

 b. Does there appear to be a difference in the mean risk index for the three treatments?
 c.  Are the necessary conditions for conducting the tests of hypotheses in parts  

(a) and (b) satisfied with this data set?

 16.3 The Extrapolation Problem
 Bus. 16.7  The marketing division of a major food store chain designed the following study to evalu-

ate three different promotions for its low-fat breakfast cereals. The promotions are as follows:

  Promotion A: three boxes bundled and sold for the price of two boxes
  Promotion B: a mailed-in rebate of $1 for the purchase of a mega-sized box 
  Promotion C: a reduction of $.50 on the price for a mega-sized box

  The company wants to determine which of the three promotions produces the largest average 
increase in sales. Thirty stores were selected for participation in the 1-month promotion period, 
with 10 stores randomly assigned to one of the three promotions. The company collected data on 
the increase in sales (y, in hundreds of units sold) and the average monthly sales for the 12 months 
prior to the promotion (x, in hundreds of units). The data are given here.

 a.  Write a model for this experiment. Make sure to identify all variables and param-
eters in your model.

 b.  Provide a scatterplot of the data with regression lines that would allow a visual 
assessment of whether there is a significant relationship between the increase in 
sales and the average monthly sales figures.

 c.  From your scatterplot in part (b), do the lines associated with the three promotions 
appear to have similar slopes?

  16.8 Refer to Exercise 16.7.

 a.  Test the hypothesis that the relationships between increase in sales and average 
monthly sales have equal slopes for the three promotions at the a  .05 level.

 b.  Does there appear to be a difference in the increase in sales for the three  
promotions?

 c.  Are the necessary conditions for conducting the tests of hypotheses in parts  
(a) and (b) satisfied with this data set?

 Promotion A Promotion B Promotion C

Store y x y x y x

 1 35.7 18  5.6 25 17 .5 34
 2 36.0 22  6.1 27 17 .9 36
 3 36.3 24  7 .2 29 17 .1 38
 4 35.8 25  8.2 32 18.6 41
 5 35.1 19  8.2 31 21.0 42
 6 37 .0 22  7 .9 28 17 .7 39
 7 37 .5 24  9.5 34 22.7 46
 8 34.0 18 11.1 33 17 .1 37
 9 37 .8 24 10.0 31 19.8 39
10 37 .9 23 10.9 35 19.0 43



  16.9 Refer to Exercise 16.7.

 a.  After carefully examining the plots and data, do you see any problems associated 
with the inferences made in Exercise 16.8? Justify your answer.

 b.  If your answer in part (a) is yes, how would you redesign the study to overcome 
these problems?

 16.4 Multiple Covariates and More Complicated Designs
 Basic 16.10 In a study of allergic reactions to genetically engineered foods (GEFs), a nutritionist 

designed a study in which 20 subjects were exposed to five different GEFs. The order in which 
the subjects were exposed to the five GEFs was randomized, and there was an appropriate 
washout time between exposures. Let y be a measure of the allergic reaction to the exposures. 
The nutritionist was concerned that the subjects had very different diets in their normal habits. 
Thus, she devised an index, D, that measured the diversity in a subject’s diet, with large values 
of D indicating a widely diverse diet. After running the experhnent, the nutritionist plotted the 
data, and the scatterplot indicated a straight-line relationship between y and D.

 a.  Write a model for this experiment that allows a different slope for each  
of the five GEFs. Make sure to identify all variables and parameters in your 
model.

 b.  Indicate how you would test for parallelism among the five lines. What are the  
degrees of freedom of the F test for parallelisn?

 c.  Indicate how you would perform a test for differences in the mean allergic reactions 
to the five GEFs after adjusting for the relationship between the allergic reactions 
and the difference in diet diversity as measured by D.

 Basic 16.11  Refer to Exercise 16.10.

 a.  Write a model that allows a second-order relationship between y and D.
 b.  How would you test for parallelism of the second-order model? Include  

the research hypothesis in terms of the model parameters and the form of  
the F test.

 c.  What are the degrees of freedom of the F test for parallelism?
 d.  Indicate how you would perform a test for the effects of treatments adjusted for 

the covariate.

 Bio. 16.12  The seafood industry is constantly experimenting with different methods for maintain-
ing the quality of its product during storage. One such method used in the shrimp industry is ice 
glazing, where the shrimp are immersed in a salt-sugar solution at a low temperature, resulting 
in a thin layer of ice forming on the shrimp. The coating will hopefully limit the deterioration 
in the quality of shrimp if there is a deviation from the required storage temperature. An ex-
periment was designed to study the effect of the length of time the shrimp were immersed in 
a container of cold water, the method by which the ice glaze is applied. The immersion times 
(IMTs) were 5, 10, 15, 20, and 25 seconds at a standard storage temperature of –25°C. To help 
control for the variation in shrimp characteristics, 5 shrimp were randomly selected from each of 
six batches of shrimp. The shrimp were then randomly assigned to one of the immersion times. A 
measure of the spoilage in frozen shrimp is the total volatile base nitrogen (TVBN) level in the 
shrimp. The TVBN level of each of the 30 shrimp was measured at the end of 135 days in stor-
age. Previous studies have indicated that glycogen levels in the shrimp may have an effect on the  
development of spoilage over longer periods of storage. Thus, the glycogen levels (GL) in  
the 30 shrimp were measured prior to applying the ice glaze. The data from the study are given  
in the following table.
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946 Chapter 16 the analysis of CovarianCe 

 Batch IMT GL DVBN Batch IMT GL DVBN

 1  5 2.62 17 .53 4  5 2.45 17 .85
  10 2.61 17 .37  10 2.47 17 .74
  15 2.69 17 .40  15 2.42 17 .69
  20 2.65 17 .34  20 2.44 17 .67
  25 2.61 17 .41  25 2.41 17 .66

 2  5 3.63 16.82 5  5 2.37 17 .92
  10 3.64 16.70  10 2.36 17 .91
  15 3.54 16.79  15 2.32 17 .87
  20 3.59 16.57  20 2.39 17 .60
  25 3.61 16.48  25 2.43 17 .51

 3  5 2.83 17 .44 6  5 3.07 17 .33
  10 2.76 17 .55  10 3.11 17 .20
  15 2.85 17 .38  15 3.09 17 .15
  20 2.84 17 .26  20 3.06 17 .24
  25 2.85 17 .13  25 3.13 17 .01

 a.  Write a linear model relating the DVBN levels in the shrimp to the immersion times, 
with an adjustment for the GL levels in the shrimp prior to ice glazing.

 b.  Using a scatterplot, does there appear to be straight-line relationship between 
the DVBN and GL levels in the shrimp? Make sure to take into account the six 
batches and IMT values.

 c.  Test the research hypothesis that there is a difference in the slopes relating DVBN 
to GL across the five values of IMT.

 Bio. 16.13  Refer to Exercise 16.12.

 a.  Based on your results in Exercise 16.12, test for differences in the mean level of 
DVBN across the five levels of immersion times.

 b.  Estimate the mean level of DVBN in shrimp having an immersion time of  
20 seconds and a glycogen level of 3.0.

 Bio. 16.14  Refer to Exercise 16.12.

 a.  Test for differences in the mean levels of DVBN across the five levels of immer-
sion times without adjusting for glycogen level.

 b.  Estimate the mean level of DVBN in shrimp having an immersion time of  
20 seconds.

 c.  Based on your results in Exercise 16.13 and parts (a) and (b) of this exercise, did 
adjusting for the glycogen level have any impact on your results?

Supplementary Exercises
 Med. 16.15  An investigator studied the effects of three different antidepressants (A, B, and C) 

on patient ratings of depression. To do this, patients were stratified into six age–gender com-
binations.  From a random sample of three patients from each stratum, the experimenter ran-
domly allocated the three antidepressants. On the day the study was to be initiated, a baseline  
(pretreatment) depression scale rating was obtained from each patient. The assigned therapy 
was then administered and maintained for 1 week. At that time, a second rating (posttreatment) 
was obtained from each patient. The pre- and posttreatment ratings appear next (a higher score 
indicates more depression).



 a. Identify the experimental design.
 b.  Write a first-order model relating the posttreatment response y to the pretreat-

ment rating x1 for each treatment.

  16.16  Refer to Exercise 16.15.

 a. Use a computer program to fit the model of part (b) of Exercise 16.15. Use a  .05.
 b. Test for parallelism of the lines.
 c.  Assuming that the lines are parallel, test for differences in treatment means  

adjusted for the covariate. Use a  .05.

  16.17  Refer to Exercises 16.15 and 16.16.

 a.  Assuming parallelism of the response lines, perform a test for block differences 
adjusted for the covariate. Use a  .05.

 b.  How might you partition the block sum of squares into five meaningful single-
degree-of-freedom sums of squares?

 c. Write a model and perform the tests suggested in part (b). Use a  .05.

 Soc. 16.18  A study was designed to evaluate whether socioeconomic factors had an effect on verbal-
ization skills of young children. Four socioeconomic classes were defined, and 20 children under 
the age of six were selected for the study. The research hypothesis was that the mean verbalization 
skills would be different for the four classes. The researchers determined that for young children 
there may be significant gains in verbalization skills over only a few months. Thus, they decided to 
record the exact age (in months) of each child. The verbalization skills (measured by testing) were 
determined for each child. The data are given here.

 Pretreatment    Posttreatment
    Age

Block Gender (years)  A B C  A B C

 1 F ,20 48 36 31 21 25 17
 2 F 20–40 43 31 28 22 21 19
 3 F .40 44 35 29 18 24 18
 4 M ,20 42 38 29 26 20 17
 5 M 20–40 37 34 28 21 24 15
 6 M .40 41 36 26 18 24 19 

(coutinues)

Socioeconomic Class

 1 2 3 4

 Age Verbal Age Verbal Age Verbal Age Verbal
 (months) Skill (months) Skill (months) Skill (months) Skill

 40 26.2 20 20.8 54 34.3 27 33.1
 37 37 .5 65 39.0 27 25.1 36 37 .1
 30 19.6 51 34.3 25 27 .0 23 47 .3
 61 43.2 56 39.4 44 29.1 31 47 .3
 41 32.4 16 23.7 31 33.3 48 53.7
 21 23.5 29 23.8 39 38.4 48 59.6
 18 15.6 20 37 .2 25 14.9 16 36.0
 36 18.5 20 33.0 18 38.7 32 41.2
 16 23.6 17 21.9 17 32.7 31 44.2
 41 21.0 35 36.1 22 34.0 24 48.9
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 a.  Plot the sample data. Do verbalization skill and age appear to be linearly related 
for each of the four groups?

 b.  Write a first-order model relating verbalization skill to age with a separate line 
for each socioeconomic group.

  16.19  Refer to Exercise 16.18.
 a.  Test whether the equations relating verbalization skill to age for the four socioeco-

nomic groups are parallel lines.
 b.  Are there significant differences in the mean verbalization scores for the four 

groups? Test this hypothesis using a  .05.
 c.  Place 95% confidence intervals on the mean adjusted verbalization scores for the 

four groups.

 Engin. 16.20  A process engineer designed a study to evaluate the differences in the mean film thick-
nesses of a coating placed on silicon wafers using three different coating processes. From a batch 
of 30 homogeneous silicon wafers, 10 wafers are randomly assigned to each of the three processes. 
The film thickness (y) and the temperature (x) in the lab during the coating process are recorded 
on each wafer. The engineer is concerned that fluctuations in the lab temperature have an effect 
on the thickness of the coating. The data are given here.

 Socioeconomic Class

 1 2 3 4

 Age Verbal Age Verbal Age Verbal Age Verbal
 (months) Skill (months) Skill (months) Skill (months) Skill

 19 11.9 25 31.7 24 23.8 20 53.0
 30 10.2 21 37 .6 28 13.3 26 42.8
 26 29.8 27 26.0 23 32.4 24 50.8
 28 20.6 25 20.3 17 36.2 33 42.1
 16 13.5 25 32.6 26 33.7 21 42.6
 28 17 .2 28 25.8 23 29.2 25 45.0
 19 29.3 33 21.2 26 33.2 37 59.8
 34 25.6 16 36.3 35 28.5 36 37 .9
 20 25.6 22 34.2 31 31.4 19 38.9
 18 18.4 23 17 .7 37 39.2 34 45.0

(coutinues)

 Wafer x y Process  Wafer x y Process

  1 26 100 P1  16 35 159 P2
  2 35 150 P1  17 26 126 P2
  3 28 106 P1  18 30 141 P2
  4 31  95 P1  19 32 147 P2
  5 29 113 P1  20 31 143 P2
  6 34 144 P1  21 37 124 P3
  7 30 114 P1  22 31 95 P3
  8 27  97 P1  23 34 120 P3
  9 32 128 P1  24 27 86 P3
 10 33 132 P1  25 28 98 P3
 11 24 118 P2  26 25 81 P3
 12 28 134 P2  27 29 96 P3
 13 29 138 P2  28 30 99 P3
 14 32 147 P2  29 35 118 P3
 15 36 165 P2  30 32 107 P3



 Region Plot Stems Species FisherAlpha ShannonH Topography Age Ppt PptDry

 1  1 400 84 31.41 3.13 2 3 2,589 697
 1  2 409 90 35.67 3.90 2 3 2,586 696
 1  3 365 98 40.91 3.82 2 3 2,579 695
 1  4 450 87 33.92 4.06 2 3 2,572 693
 1  5 364 93 32.80 3.43 2 3 2,594 697
 1  6 480 75 22.67 3.62 2 3 2,589 697
 1  7 457 78 28.81 3.89 1 2 2,529 667
 1  8 467 75 25.73 3.70 3 3 2,516 647
 1  9 461 74 23.59 3.02 3 2 2,497 618
 1 10 429 60 16.15 3.89 3 2 2,576 659
 1 11 519 92 38.53 3.66 1 3 2,535 652
 2 12 380 50 17 .48 3.95 3 1 1,888 524
 2 13 560 49 17 .96 3.54 3 1 1,890 525
 2 14 503 57 23.57 3.91 3 1 1,892 525
 2 15 403 58 21.49 3.65 3 1 1,887 524
 2 16 172 65 23.33 3.79 3 1 1,969 568
 2 17 186 64 24.83 3.98 3 1 2,096 638
 3 18 449 63 21.02 3.43 1 2 2,993 720
 3 19 520 84 32.03 3.33 3 3 3,072 780
 3 20 647 74 28.02 2.44 3 1 3,007 811
 3 21 381 94 54.76 3.93 3 1 3,000 810
 3 22 409 88 31.16 3.76 3 2 3,026 792
 3 23 408 81 26.63 3.97 3 2 3,026 792
 3 24 407 65  20.2 3.74 3 2 3,028 792

 a.  Plot the thickness of the coating versus the temperature in the lab.
 b.  Do the thickness and temperature appear to be linearly related for each of the 

three processes?
 c.  Write a model relating the thickness of the coating to the coating process with ad-

justments for the temperature in the lab during coating.
 d. Use a computer program to fit the model in part (c).

  16.21  Refer to Exercise 16.20.
 a. Test whether the three equations relating thickness to temperature are parallel.
 b.  Test at the a  .05 level if there is a significant difference in the mean thicknesses of 

the coating from the three processes after adjusting for the temperature in the lab.
 c.  Place 95% confidence intervals on the mean adjusted thicknesses of the coating 

for the three processes.

  16.22  Refer to Exercise 16.21.
 a.  Test at the a  .05 level if there is a significant difference in the mean thicknesses of 

the coating from the three processes without taking into account the temperature in 
the lab.

 b.  Are your conclusions from part (a) consistent with your conclusions from  
Exercise 16.21? Explain your answer.

 Bio. 16.23  Pyke et al. (2001 ) describe a study that deals with the floristic composition of lowland 
tropical forest in the watershed of the Panama Canal. The following variables were measured 
on 45 plots in five regions: Stems—number of tree stems; Species—number of tree species; 
Fisher’s alpha and Shannon index (H), which are measures of biodiversity of the foliage; To-
pography—l  level terrain, 2  sloping, 3  irregular; Age—1  secondary forest, 2  mature 
secondary, 3  old growth, primary forest; Ppt  annual precipitation (mm); PptDry  dry 
season precipitation (mm).

(coutinues)

16.7 exercises    949



950 Chapter 16 the analysis of CovarianCe 

(coutinued)

 Region Plot Stems Species Fisher Alpha ShannonH Topography Age Ppt PptDry

 3 25 526 75 23.92 3.42 3 2 3,030 793
 3 26 597 70 17 .40 2.65 3 1 3,032 793
 4 27 531 71 26.33 3.75 2 2 2,414 621
 4 28 484 78 26.41 3.55 3 2 2,394 612
 4 29 526 93 39.27 3.81 3 1 2,438 638
 4 30 954 94 32.32 3.06 3 3 2,456 635
 4 31 424 107 41.60 3.53 3 3 2,889 924
 4 32 534 91 34.13 3.70 1 3 2,455 646
 4 33 405 90 33.17 3.76 3 3 2,502 707
 4 34 508 63 19.73 3.37 3 3 2,471 679
 4 35 579 86 32.37 2.70 1 2 2,511 645
 4 36 557 89 30.92 2.95 3 1 2,688 743
 4 37 593 90 31.01 3.80 3 1 2,658 737
 5 38 485 78 28.73 3.41 3 1 2,411 662
 5 39 393 75 24.30 3.45 3 1 2,514 722
 5 40 408 60 16.82 3.33 3 2 2,248 585
 5 41 355 60 17 .07 3.33 3 2 2,280 602
 5 42 302 84 26.26 3.16 3 2 2,334 641
 5 43 466 76 25.30 4.55 3 2 2,252 591
 5 44 148 61 20.21 4.40 3 1 2,305 681
 5 45 191 62 20.35 4.11 3 1 2,294 668

 a.  Is there significant evidence of a difference among the three age classifications of 
the forests relative to their biodiversity as measured by Fisher’s alpha. Use annual 
precipitation to adjust for differences in the five regions.

 b.  Provide a grouping of the three age classifications based on their adjusted mean 
Fisher’s alpha.

 c.  Using residual plots, evaluate whether the conditions needed to properly answer 
parts (a) and (b) are valid for this data set.

 Bio. 16.24  Refer to Exercise 16.23.
 a.  Is there significant evidence of a difference among the three topography classifica-

tions of the forests relative to their biodiversity as measured by Fisher’s alpha. Use 
annual precipitation to adjust for differences in the five regions.

 b.  Provide a grouping of the three topography classifications based on their adjusted 
mean Fisher’s alpha.

 c.  Using residual plots, evaluate whether the conditions needed to properly answer 
parts (a) and (b) are valid for this data set.

 Bio. 16.25  Refer to Exercise 16.23. Researchers have opined that in many forests the Shannon 
index is a more complete measure of biodiversity than Fisher’s alpha. Repeat Exercises 16.23 and 
16.24 using Shannon’s index in place of Fisher’s alpha as a measure of biodiversity. Are there any 
differences in your conclusions?

 Bio. 16.26  Refer to Exercise 16.23. Biologists have noted that in many environments the annual 
precipitation is not the crucial factor in the survival of many types of foliage; rather, it is the 
amount of precipitation during the dry season. Repeat Exercises 16.23 and 16.24 using the dry 
season precipitation in place of the annual precipitation. Are there any differences in your 
conclusions?



 Bio. 16.27  In Exercises 16.23–16.26, conclusions were drawn separately for the effects of age and to-
pography on biodiversity of the forests. Using the separate analyses, it is not possible to determine 
if the effects of age are consistent for the three types of topography.

  a.  Write a model relating Fisher’s alpha to the main effects and interaction of age 
and topography, using annual precipitation as the adjustment for differences in the 
five regions.

 b.  If possible, conduct an analysis of the combined effects of age and topography 
on the biodiversity of the forests with an adjustment for annual precipitation 
differences across the five regions.

 c.  If it was not possible to conduct the analysis requested in part (b), modify the 
factors age and topography in such a manner that an analysis can be conducted.
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 17.1 Introduction and Abstract of Research Study

The experiments and studies we encountered in previous chapters all involved 
 experimental factors and treatments in which the researchers selected particular 
levels of the treatments for study. These were the only levels for which inferences 
would be made from the experimental data. The case study in Chapter 16 involved 
three new cultivars, and these were the only cultivars of interest to the researchers. 
In this experiment, the only populations of interest were the three populations of 
greens speeds for the three cultivars.

If the USGA decided it was necessary to repeat the experiments in order 
to verify the mean speeds obtained in the original experiment, the three cultivars 
could be planted on another set of greens and the experiments duplicated. In a 
study or experiment involving factors having a predetermined set of levels, the 
model used to examine the variability in the response variable is referred to as a 
fixed-effects model. The inferences from these models are restricted to the particu-
lar set of treatment levels used in the study.

fixed-effects
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The major interest in some studies is to identify factors that are sources of 
variability in the response variable. In product improvement studies, the quality con-
trol engineer attempts to determine which factors in the production process are the 
major sources of variability, referred to as variance components, and to estimate the 
contribution of each of these sources of variability to the overall variability in the 
product. When the levels of the factors to be used in the experiment are  randomly 
selected from a population of possible levels, the model used to relate the response 
variable to the levels of the factors is referred to as a random-effects model. The 
inferences from these models are generalized to the population of  levels from the 
levels used in the experiment, which were randomly selected. In a product improve-
ment study, one of the common sources of variability is the operator of the process. 
The company may have hundreds of operators, but only five or six will be randomly 
selected to participate in the study. However, the quality engineer is interested in the 
performance of all operators, not only the operators that are involved in the study.

variance components

random-effects

In a fixed-effects model for an experiment, all the factors in the experiment 
have a predetermined set of levels, and the only inferences are for the levels 
of the factors actually used in the experiment.

DEFINITION 17.1

In a random-effects model for an experiment, the levels of factors used in the 
experiment are randomly selected from a population of possible levels. The 
inferences from the data in the experiment are for all levels of the factors in 
the population from which the levels were selected and not only the levels 
used in the experiment.

DEFINITION 17.2

Many studies will involve factors having a predetermined set of levels and 
factors in which the levels used in the study are randomly selected from a popula-
tion of levels. The blocks in a randomized complete block design might represent a 
random sample of b plots of land taken from a population of plots in an agricultural 
 research facility. Then the effects due to the blocks are considered to be random 
 effects. Suppose the treatments are four new varieties of soybeans that have been 
developed to be resistant to a specific virus. The levels of the treatment are fixed 
 because these are the only varieties of interest to the researchers, whereas the lev-
els of the plots of land are random because the researchers are interested in the 
effects of these treatments not only on these plots of land but also on a wide range 
of plots of land. When some of the factors to be used in the experiment have levels 
randomly selected from a population of possible levels and other factors have 
predetermined levels, the model used to relate the response variable to the levels 
of the factors is referred to as a mixed-effects model.

In a mixed-effects model for an experiment, the levels of some of the factors 
used in the experiment are randomly selected from a population of possible 
levels, whereas the levels of the other factors in the experiment are prede-
termined. The inferences from the data in the experiment concerning factors 
with fixed levels are only for the levels of the factors used in the  experiment, 
whereas inferences concerning factors with randomly selected  levels are for 
all levels of the factors in the population from which the levels were selected.

DEFINITION 17.3
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In this chapter, we will consider various random-effects and mixed-effects 
models. For each model, we will indicate the appropriate analysis of variance and 
show how to estimate all relevant components of variance. The following research 
study will describe a mixed-effects experiment.

Abstract of Research Study: Factors Affecting  
Pressure Drops Across Expansion Joints
A major problem in power plants is that of pressure drops across expansion joints 
in electric turbines. The process engineer wants to design a study to identify the 
factors that are most likely to influence the pressure drop readings. Once these 
 factors are identified and the most crucial factors are determined by the sizes of 
their contributions to the pressure drops across the expansion joints during the 
study, the engineer can make design changes in the process or alter the method 
by which the operators of the process are trained. These types of changes may be 
expensive or time consuming, so the engineer wants to be certain which factors will 
have the greatest impact on reducing the pressure drops.

The factors selected for study are the gas temperature on the inlet side of the 
joint and the type of pressure gauge used by the operator. The engineer decides 
that a design with a factorial treatment structure is required to determine which 
of these factors has the greatest effect on the pressure drop. Three temperatures 
that cover the feasible range for operation of the turbine are 15°C, 25°C, and 
35°C. There are hundreds of different types of pressure gauges used to monitor 
the pressure in the lines. Four types of gauges are randomly selected from the list 
of possible gauges for use in the study. In order to obtain a precise estimate of the 
mean pressure drop for each of the 12 combinations of temperature and type of 
gauge, it was decided to obtain six replications of each of 12 treatments. The data 
from the 72 experimental runs are given in Table 17.1.

In order to determine if the observed differences displayed in Table 17.1 
are more than just random variation, we will develop models and analysis tech-
niques in the remainder of this chapter to enable us to identify which factors make 
the greatest contribution to the overall variation in the pressure drop across the 
 expansion joints.

TABLE 17.1  Pressure drop across expansion joints

Temperature

 15°C 25°C 35°C

 G1 G2  G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

 40 43 42 47 57 49 44 36 35 41 42 41
 40 34 35 47 57 43 45 49 35 43 41 44

 37 38 35 40 65 51 49 38 35 44 34 35

 47 42 41 36 67 49 45 45 46 36 35 46

 42 39 43 41 63 45 46 38 41 42 39 44

 41 35 36 47 59  43 43 42 42 41 36 46

Mean 41.17 38.50  38.67 43.00 61.33 46.67 45.33 41.33 39.00 41.17 37 .83 42.67
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 17.2 A One-Factor Experiment with Random  
Treatment Effects

The best way to illustrate the difference between the fixed- and random-effects 
models for a one-factor experiment is by an example. Suppose we want to compare 
readings made on the intensities of the electrostatic discharges of lightning at three 
different tracking stations within a 20-mile radius of the central computing facilities 
of a university. If these three tracking stations are the only feasible tracking stations 
for such an operation and inferences are to be about these stations only, then we 
could write the fixed-effects model as

yij  m 1 ti 1 eij    with mi  E(yij)  m 1 ti

where yij is the jth observation at tracking station i (i  1, 2, 3), m is an overall 
mean, and ti is a fixed effect due to tracking station i. For both of these models, e is 
assumed to be normally distributed with mean 0 and variance s2.

Suppose, however, that rather than being concerned about only these three 
tracking stations, we consider these stations as a random sample of three taken 
from the many possible locations for tracking stations. Inferences would now 
relate not only to what happened at the sampled locations but also to what might 
happen at other possible locations for tracking stations. A model that can account 
for this difference in interpretation is the random-effects model:

yij  m 1 ti 1 eij    with mi  E(yij)  m

Although the model looks the same as the previous fixed-effects model, some of 
the assumptions are different.

 1. m is still an overall mean, which is an unknown constant.
 2. ti is a random effect due to the ith tracking station. We assume that 

ti is normally distributed with mean 0 and variance s2
t.

 3. The tis are independent.
 4. As before, eij is normally distributed with mean 0 and variance s2

e.
 5. The eijs are independent.
 6. The random components ti and eij are independent.

The difference between the fixed-effects model and the random-effects 
model can be illustrated by supposing we were to repeat the experiment. For the 
fixed-effects model, we would use the same three tracking stations, so it would 
make sense to make inferences about the mean intensities or differences in mean 
intensities at these three locations. However, for the random-effects model, we 
would take another random sample of three tracking stations (i.e., take another 
sample of three tis). Now, rather than concentrating on the effect of a particular 
group of three tis from one experiment, we would examine the variability of the 
population of all possible ti values. This will be illustrated using the analysis of 
variance table given in Table 17.2.

fixed-effects model

random-effects model

assumptions

TABLE 17.2
An AOV table for a  

one-factor experiment:  
fixed or random model

 EMS

Source SS df MS Fixed Effects Random Effects

Treatments SST t 2 1 MST s2
e 1 nut s2

e 1 ns2
t

Error SSE t(n 2 1) MSE s2
e s2

e

Totals TSS tn 2 1
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The analysis of variance table is the same for a fixed- or random-effects 
model except that the expected mean squares (EMS) columns are  different. You 
will recall that this column was not used in our tables in Chapters 14 and 15 because 
all mean squares except MSE had an expectation under the alternative hypothesis 
equal to s2

e plus a positive constant, which depended on the  parameters under test. 
In general, with t treatments (tracking stations) and n observations per treatment, 
the AOV table would appear as shown in Table 17.2. For the fixed-effects model, 
ut is a positive function of the constants ti, whereas s2

t represents the variance of 
the population of ti values for the  random-effects model. Referring to our exam-
ple, a test for the equality of the mean intensities at the three tracking stations in 
the fixed-effects model is (from Chapter 14)

 H0: m1  m2  m3

 Ha: At least one mi is different from the rest.

In terms of model parameters:

 H0: t1  t2  t3  0
 Ha: At least one ti is different from 0.
 T.S.: F  MST/MSE, based on df1  t 2 1 and df2  t(n 2 1)

A test concerning the variability for the population of t values in the  random- 
effects model makes use of the same test statistic. The null hypothesis and 
 alter native hypothesis are

 H0: st
2  0

 Ha: st
2 . 0

 T.S.: F  MST/MSE, based on df1  t 2 1 and df2  t(n 2 1)

Because we assumed that the tis sampled were selected from a normal population 
with mean 0 and variance st

2, the null hypothesis states that the tis were drawn 
from a normal population with mean 0 and variance 0; that is, all t values in the 
population are equal to 0.

Thus, although the forms of the null hypotheses are different for the two 
models, the meanings attached to them are very similar. For the fixed-effects model, 
we are assuming that the three ts in the model (which are the only ts) are identically 
0, whereas in the random-effects model, the null hypothesis leads us to assume that 
the sampled ts, as well as all other ts in the population, are 0.

The alternative hypotheses are also similar. In the fixed-effects model, we 
are assuming that at least one of the ts is different from the rest; that is, there is 
some variability among the set of ts. For the random-effects model, the alterna-
tive  hypothesis is that s2

t . 0; that is, not all t values in the population are the 
same.

In a random-effects model with a single factor, the response variable has a 
mean value and variance given by

E(yij)  m  and  s2
y  Var(yij)  s2

t 1 s2
e

Thus, in many random-effects experiments, we want to determine the size of s2
t 

relative to that of s2
e in order to assess the size of the treatment effect relative to 

the overall variability in the response variable. Because we do not know s2
t or s2

e, 
we can form estimates of these terms by using the idea of AOV moment matching 
estimators. From Table 17.3, we see that MST has an expected mean square of 
s2

e 1 ns2
t and MSE has an expected mean square of s2

e.

EMS

AOV table

test for means

test for s2
t

AOV moment 
matching
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When we equate the sample mean square to its expected value and solve for 
the population variance, we get

ŝ2
e  MSE  and  ŝ2

t  1MST 2 MSE 2 /n

As a result, we have ŝ2
y  ŝ2

t 1 ŝ2
e. The variance in the response variable can thus 

be proportionally allocated to the two sources of variability, the treatment and the 
experimental error, shown in Table 17.4.

TABLE 17.4
Proportional allocation  

of total variability in the  
response variable

Source of Variance Estimator Proportion of Total

Treatment ŝ2
t  (MST 2 MSE)/n ŝ2

t /ŝ2
y

Error ŝ2
e  MSE ŝ2

e /ŝ2
y

Total ŝ2
y  ŝ2

t 1 ŝ2
e 1.0

Source MS EMS

Treatments MST s2
e 1 ns2

t

Error MSE s2
e

TABLE 17.3
AOV table with expected 

mean squares

It might also be of interest to the researchers to estimate the mean value for 
the response variable, m. The point estimator of m and its estimated standard error 
are given by

m̂  y..  and  SE 1m̂ 2  ËMST /tn
We can then construct a 100(1 2 a)% confidence interval for m, as given here.

m̂ 6 ta/ 2, dfTRT 
SE 1m̂ 2  y.. 6 ta/ 2, t 21ËMST /tn

EXAMPLE 17.1

Consider the problem we used to illustrate a one-factor experiment with random 
treatment effects. Two graduate students working for a professor in electrical engi-
neering have been funded to record lightning discharge intensities (intensities of 
the electrical field) at three tracking stations. Because of the high frequency of 
thunderstorms in the summer months (in Florida, storms occur on 80 or more days 
per year), the graduate students were to choose a point at random on a map of the 
20-mile-radius region and assemble their tracking equipment (provided they could 
get permission of the property owner). Each day from 8 a.m. to 5 p.m., they were to 
monitor their instruments until the maximum intensity had been recorded for five 
separate storms. They then repeated the process separately at the two other loca-
tions chosen at random. The sample data (in volts per meter) appear in Table 17.5.

TABLE 17.5
Lightning discharge 
intensities (in volts  

per meter)

Tracking Station Intensities   Mean

1 20 1,050 3,200 5,600 50 1,984
2 4,300 70 2,560 3,650 80 2,132
3 100 7,700 8,500 2,960 3,340 4,520

Overall mean 2,878.67
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 a. Write an appropriate statistical model, defining all terms.
 b. Perform an analysis of variance and interpret your results. Use 

a  .05.
 c. Estimate the variance components and their proportional allocations 

of the total variability.
 d. Estimate the mean maximum daily lightning discharge intensity, and 

place a 95% confidence on this mean.

Solution a. Because the tracking stations were selected at random, we can use a 
 single-factor random-effects model to relate maximum lightning discharge inten-
sity, yij, to the ith station and jth day.

yij  m 1 ti 1 eij  (i  1, 2, 3;  j  1, 2, . . . , 5)

where m is the mean maximum daily lightning discharge intensity, ti is the random 
effect of the ith randomly selected station, and eij is the random effect due to all 
other sources of variability. 

b. The formulas for computing the sums of squares for the  random-effects analysis 
of variance are identical to the formulas used in the fixed- effects analysis of vari-
ance. Thus, we have

 SST  na
i

1yi. 2 y.. 2 2  55 11,984 2 2,878.67 2 2 1 12,132 2 2,878.67 2 2

 1 14,520 2 2,878.67 2 26  20,259,573.3

 TSS  a
ij

1yij 2 y.. 2 2  120 2 2,878.67 2 2 1 11,050 2 2,878.67 2 2

 1 c1 13,340 2 2,878.67 2 2  108,249,173.3

By subtraction,

SSE  TSS 2 SST  108,249,173.3 2 20,259,573.3  87,989,600

We can use these calculations to construct an AOV table, as shown in Table 17.6.

TABLE 17.6
AOV table for the data  

of Example 17.1

Source SS df MS EMS F

Tracking stations  20,259,573.3  2 10,129,786.65 s2
e 1 5s2

t 1.38
Error  87,989,600.0 12  7,332,466.67 s2

e

Totals 108,249,173.3 14

The F test for H0: s2
t  0 is based on df1  2 and df2  12. Because the com-

puted value of F, 1.38, does not exceed 3.89, the value in Appendix Table 8 for 
a  .05, df1  2, and df2  12, we have insufficient evidence to indicate that there is 
a significant random component due to variability in intensities from tracking sta-
tion to tracking station. Rather, as an electrical engineer postulated, it is probably 
best to work with a single tracking station because most of the variability in intensi-
ties is related to the distance of the tracking station from the point of discharge and 
we have no control over this source. 

c. In fact, we can compute estimates of the variance components and obtain

ŝ2
e  7,332,466.67    ŝ2

t  (10,129,786.65 2 7,332,466.67)/5  559,464
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which yields
ŝ2

y  7,332,466.67 1 559,464  7,891,930.67

The proportion of the total variability due to station differences is 559,464/7,891, 
930.67  .0709. Thus, only 7.1% of the variability in maximum daily lightning intensi-
ties is due to station differences. 

d. We can place a 95% confidence interval on the mean maximum daily lightning 
intensity as given here.

y.. 6 t.025, 2 SE 1m̂ 2
2,878.67 6 (4.303)Ë10,129,786.65 /15  2,878.67 6 3,536.11

Thus, we are 95% confident that the mean daily maximum lightning intensity is 
within (0, 6,414.78). ■

 17.3 Extensions of Random-Effects Models

The ideas presented for a random-effects model in a one-factor experiment can 
be extended to any of the block designs and factorial experiments covered in 
Chapters 14 and 15. Although we will not have time to cover all such situations, 
we will consider first a randomized block design in which the block effects and the 
treatment effects are random.

EXAMPLE 17.2

An experiment was designed to examine if there was a large variation in the DNA 
content of plaque due to the difference in the skills and training of the analysts 
conducting the chemical analysis. A random sample of five analysts was taken from 
the population of analysts certified to conduct the DNA analysis. Ten female sub-
jects (ages 18–20) were chosen for the study. Each subject was allowed to maintain 
her usual diet, supplemented with 30 mg of sucrose per day. No brushing of teeth 
or use of mouthwash was allowed during the study. At the end of the week, plaque 
was scraped from the entire dentition of each subject and divided into five samples. 
Each of the five randomly selected analysts was then given an unmarked sample 
of plaque from each of the 10 subjects. An analysis for the DNA content (in micro-
grams) was then performed. The data are shown in Table 17.7. Identify the design 
and provide a model for this experiment.

Solution This experimental design is recognized as a randomized block design, 
with subjects representing blocks and analysts being the treatments. The experi-
mental units are samples of plaque scraped from the dentition of the subjects. If we 
 assume that the 10 subjects represent a random sample from a large population of 

randomized block 
design

TABLE 17.7
DNA concentrations  

in plaque (micrograms)

 Subjects

Analyst 1 2 3 4 5 6 7 8 9 10 Mean

1 5.2 6.0 7 .2 7 .8 9.2 10.9 12.0 12.9 14.0 14.9 10.03
2 4.8 6.1 6.9 7 .9 9.1 11.0 12.2 12.8 13.9 15.1 9.99
3 5.4 6.2 7 .2 8.3 9.4 11.4 12.4 13.6 14.2 15.2 10.32
4 5.2 6.2 7 .4 8.3 9.6 10.9 12.2 13.2 14.3 15.6 10.30
5 5.7 7 .0 7 .9 8.8 9.7 11.7 12.8 13.9 15.0 15.7 10.81

Mean 5.26 6.30 7 .31 8.21 9.39 11.19 12.31 13.32 14.32 15.30 10.29
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possible  subjects and, similarly, that the five analysts represent a random sample from 
a large population of possible analysts, we can write the following random-effects 
model  relating DNA concentration to the two factors, analysts and subjects:

yij  m 1 ti 1 bj 1 eij

Model Conditions:

 1. m is an overall unknown concentration mean.
 2. ti is a random effect due to the ith analyst. ti is normally distributed 

with mean 0 and variance s2
t.

 3. The tis are independent.
 4. bj is a random effect due to the jth subject. bj is a normally distributed 

random variable with mean 0 and variance s2
b.

 5. The bjs are independent.
 6. The tis, bjs, and eijs are mutually independent.

Again note the difference between assuming that the treatments and blocks 
are random, and assuming that they are fixed. If, for example, the five analysts cho-
sen for the study were the only analysts of interest, we would be concerned with 
differences in mean DNA concentrations for these specific analysts. Now, however, 
treating the effect due to an analyst as a random variable, our inference will be about 
the population of analysts’ effects. Because the mean of this normal population is 
assumed to be 0, we want to determine whether the variance s2

t is greater than 0. ■

The AOV table for a randomized block design with t treatments is given in 
Table 17.8. There are two columns for the expected mean squares. The first col-
umn is for the situation in which the treatment and block effects are fixed, and the 
second column is for the situation in which the treatment and block effects are ran-
dom. The formulas for sum of squares block (SSB) and sum of squares treatment 
(SST) are identical to the formulas used when both the block and treatment effects 
are fixed, as were developed in Chapter 15. Likewise, the F tests are identical to 
the F tests for experiments having both block and treatment effects fixed. How-
ever, there is a major difference between the two models with respect to the types 
of inferences made from the results of the F tests. In the fixed block effects case, 
inferences are restricted to the levels of the blocks used just in the experiment. 
In the random block effects case, we are making inferences about the population 
of blocks from which the blocks used in the experiment were randomly selected. 
This provides for more general and realistic results in that the block effects often 
involve not only the physical entities (subjects in Example 17.2) but also differ-
ences in the environmental conditions encountered during the experiment. The 
differences in the inferences between fixed and random effects are reflected in the 
expected mean squares.

random-effects model

assumptions

TABLE 17.8
AOV table for a 

randomized block design 
with r blocks and  

t treatments

 EMS

    Fixed TRT, BL  Random TRT, BL 
Source SS df MS Effects Effects

Block SSB r 2 1 MSB s2
e 1 tub s2

e 1 ts2
b

Treatment SST t 2 1 MST s2
e 1 rut s2

e 1 rs2
t

Error SSE (r 2 1)(t 2 1) MSE s2
e s2

e

Total TSS rt 2 1



17.3 extensions of Random-effects models    961

The computation of sums of squares and mean squares would proceed 
exactly as shown in Chapter 15. The difference in test procedures is illustrated in 
Table 17.9 for treatments.

Rather than proceeding with an example at this point, we will discuss a 
random-effects model for a factorial treatment structure with n . 1 observations 
at each factor–level combination. Then we will illustrate the test procedure.

In Chapter 14, we considered the fixed-effects model for an a 3 b factorial 
treatment structure in a completely randomized design with n . 1 observations per 
cell. The random-effects model for an a 3 b factorial treatment structure would be 
of the same form as the corresponding model for a fixed-effects experiment, but 
with different assumptions:

yijk  m 1 ti 1 bj 1 tbij 1 eijk

where yijk is the response of the kth observation at the ith level of factor A and jth 
level of factor B; m is the overall mean response; ti is the main effect of the ith level 
of factor A; bj is the main effect of the jth level of factor B; tbij is the interaction 
 effect of the ith level of factor A combined with the jth level of factor B; and eijk is 
the random effect. The model conditions are as follows.

Model Conditions:

 1. m is the overall mean response (an unknown population parameter).
 2. ti is a random effect due to the ith level of factor A with tis indepen-

dently normally distributed with mean 0 and variance s2
t.

 3. bj is a random effect due to the jth level of factor B with bjs indepen-
dently normally distributed with mean 0 and variance s2

b.
 4. tbij is a random effect due to the ith level of factor A combined 

with the jth level of factor B with tbijs independently normally 
distributed with mean 0 and variance s2

tb.
 5. eijk is the random effect due to all other factors with eijks indepen-

dently normally distributed with mean 0 and variance s2
e.

 6. The tis, bjs, tbijs, and eijks are mutually independent.

The appropriate AOV tables for fixed- and random-effects models are shown 
in Table 17.10.

The appropriate tests using the AB interaction sum of squares are illustrated 
in Table 17.11 for the two models.

Now, unlike the one-factor experiment and the two-factor experiment 
without replication, the test statistics for main effects are different for the fixed- 
and  random-effects models. In addition, for the random-effects model, the tests for 
s2

t and s2
b can proceed even when the test on the AB interaction (s2

tb) is signifi-
cant. We have seen previously that for fixed-effects models, a test for main effects 

a 3 b factorial 
treatment structure, 

n + 1

AOV tables

TABLE 17.9
Difference in test 

procedures for treatments

Fixed-Effects Model Random-Effects Model

H0: t1  t2  . . .  tt  0 H0: s2
t  0

Ha: At least one of the tis differs from the rest. Ha: s2
t . 0

T.S.: F 
MSA
MSE  

T.S.: F 
MSA
MSE

R.R.: Based on df1  t 2 1 and df2  (t 2 1)(b 2 1) R.R.: Same
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in the presence of a significant interaction seems to make sense only when the 
profile plot suggests that the interaction is ‘‘orderly.’’ For random-effects models, 
we are interested in identifying the various sources of variability (e.g., s2

tb, s2
t, and 

s2
b) that affect the response y. Tests for s2

t and s2
b do make sense even when s2

tb 
has been shown to be greater than zero.

For the fixed-effects model following a nonsignificant test on the AB interac-
tion, we can test for main effects due to factors A and B by using

F 
MSA
MSE

   and   F 
MSB
MSE

respectively. As we see from the expected mean squares column of Table 17.10, 
no matter what the results are for the test H0: s2

tb  0, we can form an F test for 
the components s2

t and s2
b using the test procedures shown in Table 17.12. Note 

that the test statistics differ from those used in the fixed-effects case, where the 
denominator of all F statistics is MSE.

In many experiments involving factors having random effects, we will want 
to estimate the variance components s2

t, s
2
b, s2

tb, and s2
e . We can once again use 

the AOV moment matching estimators, which are obtained by matching the 
sample mean squares with the expected mean squares in the AOV table and then 

variance components

TABLE 17.10
AOV table for an a 3 b

factorial treatment 
structure with n 

observations per cell

 EMS

Source SS df MS Fixed Effects Random Effects

A SSA a 2 1 MSA s2
e 1 bnut s2

e 1 ns2
tb 1 bns2

t

B SSB b 2 1 MSB s2
e 1 anub s2

e 1 ns2
tb 1 ans2

b

AB SSAB (a 2 1)(b 2 1) MSAB s2
e 1 nutb s2

e 1 ns2
tb

Error SSE ab(n 2 1) MSE s2
e s2

e

Total TSS abn 2 1   

TABLE 17.11
A comparison of 

appropriate interaction 
tests for fixed- and 

random-effects models

Fixed-Effects Model Random-Effects Model

 H0: tb11  tb12  . . .  tbab  0 H0 : s2
tb  0

 Ha: At least one tbij differs from the rest. Ha: s2
tb . 0

 T.S.: F 
MSAB
MSE  

T.S.: F 
MSAB
MSE

 R.R.: Based on df1  (a 2 1)(b 2 1) and df2  ab(n 2 1) R.R.: Same

TABLE 17.12
Tests for an a 3 b 

factorial treatment 
structure with  replication: 

random-effects model

 Factor A Factor B

 H0: s2
t  0 H0: s2

b  0

 Ha: s2
t . 0 Ha: s2

b . 0

 T.S.: F 
MSA

MSAB 
T.S.: F 

MSB
MSAB

 R.R.: Based on df1  (a 2 1) and R.R.: Based on df1  (b 2 1) and
      df2  (a 2 1)(b 2 1)  df2  (a 2 1)(b 2 1)
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solving for the individual variance components. Using the MSs and EMSs in 
Table 17.10, we obtain

 ŝ2
e  MSE

 ŝ2
tb  1MSAB 2 MSE 2 /n

 ŝ2
b  1MSB 2 MSAB 2 /an

and
ŝ2

t  1MSA 2 MSAB 2 /bn

Also, from the random-effects model for two factors having randomly selected 
 levels, we have

E 1yijk 2  m and s2
y  s2

t 1 s2
b 1 s2

tb 1 s2
e

Thus, we have ŝ2
y  ŝ2

t 1 ŝ2
b 1 ŝ2

tb 1 ŝ2
e. We can then proportionally allocate the 

total variability ŝ2
y into the four sources of variability: factor A, factor B, the inter-

action, and experimental error. See Table 17.13.
The researchers might also be interested in estimating the mean value for the 

response variable, m. The point estimator of m and its estimated standard error are 
given by

m̂  y...  and  SE 1 m̂ 2  Ë 1MSA 1 MSB 2 MSAB 2 /abn

We can then construct a 100(1 2 a)% confidence interval for m, as given here.

y... 6 ta/2, dfApprox.
 Ë 1MSA 1 MSB 2 MSAB 2 /abn

where the degrees of freedom for the t tables are obtained from the Satterthwaite 
approximation:

dfApprox. 
1MSA 1 MSB 2 MSAB 2 2

1MSA 2 2 / 1a 2 1 2 1 1MSB 2 2 / 1b 2 1 2 1 1MSAB 2 2 / 1a 2 1 2 1b 2 1 2
Because in most cases this value is not an integer, we take the largest integer less 
than or equal to dfApprox.

In some experiments, the estimates of some of the variance components may 
result in a negative number. Of course, by definition a variance component must 
be a nonnegative number; thus, we must consider alternatives whenever the sam-
ple  estimator is negative.

 A1. We can set the estimator equal to zero and use zero as the estimator 
of the variance component. However, the estimator will no longer 
be an unbiased estimator of the variance component.

 A2. A negative estimator of a variance component may be an indication 
that we have elements in our model that are not appropriate for 

TABLE 17.13
Proportional allocation  

of total variability in  
the response variable

Source of Variance Estimator Proportion of Total

Factor A ŝ2
t  1MSA 2 MSAB 2 /bn ŝ2

t /ŝ2
y

Factor B ŝ2
b  1MSB 2 MSAB 2 /an ŝ2

b /ŝ2
y

Interaction AB ŝ2
tb  1MSAB 2 MSE 2 /n ŝ2

tb /ŝ2
y

Error ŝ2
e  MSE ŝ2

e /ŝ2
y

Total ŝ2
y  ŝ2

t 1 ŝ2
b 1 ŝ2

tb 1 ŝ2
e 1.0
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this  experiment. A more complex model may be needed for this 
experiment.

 A3. There are alternative estimators of variance components that are 
mathematically beyond the level of this book. Such methods as ML 
or REML are available in software packages, such as SAS and R.

EXAMPLE 17.3

A consumer-product agency wants to evaluate the accuracy with which the level 
of calcium in a food supplement is determined. There are a large number of pos-
sible testing laboratories and a large number of chemical assays for calcium. The 
agency randomly selects three laboratories and three assays for use in the study. 
Each laboratory will use all three assays in the study. Eighteen samples containing 
10 mg of calcium are prepared, and each assay–laboratory combination is ran-
domly assigned to two samples. The determinations of calcium content are given 
in Table 17.14 (numbers in parentheses are averages for the assay–laboratory 
combinations).

TABLE 17.14
Calcium content data  Laboratory

Assay 1 2 3 Assay Mean

1 10.9 10.5 9.7 10.3
 10.9 9.8 10.0
 (10.9) (10.15) (9.85)

2 11.3 9.4 8.8 10.1
 11.7 10.2 9.2
 (11.5) (9.8) (9.0)

3 11.8 10.0 10.4 10.8
 11.2 10.7 10.7
 (11.5) (10.35) (10.55)

Lab mean 11.3 10.1 9.8 10.4 (overall mean)

 a. Perform an analysis of variance for this experiment. Conduct all tests 
with a  .05.

 b. Estimate all variance components, and determine their proportional 
 allocation to the total variability.

 c. Estimate the average calcium level over all laboratories and assays.

Solution a. Using the formulas from Chapter 14, we obtain the sums of squares 
as follows:

 TSS  a
ijk

1
  
yijk 2 y... 2 2  110.9 2 10.4 2 2 1 110.9 2 10.4 2 2 1 c1 110.7 2 10.4 2 2

  12.00

 SSA  a
i

6 1yi.. 2 y... 2 2  65 110.3 2 10.4 2 2 1 110.1 2 10.4 2 2 1 110.8 2 10.4 2 26

  1.56
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 SSL  a
j

6 1y.j. 2 y... 2 2  65 111.3 2 10.4 2 2 1 110.1 2 10.4 2 2 1 19.8 2 10.4 2 26

  7.56

 SSAL  a
ij

2 1 yij. 2 y... 2 2 2 SSA 2 SSL  25 110.9 2 10.4 2 2 1 110.15 2 10.4 2 2

 1 19.85 2 10.4 2 2 1 c1 110.55 2 10.4 2 26 2 1.56 2 7.56  1.64

 SSE  TSS 2 SSA 2 SSL 2 SSAL  12.00 2 1.56 2 7.56 2 1.64  1.24

Our results are summarized in an analysis of variance table in Table 17.15.

TABLE 17.15
AOV table for  

Example 17.3 experiment

Source SS df MS EMS

Assay 1.56 2 .78 s2
e 1 2s2

tb 1 6s2
t

Lab 7 .56 2 3.78 s2
e 1 2s2

tb 1 6s2
b

Assay*lab 1.64 4 .41 s2
e 1 2s2

tb

Error 1.24 9 .1378 s2
e

Total 12.00 17

We can proceed with appropriate statistical tests, using the results presented in 
the AOV table. For the AL interaction, we have

 H0: s2
tb  0

 Ha: s2
tb . 0

 T.S.: F 
MSAL
MSE


.41

.1378
 2.98

 R.R.: For a  .05, we will reject H0 if F exceeds 3.63, the critical value for F 
with a  .05, df1  4, and df2  9.

 Conclusion: There is insufficient evidence to reject H0, p-value  .08. There does 
not appear to be a significant interaction between the levels of factors 
A and L.

For factor L, we have

 H0: s2
b  0

 Ha: s2
b . 0

 T.S.: F 
MSL

MSAL


3.78
.41

 9.22

 R.R.: For a  .05, we will reject H0 if F exceeds 6.94, the critical value based 
on a  .05, df1  2, and df2  4.

 Conclusion: Because the observed value of F is much larger than 6.94, we reject H0 
and conclude that there is a significant variability in calcium concen-
trations from lab to lab, p-value  .032.

The test for factor A follows:

 H0: s2
t  0

 Ha: s2
t . 0

 T.S.: F 
MSA

MSAL


.78

.41
 1.90
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 R.R.:  For a  .05, we will reject H0 if F exceeds 6.94, the critical value for 
a  .05, df1  2, and df2  4.

 Conclusion: There is insufficient evidence to indicate a significant variability in 
calcium determinations from assay to assay, p-value  .263.

b. We will next estimate the variance components. Using the MSs and EMSs in 
Table 17.15, we obtain

 ŝ2
e  MSE  .1378

 ŝ2
tb  1MSAL 2 MSE 2 /n  1.41 2 .1378 2 /2  .1361

 ŝ2
b  1MSL 2 MSAL 2 /an  13.78 2 .41 2 /6  .5617

and
 ŝ2

t  1MSA 2 MSAL 2 /bn  1.78 2 .41 2 /6  .0617

Also, from the random-effects model for two factors having randomly selected 
 levels, we have

E 1 yijk 2  m  and  s2
y  s2

t 1 s2
b 1 s2

tb 1 s2
e

Thus, we have

s2
y  .0617 1 .5617 1 .1361 1 .1378  .8973

We can then proportionally allocate the total variability ŝ2
y into the four sources 

of variability: assays, laboratories, the interaction, and experimental error, shown 
in Table 17.16.

TABLE 17.16
Proportional allocation  

of total variance

Source of Variance Estimator Proportion of Total

Assays .0617 .0617/.8973  .069
Labs .5617 .5617/.8973  .626
Interaction .1361 .1361/.8973  .152
Error .1378 .1378/.8973  .154

Totals .8973 1.0

c. Because there was a significant variability in the determinations of calcium in 
the samples, the estimation of an overall mean level m would not be of interest to 
the researchers. However, to illustrate the methodology, we will proceed with this 
example. The point estimator of m and its estimated standard error are given by

m̂  y...  10.4   and  SE 1m̂ 2  Ë 1MSA 1 MSL 2 MSAL 2 /abn  .4802

We can then construct a 100(1 2 a)% confidence interval for m, as given here.

y... 6 ta/ 2, dfApprox.
Ë 1MSA 1 MSL 2 MSAL 2 /abn  10.4 6 1t.025, dfApprox.

2 1.4802 2
where the degrees of freedom for the t tables are obtained from the Satterthwaite 
approximation:

 dfApprox. 
1MSA 1 MSL 2 MSAL 2 2

1MSA 2 2 / 1a 2 1 2 1 1MSL 2 2 / 1b 2 1 2 1 1MSAL 2 2 / 1a 2 1 2 1b 2 1 2

 
14.15 2 2

1.78 2 2 /2 1 13.78 2 2 /2 1 1.41 2 2 /4
 2.3
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We take the largest integer less than or equal to dfApprox.; thus, dfApprox.  2. Because 
t.025, 2  4.303, the 95% confidence interval for the mean calcium concentration 
over all assays and laboratories is

10.4 6 14.303 2 1.4802 2
10.4 6 2.1  18.3, 12.5 2  ■

In this section, we have compared a random-effects model to a fixed-effects 
model for a completely randomized design and for a completely randomized  design 
with an a 3 b factorial treatment structure with n observations per cell. This study 
has been in no way exhaustive, but it has shown that there are alternatives to a 
fixed-effects model. A more detailed study of the random-effects model in the fol-
lowing sections will include experiments with factorial treatment structures having 
more than two factors and the nested sampling experiment of Section 17.6. For 
the latter design, levels of factor B are nested (rather than cross-classified) within 
levels of factor A. For example, in considering the potency of a chemical, we could 
sample different manufacturing plants, batches of chemicals within a plant, and 
determinations within a batch. Note that the factor ‘‘batches’’ is not cross- classified 
with the factor ‘‘plants’’ because, for example, batch 1 for plant 1 is different from 
batch 1 for plant 2.

In Section 17.4, we will extend the results of this section to include a mixed 
model for an a 3 b factorial treatment structure with one fixed-effects factor and 
one random-effects factor.

 17.4 Mixed-Effects Models

In Section 17.3, we compared the analysis of variance tables for fixed- and random-
effects models for a randomized block design and for a general a 3 b factorial treat-
ment structure laid out in a completely randomized design. Suppose, however, that 
we have a mixed-effects model for these same experimental designs, where one 
effect is fixed and the other is random. For example, in Section 17.3, we considered 
an experiment to examine the effects of different subjects and different analysts 
on the DNA content of plaque. If the 10 subjects were selected at random and if 
the five analysts chosen were the only analysts of interest, we would have a mixed 
model for a randomized block design with fixed analysts and random subjects.

Let us consider a mixed model for a general a 3 b factorial treatment struc-
ture in a completely randomized design. The model is the same as that given in 
Section 17.3 except that there are different assumptions:

yijk  m 1 ti 1 bj 1 tbij 1 eijk

where we use the following conditions with the levels of factor A fixed and the 
 levels of factor B randomly selected:

 1. m is the unknown overall mean response.
 2. ti is a fixed effect corresponding to the ith level of factor A with ta  0.
 3. bj is a random effect due to the jth level of factor B. The bjs have 

independent normal distributions with mean 0 and variance s2
b.

 4. tbij is a random effect due to the interaction of the ith level of factor 
A with the jth level of factor B. The tbijs have independent normal 
distributions with mean 0 and variance s2

tb.
 5. The bjs, tbijs, and eijks are mutually independent.

nested sampling 
experiment

mixed-effects model 

conditions
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Using these assumptions, the analysis of variance table for a fixed, random, or 
mixed model in a two-factor experiment with replication is as shown in Table 17.17.

The expected mean squares column of Table 17.17 can be helpful in 
determining appropriate tests of significance. The test for s2

tb is the same in the 
mixed-effects model as in the random-effects model.

 H0: s2
tb  0

 Ha: s2
tb . 0

 T.S.: F 
MSAB
MSE

 R.R.: Based on df1  (a 2 1)(b 2 1) and df2  ab(n 2 1)

No matter what the results are of our tests for s2
tb, we can proceed to use the 

following tests for factors A and B, which follow from entries in the expected mean 
squares column of Table 17.17. For factor A, we have

 H0: t1  c ta  0

 Ha: At least one of the ts differs from the rest.

 T.S.: F 
MSA

MSAB

 R.R.: Based on df1  (a 2 1) and df2  (a 2 1)(b 2 1)

For factor B, we have

 H0: s2
b  0

 Ha: s2
b . 0

 T.S.: F 
MSB

MSAB
 R.R.: Based on df1  (b 2 1) and df2  (a 2 1)(b 2 1)

The analysis of variance procedure outlined for a mixed-effects model for 
an a 3 b factorial treatment structure can be used as well for a randomized block 
design, where treatments are fixed, blocks are assumed to be random, and there 
are n  observations for each block and treatment. We will illustrate a mixed model 
in the following example.

test for s2
tb 

test, factor A

test, factor B

TABLE 17.17
AOV table for an a 3 b factorial treatment structure, with n observations per cell

 EMS

    Fixed Random Mixed Effects 
Source SS df MS Effects Effects A Fixed, B Random

A SSA a 2 1 MSA s2
e 1 bnut s2

e 1 ns2
tb 1 bns2

t s2
e 1 ns2

tb 1 bnut

B SSB b 2 1 MSB s2
e 1 anub s2

e 1 ns2
tb 1 ans2

b s2
e 1 ns2

tb 1 ans2
b

AB SSAB (a 2 1)(b 2 1) MSAB s2
e 1 nutb s2

e 1 ns2
tb s2

e 1 ns2
tb

Error SSE ab(n 2 1) MSE s2
e s2

e s2
e

Totals TSS nab 2 1   
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EXAMPLE 17.4

A study was designed to evaluate the effectiveness of two different sunscreens (s1 
and s2) for protecting the skin of persons who want to avoid burning or additional 
tanning while exposed to the sun. A random sample of 40 subjects (ages 20–25) 
agreed to participate in the study. For each subject, a 1-inch square was marked 
off on his or her back, under the shoulder but above the small of the back. Twenty 
subjects were randomly assigned to each of the two types of sunscreen. A reading 
based on the color of the skin in the designated square was made prior to the appli-
cation of a fixed amount of the assigned sunscreen and then again after application 
and exposure to the sun for a 2-hour period. The company was concerned that the 
measurement of color is extremely variable and wanted to assess the variability in 
the readings due to the technician taking the readings. Thus, the company randomly 
selected 10 technicians from their worldwide staff to participate in the study. Four 
subjects, two having s1 and two having s2, were randomly assigned to each techni-
cian for evaluation. The data recorded in Table 17.18 are differences (postexpo-
sure minus preexposure) for the subjects in the study. A high response indicates a 
greater degree of burning.

TABLE 17.18
Data for sunscreen experiment in Example 17 .4

 Technician (B)

Sunscreen (A) 1 2 3 4 5 6 7 8 9 10 Sun. Mean

 s1 8.2 3.6 10.7 3.9 12.9 5.5 9.1 13.7 8.1 2.5 7 .82
 7 .6 3.5 10.3 4.4 12.1 5.9 9.7 13.2 8.7 2.8

 Mean (7 .9) (3.55) (10.5) (4.15) (12.5) (5.7) (9.4) (13.45) (8.4) (2.65)

 s2 6.1 4.3 9.6 2.3 12.4 4.8 8.3 12.9 8.0 2.1 7 .15
 6.8 4.7 9.2 2.5 12.8 4.0 8.6 13.6 7 .5 2.5

 Mean (6.45) (4.5) (9.4) (2.4) (12.6) (4.4) (8.45) (13.25) (7 .75) (2.3)

 Tech. Mean (7 .175) (4.025) (9.95) (3.275) (12.55) (5.05) (8.925) (13.35) (8.075) (2.475) 7 .485

The experiment is a completely randomized design with two factors, sunscreen 
type (A), with 2 fixed levels, and technician (B), with 10 randomly selected levels. 
There are two subjects for each sunscreen–technician combination. Analyze the 
data to determine any differences in sunscreens and technicians.

Solution We can compute the sums of squares for the sources of variability in the 
AOV table using the following formulas.

 TSS  a
ijk

1yijk 2 y... 2 2  18.2 2 7.485 2 2 1 17.6 2 7.485 2 2 1 c

 1 12.5 2 7.485 2 2  530.59

 SSA  a
i

20 1yi.. 2 y... 2 2  20 U 17.82 2 7.485 2 2 1 17.15 2 7.485 2 2V  4.49

 SSB  a
j

4 1y.j. 2 y... 2 2  4 U 17.175 2 7.485 2 2 1 14.025 2 7.485 2 2 1 c

 1 12.475 2 7.485 2 2V  517.49
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 SSAB  a
ij

2 1yij. 2 y... 2 2 2 SSA 2 SSB  2U 17.9 2 7.485 2 2

 1 13.55 2 7.485 2 2 1 110.5 2 7.485 2 2 1 c1 12.3 2 7.485 2 2V

 2 4.49 2 517.49  5.97

 SSE  TSS 2 SSA 2 SSB 2 SSAB  530.59 2 4.49 2 517.49 2 5.97

  2.64

Substituting a  2, b  10, and n  2 into an AOV table similar to that shown 
in Table 17.17, we have the results shown in Table 17.19.

TABLE 17.19
AOV table for the  

data of Example 17 .4

    EMS 
Source SS df MS Mixed Model

A 4.49 1 4.49 s2
e 1 2s2

tb 1 20ut

B 517 .49 9 57 .50 s2
e 1 2s2

tb 1 4s2
b

AB 5.97 9 .66 s2
e 1 2s2

tb

Error 2.64 20 .13 s2
e

Totals 530.59 39

A test for the random component tbij is as follows:
 H0: s2

tb  0

 Ha: s2
tb . 0

 T.S.: F 
MSAB
MSE


.66
.13

 5.08

 R.R.: For a  .05, we will reject H0 if the computed value of F exceeds 2.39, 
the value in Appendix Table 8 for a  .05, df1  9, and df2  20.

 Conclusion: Because 5.08 exceeds 2.39, we reject H0 and conclude that s2
tb . 0; 

that is, there is a significant source of random variation due to the 
combination of the ith level of A (sunscreens) and the jth level of B 
(technician), p-value  .0012. We would infer from this that the varia-
tions in the determinations of skin color due to technician differences 
are different for the two types of sunscreen.

We next proceed to evaluate the effects due to the technicians.

 H0: s2
b  0

 Ha: s2
b . 0

 T.S.: F 
MSB

MSAB


57.50
.66

 87.12

 R.R.: For a  .05, we will reject H0 if F exceeds 3.18, the value in Appendix 
Table 8 for a  .05, df1  9, and df2  9.

 Conclusion: Because 87.12 exceeds 3.18, we reject H0 and conclude that s2
b . 0. 

Thus, there is a significant source of random variation due to variability 
from technician to technician, p-value , .0001.

For factor A, we have
 H0: t1  t2  0

 Ha: t1 ≠ 0  and/or  t2  0
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 T.S.: F 
MSA

MSAB


4.49
.66

 6.80

 R.R.: For a  .05, we will reject H0 if F exceeds 5.12, the value in  Appendix 
Table 8 for a  .05, df1  1, and df2  9.

 Conclusion:  Because 6.80 . 5.12, we reject H0 and conclude there is significant 
evidence that the mean response (postexposure minus preexpo-
sure) differs for the two sunscreens. However, as noted previously, 
there are significant sources of variability due to technicians and the 
combination of technicians with sunscreens. ■

 17.5 Rules for Obtaining Expected Mean Squares

We discussed the AOVs for one- and two-factor experiments for fixed-effects 
models in Chapter 14 and for random or mixed models earlier in this chapter. 
We will see in this section that for any k-factor treatment structure of data, with n 
observations per factor–level combination, it is possible to write expected mean 
squares for all main effects and interactions for fixed, random, or mixed models 
using some rather simple rules. The importance of these rules is that, having written 
down the expected mean squares for an unfamiliar experimental design, we often can 
construct appropriate F tests. The assumptions for the fixed and random models 
will be the same as we have used in describing fixed, random, and mixed models 
in previous sections.

Two rules for classifying interactions as fixed or random effects are needed 
before we can proceed with the rules for obtaining expected mean squares.

classifying 
interactions

 1. If a fixed effect interacts with another fixed effect, the resulting interaction 
term is a fixed effect.

 2. If a random effect interacts with another effect (fixed or random), the 
 resulting interaction term is a random component.

Rules for the 
Classification of 

Interactions 

EXAMPLE 17.5

Consider an experiment with two factors, A with four levels and B with six levels. 
Suppose we have a completely randomized design with four replications for each 
of the t  24 treatments. For each of the following situations, classify the AB inter-
action as fixed or random:

 1. The levels of A and B are the only levels of interest to the 
researcher.

 2. The four levels of factor A are the only levels of interest to the 
researcher, but the six levels of factor B are randomly selected from 
a population of levels.

 3. The four levels of factor A are randomly selected from a population 
of levels, and the six levels of factor B are randomly selected from a 
population of levels.
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Solution First, we need to determine if the levels of factors A and B are fixed or 
random; then we apply the rules for the classification of interactions to reach the 
following conclusions:

 1. Both factors A and B have fixed effects; therefore, their interaction, 
AB, has fixed effects.

 2. Factor A has fixed effects and factor B has random effects; therefore, 
their interaction, AB, has random effects.

 3. Both factor A and factor B have random effects; therefore, their 
interaction, AB, has random effects. ■

EXAMPLE 17.6

Consider an experiment with three factors, A with six levels, B with four levels, and 
C with three levels. Suppose we have a completely randomized design with two rep-
lications for each of the t  72 treatments. The six levels of factor A are randomly 
 selected from a population of levels, whereas the four levels of factor B and the three 
levels of factor C are the only levels of interest to the researcher. Classify the two-way 
interactions AB, AC, and BC and three-way interaction ABC as fixed or random.

Solution We apply the classification rules with factor A having random effects 
and factors B and C having fixed effects.

●● A has random effects and B has fixed effects; therefore, AB has random 
effects.

●● A has random effects and C has fixed effects; therefore, AC has random 
effects.

●● B has fixed effects and C has fixed effects; therefore, BC has fixed 
effects.

●● A has random effects and B and C have fixed effects; therefore, ABC 
has random effects. ■

The rules for obtaining the expected mean squares will be given next. These 
rules apply to most balanced designs with equal numbers of replications per treat-
ment. The number of levels of each factor must remain constant within the bal-
anced design. The rules are applicable to factorial treatment structures, nested 
treatment structures, and mixtures of factorial and nested treatment structures. 
These rules are consistent with the expected mean squares that can be obtained 
from most  statistics software programs (e.g., SAS, R, and Minitab). The rules will 
be illustrated using a two-factor experiment with n replications, factor A having a 
randomly selected levels and factor B having b fixed levels.

1. Write the model for a completely randomized design with an a 3 b facto-
rial treatment structure where factor A has random levels and factor B has 
fixed levels. The model is

yijk  m 1 ti 1 bj 1 tbij 1 ek3ij4

Note: We use brackets in the e-term to indicate that there are k  1, . . . , n 
unique experimental units for each of the factor–level combinations of fac-
tors A and B (i.e., for each selection of (i, j)).

Rules for Obtaining 
Expected Mean 

Squares
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 2. Construct a two-way table consisting of
a. A row for each term in the model, excluding m, including the term 

from the model and the corresponding source of variation from the 
AOV table, and

b. A column for each subscript included in the model.

3. Over each column subscript, write the number of factor levels associated 
with the subscript, and place either an “R” if the factor levels are random 
or an “F” if the factor levels are fixed.

4. Add another column with entries for the appropriate fixed variance 
component (u) or random variance component (s) for the source of 
variation represented by that row in the table. The following table, where 
factor A is random and factor B is fixed, illustrates these rules:

  R F R 
  a b  n 
Source  i j k Component

A ti    s2
t

B bj    ub

AB tbij    s2
tb

Error ek3ij4    s2
e

 5. For each row, if the column subscript does not appear in the effect label-
ing the row, enter the number of levels corresponding to the subscript 
heading the column. Otherwise, leave the space blank.

  R F R 
  a b  n 
Source  i j k Component

A ti  b n s2
t

B bj a  n ub

AB tbij   n s2
tb

Error ek3ij4    s2
e

 6. For rows having an effect containing brackets in the subscript, place a 1 
under the column(s) with a subscript included inside the brackets.

  R F R 
  a b  n 
Source  i j k Component

A ti  b n s2
t

B bj a  n ub

AB tbij   n s2
tb

Error ek3ij4 1 1  s2
e

 7. a.  For each row in which the component of variance is a fixed compo-
nent, a u term, enter a 0 in the column headed by an F and having a 
subscript matching the row subscript.

  b. Enter a 1 in all remaining cells.
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EXAMPLE 17.7

Compute E(MSB) and E(MSAB) for a two-factor experiment with a randomly 
selected levels of A, b fixed levels of B, and n observations per factor–level combi- 
nation.

Solution Refer to the expected mean squares rules just given and Table 17.20.
For E(MSB):

 a. Include s2
e with a coefficient of 1.

 b. Include in the expected mean square only those variance compo-
nents whose corresponding model terms include the subscripts of 
the effect under consideration.
● For E(MSB), the effect is bj; hence, include the components ub and 

s2
tb associated with b and tbij, respectively, because they both have 

a j in their subscripts.
 c. Cover the columns containing nonbracketed subscripts for the effect 

under consideration.
● For bj, cover the column headed by j.

 8. To obtain the expected mean square for a specified source of variation 
(we will illustrate using E(MSA):
a. Include s2

e with a coefficient of 1 in all expected mean squares.
b.  Include in the expected mean square only those variance components 

whose corresponding model terms include the subscripts of the effect 
under consideration.
●● For E(MSA), the effect is ti; hence, include the components s2

t and 
s2

tb associated with ti and tbij, respectively, because they both have 
an i in their subscripts. Remember to also include s2

e.
c. Cover the columns containing nonbracketed subscripts for the effect 

under consideration.
●● For ti, cover the column headed by i; for bj, cover the column headed 

by j; for tbij, cover the columns headed by both i and j; and for ek3ij4, 
cover the column headed by k.

d. The coefficient for each component in the expected mean square is 
the product of the uncovered columns of the row for the effect under 
consideration.

●● For E(MSA), the effect is ti, so the column with i is covered. There-
fore, the coefficient for s2

t is obtained by multiplying the entries in 
the columns headed by j and k—that is, b 3 n—and the coefficient 
for s2

tb  is 1 3 n. Thus, 

E 1MSA 2  s2
e 1 ns2

tb 1 bns2
t

TABLE 17.20
Expected mean square 

table

  R F R 
  a b  n 
Source  i j k Component

A ti 1 b n s2
t

B bj a 0 n ub

AB tbij 1 1 n s2
tb

Error ek3ij4 1 1 1 s2
e
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 d. The coefficient for each component in the expected mean square 
is the prod uct of the uncovered columns of the row for the effect 
under consideration.
● For E(MSB), the effect is bj, so the column with j is covered. There-

fore, the coefficient for ub is obtained by multiplying the entries in 
the columns headed by i and k—that is, a 3 n—and the coefficient 
for s2

tb is 1 3 n. Thus,

E 1MSB 2  s2
e 1 ns2

tb 1 anub

where ub 
1

b 2 1 a
b

j1

1m.j 2 m.. 2 2

For E(MSAB):

 a. Include s2
e with a coefficient of 1.

 b. Include in the expected mean square only those variance components 
whose corresponding model terms include the subscripts of the effect 
under consideration.
● For E(MSAB), the effect is tbij; hence, include just the component 

s2
tb associated with tbij.

 c. Cover the columns containing nonbracketed subscripts for the effect 
under consideration.
● For tbij, cover the columns headed by i and j.

 d. The coefficient for each component in the expected mean square 
is the product of the uncovered columns of the row for the effect 
under consideration.
● For E(MSAB), the effect is tbij, so cover the columns headed by i 

and j and obtain the coefficient for s2
tb as n. Thus, 

E 1MSAB 2  s2
e 1 ns2

tb ■

EXAMPLE 17.8

Obtain the expected mean squares for a factorial treatment structure with a fixed 
levels of factor A, b randomly selected levels of factor B, and n observations per 
factor–level combination.

Solution We need to obtain E(MSA), E(MSB), E(MSAB), and E(MSE). The 
 expected mean square table is shown in Table 17.21.

TABLE 17.21
Expected mean square 
table for Example 17.8

  F R R 
  a b  n 
Source  i j k Component

A ti 0 b n ut

B bj a 1 n s2
b

AB tbij 1 1 n s2
tb

Error ek3ij4 1 1 1 s2
e

For E(MSA):
 a. Include s2

e with a coefficient of 1.
 b. For E(MSA), the effect is ti; hence, include the components ut and s2

tb.
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 c. For ti, cover the column headed by i.
 d. The coefficient for ut is obtained by multiplying the entries in the 

columns headed by j and k—that is, b 3 n—and the coefficient for 
s2

tb is 1 3 n. Thus, 

E 1MSA 2  s2
e 1 ns2

tb 1 bnut

where ut 
1

a 2 1
 a

a

i1

1mi. 2 m.. 2 2

For E(MSB):

 a. Include s2
e with a coefficient of 1.

 b. For E(MSB), the effect is bj; hence, include the components s2
b and 

s2
tb associated with bj and tbij, respectively.

 c. For bj, cover the column headed by j.
 d. The coefficient for s2

b is obtained by multiplying the entries in the 
columns headed by i and k—that is, a 3 n—and the coefficient for 
s2

tb is 1 3 n. Thus, 

E 1MSB 2  s2
e 1 ns2

tb 1 ans2
b

For E(MSAB):

 a. Include s2
e with a coefficient of 1.

 b. For E(MSAB), the effect is tbij; hence, include the component s2
tb 

 associated with tbij.
 c. For tbij, cover the columns headed by i and j.
 d. The coefficient for s2

tb is n. Thus, 

E 1MSAB 2  s2
e 1 ns2

tb

For E(MSE):

 a. Include s2
e with a coefficient of 1.

 b. For E(MSE), the effect is ek3ij4; hence, include the component s2
e.

 c. For ek3ij4, cover the column headed by k.
 d. For E(MSE), the effect is ek3ij4, so cover the column headed by k,  

and  obtain the coefficient for s2
e as 1 3 1. Thus, 

E 1MSE 2  s2
e

Tables 17.22, 17.23 and 17.24 provide the expected mean squares for three arrange-
ments of a two-factor experiment.

TABLE 17.22
AOV table with expected 

mean squares for factor 
A random and factor B 

random

Source df Expected Mean Square

A a 2 1 s2
e 1 ns2

tb 1 bns2
t

B b 2 1 s2
e 1 ns2

tb 1 ans2
b

AB (a 2 1)(b 2 1) s2
e 1 ns2

tb

Error (n 2 1)ab s2
e

Total nab 2 1
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Previously, we have been concerned with only fixed-effects models. For these 
models, the test statistics are always formed using the affected mean square in 
the numerator divided by MSE. However, for random and mixed models, the test 
statistics do not all have MSE in the numerator. The test statistic for interaction 
is  F  MSAB/MSE, which is the same for the fixed, random, and mixed models. 
The test for the main effect of factor A is F  MSA/MSAB, and the test statis-
tic for the main effect of factor B is F  MSB/MSAB for all cases except when 
both factor A and factor B are fixed. These results are obtained by placing in 
the  denominator the mean square having the same expected mean square as the 
expression for the affected mean square obtained under the null hypothesis. For 
example, consider the case with factor A fixed and factor B random, as displayed 
in Table 17.23. To test for a main effect of factor A, H0: ut  0 versus Ha: ut 2 0, 
we determine from Table 17.23 that E 1MSA 2  s2

e 1 ns2
tb under H0; that is, we set 

ut  0. This is the same as the expression for E(MSAB); therefore, the test statis-
tic is F  MSA/MSAB. Similarly, to test for a main  effect of factor B, H0: s

2
b  0 

versus Ha: s
2
b 2 0, we determine from Table 17.23 that E 1MSB 2  s2

e 1 ns2
tb 

under H0. This is the same as the  expression for E(MSAB); therefore, the test 
statistic is F  MSB/MSAB.

The same rules used for the factorial treatment structure with two factors can 
also be used for more-complicated experiments, and although the rules may seem 
a bit cumbersome, with practice they are quite easy to use. We will give two more 
examples using a factorial treatment structure with three factors. For additional 
details regarding assumptions, derivations, and more-complicated applications, 
see Kuehl (2000).

EXAMPLE 17.9

Provide the expected mean squares for a 6 3 5 3 4 factorial treatment structure 
with n  3 observations per factor–level combination. In the experiment, factors A 
and B have fixed levels, but factor C has randomly selected levels.

TABLE 17.23
AOV table with expected 
mean squares for factor A  

fixed and factor B 
random

Source df Expected Mean Square

A a 2 1 s2
e 1 ns2

tb 1 bnut

B b 2 1 s2
e 1 ns2

tb 1 ans2
b

AB (a 2 1)(b 2 1) s2
e 1 ns2

tb

Error (n 2 1)ab s2
e

Total nab 2 1

TABLE 17.24
AOV table with expected 
mean squares for factor A 

random and factor B 
 fixed

Source df Expected Mean Square

A a 2 1 s2
e 1 ns2

tb 1 bns2
t

B b 2 1 s2
e 1 ns2

tb 1 anub

AB (a 2 1)(b 2 1) s2
e 1 ns2

tb

Error (n 2 1)ab s2
e

Total nab 2 1 ■
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Solution The model for this experiment is given here along with the correspond-
ing expected mean squares for each of the sources of variation:

yijkl  m 1 ti 1 bj 1 gk 1 tbij 1 tgik 1 bgjk 1 tbgijk 1 el3ijk4

The expected mean square are obtained from Table 17.25.

For E(MSA):

 a. Include s2
e  with a coefficient of 1.

 b. For E(MSA), the effect is ti ; hence, include the components 
ut, utb, s2

tg, and s2
tbg.

 c. For ti , cover the column headed by i.
 d. The coefficient for each component is obtained by multiplying the 

 entries in the columns headed by j, k, and l—that is, b 3 c 3 n:  
The coefficient for utb  is 0 3 c 3 n; the coefficient for s2

tg  is  
b 3 1 3 n; and the coefficient for s2

tbg  is 1 3 1 3 n. Thus, 

 E 1MSA 2  s2
e 1 ns2

tbg 1 bns2
tg 1 bcnut

For E(MSB):

 a. Include  s2
e with a coefficient of 1.

 b. For E(MSB), the effect is bj; hence, include the components, 
ub, utb, s2

bg, and s2
tbg.

 c. For bj, cover the column headed by j.
 d. The coefficient for each component is obtained by multiplying the 

 entries in the columns headed by i, k and l: The coefficient for ub is 
a 3 c 3 n; the coefficient for utb is 0 3 c 3 n; the coefficient for s2

bg  
is a 3 1 3 n; and the coefficient for s2

tbg is 1 3 1 3 n. Thus,

 E 1MSB 2  s2
e 1 ns2

tbg 1 ans2
bg 1 acnub

For E(MSC):

 a. Include  s2
e with a coefficient of 1.

 b. For E(MSC), the effect is gk; hence, include the components 
s2

g, s2
tg, s2

bg, and s2
tbg.

 c. For gk, cover the column headed by k.

TABLE 17.25
Expected mean squares 

table for factors A and B 
fixed, factor C random

  F F R R 
  a b c n 
Source  i j k l Component

A ti 0 b c n ut

B bj a 0 c n ub

C gk a b 1 n s2
g

AB tbij 0 0 c n utb

AC tgik 1 b 1 n s2
tg

BC bgjk a 1 1 n s2
bg

ABC tbgijk 1 1 1 n s2
tbg

Error el3ijk4 1 1 1 1 s2
e
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 d. The coefficient for each component is obtained by multiplying the 
 entries in the columns headed by i, j and l: The coefficient for s2

g is 
a 3 b 3 n; the coefficient for s2

tg is 1 3 b 3 n; the coefficient for s2
bg 

is a 3 1 3 n; and the coefficient for s2
tbg is 1 3 1 3 n. Thus, 

 E 1MSC 2  s2
e 1 ns2

tbg 1 ans2
bg 1 bns2

tg 1 abns2
g

For E(MSAB):

 a. Include s2
e with a coefficient of 1.

 b. For E(MSAB), the effect is tbij; hence, include the components utb 
and s2

tbg.
 c. For tbij, cover the columns headed by i and j.
 d. The coefficient for utb is c 3 n, and the coefficient for s2

tbg is 1 3 n. 
Thus, 

 E 1MSAB 2  s2
e 1 ns2

tbg 1 cnu2
tb

In a similar fashion, we obtain

 E 1MSAC 2  s2
e 1 ns2

tbg 1 bns2
tg 

 E 1MSBC 2  s2
e 1 ns2

tbg 1 ans2
bg 

 E 1MSABC 2  s2
e 1 ns2

tbg 

 E 1MSE 2  s2
e 

A summary of the expected mean squares, which we have computed using 
the EMS rules, for the 6 3 5 3 4 factorial experiment with a  6, b  5, c  4, 
and n  3 and with factors A and B fixed but factor C random is shown in Table 
17.26. We have included the denominator of the valid F test for testing whether this 
source of variation is significant. An * indicates a variance component for which 
there is not a valid F test. 

 ■

TABLE 17.26
Partial AOV for  

Example 17.9. Factors  
A and B fixed,  

factor C random

Source EMS Denominator of F

A s2
e 1 3s2

tbg 1 15s2
tg 1 60ut MSAC

B s2
e 1 3s2

tbg 1 18s2
bg 1 72ub MSBC

C s2
e 1 3s2

tbg 1 15s2
tg 1 18s2

bg 1 90s2
g *

AB s2
e 1 3s2

tbg 1 12utb MSABC

AC s2
e 1 3s2

tbg 1 15s2
tg MSABC

BC s2
e 1 3s2

tbg 1 18s2
bg MSABC

ABC s2
e 1 3s2

tbg MSE

Error s2
e *

EXAMPLE 17.10

Refer to Example 17.9. Find an appropriate F test statistic for testing each of the 
following:

 a. Main effect of factor A
 b. Main effect of factor C
 c. Interaction of factors A and C
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Solution Using the expected mean squares listed in Table 17.26, we can find the 
following test statistics.

 a. The test for a main effect of factor A has null hypothesis H0: ut  0. 
Under H0, E 1MSA 2  s2

e 1 3s2
tbc 1 15s2

tc, which is the same 
expression as E(MSAC). Therefore, the test statistic is F  MSA/
MSAC with df  a 2 1, (a 2 1)(c 2 1).

 b. The test for a main effect of factor C has null hypothesis H0: sg  0.  
Under H0, E 1MSC 2  s2

e 1 3s2
tbg 1 15s2

tg 1 18s2
bg. There is no 

other source of variation that has this expression as its expected mean  
square. Therefore, there is no exact F test available. There are several 
approximate F tests available in this situation (see Kuehl, 2000).

 c. The test for an interaction between factors A and C has null  
hypothesis H0: stg  0. Under H0, E 1MSAC 2  s2

e 1 s2
tbg, which is  

the same  expression as E(MSABC). Therefore, the test statistic is  
F  MSAC/MSABC with df  (a 2 1)(c 2 1), (a 2 1) (b 2 1)(c 2 1). ■

We can always obtain valid tests for all sources of variability in fixed-effects 
models, but this is not true for some random-effects and mixed-effects models, as 
was demonstrated in Example 17.10. Tables 17.27, 17.28, 17.29, and 17.30 display the 
EMS for several three-factor experiments. In these tables, we provide the denomina-
tor of the F test for those variance components having valid F tests. An * indicates 
a variance component for which there is not a valid F test. Approximate F tests 

TABLE 17.27
Three-factor a 3 b 3 c
design with all factors  

fixed and n replications

All Factors Fixed

Source EMS Denominator of F

A s2
e 1 bcnut MSE

B s2
e 1 acnub MSE

C s2
e 1 abnut MSE

AB s2
e 1 cnutb MSE

AC s2
e 1 bnutg MSE

BC s2
e 1 anubg MSE

ABC s2
e 1 nutbg MSE

Error  s2
e *

TABLE 17.28
Three-factor a 3 b 3 c  
design with all factors  

random and n replications

All Factors Random

Source EMS Denominator of F

A s2
e 1 ns2

tbg 1 cns2
tb 1 bns2

tg 1 bcns2
t *

B s2
e 1 ns2

tbg 1 cns2
tb 1 ans2

bg 1 acns2
b *

C s2
e 1 ns2

tbg 1 bns2
tg 1 ans2

bg 1 abns2
g *

AB s2
e 1 ns2

tbg 1 cns2
tb MSABC

AC s2
e 1 ns2

tbg 1 bns2
tg MSABC

BC s2
e 1 ns2

tbg 1 ans2
bg MSABC

ABC s2
e 1 ns2

tbg MSE

Error s2
e *
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can be constructed for sources of variability in random-effects and mixed effects 
models where no valid F test is available. These tests are available in some of the 
computer software programs—for example, SAS and R. A discussion of these tests 
can be found in Kuehl (2000).

The estimation of variance components was illustrated in Sections 17.2 and 
17.3. Mean squares can be equated to expected mean squares in order to obtain 
estimates of variance components in random-effects and mixed-effects models for 
balanced designs following the procedure that we introduced in these earlier sec-
tions. Many computer software programs—for example, SAS and R—will carry 
out these calculations. The problem of estimating variance components for unbal-
anced designs is a complex one and is beyond the scope of this text. A detailed 
discussion of this topic can be found in Searle, Casella, and McCulloch (1992). 

TABLE 17.29
Three-factor a 3 b 3 c  

design with factors A and 
B random, factor C fixed, 

and n replications 

Factors A and B Random, Factor C Fixed

Source EMS Denominator of F

A s2
e 1 ns2

tbg 1 cns2
tb 1 bns2

tg 1 bcns2
t *

B s2
e 1 ns2

tbg 1 cns2
tb 1 ans2

bg 1 acns2
b *

C s2
e 1 ns2

tbg 1 bns2
tg 1 ans2

bg 1 abnug *

AB s2
e 1 ns2

tbg 1 cns2
tb MSABC

AC s2
e 1 ns2

tbg 1 bns2
tg MSABC

BC s2
e 1 ns2

tbg 1 ans2
bg MSABC

ABC s2
e 1 ns2

tbg MSE

Error s2
e *

TABLE 17.30
Three-factor a 3 b 3 c  

design with factor A 
random, factors B and C 
fixed, and n replications

Factor A Random, Factors B and C Fixed

Source EMS Denominator of F

A s2
e 1 ns2

tbg 1 cns2
tb 1 bns2

tg 1 bcns2
t *

B s2
e 1 ns2

tbg 1 cns2
tb 1 acnub MSAB

C s2
e 1 ns2

tbg 1 bns2
tg 1 abnug MSAC

AB s2
e 1 ns2

tbg 1 cns2
tb MSABC

AC s2
e 1 ns2

tbg 1 bns2
tg MSABC

BC s2
e 1 ns2

tbg 1 anubg MSABC

ABC s2
e 1 ns2

tbg MSE

Error s2
e * 

 17.6 Nested Factors

Sometimes in an experiment one factor is ‘‘nested ’’ within another. This can be 
 illustrated with the following example. A pharmaceutical company conducted tests 
to determine the stability of its product (under room-temperature conditions) at 
a specific point in time. Two manufacturing sites were used. At each site, a ran-
dom sample of three batches of the product was obtained, and additional random 
 samples of 10 different tablets were obtained from each batch. The design can be 
represented as shown in Figure 17.1.
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Although this might look like the usual two-factor experiment with sites 
 (factor A) and batches (factor B), note that the three batches taken from site 1 are 
different from the three batches taken from site 2. In this sense, factor B (batches) 
is said to be nested in factor A (sites). In order to distinguish between  experiments 
involving crossed factors and nested factors, consider the following definitions.

Sites

Batches
in
sites

Samples
in
batches

1

1

1

2 3

10321103211032 ... ... ...

2

1

1

2 3

10321103211032 ... ... ...

FIGURE 17.1
Two-factor experiment 

with batches nested  
in sites

In an a 3 b 3 c factorial experiment, the factors A, B, and C are said to be 
crossed if the physical properties of the b levels of factor B are identical for 
all levels of factor A and the c levels of factor C are identical for all levels of 
 factor B. We denote crossed factors by A 3 B 3 C.

DEFINITION 17.4

In an experiment involving the factors A, B, and C, factor B is said to be 
nested within the levels of factor A if the physical properties of the b levels of 
factor B vary depending on which level of factor A it is associated with; fac-
tor C is said to be nested within the levels of factors A and B if the physical 
properties of the c levels of factor C vary depending on which level of factor 
A and which level of factor B it is associated with. We denote nested factors 
as B(A) for factor B nested within factor A and C(A, B) for factor C nested 
within factors A and B.

DEFINITION 17.5

This would not be true in the pharmaceutical example described previously. 
Designate factor A to be the two sites, factor B to be the three batches at each site, 
and factor C to be the 10 tables from each batch at each site. The three batches at 
site 1 are potentially not the same as the three batches at site 2. Likewise, the 10 
tablets from batch 1 at site 1 are potentially quite different from the 10 tablets from 
batch 1 at site 2. The levels of factor B, batches, are dependent on which site they 
came from, and the levels of factor C, tablets, are dependent on which batch they 
came from and which site they came from. Thus, we have the following definition.

In the pharmaceutical example, the batches are nested within the sites; that is, 
factor B is nested within factor A. Also, the tablets, factor C, are nested within the 
levels of factor B and hence the levels of factor A. That is, the three batches within a 
site are unique to that site, and the 10 tablets within a batch are unique to that batch 
and hence also unique to the site associated with that batch.

For an experimental situation having factor B nested within factor A, it will be 
impossible to evaluate the effect of the interaction of factor B with  factor A because 
each level of factor B does not appear with each level of  factor A, as it would in a 
factorial (crossed) arrangement of factors A and B.
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The general model for a two-factor experiment (n observations per cell) 
where factor B is nested in factor A can be written as

yijk  m 1 ti 1 bj(i) 1 eijk i  1, 2, . . . , a

 j  1, 2, . . . , b

 k  1, 2, . . . , n

Note that this model is similar to the model for the two-factor experiment of 
 Section 17.3 except that there is no interaction term tbij and the term for factor 
B, bj(i), is subscripted to denote the jth level of factor B is nested in the ith level 
of  factor A. The analysis of variance table for this design is shown in Table 17.31.

The sums of squares in the AOV table are computed using the formulas 
given here.

 TSS  a
ijk

1yijk 2 y... 2 2 

 SSA  a
i

bn 1yi.. 2 y... 2 2 

 SSB 1A 2  a
i
a

j

n 1yij. 2 yi.. 2 2 

 SSE  TSS 2 SSA 2 SSB 1A 2  
Three of the more common situations are shown in Table 17.31 with the 

 expected mean squares. Note the following in particular:

 1. The F test for factor B(A), H0: ub1t2  0 or H0: s
2
b1t2  0, is always

 F 
MSB 1A 2

MSE

 2. The F test for factor A in the fixed-effects model, H0: ut  0, is

 F 
MSA
MSE

 For the random- and mixed-effects models, however, the correspond-
ing test for factor A, H0: s

2
t  0 or H0: ut  0, is

 F 
MSA

MSB 1A 2
 3. When n  1, there is no test for factor B(A), but we can test for 

factor A in the random- and mixed-effects models using

 F 
MSA

MSB 1A 2

TABLE 17.31
AOV table for a two-

factor experiment  
(n observations per cell) 

with factor B nested 
within factor A

 Expected Mean Square

Source  SS df MS A&B Fixed A Fixed, B Random A&B Random

A SSA a 2 1 MSA s2
e 1 bnut s2

e 1 ns2
b1t2 1 bnut s2

e 1 ns2
b1t2 1 bns2

t

B(A) SSB(A) a(b 2 1) MSB(A) s2
e 1 nub1t2  s2

e 1 ns2
b1t2  s2

e 1 ns2
b1t2

Error SSE ab(n 2 1) MSE s2
e s2

e s2
e
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EXAMPLE 17.11

Researchers conducted an experiment to determine the content uniformity of film-
coated tablets produced for a cardiovascular drug used to lower blood pressure. 
They obtained a random sample of three batches from each of two blending sites; 
within each batch, they assayed a random sample of five tablets to determine con-
tent uniformity. The data are shown here:

Site

Batches
within
each site

Tablets
within
each
batch

5.03
5.10
5.25
4.98
5.05

4.64
4.73
4.82
4.95
5.06

5.10
5.15
5.20
5.08
5.14

5.05
4.96
5.12
5.12
5.05

5.46
5.15
5.18
5.18
5.11

4.90
4.95
4.86
4.86
5.07

1 2 3 1 2 3

1 2

 a. Run an analysis of variance. Use a  .05.
 b. Is there evidence to indicate batch-to-batch variability in content 

uniformity? Does the F test run depend on whether we assume 
batches are fixed or random?

 c. Draw conclusions about batch.

Solution
 a. For these data, we have a  2 blending sites, b  3 batches within 

each blending site, and n  5 tablets per batch. The sample means 
are given in Table 17.32.

TABLE 17.32
Sample means for  

Example 17.11

 Batch

 Site 1 2 3 Site Mean

 1 5.082 4.84 5.134 5.01867
 2 5.06 5.216 4.928 5.068

 Overall mean    5.04333

From the data, we compute the following sums of squares:

 TSS  (5.03 2 5.04333)2 1 (5.10 2 5.04333)2 1 . . . 1 (5.07 
2 5.04333)2  .76348

 SSA  15{(5.01867 2 5.04333)2 1 (5.068 2 5.04333)2}  .01824
 SSB(A)  5{(5.082 2 5.01867)2 1 (4.84 2 5.01867)2 1 (5.134 2 5.0

1867)2 1 (5.06 2 5.068)2 1 (5.216 2 5.068)2 1 (4.928 2 
5.068)2}  .45401

 SSE  TSS 2 SSA 2 SSB(A)  .76348 2 .01824 2 .45401  
 .29123

The computer output for the analysis of this data set is given here. 
Note that the sums of squares differ slightly from our calculations. 
This is due to round-off error because we are dealing with very 
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 b. and c. The F test for batches is

 F 
MSB 1A 2

MSE
 9.39

based on df1  4 and df2  24. Because the  observed value of F, 9.39, 
exceeds the tabled value of F for a  .05, 2.78, we conclude that there is 
considerable batch-to-batch variability in the content uniformity of the 
tablets. This test does not depend on whether the batches are random. ■

By now, you may have realized that a whole new series of experimental 
 designs have opened up with the introduction of nested effects. Thinking beyond 
the two-factor design, one could imagine a general multifactor design with factor 
A, factor B nested in levels of factor A, factor C nested in levels of factors A and 
B, and so on. The analysis of variance table for a three-factor nested design with all 
 factors random is shown in Table 17.34.

TABLE 17.33
AOV table for  

experimental data

Source SS df MS F

A .01825 1 .01825   .16
B(A) .45401 4 .11350 9.39
Error .29020 24 .01209

Total .76246 29

CONTENT UNIFORMITY OF FILM-COATED TABLETS

General Linear Models Procedure

Dependent Variable: Y CONTENT

F>rPeulaVFnaeMSum of SquaresFDecruoS
2000.018.733354490.076662274.05ledoM

76190210.000002092.042rorrE
Corrected Total     29       0.76246667

R–Square C.V. Root MSE Y  Mean
0.619393

F>rPeulaVFerauqSnaeMSSIIIepyTFDecruoS
1132.015.133352810.033352810.01ETIS

BATH (SITE) 4  0.45401333 0.11350333 9.39 0.0001

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y CONTENT

Source: SITE
Error: MS(BATCH(SITE))

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
1 0.0182533333 4 0.1135033333 0.1608 0.7089

Source: BATCH(SITE)
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
4 0.1135033333 24 0.0120916667 9.3869 0.0001

2.180346 0.10996 5.04333

small deviations. We will use the sums of squares from the computer 
output in the analysis of variance table for this experiment, which 
is given in Table 17.33.
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Other extensions of these designs are possible as well. For example, one 
could have a three-factor experiment in which factors A and B are cross-classified 
but factor C is nested within levels of factors A and B. This would be an example 
of a partially nested design.

Suppose that a marketing research firm is responsible for sampling potential 
customers to obtain their opinions on two products (A1 and A2) in four geographic 
areas of the country (B1, . . . , B4). A random sample of six stores selling product 
Ai is obtained in each geographic area. For each store selected for product Ai 
in  geographic area Bj, 10 people are interviewed concerning product Ai. For this 
 design, factor C (stores) would be nested in levels of factors A (products) and B 
(geographic areas), and there would be n  10 observations (opinions) for each 
level of factor C (stores) nested in levels of factors A and B. Factors A and B are 
fixed and crossed, while factor C is random.

 17.7 RESEARCH STuDy: Factors Affecting Pressure 
Drops Across Expansion Joints

A major problem in power plants is that of pressure drops across expansion joints 
in electric turbines. The process engineer wants to design a study to identify the 
factors that are most likely to influence the pressure drop readings. Once these 
 factors are identified and the most crucial factors are determined by the sizes of 
their contributions to the pressure drops across the expansion joints during the 
study, the engineer can make design changes in the process or alter the method 
by which the operators of the process are trained. These types of changes may be 
expensive or time consuming, so the engineer wants to be certain which factors 
will have the greatest impact on reducing the pressure drops.

Designing the Data Collection
The process engineer considered the following issues in designing an appropriate 
experiment to evaluate pressure drop:

 1. What factors should be used in the study?
 2. What levels of the factors are of interest?
 3. How many levels are needed to adequately identify the important 

sources of variation?
 4. How many replications per factor–level combination are needed to 

 obtain a reliable estimate of the variance components?

TABLE 17.34
AOV table for a three-
factor nested design— 

all factors random  
(n observations per cell)

Source SS df MS EMS

A SSA a 2 1 MSA s2
e 1 ns2

g1t, b2 1 cns2
b1t2 1 bcns2

t

B(A) SSB(A) a(b 2 1) MSB(A) s2
e 1 ns2

g1t, b2 1 cns2
b1t2

C(A, B) SSC(A, B) ab(c 2 1) MSC(A, B) s2
e 1 ns2

g1t, b2

Error SSE abc(n 2 1) MSE s2
e

Total TSS abcn 2 1



17.7 Research Study: factors Affecting pressure drops Across expansion Joints    987

 5. What environmental factors may affect the performance of the 
 pressure gauge during the test period?

 6. What are the valid statistical procedures for evaluating the causes of 
the variability in pressure drops across the expansion joints?

 7. What type of information should be included in a final report 
to  document that all important sources of variability have been 
identified?

The factors selected for study were the gas temperature on the inlet side of the 
joint and the type of pressure gauge used by the operator. The engineer wants to 
know if the differences in gauge performance are affected by the temperature and 
hence decides that a factorial experiment is required to determine which of these 
factors has the greatest effect on the pressure drop. Three temperatures that cover 
the feasible range for operation of the turbine are 158C, 258C, and 358C. There are 
hundreds of different types of pressure gauges used to monitor the pressure in the 
lines. Four types of gauges are randomly selected from the list of possible gauges 
for use in the study. In order to obtain a precise estimate of the mean pressure drop 
for each of the 12 factor–level combinations, it was decided to obtain six replica-
tions of each of 12 treatments. The data from the 72 experimental runs were given 
in Section 17.1.

A profile plot of the 12 sample treatment means is presented in Figure 17.2. 
From the plot, the mean pressure drops for gauge type G1 have larger changes 
over the observed temperature range than do the other three gauge types. In order 
to determine if this observed difference is more than just random variation, we will 
develop models and analysis techniques in the remainder of this chapter to enable 
us to identify which factors have the greatest contribution to the overall variation 
in the pressure drops.

The objective of the study was to determine if the pressure drops across 
the expansion joints in electric turbines were related to gas temperature. Also, 
the engineer wanted to assess the variation in readings from the various types 
 of pressure gauges and determine whether variation in readings was consistent 
across different gas temperatures. In Table 17.1, we observed that there was a 
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FIGURE 17.2
Profile plot of mean  

pressure drop for the  
12 gauge–temperature  

treatments
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slight increase in pressure drop as the temperature increased from 158C to 258C 
but a subsequent decrease in pressure drop when the temperature was further 
increased from 258C to 358C. The pressure drops recorded by the four gauges 
were fairly consistent over the three temperatures, with the exception that gauge 
G1 recorded a much higher mean pressure drop than the other three gauges at 
258C. Table 17.35, means and standard deviations for the 12 temperature–gauge 
combinations, reveals a fairly constant standard deviation, but gauge G1 had a 
much higher mean pressure drop at 258C than the mean pressure drops of the 
other 11 temperature–gauge treatments.

Analyzing the Data
Since the four gauges were a random sample from a population of gauges avail-
able on the market, the gauge factor is a random effect. Thus, we want to assess 
whether the patterns observed in Table 17.35 and in Figure 17.2 were significant 
differences relative to the population from which the gauges were selected. Also, 
we want to determine if there are significant differences in mean pressure drops 
across the  selected population. Additionally, we want to determine if there are 
significant differences in mean pressure drops across the temperature range 158C 
to 35°C. The temperature factor has a fixed effect. The following model will be 
fit to the data:

yijk  m 1 ti 1 bj 1 tbij 1 eijk

where yijk is the pressure drop during the kth replication using gauge k with tem-
perature i, ti is the fixed effect due to the ith temperature, bj is the random effect 
due to the jth type of gauge, and tbij is the interaction effect of the jth type of 
gauge observed under the ith temperature. Prior to running tests of hypotheses or 
constructing confidence intervals, we will evaluate the conditions that the experi-
ment must satisfy in order for inferences to be appropriate. An examination of 
the following plots of the residuals will assist us in checking on the validity of the 
model conditions.

TABLE 17.35
Means and standard  

deviations of pressure  
drops readings

 Mean Standard Deviation

Temperature G1 G2 G3 G4 G1 G2 G3 G4

15 41.17 38.50 38.67 43.00 3.31 3.62 3.72 4.69

25 61.33 46.67 45.33 41.33 4.27 3.44 2.07 4.97

35 39.00 41.17 37 .83 42.67 4.69 2.79 3.31 4.18

The UNIVARIATE Procedure
Variable: resid

Moments

N
Mean
Std Deviation
Skewness

Sum Weights
Sum Observations
Variance
Kurtosis

72
0

3.53254487
0.01497112

72
0

12.4788732
–0.8796331
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The boxplot and stem-and-leaf plot of the residuals do not indicate any  extreme 
values. The normal probability plot indicates a few residuals somewhat deviant 
from the fitted line. However, the test of normality yields a p-value of .0655, so 
there is not significant evidence that the residuals are not normally  distributed. 
The plot of the residuals versus predicted values does not indicate a violation of 
the equal variances of the residuals assumption, since the spread in the residuals 
remains reasonably constant across the predicted values. Also, the table of stand-
ard deviations for the 12 treatments has values that are not very different in size. 
Thus, the conditions of normality and equal variance appear to be satisfied by 
the data. The condition that the gauges be randomly selected from a population 
of gauges and that the experimental runs be conducted in such a manner that the 
responses are independent would be checked through discussions with the process 
engineer concerning the manner in which the experiments were conducted. We 
will now present the AOV table, with notation T  temperature and G  type of 
gauge, as Table 17.36.
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TABLE 17.36
AOV table for  
research study

Source SS df MS EMS F p-value

T 1,133.78 2 556.89 s2
e 1 6s2

tb 1 24ut 3.07 .1205
G 437 .22 3 145.74 s2

e 1 6s2
tb 1 18s2

b .79 .5421
T*G 1,106.78 6 184.46 s2

e 1 6s2
tb 12.49 , .0001

Error 886.00 60 14.77 s2
e

Total 3,563.78 71
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The computer output from fitting the model to the data is given here.

Dependent Variable: y DROP 

Source
Model
Error
Corrected Total

DF
11
60
71

Sum of
Squares

2677.777778
886.000000
3563.777778

R-Square
0.751387

Coeff Var
8.925078

Root MSE
3.842742

y Mean
43.05556

Mean Square
243.434343
14.766667

F Value
16.49

Pr > F
<.0001

Source
t
g
t*g

Source
t
g
Error: MS(t*g)

Source
t*g
Error: MS(Error)

DF
2
3
6

DF
2
3
6

DF
6

60

Type III SS
1133.777778
437.222222

1106.777778

Type III SS
1133.777778
437.222222

1106.777778

Type III SS
1106.777778
886.000000

Mean Square
566.888889
145.740741
184.462963

Mean Square
566.888889
145.740741
184.462963

Mean Square
184.462963
14.766667

F Value
38.39
9.87

12.49

F Value
3.07
0.79

F Value
12.49

Pr > F
<.0001
<.0001
<.0001

Pr > F
0.1205
0.5421

Pr > F
<.0001

From the AOV table, we determine that there is a significant (p-value , .0001) 
interaction between the gas temperature and the type of gauge. Thus, the relation-
ship between mean pressure drop and gas temperature across the temperature range 
15°C to 35°C is not the same for all types of gauges. This conclusion is a confirmation 
of the relationship we observed in the profile plot given in Figure 17.2 for the four 
gauges used in the study. There is not a significant (p-value  .5421) difference in 
mean pressure drops due to the type of gauge. Thus, averaged over the  temperature 
range used in the study, the gauges used to measure pressure drops are not signifi-
cantly different with respect to mean pressure drop. Similarly, the mean pressure 
drops across the three temperatures were not significantly (p-value  .1205) differ-
ent. Thus, the process engineer would conclude that the impact on pressure drop of 
the type of gauge varied depending on the temperature of the gases.

 17.8 Summary

Fixed, random, and mixed models are easily distinguished if we think in terms 
of  the  general linear model. The fixed-effects model relates a response to k $ 1 
 independent variables and one random component, whereas a random-effects model 
is a general linear model with k  0 and more than one random component. The 
mixed model, a combination of the fixed- and the random-effects models,  relates 
a response to k $ 1 independent variables and more than one random component.

We illustrated the application of random-effects models to experimental 
 situations for the completely randomized design and for the a 3 b factorial treatment 
structure laid off in a completely randomized design. We noted similarities between 
tests of significance in an analysis of variance for a random-effects model and for the 
corresponding fixed-effects model. Inferences resulting from an analysis of variance 
for a mixed model were illustrated using the a 3 b factorial treatment structure.

Unfortunately, in an introductory course, only a limited amount of time 
can be devoted to a discussion of random- and mixed-effects models. To expand 
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our discussion in the text, the results of Section 17.5 are useful in developing the 
expected mean squares for sources of variability in the analysis of variance table 
for balanced designs. Using these expectations, we can then attempt to construct 
appropriate test statistics for evaluating the significance of any of the fixed or 
 random effects in the model.

The hardest part in any of these problems involving random- or mixed-effects 
models arises from trying to estimate E(y), with an appropriate confidence  interval 
for a random-effects model and the average value of y at some level or combination 
of levels for fixed effects in a mixed model. We illustrated how to obtain an estimate 
of E(y) for a random-effects model and how to construct an approximate confidence 
interval. The problem becomes even more complicated for mixed models.

The final topics covered in this chapter were nested designs. A brief intro-
duction showed several variations on the basic factorial experiments discussed in 
Chapters 14 and 15 and in earlier sections of this chapter. The designs presented 
are only a few of the more common designs possible when considering nested 
effects in a multifactor experimental setting. The interested reader should consult 
the references at the end of this book to pursue these topics in more detail; in par-
ticular, Kuehl (2000) is an excellent reference.

 17.9 Exercises

 17.2 A One-Factor Experiment with Random Treatment Effects
 Engin. 17.1 The process engineer for a large paint manufacturer is concerned about the consistency of 

an ingredient in the paint that determines the ability of the paint to resist fading. The paint has 
a specification of 5% by weight of the ingredient. She designed the following study to assess the 
consistency. Ten batches of paint, each consisting of 500 1-liter containers of paint, are randomly 
selected from the previous week’s production. From each of the 10 batches, five containers of 
paint are selected, and a determination of the percentage of the ingredient is made. The following 
table contains the percentages from the 50 determinations.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

4.18 5.60 7 .59 4.25 2.18 5.11 5.68 4.61 8.72 4.67
2.29 4.74 7 .46 5.39 5.88 7 .61 7 .55 7 .14 6.93 7 .85
1.40 1.86 5.79 4.81 3.07 3.46 2.30 4.61 5.25 2.21
8.69 6.29 5.09 7 .75 5.25 6.57 2.15 5.23 8.97 9.57
1.01 2.25 5.47 6.10 3.50 6.35 8.92 3.56 4.34 4.85

 a. Write a random-effects model for this study, identifying all the terms in the model.
 b.  Run an analysis of variance for the data collected in this study. Test for a 

significant batch effect using a  0.05.
 c.  Estimate the variance components associated with batches (s2

a) and containers 
within batches (s2

e). What proportion of the total variation in percentage of the 
fade prevention ingredient is due to the batch-to-batch variation?

 Engin. 17.2 Suppose the process engineer of Exercise 17.1 wanted to estimate the average percentage 
of the fade protection ingredient in a randomly selected container of the paint.

 a.  Use the data presented in Exercise 17.1 to form a point estimate of the average 
percentage of the fade protection ingredient in a randomly selected container of 
the paint.

 b.  Place a 95% confidence interval on the average percentage of the fade protection 
 ingredient in a randomly selected container of the paint.
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 Ag. 17.3 A rancher is interested in determining if the average daily gain in weight of calves  depends 
on the bull that sired the calf. Consider the following two situations:

   Scenario A: The rancher has only five bulls. The five bulls are mated with ran-
domly selected cows, and the average daily gains in weight by the calves produced 
by the matings are recorded.

   Scenario B: The rancher has hundreds of bulls and randomly selects five bulls for 
inclusion in the study. The five bulls are mated with randomly selected cows, and the 
average daily gains in weight by the calves produced by the matings are recorded.

  The data are given here.

Bull 1 Bull 2 Bull 3 Bull 4 Bull 5

1.20 1.16 .75 .96 .99
1.39 1.08 1.12 1.16 .85
1.36 1.22 1.02 1.05 1.10
1.39 .97 1.08 1.00 1.03
1.22 1.17 .83 1.12 .94
1.31 1.12 .98 1.15 .89

 a.  Write an appropriate linear statistical model for both scenario A and scenario B, 
identifying all the terms in the models.

 b.  State the null and alternative hypotheses for testing for a bull effect for each of 
the two scenarios.

 Ag. 17.4 Refer to Exercise 17.3.
 a.  For scenario B, randomly selected bulls, run an analysis of variance and test for a 

 significant bull effect.
 b.  Estimate the variance components associated with bulls (s2

a) and individual calves 
within bulls (s2

e). What proportion of the total variation in average daily weight 
gain is due to the bull-to-bull variation?

 c.  Place a 95% confidence interval on the average daily weight gain for a calf sired 
by a randomly selected bull.

 17.3 Extensions of Random-Effects Models
 Med. 17.5 Periodontal disease may play a role in many diseases, some of which were unknown previ-

ously. For example, a recent study of the failure of joint replacement prostheses due to aseptic loos-
ening demonstrated a link with bacterial DNA that was also found in dental plaque. Therefore, it 
is crucial that methods of determining bacterial DNA in plaque have a high degree of  reliability. A 
study was conducted to examine the variability in the chemical analyses for specified bacterial DNA 
content in plaque. The two major sources of variation selected for investigation were the person con-
ducting the analysis and the subjects supplying the plaque. The researchers randomly selected five 
analysts from a large pool of experienced analysts and 10 female subjects (ages 18–20). Plaque was 
scraped from the entire dentition of each subject and divided into five samples. Each of the analysts 
was given an unmarked sample from each of the subjects. The analysts then made a determination 
of the DNA content (in micrograms) for each of the 10 samples. The data are given here.

 Subject

Analyst 1 2 3 4 5 6 7 8 9 10

1 9.9 10.6 11.5 11.3 10.5 8.0 10.6 12.2 8.0 9.7
2 10.2 10.6 11.3 11.6 10.3 8.2 10.7 12.8 7 .9 9.6
3 10.1 10.5 11.1 11.3 10.1 7 .9 10.4 12.6 7 .7 9.3
4 10.2 10.5 11.2 11.3 10.2 7 .9 10.5 12.7 7 .8 9.4
5 10.4 10.9 11.4 11.6 10.6 8.4 10.9 12.5 8.1 9.5
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 a.  Why do you think the researchers selected only female subjects who were essen-
tially the same age?

 b. Write an appropriate linear statistical model identifying all terms in the model.
 c. State the null and alternative hypotheses for testing for an effect due to analyst.

 Med. 17.6 Refer to Exercise 17.5.
 a. Write down the expected mean squares.
 b. Run an analysis of variance and test for a significant analyst effect.
 c.  Estimate the variance components associated with analysts, subjects, and error. 

What proportion of the total variation is associated with each of the three sources 
of variation?

 d.  Place a 95% confidence interval on the average amount of DNA in the plaque of 
a  randomly selected subject.

 Bus. 17.7 Beer is pasteurized by subjecting it to processes in manufacturing and packaging that 
 attempt to kill, inactivate, or remove all yeast cells or other microorganisms, thereby prevent-
ing any further fermentation or microbiological decomposition of the packaged beer that might 
otherwise take place. Pasteurization impacts both the safety of the product and, more impor-
tant, the taste of the beer. Therefore, in order to guarantee that the pasteurization has been 
effectively implemented, beer manufacturers have well-defined testing procedures. A large beer 
manufacturer has numerous breweries and is concerned about the variability in the effectiveness 
of the pasteurization process across its many facilities. Preliminary studies indicated that the 
manufacturer’s many testing laboratories had varying ability to accurately determine the level 
of contamination in the beer. The manufacturer’s quality control staff decided to concentrate 
its efforts on examining the variability in the level of contamination due to the effectiveness of 
the pasteurization processes and the variability due to the laboratory’s determination of level of 
 contamination.
  The manufacturer’s research staff designed the following study. Six laboratories are se-
lected at random from the manufacturer’s many breweries. Ten different pasteurization pro-
cesses are randomly selected, and 12 samples of beer are selected from each of these processes. 
Two samples from each process are then sent to each laboratory. The laboratories count the 
microorganisms in each sample. The beer samples are coded so that the laboratories do not know 
which pasteurization process had treated the beer. The counts (units per ml) from the 10 labora-
tories are given here.

Process

Lab 1 2 3 4 5 6 7 8 9 10

1 1,055 1,768 1,500 1,875 1,758 1,172 996 1,134 544 124
 1,056 1,763 1,474 1,883 1,762 1,215 994 1,120 590 176

2 2,390 2,202 958 2,664 2,614 2,029 1,516 1,982 113 1,555
 2,406 2,233 968 2,716 2,688 2,115 1,546 1,947 119 1,504

3 2,641 1,998 2,651 3,094 1,178 1,553 1,200 2,138 1,528 1,405
 2,721 2,067 2,718 3,124 1,159 1,517 1,190 2,179 1,531 1,384

4 1,508 1,090 1,380 1,394 1,777 1,399 1,709 1,848 1,064 904
 1,533 1,042 1,355 1,367 1,695 1,423 1,604 1,894 1,023 909
5 1,493 1,970 1,192 2,090 1,858 1,420 1,460 1,542 1,514 1,117
 1,448 1,999 1,164 2,096 1,891 1,415 1,439 1,527 1,587 1,067

6 2,633 1,098 1,466 2,063 1,884 1,896 932 1,888 1,247 595
 2,613 1,077 1,624 2,070 1,888 1,945 890 1,964 1,172 601

 a. Write an appropriate linear statistical model, identifying all terms in the model.
 b. Write down the expected mean squares.
 c.  State the null and alternative hypotheses for testing for an interaction effect, an 

effect due to laboratory, and an effect due to process.
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 Bus. 17.8 Refer to Exercise 17.7.
 a. Run an analysis of variance and test for significant effects.
 b.  Estimate the variance components associated with interaction, laboratory, process, 

and error. What proportion of the total variation is associated with each of the four 
sources of variation?

 c. Is the effect due to laboratory or to process greater?

 17.4 Mixed-Effects Models
 Basic 17.9 A researchers wants to design a study to investigate two factors. He has the funding to 

investigate four levels of factor A and six levels of factor B, using 10 subjects randomly assigned 
to each of the 24 combinations of the two factors.

 a. Explain the difference in how the study would be conducted when both factors 
have random levels and when both factors have fixed levels. 

 b.  Explain the difference in the types of inferences that. can be made from a study 
with both factors having random levels and from a study with both factors having 
fixed levels. 

 c. Explain the difference in the types of inferences that can be made from a study in 
which factor A has fixed levels and factor B has random levels and from a study in 
which both factors have fixed levels. 

 Env. 17.10 The following study was designed to evaluate the effectiveness of four chemicals devel-
oped to control fire ants. The type of environmental conditions in which the chemical is placed 
might affect the effectiveness of the treatment to kill fire ants. Thus, the researcher randomly se-
lected five locations from a large selection of locations, with location representing a randomly 
 selected environment. To reduce the effect of the different colonies of fire ants and the types of 
mounds they inhabit, the researcher created 40 artificial fire ant mounds and populated them with 
50,000 ants having similar ancestry. The researcher randomly assigned 2 mounds to each of the 20 
treatment–location combinations. The numbers of fire ants killed during a 1-week period were 
recorded. The numbers of fire ants killed (in thousands) are given here.

 Chemicals

Locations 1 2 3 4

1 7 .2 4.2 9.5 5.4
 9.6 3.5 9.3 3.9
2 8.5 2.9 8.8 6.3
 9.6 3.3 9.2 6.0
3 9.1 1.8 7 .6 6.1
 8.6 2.4 7 .1 5.6
4 8.2 3.6 7 .3 5.0
 9.0 4.4 7 .0 5.4
5 7 .8 3.7 9.2 6.5

 8.0 3.9 8.3 6.9

 a.  Write an appropriate linear statistical model for this study. Identify all the terms in 
your model.

 b.  Compute the sum of squares for this experiment, and report this value in an AOV 
table. Be sure to include the expected mean squares column in the AOV table.

 Env. 17.11 Refer to Exercise 17.10.
 a. Display a complete analysis of variance table including F tests and p-values.
 b. Is there a significant interaction between locations and chemicals? If the interac-

tion is significant, what can we conclude about the effect of the chemicals?
 c. Are the main effects of chemicals and locations significant?
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 d. Based on your tests in parts (b) and (c), what can you say about the effect of 
chemicals on the number of fire ants killed?

 e. What proportion of the variation in the number of fire ants killed can be attributed 
to chemicals, locations, interaction, and all other sources?

 f. Are the conditions necessary to conduct the analysis in parts (b) and (c) satisfied? 
Justify your answer using the residuals.

Supplementary Exercises
 Basic 17.12 A completely randomized design is conducted with five levels of factor A randomly 

selected from a population of levels and three levels of factor B the only levels of interest to the 
researcher. The experiment will be implemented  by randomly assigning three experimental units 
to the 15 treatments obtained by crossing the levels of factors A and B.

 a. Write a linear statistical model for this experiment. Identify all the terms in your 
model, and state all the conditions that are imposed on these terms.

 b. Display a partial AOV table, including degrees of freedom and expected mean 
squares for all sources of variation.

 c. For each of the main effects and interactions, display the ratio of mean squares that 
would be the appropriate F statistic for testing the significance of each of the terms.

 Basic 17.13 A completely randomized design is conducted with five levels of factor A randomly 
selected from a population of levels, six levels of factor B randomly selected from a population 
of levels, and three levels of factor C the only levels of interest to the researcher. The experiment 
will be implemented  by randomly assigning 10 experimental units to the 90 treatments obtained 
by crossing the levels of factors A, B, and C.

 a. Write a linear statistical model for this experiment. Identify all the terms in your 
model, and state all the conditions that are imposed on these terms.

 b. Display a partial AOV table, including degrees of freedom and expected mean 
squares for all sources of variation.

 c. For each of the main effects and interactions, display the ratio of mean squares 
that would be the appropriate F statistic for testing the significance of each of 
the terms.

 Basic 17.14 A completely randomized design is conducted with four levels of factor A randomly 
selected from a population of levels, three levels of factor B randomly selected from a population 
of levels, and five levels of factor C randomly selected from a population of levels. The experi-
ment will be implemented  by randomly assigning five experimental units to the 60 treatments 
obtained by crossing the levels of factors A, B, and C.

 a. Write a linear statistical model for this experiment. Identify all the terms in your 
model, and state all the conditions that are imposed on these terms.

 b. Display a partial AOV table, including degrees of freedom and expected mean 
squares for all sources of variation.

 c. For each of the main effects and interactions, display the ratio of mean squares 
that would be the appropriate F statistic for testing the significance of each of 
the terms.

 Basic 17.15 A completely randomized design is conducted with three levels of factor A randomly 
selected from a population of levels; six levels of factor B, which are the only levels of interest to 
the researcher; and three levels of factor C, which are the only levels of interest to the researcher. 
The experiment will be implemented  by randomly assigning three experimental units to the 54 
treatments obtained by crossing the levels of Factors A, B, and C.

 a. Write a linear statistical model for this experiment. Identify all the terms in your 
model, and state all the conditions that are imposed on these terms.

 b. Display a partial AOV table, including degrees of freedom and expected mean 
squares for all sources of variation.

 c. For each of the main effects and interactions, display the ratio of mean squares 
that would be the appropriate F statistic for testing the significance of each of 
the terms.
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 Env. 17.16 Refer to Exercise 17.10. Suppose the four chemicals were randomly selected from the hun-
dreds of different chemicals used to control fire ants. The researcher was interested in whether 
the effectiveness of a chemical to control fire ants varied across different environments.

 a.  Write an appropriate model for this situation. Indicate how the conditions placed 
on the terms in the model differ from the conditions placed on the model used 
when the chemicals were the only chemicals of interest to the researchers.

 b. Construct the AOV table and test all relevant hypotheses.
 c. Compare the conclusions and inferences in this problem to those of Exercise 17.10.

 Env. 17.17 Refer to Exercise 17.16.
 a. Which model and analysis seem to be more appropriate? Explain your answer.
 b. Under what circumstances would a fixed-effects model be appropriate?

 Engin. 17.18 A university in a large urban area is having a major problem with traffic congestion. A 
study was funded to  determine the volume of traffic on campus streets by cars that are not as-
sociated with university business. One small phase of the study involved obtaining daily counts on 
the number of cars crossing but not making use of campus facilities. Video cameras were placed 
at each entrance to the university. The license plate number and the time of entrance or exit for 
each car passing through the campus entrances were recorded. Using these data and allowing 
a reasonable time for cars to traverse the campus, the researchers were able to determine the 
number of cars crossing the campus but not making use of any campus facilities during the busi-
ness day. A random sample of 12 weeks throughout the academic year was used in the analysis. 
During each of the 12 selected weeks, the traffic volume was recorded during the business hours 
of the five days. The data are given in the following table.

Week of Traffic Volume Count

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 Wk11 Wk12

680 438 539 264 693 530 700 518 427 368 579 210
656 487 601 198 646 575 636 497 534 305 580 250
597 496 578 195 652 548 610 510 501 347 536 219
643 518 609 258 638 561 652 452 485 367 567 268
656 491 558 231 682 546 687 461 492 353 592 197

 a. Write an appropriate linear statistical model for this experiment. Identify all the 
terms in your model, and state all the conditions that are imposed on these terms.

 b. Display a complete analysis of variance table, including expected mean squares,  
F tests, and p-values.

 c. Estimate the variation in the  mean weekly traffic volumes across the year using 
the information in the AOV table.

 d. Is the variation in traffic volume within weeks greater or less than the variation in  
mean weekly variations across the year? Justify your answer using the estimators 
of the variance components obtained from  the information in the AOV table.

 e. Use the residuals from the fitted model to determine if there are any violations in 
the conditions necessary to conduct the tests of hypotheses in this experiment.

 Gov. 17.19 The public safety department at a large urban university was concerned about criminal 
 activities involving nonstudents stealing bicycles and laptops from students. The campus police 
designed a study to investigate the number of automobiles entering the campus that do not have a 
campus parking sticker or do not enter a campus parking facility. The police were suspicious that 
such individuals may be involved in criminal activities. A team of criminal justice students was 
stationed at each entrance to the campus to monitor simultaneously the license numbers of all 
cars and to determine if each car had a campus parking sticker. By utilizing the computer records 
of all campus parking facilities, which record the license number of all cars upon their entrance to 
a parking facility, the teams were able to determine the numbers of cars entering the campus but 
not using campus facilities. Data were collected during a random sample of 12 weeks throughout 
the academic year. The counts of “suspicious” cars were recorded on the five business days during 
the selected 12 weeks and appear here.
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  Week

Day 1 2 3 4 5 6 7 8 9 10 11 12

Mon 52 51 52 54 56 54 51 56 51 48 52 53
Tue 47 50 50 51 55 51 49 54 49 46 51 50
Wed 49 50 50 52 54 51 49 54 49 47 52 50
Thu 49 50 49 52 54 50 48 54 49 46 51 51
Fri 44 48 48 50 53 50 48 52 48 45 50 51

 a. Write an appropriate linear statistical model for this experiment. Identify all the 
terms in your model, and state all the conditions that are imposed on these terms.

 b. Display a complete analysis of variance table, including expected mean squares, 
F tests, and p-values.

 c. Bicycle and laptop thefts seem to occur in clusters. Therefore, if the count of 
“suspicious’’ cars is associated with theft, then there should be a large variation 
in the weekly counts. Does the number of suspicious cars arriving on campus on a 
weekly basis remain fairly constant over the academic year?

 d. Use the residuals from the fitted model to determine if there are any violations in 
the conditions necessary to conduct the tests of hypotheses in this experiment.

 Gov. 17.20 Refer to Exercise 17.19. Estimate the average number of “suspicious” cars entering 
the campus for a randomly selected week during the academic year, and include an appropriate 
 confidence interval.

 Med. 17.21 A study was designed to evaluate the effectiveness of new treatments to reduce the systolic 
blood pressure of patients determined to have high blood pressure. Three drugs were  selected for 
evaluation (D1, D2, and D3). There are numerous nondrug treatments for reducing blood pressure, 
 including various combinations of a controlled diet, exercise programs, biofeedback, and so on. The 
researchers randomly selected three nondrug treatments (ND1, ND2, and ND3) for examination in 
the study. The age of the patient often may hinder the effectiveness of any treatment. Thus,  patients 
with high blood pressure were divided into two age groups (A1 and A2). A group of 54  patients was 
divided into the two age groups and then randomly assigned to a combination of one of the three 
drugs and one of the three nondrug treatments. After patients had participated in the program for 
2 months, the reductions in their systolic blood pressure readings from their blood pressure readings 
at the  beginning of the program were recorded. These values are given in the following table.

 Age A1 Age A2

 Nondrug Nondrug

 ND1 ND2 ND3 ND1 ND2 ND3

Drug 33 37 41 34 48 44
D1 34 38 42 33 46 46
 35 36 39 38 45 49

Drug 46 44 43 47 44 44
D2 45 48 44 49 48 46
 46 49 45 45 46 41

Drug 38 45 36 36 46 38
D3 34 45 37 39 47 36

 37 44 35 35 44 35

 a.  Write a model for this study. Identify all the terms in your model, and state all the 
necessary conditions placed on the terms in the model.

 b. Construct the AOV table for the study, including the expected mean squares.
 c. Test the significance of all relevant sources of variation. Use a  .05.
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 d.  What conclusions do you draw about the differences in the effectiveness of the 
 combinations of nondrug and drug treatments for high blood pressure?

 e. Would it be appropriate to recommend a treatment based on these data? Justify 
your answer.

 Engin. 17.22 Refer to Exercise 15.22. Suppose that we consider the five investigators to be a random 
 sample from a population of all possible investigators for the rocket propellant experiment.

 a.  Write an appropriate linear statistical model, identifying all the terms and listing 
your assumptions.

 b.  Perform an analysis of variance. Include an expected mean squares column in the 
analysis of variance table.

 Engin. 17.23 Refer to Exercise 17.22. 
 a. If the five investigators are considered to be a fixed effect, what are the hypoth-

eses being tested, and what conclusions can be drawn if the null hypothesis is 
rejected? State your answer in terms of a parameter(s) reflecting the difference 
in the propellants.

 b. If the five investigators are considered to be a random effect, what are the hypoth-
eses being tested, and what conclusions can be drawn if the null hypothesis is 
rejected? State your answer in terms of a parameter(s) reflecting the difference 
in the propellants.

  17.24 Refer to Exercise 14.33. Suppose that the two laboratories were randomly selected from 
a population of laboratories for participation in the study, which also included time as a possible 
source of variability.

 a. Obtain the expected mean squares for all sources of variability.
 b. Test all relevant sources of variability for significance. Use a  .05.
 c. Compare the results obtained here to the results obtained in Exercise 14.34.
 d.  Does considering the laboratory effects to be random effects seem more relevant 

than considering them to be fixed effects? Explain your answer.

  17.25 Refer to Exercise 14.31. Suppose that the five pane designs were randomly selected from 
a population of pane designs for participation in the study.

 a. Obtain the expected mean squares for all sources of variability.
 b. Test all relevant sources of variability for significance. Use a  .05.
 c. Compare the results obtained here to the results obtained in Exercise 14.31.
 d.  Does considering the pane design effects to be random effects seem more relevant 

than considering them to be fixed effects? Explain your answer.

  17.26 Refer to the study described in Exercise 14.27.
 a.  Considering the nine medications to be randomly selected from a population of 

 possible medications, write a model for the study.
 b. Give the expected mean squares for all sources of variability.
 c.  Indicate how your analysis and conclusions would change from those of Exercise 14.27.

 Engin. 17.27 The two most crucial factors that influence the strength of solders used in cementing 
computer chips into the mother board of the guidance system of an airplane are identified as the 
machine used to insert the solder and the operator of the machine. Four solder machines and 
three operators were randomly selected from the many machines and operators available at the 
company’s plants. Each operator made two solders on each of the four machines. The resulting 
strength determinations of the solders are given here.

 Machine

Operator 1 2 3 4

1 204 205 203 205
 205 210 204 203

2 205 205 206 209
 207 206 204 207

3 211 207 209 215
 209 210 214 212
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 a.  Write a model for this study. Include all the terms and conditions placed on the 
terms in the model.

 b. Present the AOV table for this study, and include the expected mean squares.
 c.  What conclusions can you draw about the effect of machine and operator on the 

variability in solder strength?

  17.28 Refer to Exercise 17.27.
 a. Estimate the variance components in this study.
 b.  Proportionally allocate the sources of variability with respect to the total 

 variability in solder strength.
 c. Place a 95% confidence interval on the average solder strength.

 Env. 17.29 Core soil samples are taken in each of six locations within a territory being investigated 
for surface mining of bituminous coal. Each of the core samples is divided into four subsamples 
for separate analyses of the sulfur content of the sample.

 a. Identify the design and give a model for this experimental setting.
 b. Give the sources of variability and degrees of freedom for an AOV.

  17.30 The sample data for Exercise 17.29 are shown here. Run an AOV and draw conclusions. 
Use a  .05.

 Analysis

Location 1 2 3 4

1 15.2 16.8 17 .5 16.2
2 13.1 13.8 12.6 12.9
3 17 .5 17 .1 16.7 16.5
4 18.3 18.4 18.6 17 .9
5 12.8 13.6 14.2 14.0

       6 13.5 13.9 13.6 14.1

 Engin. 17.31 Tablet hardness is one comparative measure for different formulations of the same drug 
product; some combinations of ingredients (in addition to the active drug) in a formulation give 
rise to harder tablets than do other combinations. Suppose that three batches of a formulation are 
randomly selected for examination. Three different 1-kg samples of tablets are randomly  selected 
from each batch, and seven tablets are randomly selected for testing from each of the 1-kg sam-
ples. The hardness readings are given here.

 Batch 1 Batch 2 Batch 3

Sample 1 2 3 1 2 3 1 2 3

 85 76 95 108 117 101 71 81 72
 94 87 98 100 106 108 85 70 68
 91 90 94 105 103 100 78 84 80
 98 91 96 109 109 99 68 83 72
 85 88 99 104 100 117 85 72 75
 96 94 100 102 104 109 67 81 79
 93 96 93 108 102 105 76 78 74

 a. Identify the design.
 b. Give an appropriate model with assumptions.
 c. Give the sources of variability and degrees of freedom for an AOV.
 d.  Perform an analysis of variance, and draw conclusions about the tablet hardness 

data for the formulation under study. Use a  .05.
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 Sci. 17.32 An anthropologist is interested in the impact of the usage of mind-altering drugs in 
 religious ceremonies. She selects five underdeveloped countries for inclusion in her study. She 
then selects 10 tribes in each country. Finally, she randomly selects 20 families from each tribe 
for an in-depth interview. After the interview, the anthropologist assigns a score that reflects the 
 impact of the usage of mind-altering drugs in religious ceremonies. The researcher is interested in 
determining if there is a difference in the average scores across countries and what the degree of 
variability is in the index across tribes and families. In this study, there are three factors of interest 
to the researcher: country, tribe, and family.

 a. Identify each of the factors as fixed or random; justify your answer.
 b. State whether the factors are nested or crossed; provide reasons for your answers.
 c.  Provide an AOV table that includes source of variation, df, and expected mean 

squares.

 Sci. 17.33 A soil scientist is studying the potassium content of three major soil types in Texas. For 
each of the three soil types, the scientist randomly selects five sites in which this soil type is the 
dominant soil type within the site. Within each site, five soil samples are randomly selected, and 
the potassium content is determined. The soil scientist is interested in the level of difference 
in the average potassium contents across the three soil types and in the degree of variability in 
potassium contents within sites.

 a. Identify each of the factors as fixed or random; justify your answer.
 b. State whether the factors are nested or crossed; provide reasons for your answers.
 c.  Provide an AOV table that includes source of variation, df, and expected mean squares.

 Edu. 17.34 There has been a major initiative to include the use of laptop computers as a part of the 
lesson plan in math and science courses in middle schools. There has been some resistance to the 
inclusion due to costs and the reluctance on the part of some teachers to increase their use of tech-
nology-based instruction. A major study was designed in a large midwestern state to study these 
issues. The school districts in the state were divided into three groups: urban, rural, and mixed urban-
rural. Ten school districts were randomly selected within each of these three groups. Five randomly 
selected schools provided a weeklong workshop on how to include laptops in their daily instruction, 
and the other five schools were given only a manual that described laptop  implementation strategies. 
Six teachers were randomly selected from each of the 30 schools. The teachers’ classroom and lesson 
plans were then examined to determine the degree to which they had included laptops into their in-
struction. The researchers were interested in determining the impact on instruction of type of school 
district and type of training. Also, they wanted to measure the variability among schools of the same 
type and among teachers from the same schools.

 a. Identify each of the factors as fixed or random; justify your answer.
 b. State whether the factors are nested or crossed; provide reasons for your answers.
 c.  Provide an AOV table that includes source of variation, df, and expected mean 

squares.

 Med. 17.35 The following study is from  Oehlert (2000). Dental fillings made from gold can vary in 
hardness depending on how the metal is treated prior to its placement in the tooth. Two factors 
thought to influence the hardness are the gold alloy and the condensation method. In addition, 
some dentists performing the dental work are better at some types of filling than others. Five den-
tists were randomly selected and agreed to participate in the experiment. Each dentist prepared 24 
fillings (in random order), one for each of the combinations of condensation method (three levels) 
and type of alloy (eight levels). The levels of condensation and type of alloy are the only levels 
of interest to the researchers. The fillings were then measured for hardness using the Diamond 
Pyramid Hardness Number (big scores are better). The data are contained in the following table:

Alloy

Dentist Method 1 2 3 4 5 6 7 8

1 1 792 824 813 792 792 907 792 835
1 2 772 772 782 698 665 1115 835 870
1 3 782 803 752 620 835 847 560 585
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   Assessment Method

M1 M2 M3 M4

Lab Lab Lab Lab
Source L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

Meat 12.3 13.2 12.9 13.2 12.9 14.5 14.3 14.5 14.3 14.5 14.4 13.5 14.7 13.5 14.7 14.8 16.4 15.6 14.8 15.2
12.6 13.0 13.0 14.0 13.9 15.0 15.6 14.8 15.6 14.8 14.1 13.4 14.6 13.4 14.2 15.3 14.3 16.4 15.4 14.4

Fruit 13.2 14.4 12.9 14.1 12.8 13.2 14.2 14.4 13.3 14.5 13.4 14.5 12.7 13.5 12.7 12.2 14.4 12.4 13.4 13.2
13.4 14.5 13.7 14.1 13.4 14.2 13.4 14.6 13.6 13.8 14.1 14.4 14.2 14.4 14.2 13.3 13.6 13.8 13.8 13.3

Veg. 13.1 13.4 13.6 13.8 12.8 13.5 13.3 13.5 14.3 13.5 14.3 13.5 13.7 14.5 13.7 12.2 14.3 13.6 13.4 14.4
12.5 14.0 13.0 14.1 13.3 14.0 12.6 12.8 13.6 12.8 15.1 15.4 15.2 15.4 15.2 13.3 13.9 12.7 13.9 14.1

Alloy

Dentist Method 1 2 3 4 5 6 7 8

2 1 803 803 715 803 813 858 907 882
2 2 752 772 772 782 743 933 792 824
2 3 715 707 835 715 673 698 734 681
3 1 715 724 743 627 752 858 762 724
3 2 792 715 813 743 613 824 847 782
3 3 762 606 743 681 743 715 824 681
4 1 673 946 792 743 762 894 792 649
4 2 657 743 690 882 772 813 870 858
4 3 690 245 493 707 289 715 813 312
5 1 634 715 707 698 715 772 1048 870
5 2 649 724 803 665 752 824 933 835
5 3 724 627 421 483 405 536 405 312

 a. Write an appropriate linear statistical model for this experiment. Identify all the 
terms in your model, and state all the conditions that are imposed on these terms.

 b. Display a complete analysis of variance table, including expected mean squares, 
F tests, and p-values.

 c. Is there significant evidence of an interaction between condensation method and 
type of alloy?

 Med. 17.36 Refer to Exercise 17.35.
 a. Group the types of alloys such that alloys within a group have similar mean hard-

ness scores.
 b. Group the types of condensation methods such that alloys within a group have 

similar mean hardness scores.
 e. Estimate the variation in  the mean hardnesses due to the dentist.
 e. Use the residuals from the fitted model to determine if there are any violations in 

the conditions necessary to conduct the tests of hypotheses in this experiment.

 Health 17.37 A state health department conducted an experiment to evaluate the reliability of assessing 
the level of contamination of e. coli in three food sources, meat, fruit, and vegetables. There are 
four unique methods for assessing e. coli—M1, M2, M3, and M4—and hundreds of laboratories 
that use one or more of theses methods in the United States. For each of the methods of assess-
ment, five laboratories are randomly selected to participate in the study. Forty containers are 
prepared for each food source by spiking the container with a known level of contamination of e. 
coli and then placing the container in a controlled climate for 3 weeks to allow the e. coli level to 
stabilize. Six containers, two of each of the three food sources, are then sent to each of the 20 labo-
ratories selected for the study. The e. coli level (cfu/g), Yijkl, determined by the kth lab using assess-
ment method j for the lth container of food source i is recorded for each of the 120 containers. The 
health department wants to compare the mean e. coli levels of the four assessment methods and 
their differences across the food sources. It also wants to determine if there are major differences 
in the mean e. coli determinations across the many laboratories in the United States.
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 a. Write a model that displays an appropriate relationship between a level of con-
tamination, Yijkl, and its possible sources of variation. Include any restrictions on 
the parameters in your model and any distributional properties of the random 
variables in your model.

 b. Do the necessary conditions for testing hypotheses and constructing confidence 
intervals appear to be satisfied? Justify your answers.

 c. Construct an ANOVA table for this experiment. Make sure to include expected 
mean squares and the p-values for the F tests.

 d. At the a  .05 level, which main effects and interaction effects are significant? 
Justify your answer by including the relevant p-values. 

 e. What are your overall conclusions about the differences in the four assessment 
methods?

 Health 17.38 Refer to Exercise 17.37.
 a. For meat products, separate the four assessment methods into groups such that all 

assessment methods in a group are not significantly different from one another 
with respect to their mean e. coli levels. Use an experimentwise error rate of 
a  .05.

 b. For fruit products, separate the four assessment methods into groups such that all 
assessment methods in a group are not significantly different from one another 
with respect to their mean e. coli levels. Use an experimentwise error rate of 
a  .05.

 c. For vegetable products, separate the four assessment methods into groups such that 
all assessment methods in a group are not significantly different from one another 
with respect to their mean e. coli levels. Use an experimentwise error rate of 
a  .05.

 d. Provide a 95% confidence interval on the mean e. coli level of a container of meat 
for each of the assessment methods. 

 e. Provide a 95% confidence interval on the mean e. coli level of a container of fruit 
for each of the assessment methods.

 f. Provide a 95% confidence interval on the mean e. coli level of a container of veg-
etables for each of the assessment methods.

 g. Was it necessary to do a separate grouping of the assessment methods for each 
of the food types? Justify your answer based on the tests conducted in the AOV 
table.



 18.1 Introduction and Abstract of Research Study

In all of the experimental situations discussed so far in this text (except for the 
paired difference experiment), we have assumed that only one observation is 
taken on each experimental unit. For example, in an experiment to compare the 
effects of three different cardiovascular compounds on blood pressure, we could 
use a completely randomized design where n1 patients are assigned to compound 1, 
n2 to compound 2, and n3 to compound 3. Then the model would be

yij  m 1 ti 1 eij

where ti is the fixed effect due to compound i and eij is the random  effect associ-
ated with patient j treated with compound i. For this design, we would get one 
measurement (yij) for each patient.

The practicalities of many applied research settings make it mandatory from 
a cost and efficiency standpoint to obtain more than one observation per experi-
mental unit. For example, in conducting clinical research, it is often difficult to find 
patients who have the condition to be studied and who are willing to participate 
in a clinical trial. Hence, it is important to obtain as much information as possible 
once a suitable number of patients have been located. 
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When the experiment involves a factorial treatment structure, the implemen-
tation of one of two factors may be more time consuming or more expensive or  may 
require more material than the other factors. In circumstances such as these, a split-
plot design is often implemented. For example, in an educational research study 
 involving two factors, teaching methodologies and individual tutorial techniques, 
the teaching methodologies would be applied to the entire classroom of students. 
The tutorial techniques would then be applied to the individual students within the 
classroom. In an agricultural experiment involving the factors levels of irrigation 
and  varieties of cotton, the irrigation systems must apply the water to large sections 
of land, which would then be subdivided into smaller plots. The different varieties 
of cotton would then be planted on the smaller plots. In both of these examples, 
the  levels of one factor are applied to a large experimental unit, which is then sub-
divided into smaller units to which the levels of the second factor are then assigned.

In a crossover designed experiment, each subject receives all treatments. The 
individual subjects in the study are serving as blocks and hence decreasing the 
 experimental error. This provides an increased precision in the treatment com-
parisons when compared to the design in which each subject receives a single 
treat ment. In the repeated measures designed experiment, we obtain t different 
measurements corresponding to t different time points following administration 
of the assigned treatment. This experimental setting is shown in Table 18.1. In 
Table 18.1, yijk denotes the observation at the time k for the jth patient on com-
pound i. Note that we are getting t . 1 observations per patient, rather than only 1.

The multiple observations over time on the same subject often yield a more 
efficient use of experimental resources than using a different subject for each 
observation time. Fewer subjects are required, with a subsequent reduction in 
cost. Also, the estimation of time trends will be measured with a greater degree 
of precision. The methods of this chapter can be used to analyze data from split-
plot experiments, crossover studies, and repeated measures studies. The applica-
tion of these designs is broad-based. Applications abound in the pharmaceutical 
industry and in the research and development (R & D) and manufacturing opera-
tions of most industries. Medical  research, ecological studies, and numerous other 
areas of research involve the evaluation of time trends and hence may find the 
repeated measures design useful. An extension of these designs may also be appro-
priate for studies in which the data have a spatial relationship in place of the time 
trend. Examples include the  reclamation of strip-mined coal fields, evaluation of 
the effects of an oil spill, and air pollution around an industrial facility. Studies 
involving spatially repeated measures are generally more complex to model than 

split-plot design

crossover designed 
experiment

repeated measures 
designed experiment

TABLE 18.1
Repeated time points for  

each patient

 Time Period

Compound 1 2 . . . t

1 y111 y112 . . . y11t

 (  (   (
 y1n11

 y1n12
 . . . y1n1t

2 y211 y212 . . . y21t

 (  (   (
 y2n21

 y2n22
 . . . y2n2t

3 y311 y312 . . . y31t

 (  (   (
 y3n31

 y3n32
 . . . y3n3t
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the time trends we will address in this chapter. Further reading on the modeling 
of spatial data can be found in Ripley (1998), Haining (1990), and Cressie (1993).

The following research study will illustrate the evaluation of time trends in a 
repeated measures design.

Abstract of Research Study: Effects of Oil Spill  
on Plant Growth 
We examined a small portion of this research study in Chapter 6. On January 7, 1992, 
an underground oil pipeline ruptured and caused the contamination of a marsh 
along the Chiltipin Creek in San Patricio County, Texas. The cleanup process con-
sisted of burning the contaminated regions in the marsh. To evaluate the influence 
of the oil spill on the flora, the researchers designed a study of plant growth after 
the burn was finished. In an unpublished Texas A&M University dissertation, 
Newman (1998) describes the researchers’ findings with respect to Distichlis spicata, 
a flora of particular importance to the area of the spill.

Two questions of importance to the researchers were as follows:

  1. Did the oil site recover after the spill and burning?
2. How long did it take for the recovery?

To answer these questions, the researchers needed to have a baseline to which 
they could compare the Distichlis spicata density in the months after the burning of 
the site. The density of the flora depended on soil characteristics, slope of the land, 
environmental conditions, weather, and many other factors. The researchers desig-
nated as the control site a nearby section of land that was not affected by the oil 
spill but that had soil and environmental properties similar to those of the spill site. 
At both the oil spill site and the control site, 20 tracts were randomly chosen. After 
a 9-month transition period, measurements were taken at approximately 3-month 
intervals for a total of eight time periods. During each time period, the number of 
Distichlis spicata within each of the 40 tracts was recorded.

The experimental design is a repeated measures design with two treatments, 
the oil spill and the control region, and eight measurements taken over time on 
each of the tracts over a 2-year period. To answer the researchers’ questions, we 
will state them in terms of the Distichlis spicata counts. Thus, our research hypoth-
eses are stated as follows:

  1. Was there a difference in the average density of Distichlis spicata 
 between the oil spill tracts and the control tracts during the study  period? 

2. Were there significant trends in average density of Distichlis spicata 
 during the study period?

3. Were the trends for the oil spill and control tracts different? 

The data consisted of the number of Distichlis spicata plants found on each tract 
during the eight observation periods on both the control and the burned (oil spill) 
sites. There were a total of 320 data values. The data are given in Table 18.2. 

The flora counts are plotted in Figure 18.1, using boxplots for each date and 
treatment. The boxplots reveal that the control plots have higher median flora 
counts than the oil spill plots. The control plots, however, are somewhat more 
variable than the oil spill plots. This may be due to the burning treatment used on 
the oil spill plots, which often results in more homogeneous tract that was condi-
tions than were present prior to the burning. The extension of these observations 
beyond the tracts in the study to the population of tracts will require modeling of 



18.1 Introduction and Abstract of Research Study    1007

TABLE 18.2
Number of Distichlis 

spicata under two 
treatments

  Oct. Jul. Oct. Jan. Apr. Jul. Oct. Jan. 
Treatment Tract 92 93 93 94 94 94 94 95

Burned 1 27 25 18 21 26 22 20 27
 2 5 15 10 12 10 11 12 9
 3 17 26 26 25 15 10 14 17
 4 41 41 42 38 34 26 26 25
 5 25 28 22 27 24 16 18 23
 6 11 24 13 20 16 13 10 14
 7 37 40 33 31 32 30 25 31
 8 38 38 33 38 39 35 32 38
 9 31 33 25 30 28 21 17 19
 10 24 25 21 24 24 19 17 22
 11 22 27 31 30 32 30 25 34
 12 26 45 39 35 35 36 30 27
 13 32 38 34 45 41 28 31 31
 14 35 37 35 42 35 32 27 29
 15 26 23 19 18 21 13 11 19
 16 22 29 24 24 20 16 18 24
 17 50 54 56 60 51 52 49 52
 18 17 29 23 39 31 24 26 34
 19 25 37 29 32 28 14 13 24
 20 33 39 39 48 36 34 30 34

Control 1 7 0 0 1 0 0 0 0
 2 57 46 49 51 48 43 40 40
 3 43 59 59 60 58 53 55 58
 4 43 53 52 53 53 53 52 54
 5 59 55 59 60 54 47 54 53
 6 42 48 50 48 43 37 38 38
 7 35 42 50 55 41 40 44 45
 8 40 51 53 57 53 38 43 36
 9 24 52 54 59 57 55 57 39
 10 42 49 50 54 51 44 39 41
 11 16 31 39 47 24 22 33 35
 12 54 58 60 60 54 51 48 51
 13 30 43 43 47 39 36 49 56
 14 47 50 60 60 54 52 57 57
 15 40 40 47 49 43 41 48 52
 16 11 23 27 31 17 19 24 29
 17 41 45 42 44 41 33 31 42
 18 50 52 55 53 45 42 35 51
 19 8 8 7 12 6 5 8 10
 20 0 0 0 1 0 0 0 0



1008 ChApteR 18 SplIt-plot, RepeAted MeASuReS, And CRoSSoveR deSIgnS

the data and testing of the relevant statistical research hypotheses. We will provide 
this analysis at the end of the chapter after introducing the methods of analyzing 
repeated measures designs. 

 18.2 Split-Plot Designed Experiments

Split-plot designs are another type of experimental design that can be used to 
implement studies involving factorial treatment structures. The split-plot design 
is generally implemented when one or more of the factors is more time consum-
ing, expensive, or difficult to apply to the experimental units than the other fac-
tors. The major difference between split-plot designs and completely randomized 
designs is that split-plot designs have more than one randomization when assigning 
treatments to experimental units and the experimental units for the levels of one 
factor are different from the experimental units for the other factors. Split-plot 
designs originated in agricultural experimentation. We will illustrate the split-plot 
design with an example involving soybeans.

The yields of three different varieties of soybeans are to be compared under 
two different levels of fertilizer application. If we were interested in getting (say) 
n  2 observations at each combination of fertilizer and variety of soybeans, we 

FIGURE 18.1
Boxplots of flora counts 
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would need 12 equal-sized plots. Taking fertilizers as factor A and varieties as 
a treatment factor T, one possible design would be an 2 3 3 factorial treatment 
structure in a completely randomized design with n  2 observations per factor–
level combination. However, since the application of fertilizer to a plot occurs 
when the soil is being prepared for planting, it would be difficult (logistically) to 
first apply fertilizer A1 to six of the plots dictated by the factorial arrangement of 
factors A and T and then fertilizer A2 to the other six plots before planting the 
required  varieties of soybeans in each plot.

An easier design to execute would have each fertilizer applied to two larger 
“wholeplots” and then the varieties of soybeans planted in three “subplots” (equal 
in size to the plots of the previous design) within each wholeplot. A design of this 
type appears in Figure 18.2.

This design is called a split-plot design, and with this design, there is a two-
stage randomization. First, levels of factor A (fertilizers) are randomly assigned to the 
whole plots; second, the levels of factor T (soybeans) are randomly assigned to the 
subplots within a wholeplot (see Figure 18.3). Using this design, it would be much 
easier to prepare the soil and to apply the appropriate fertilizer to the larger who-
leplots and then to plant varieties of soybeans in the subplots rather than preparing 
the soil and applying fertilizer to the subplots and then planting soybeans in the 
subplots, as would be the case for a standard 2 3 3 factorial experiment.

Because the randomization at the wholeplot level and at the subplot level is 
according to a completely randomized design, the design is often referred to as a 
completely randomized split-plot design.

FIGURE 18.2
Split-plot design 
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Consider the model for the completely randomized split-plot design with a 
 levels of factor A, t levels of factor T, and n repetitions of the ith level of factor A. If yijk 
denotes the kth response for the ith level of factor A and the jth level of factor T, then 

yijk  m 1 ti 1 dk(i ) 1 gj 1 tgij 1 eijk

where

 ti: Fixed effect for ith level of A.

 gj: Fixed effect for jth level of T.

 tgij: Fixed effect for ith level of A and jth level of T.

 dk(i ):  Random effect for the kth wholeplot receiving the ith level of A. 
The dik are independent and normal with mean 0 and variance s2

d.

 eijk:  Random error. The eijk are independent and normal with mean 0 
and variance s2

e.

The dk(i ) and eijk are mutually independent. The AOV for this model and design is 
shown in Table 18.3.

You could compute the sums of square for the AOV using our standard 
 formulas, but we suggest going to computer output to get them. It follows from the 
expected mean square that we have the following analyses: 

Wholeplot Analysis

H0: ut  0 (or, equivalently, H0: All ti  0), F 
MSA

MS 1A 2
Subplot Analysis

H0: utg  0 (or, equivalently, H0: All tgij  0), F 
MSAT
MSE

H0: ug  0 (or, equivalently, H0: All gj  0), F 
MST
MSE

A variation on this design introduces a blocking factor (such as farms). Thus, 
for our example, there may be b  2 farms with a  2 wholeplots per farm and 
t  3 subplots per wholeplot. This design is shown in Figure 18.4. Because the 
 randomization to the wholeplots is done according to a randomized block design 
and the randomization to the subplot units within a wholeplot occurs according to 
a completely randomized design, the design is often referred to as a randomized 
block split-plot design.

The model for this more general two-factor split-plot design laid off in b blocks 
is as follows: 

yijk  m 1 ti 1 bj 1 tbij 1 gk 1 tgik 1 eijk

TABLE 18.3
AOV for a completely 
 randomized split-plot 

design

Source SS df EMS

A SSA a 2 1 s2
e 1 ts2

d 1 tnut

Wholeplot error  SS(A) a(n 2 1) s2
e 1 ts2

d

T SST t 2 1 s2
e 1 anug

AT SSAT (a 2 1)(t 2 1) s2
e 1 nutg

Subplot error SSE a(n 2 1)(t 2 1) s2
e

Total TSS  atn 2 1
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where yijk denotes the measurement receiving the ith level of factor A and the 
kth level of factor T in the jth block. The parameters ti, gk, and tgik are the usual 
main effects and interaction parameters for a two-factor experiment, whereas 
bj is the effect due to block j and tbij is the interaction between the ith level of 
factor A and the jth block. The analysis corresponding to this model is shown in 
Table 18.4. Here we assume factors A and T are fixed effects, whereas blocks are 
random.

The sums of squares for the sources of variability listed in Table 18.4 can be 
obtained using the general formulas for main effects and interactions in a factorial 
experiment or from an appropriate software package. Using these expected mean 
squares, we can obtain a valid F test for factor A in the wholeplot portion of the 
analysis and for factor T and the AT interaction in the subplot portion. These are 
shown here. Note that no test is made for the variability due to blocks. 

Wholeplot Analysis

H0: ut  0 (or, equivalently, H0: All ti  0), F 
MSA

MSAB
Subplot Analysis

H0: utg  0 (or, equivalently, H0: All tgik  0), F 
MSAT
MSE

H0: ug  0 (or, equivalently, H0: All gk  0), F 
MST
MSE

EXAMPLE 18.1

Soybeans are an important crop throughout the world. They are planted for use 
as both an oil and a source for protein. The vast majority of the crop is used for 
vegetable oil or defatted soy meal, which is then used for feed for various farm ani-
mals. To a much lesser extent, soybeans are consumed directly as food by humans. 
However, soybean products are an ingredient in a wide variety of processed foods. 
A study was designed to determine if additional phosphorus  applied to the soil 

FIGURE 18.4
Randomized block 
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Source  SS df  EMS

Blocks SSB b 2 1 s2
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b

A SSA a 2 1 s2
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tb 1 btut

AB (wholeplot error) SSAB (a 2 1)(b 2 1) s2
e 1 ts2
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T SST (t 2 1) s2
e 1 abug

AT SSAT (a 2 1)(t 2 1) s2
e 1 butg

Subplot error SSE a(b 2 1)(t 2 1) s2
e

Totals TSS  abt 2 1
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would increase the yield of soybean. There are three major varieties of soybeans 
of interest (V1, V2, and V3) and four levels of phosphorus (0, 30, 60, and 90 pounds 
per acre). The researchers have nine plots of land available for the study, which 
are grouped into blocks of three plots each based on the soil characteristics of the 
plots. Because of the complexities of planting the soybeans on plots of the given 
size, it was decided to plant a single variety of soybeans on each plot and then 
divide each plot into four subplots. The researchers randomly assigned a variety to 
one plot within each block of three plots and then randomly assigned the levels of 
phosphorus to the four subplots within each plot. The yields (bushels/acre) from 
the 36 plots are given in Table 18.5.

TABLE 18.5
Soybean yield data  Block

   B1   B2   B3

Phosphorus V1 V2 V3 V1 V2 V3 V1 V2 V3

 0 53.5 44.8 50.7 62.2 52.5 61.4 53.4 43.1 50.6
 30 60.6 51.0 54.9 68.8 58.7 64.9 59.5 49.6 54.8
 60 60.8 51.5 59.4 70.9 59.4 70.0 61.0 49.7 60.5
 90 59.6 49.9 64.7 67 .8 58.1 74.4 60.3 49.5 65.0

Conduct an analysis of variance using the sample data. Test whether there 
is an increase in the average yield with increasing amounts of phosphorus and 
whether the relationship between average yield and amount of phosphorus applied 
to the fields is the same for the three varieties.

Solution For this study, we have a randomized complete block design with a split-
plot structure. Variety, with three levels, is the wholeplot treatment, and amount 
of phosphorus is the split-plot treatment. A profile plot of the interaction between 
variety and phosphorus level is given in Figure 18.5.

FIGURE 18.5
Interaction plot for  

soybean experiment
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From the plot it would appear that the relationship between average yield 
and amount of phosphorus for variety V3 is different from the relationship for the 
other two varieties.

The output from SAS is given here.

Class Level Information

Number of Observations Read     36

Dependent Variable: y

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: y

Class
B
V
P

Values
1 2 3
1 2 3
0 30 60 90

Levels
3
3
4

Source
Model
Error
Corrected Total

DF
17
18
35

Sum of
Squares

1967.406389
4.076667

1971.483056

Mean Square
115.729788

0.226481

F Value
510.99

Pr > F
<.0001

Source
V
B
B*V
P
V*P

Source
V
B
B*V
P
V*P

 DF
2
2
4
3
6

Type III SS
763.2505556
671.8072222

6.5627778
408.3719444
117.4138889

Mean Square
381.6252778
335.9036111

1.6406944
136.1239815
19.5689815

F Value
1685.02
1483.14

7.24
601.04
86.40

Pr > F
<.0001
<.0001
0.0012
<.0001
<.0001

   Source
*  V
   B

   Error: MS(B*V)
*  This test assumes one or more other fixed effects are zero.

   Source
   B*V
*  P
   V*P

   Error: MS(Error)
*  This test assumes one or more other fixed effects are zero.

 DF
4
3
6

18

Type III SS
6.562778

408.371944
117.413889

4.076667

Mean Square
1.640694

136.123981
19.568981

0.226481

F Value
7.24

601.04
86.40

Pr > F
0.0012
<.0001
<.0001

 DF
2
2

4

Type III SS
763.250556
671.807222

6.562778

Mean Square
381.625278
335.903611

1.640694

F Value
232.60
204.73

Pr > F
<.0001
<.0001

TYPE III Expected Mean Square
Var(Error) + 4 Var(B*V) + Q(V,V*P)
Var(Error) + 4 Var(B*V) + 12 Var(B)
Var(Error) + 4 Var(B*V)
Var(Error) + Q(P,V*P)
Var(Error) + Q(V*P)

We can summarize the information from the SAS output into the follow-
ing analysis of variance table, Table 18.6, with the following notation: B  blocks, 
V  variety, and P  phosphorus.

TABLE 18.6
AOV table for  

soybean experiment

Source df SS MS F p-value

B 2 763.25 381.63 204.73 , .0001
V 2 671.81 335.90 232.60 , .0001
BV(wholeplot error) 4 6.56 1.64 7.24     .0012
P 3 408.37 136.12 601.04 , .0001
PV 6 117 .41 19.57 86.40 , .0001
Subplot error 18 4.08 0.23

Total 35 1,971.48
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It is important to note in the SAS output that the first set of values in the 
AOV table used MSE as the divisor for all F tests. Further down in the SAS output, 
the correct tests are conducted. The results from the AOV table confirm our obser-
vations from the profile plot. There is a significant variety by phosphorus interac-
tion from which we can conclude that the relationships between average yield and 
amount of phosphorus added to the soil are not the same for the three varieties. In 
fact, for varieties V1 and V2, the average yield increases as the amount of phospho-
rus increases up to a phosphorus level of 60 but appears to remain at this level for 
a subsequent increase in phosphorus. The relationship for variety V3 shows that the 
average yield continues to increase when the level of phosphorus is increased from 
60 to 90. The next step in the analysis would be to conduct a multiple comparison 
of the variety means at each level of phosphorus or to examine the significance of 
various trends in the average yields for increasing phosphorus levels separately for 
each variety. ■

The distinction between this two-factor split-plot design and the standard 
two-factor experiments discussed in Chapter 14 lies in the randomization. In a 
split-plot design, there are two stages to the randomization process; first, levels of 
factor A are randomized to the wholeplots within each block, and then levels of 
factor B are randomized to the subplot units within each wholeplot of every block. 
In contrast, for a two-factor experiment laid off in a randomized block design (see 
Section 15.4), the randomization is a one-step procedure; treatments (factor–level 
combinations of the two factors) are randomized to the experimental units in each 
block. The post-AOV analysis involving mean separations, contrasts, estimated 
treatment means, and confidence intervals are somewhat more complex for the 
split-plot design than for the designs that we have discussed previously. Excel-
lent references for further reading on this topic are Kuehl (2000), Snedecor and 
Cochran (1980), and Oehlert (2000).

 18.3 Single-Factor Experiments with  
Repeated Measures

In Section 18.1, we discussed some reasons why one might want to get more than one 
observation per patient. Another reason for obtaining more than one observation per 
patient is that frequently the variability among or between patients is much greater 
than the variability within a patient. We observed this in the paired t test  example of 
Section 6.4. If this is the case, it might be better to block on patients and to give each 
patient each treatment. Then the comparison among compounds is a within-patient 
comparison rather than a comparison between patients, as would be the case with the 
single-factor experiment with ni different patients assigned to compound i. A single-
factor design that reflects this within-patient emphasis is shown in Table 18.7.

TABLE 18.7
A within-patient 

comparison of 
compounds 1, 2, and 3 

 Patient

Compound 1 2 . . . n

 1 y11 y12 . . . y1n

 2 y21 y22 . . . y2n

 3 y31 y32 . . . y3n
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With this design, the three compounds are administered in sequence to each 
of the n patients. A compound is administered to a patient during a given treat-
ment period. After a sufficiently long “washout” period, another compound is 
given to the same patient. This procedure is repeated until the patient has been 
treated with all three compounds. The order in which the compounds are admin-
istered is randomized. In this design, it is crucial that the washout period between 
treatments be sufficiently long that the results for one compound do not affect the 
results for another compound.

Another effect that may need to be considered is the time period in which 
the response was recorded. A period effect is not a change in the response due to 
the treatment but a change in the response that would have occurred even in the 
absence of the treatment. Period effects, when they occur, are often a reflection of a 
variety of influences. For example, the period effect may be associated with seasonal 
effects, changes in conditions under which the measurements are obtained, a pro-
gression of the disease, or psychological effects of the application of multiple treat-
ments. The experiment described in Table 18.7 would not permit the estimation of a 
period effect because the various treatment sequences are randomly assigned to the 
patients. If there was the possibility of period effects being present, then the inves-
tigator would randomly assign patients to the sequences (six possible sequences in 
Table 18.7) in such a way that there would be an equal number of patients for each 
of the sequences. We will discuss this type of design in Section 18.5.

Here again we are obtaining more than one observation per patient and pre-
sumably getting more useful information about the three drug products in ques-
tion. One model for this experimental setting is 

yij  m 1 ti 1 dj 1 eij

where m is the overall mean response, ti is the effect of the ith compound, dj is the 
effect of the jth patient, and eij is the experimental error for the jth patient receiv-
ing the ith compound.

Note that this model looks like any other single-factor experimental setting 
with a compounds and n patients. However, the assumptions are different because 
we are obtaining more than one observation per patient. For this model, we make 
the following assumptions.

 1. The ti s are constants with ta  0.
 2. The dj are independent and normally distributed (0, s2

d).
 3. The eij s are independent of the dj s.
4. The eij s are normally distributed (0, s2

e).
 5. The eij s have the following correlation relationships:

 eij and ei9j are correlated for i 2 i r .
 eij and ei9j9 are independent for j 2 j r .

That is, two observations from the same patient are correlated, but observations 
from different patients are independent. From these assumptions, it can be shown 
that the variance of yij is s2

d 1 s2
e. A further assumption is that the covariance for 

any two observations from patient j, yij and yi9j, is constant. These  assumptions 
give rise to a variance–covariance matrix for the observations, which  exhibits 
 compound symmetry. The discussion of correlated observations is beyond the 
scope of this book, and we refer the interested reader to Kuehl (2000) and Vonesh 
and Chinchilli (1997).

The analysis of variance for the experimental design being discussed and this 
set of assumptions is shown in Table 18.8. This AOV should be familiar. When the 
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assumptions hold, and hence when compound symmetry holds, the statistical test 
on factor A (F  MSA/MSE) is appropriate. However, there are some other, more 
general conditions that also lead to a valid F test for factor A using F  MSA/
MSE. How restrictive are these assumptions, and how can we tell when the test is 
appropriate?

There are no easy answers to these questions because there are no simple tests 
to check for compound symmetry. The general conditions (called the Huynh–Feldt 
conditions) under which the F test for factor A is valid are often not met because 
observations on the same patient taken closely in time are more highly correlated 
than are observations taken further apart in time. So be careful about this. In gen-
eral, when the variance–covariance matrix does not follow a pattern of compound 
symmetry, the F test for factor A has a positive bias, which allows rejection of H0: 
All ti  0 more often than is indicated by the critical F-values.

From a practical standpoint, the best thing to do in a given experimental 
setting is to make certain that there is sufficient time between applications of the 
treatment to allow washout (or elimination) of the previous treatment and to make 
certain that the design is applied in only those situations where the disease is rela-
tively stable, so that following treatment and washout each patient (or experimen-
tal unit) is essentially the same as prior to receiving treatment. For example, even 
when studying the effect of blood-pressure-lowering drugs, we would expect the 
hypertension to be stable enough that the patients would return to their predrug 
blood pressure levels after washout of the first assigned compound before receiv-
ing the second assigned compound, and so on. 

In Section 18.4, more will be said about how to judge whether the underly-
ing assumptions for the test hold and, if they do not, how to proceed. For fur-
ther  information on this topic, refer to higher-level textbooks covering repeated 
measures experiments in detail (for example, Kuehl, 2000, and Vonesh and  
Chinchilli, 1997).

EXAMPLE 18.2

An exercise physiologist designed a study to evaluate the impact of the steepness of 
running courses on the peak heart rate (PHR) of well-conditioned runners. There 
are four 5-mile courses that have been rated as flat, slightly steep, moderately steep, 
and very steep with respect to the general steepness of the terrain. The 20 runners 
will run each of the four courses in a randomly assigned order. There will be suf-
ficient time between the runs that there should not be any carryover effect, and 
the weather conditions during the runs will be essentially the same. Therefore, the 
 researcher felt confident that the model yij  m 1 ti 1 dj 1 eij would be an appro-
priate model for analyzing the difference in the mean peak heart rates over the 
four courses. The mean heart rates are given in Table 18.9.

TABLE 18.8
AOV for the 

experimental setting 
depicted in Table 18.7

Source SS df EMS (A fixed, patients random)

Patients SSP n 2 1 s2
e 1 as2

d

A SSA a 2 1 s2
e 1 nut

Error SSE (a 2 1)(n 2 1) s2
e

Totals TSS an 2 1
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Determine if there is a significant difference in the mean heart rates of runners 
over the four degrees of steepness. Estimate the variation in the heart rates associ-
ated with runner and model error. The following output was obtained from SAS.

Dependent Variable: y 

Differences of Least Squares Means

The GLM Procedure

   Class Level Information

Source
Model
Error
Corrected Total

Class

S

R

Values

Flat Moderate Slight Steep

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Levels

4

20

DF
22
57
79

Sum of
Squares

7667.675000
1083.512500
8751.187500

R–Square
0.876187

Coeff Var
3.129604

Root MSE
4.359930

y Mean
139.3125

Mean Square
348.530682
19.008991

F Value
18.34

Pr > F
<.0001

Effect

S Flat Moderate -13.8000 1.3787 57 <.0001
S Flat Slight -9.3000 1.3781 57 <.0001
S
S
S
S

S

Flat
Moderate
Moderate
Slight

DF

57
57
57
57

_S

Steep
Slight
Steep
Steep

1.3787
1.3787
1.3787
1.3787

Estimate

–18.1500
4.5000
–4.3500
–8.8500

Adj P

<.0001
0.0098
0.0133
<.0001

Source

S
R

DF

3
19

Type III SS
 

3619.237500
4048.437500

Mean Square

1206.412500
213.075658

F Value

63.47
11.21

Pr > F

<.0001
<.0001

Standard
Error

Solution From the output, we have the p-value associated with the F test of

H0: m1  m2  m3  m4  versus  Ha:  Not all mi s are equal.

as p-value , .0001. Thus, we can conclude that there is significant evidence of a 
difference in the mean heart rates over the four levels of steepness. The Tukey–
Kramer pairwise test for difference demonstrates that there is significant evidence 
of a difference in all pairs of means.

TABLE 18.9
Mean heart rate data  Slope Slope

Runner Flat Slight Moderate Steep Runner Flat Slight Moderate Steep

 1 133 143 155 154 11 132 145 146 157
 2 138 136 142 154 12 132 134 144 146
 3 133 149 154 151 13 128 127 137 138
 4 128 144 143 150 14 119 132 138 139
 5 130 139 136 145 15 127 132 140 138
 6 139 152 152 163 16 129 134 140 154
 7 123 129 131 142 17 137 138 149 155
 8 128 132 142 148 18 123 132 145 140
 9 109 137 122 128 19 120 137 139 142
 10 143 151 161 160 20 129 143 140 139
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The estimated variance components are given by

 ŝ2
Error  MSE  19.01

 ŝ2
Runner 

MSRunner 2 MSE
4

 48.52

Therefore, 72% of the variation in the heart rates was due to the differences in 
 runners and 28% was due to all other sources. ■

 18.4 Two-Factor Experiments with Repeated  
Measures on One of the Factors

We can extend our discussion of repeated measures experiments to two-factor 
 settings. For example, in comparing the blood-pressure-lowering effects of cardio-
vascular compounds, we could randomize the patients so that n different patients 
 receive each of the three compounds. Repeated measurements occur due to taking 
multiple measurements across time for each patient. For example, we might be 
 interested in obtaining blood pressure readings immediately prior to receiving a 
 single dose of the assigned compound and then every 15 minutes for the first hour 
and hourly thereafter for the next 6 hours.

This type of experiment can be described as follows. There are m treatments 
with n experimental units randomly assigned to each of the treatments. Each 
experimental unit is assigned to a single treatment with t measurements taken on 
each of the experimental units. The data for this type of experiment are depicted 
in Table 18.10. Note that this is a two-factor experiment (treatments and time) with 
repeated mea surements taken over the time factor.

The analysis of a repeated measures design can, under certain conditions, 
be approximated by the methods used in a split-plot experiment. Each treatment 

 Slope

 Flat Slight Moderate Steep

Mean 129.0 138.3 142.8 147 .15
Grouping a b c d

TABLE 18.10
Measurements at  

t time points for each 
experimental unit

 Time Period

Treatment Exper. Unit 1 2 . . . t

 1 1 y111 y112 . . . y11t

  (  (  (  (
  n y1n1 y1n2 . . . y1nt

 2 1 y211 y212 . . . y21t

  (  (  (  (
  n y2n1 y2n2 . . . y2nt

 (  (  (  (  . . . (
 m 1 ym11 ym12 . . . ym1t

  (  (  (  (
  n ymn1 ymn2 . . . ymnt
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is randomly assigned to an experimental unit, EU. This is the wholeplot in the 
split-plot design. Each EU is then measured at t time points. This is considered the 
split-plot unit. The major difference between split plots and repeated measures 
is that in a split-plot design the levels of factor A are randomly assigned to the 
wholeplot EUs and the levels of factor B are randomly assigned to the split-plot 
EUs, whereas in the repeated measures design the second randomization does not 
occur. The treatment (factor A) is randomly assigned to the EUs (wholeplot EUs), 
but the levels of factor B (time) are not randomly assigned to a subunit of the EU. 
Thus, there may be a strong correlation between the measurements across time (or 
location) for those measurements produced by the same EU.

Therefore, the split-plot analysis is an appropriate analysis for a repeated 
measures experiment only when the covariance matrix of the measurements satisfies 
a particular type of structure: compound symmetry:

Cov 1yijk, yirjrk 2  c
s2

e   when i  i r, j  j r
rs2

e when i  i r, j 2 j r
  0   when i 2 i r

where yijk is the measurement from the kth EU receiving treatment i at time j. Thus

Corr 1yijk, yijrk 2  Cor 1yijk, yijrk 2 /s2
e  r

This implies that there is a constant correlation between observations no matter 
how far apart they are taken in time. This may not be realistic in many applications. 
One would think that observations in adjacent time periods would be more highly 
correlated than observations taken two or three time periods apart.

However, if the compound symmetry condition is satisfied, then the split-plot 
analysis produces a relatively accurate approximation to the p-values for testing 
 hypotheses about treatment, time, and interaction effects. In fact, a somewhat less 
 restrictive condition is all that is required. The Huynh–Feldt condition is as  follows: 
The variances of the differences between any pair of observations on the same EU 
must be equal; i.e.,

Var 1yijk 2 yijrk 2  2l  for all  j 2 j r

Note that compound symmetry implies the Huynh–Feldt condition, but the Huynh– 
Feldt condition does not imply compound symmetry. A test of the Huynh–Feldt 
condition, the Mauchly test, is provided in both SAS and SPSS. However, when the 
sample sizes are relatively small, the Mauchly test has very low power and hence will 
often fail to detect that the compound symmetry is invalid. This will often result in 
an incorrect application of the split-plot analysis of a repeated measures experiment.

If the Huynh–Feldt condition is valid, then the split-plot analysis is an appro-
priate approximation. The model would then be

yijk  m 1 ti 1 dik 1 bj 1 1tb 2 ij 1 eijk

with i  1, . . . , m; j  1, . . . , t; k  1, . . . , n, where ti is the ith treatment effect; bj 
is the jth time effect; (tb)ij is the treatment–time interaction effect; dijs are indepen-
dently distributed as N(0, s2

d) random variables; eijks are indpendently distributed as 
N(0, s2

e) random variables; and dij and eijk are independently distributed. The above 
model yields the following variance–covariance structure if the Huynh– Feldt con-
dition is valid: assume i 2 i r, j 2 j r, k 2 k r ;

 Var 1yijk 2  s2
d 1 s2

e

 Cov 1yijk, yijrk 2  s2
d

compound symmetry
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 Cov 1yijk, yirjk 2  0

 Cov 1yijk, yijkr 2  0

 Cov 1yijk, yijrkr 2  0

In the general repeated measures design, measurements from the same EU would 
likely have a more complex correlation structure, and measurements among EUs in 
the same treatment group may be correlated. Only measurements from EUs receiv-
ing different treatments would be uncorrelated. The condition of compound sym-
metry yields the following conditions on the variances and covariances of the data:

 Var 1 yijk 2 
s2

d

1 2 rd

1
s2

e

1 2 re

 Cov 1 yijk, yijkr 2 
s2

d

1 2 rd

1
s2

ere

1 2 re

 Cov 1 yijk, yijrkr 2 
s2

drd

1 2 rd

where rd and re are correlation coefficients having values between 21 and 11.
An equivalent way to express the above structure on the covariances is given by

Var 1dij 2 dijr 2  2s2
d    Var 1eijk 2 eijkr 2  2s2

e

The above conditions are called the sphericity condition.
The data must be of this form in order for the split-plot analysis to provide an 

appropriate analysis of the repeated measures experiment.
With l  tre/2 11 2 re 2 , the AOV table for the split-plot analysis of a repeated 

measures experiment is given in Table 18.11. In this table, the treatment and time 
effects are fixed.

Based on Table 18.11, it is clear that the following tests can be performed: 

  1.  H0: utb  0

  F 
MSTrt*Time

MSE

2.  H0: ub  0

  F 
MSTime

MSE

3.  H0: ut  0

  F 
MSTrt

MSEU1Trt2

sphericity condition

TABLE 18.11
Analysis of variance 

table for a two-factor 
experiment with repeated 

measures on one factor

Source df Expected Mean Square

TRT m 2 1 s2
e 11 1 2l.2 1 ts2

d 1 ntut

EU(TRT) (n 2 1)m s2
e 11 1 2l.2 1 ts2

d

Time t 2 1 s2
e 1 nmub

TRT*Time (m 2 1)(t 2 1) s2
e 1 nutb

Error m(t 2 1)(n 2 1) s2
e

Total mtn 2 1
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EXAMPLE 18.3

The following example from Analysis of Repeated Measures (Crowder and Hand, 
1990) will be used to illustrate these concepts. In their study, three levels of a vita-
min E supplement—zero (control), low, and high—were given to guinea pigs. Five 
pigs were randomly assigned to each of the three levels of the vitamin E supple-
ment. The weights of the pigs were recorded at 1, 2, 3, 4, 5, and 6 weeks after 
the beginning of the study (Table 18.12). This is a repeated measures experiment 
because each pig, the EU, is given only one treatment but each pig is measured six 
times. The experimenters are interested in the trend in weight over time.

TABLE 18.12
Weight of guinea pigs 
under three levels of 

vitamin E

 Level of E Animal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

 C   1 455 460 510 504 436 466
 C   2 467 565 610 596 542 587
 C   3 445 530 580 597 582 619
 C   4 485 542 594 583 611 612
 C   5 480 500 550 528 562 576
 L   6 514 560 565 524 552 597
 L   7 440 480 536 484 567 569
 L   8 495 570 569 585 576 677
 L   9 520 590 610 637 671 702
 L 10 503 555 591 605 649 675
 H 11 496 560 622 622 632 670
 H 12 498 540 589 557 568 609
 H 13 478 510 568 555 576 605
 H 14 545 565 580 601 633 649
 H 15 472 498 540 524 532 583

a. Plot the weights of the individual pigs versus time, and plot the mean 
weights versus time for each treatment. Does vitamin E seem to 
impact the different plots?

b. Test for significant effects on the mean weight of pigs due to level of 
 vitamin E.

Solution

a. The mean weights by level of vitamin E and time are given in 
Table 18.13.

TABLE 18.13
Weight of guinea pigs 
under three levels of 

vitamin E

 Level of E Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

 C 466.4 519.4 568.8 561.6 546.6 572.0
 L 494.4 551.0 574.2 567 .0 603.0 644.0
 H 497 .8 534.6 579.8 571.8 588.2 623.2

        The plots of the individual weight gains and a profile plot of the 
mean weights are given in Figure 18.6 and Figure 18.7, respectively.
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b. The following SAS output will be used to obtain the mean squares 
and F tests.

Source

TRT
Error

DF

2
12

Type III SS

18548.0667
105434.2000

Mean Square

9274.0333
8786.1833

F Value

1.06

Pr > F

0.3782

The GLM Procedure
Repeated Measures Analysis of Variance
Tests of Hypotheses for Between Subjects Effects

Source

WK
WK*TRT
Error(WK)

DF

5
10
60

Type III SS

142554.5000
9762.7333
32552.6000

Mean Square

28510.9000
976.2733
542.5433

F Value

52.55
1.80

Pr > F

<.0001
0.0801

G – G

<.0001
0.1457

H – F

<.0001
0.1103

The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Greenhouse–Geisser Epsilon  0.4856
Huynh–Feldt Epsilon         0.7191

Adj Pr > F

FIGURE 18.6
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Source

TRT
Error

DF

2
12

Type III SS

18548.0667
105434.2000

Mean Square

9274.0333
8786.1833

F Value

1.06

Pr > F

0.3782

The GLM Procedure
Repeated Measures Analysis of Variance
Tests of Hypotheses for Between Subjects Effects

Source

WK
WK*TRT
Error(WK)

DF

5
10
60

Type III SS

142554.5000
9762.7333
32552.6000

Mean Square

28510.9000
976.2733
542.5433

F Value

52.55
1.80

Pr > F

<.0001
0.0801

G – G

<.0001
0.1457

H – F

<.0001
0.1103

The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Greenhouse–Geisser Epsilon  0.4856
Huynh–Feldt Epsilon         0.7191

Adj Pr > F

From the above, we obtain the AOV table in Table 18.14.

From Table 18.14, we find that there is not significant evidence (p-value  
.0801) of an interaction between the treatment and time factors. The profile plot 
supports this conclusion after taking into account the size of the standard error of 
the treatment by time sample mean: SE 1 yij. 2  19.5780. Since the interaction was 
not signifi cant, the main effects of treatment and time can be analyzed separately. 
The p-value  .3782 for treatment differences, and the p-value , .0001 for time 
differences. The mean weights of the pigs vary across the 6 weeks, but there is 
not significant  evidence of a difference in the mean weights for the three levels of 
vitamin E supplements. Therefore, the two levels of vitamin E supplement do not 
appear to provide an increase in the mean weights of the pigs in comparison to the 
control, which was a zero level of vitamin E supplement. The mean weights appear 
to follow a cubic relationship with time during the 6 weeks. We could test this con-
clusion by using contrasts or fitting a regression model to the data.

The above conclusions are all conditional on whether there is significant evi-
dence of a deviation from compound symmetry.

Note that there are three treatments with r  5 replications per treatment 
for a total of 15 EUs (pigs), each of which is weighed six times for a total of 90 
observations. In contrast, a completely randomized design with 90 observations 
would have 90 EUs, each weighed once. Thus, 75 more pigs are required to per-
form the completely randomized design. However, this gain in economy has limita-
tions. The inferences are being made about a population of pigs. In the repeated 
measures design, only 15 pigs from the population are being observed. Thus, there 
may be greater variability in the estimation of the treatment means due to having 
such a small sample size per treatment. On the other hand, the repeated measures 
design allows the researcher to track the behavior of the individual pig over the 
6 weeks and hence provides information concerning the potential differences in 
fluctuations in weight for the individual pigs. The plot of the individual weight data 
reveals widely varying patterns for the 15 pigs. ■

8
TABLE 18.14

AOV table for guinea  
pig experiment

Source SS df MS F p-value

TRT 18,548.07 2 9,274.03 1.06 .3782
PIG (TRT) 105,434.20 12   
Week 142,554.50 5 28,510.90 52.55 , .0001
TRT*week 9,762.73 10 976.27 1.80 .0801
Error 32,552.60 60 542.54
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The F test for the factor treatment is based on between-subject effects and 
hence is not affected by the repeated measures on the factor time. However, the 
F-ratios for the within-EU effects are affected, and, as with the one-factor exper-
iment with  repeated measures, we must worry about the conditions under which 
these F tests are appropriate. If compound symmetry of the variance– covariance 
matrix for the yijks holds, then we can apply these tests; also, if the Huynh–Feldt 
conditions  alluded to previously hold, then we can apply these F tests. Some 
(e.g., Greenhouse and Geisser, 1959; Huynh and Feldt, 1970) have suggested 
that “adjusted” F-values be used to determine the statistical significance of a 
repeated measures F test when there is some departure from the underlying 
conditions for that test. The adjustments recommended by the various authors 
follow the same pattern. A quantity epsilon is defined as a multiplicative adjust-
ment factor for the numerator and  denominator degrees of freedom for the F 
test in question. This epsilon (which we will denote by e) is not to be confused 
with the random error term e in our models. For most of these adjustments, the 
multiplicative factor e ranges between 0 and 1, taking on a value of 1 when the 
underlying conditions for a valid F test are met and smaller values as the degree 
of departure from those conditions increases. A value of e having been deter-
mined for a given situation, the computed F statistic is compared to the critical 
value for an F distribution with numerator and denominator degrees of freedom 
multiplied by e.

The ideas behind the adjustment can be seen if we use the experimental set-
ting for Table 18.11 as the basis for discussion. Here we have a two-factor exper-
iment with repeated measures on the second factor (time). The F tests for the 
within-EU effects, Time and TRT*time shown in Table 18.11, are valid provided 
the Huynh–Feldt conditions hold.

For a given experiment, we compute a value of e and adjust the degrees 
of freedom for the F test by multiplying df1 and df2 by e. So to run a test of  
H0: utb  0, a value of e is computed from the sample data. The computed F statistic 

F 
MSTrt*Time

MSE

is compared to a critical value, Fa, based on df1  e(m 2 1)(t 2 1) and df2   
em(t 2 1)(n 2 1). Note that when e  1, the underlying conditions hold, and we 
have the original, recommended degrees of freedom, df1  (m 2 1)(t 2 1) and 
df2  m (t 2 1)(n 2 1).

In experimental situations where repeated measures data are to be analyzed 
and where you have access to SAS, you can use PROC GLM to compute revised 
p-values for two different adjustments to the degrees of freedom. The first adjust-
ment, proposed by Greenhouse and Geisser (1959), uses a sample estimate of e. 
This adjustment, labeled “G–G” in the SAS output, has been shown, in simulation 
studies, to be ultraconservative because the actual p-value may be much smaller 
than that indicated by the p-value using the G–G adjustment. The second adjust-
ment factor (proposed by Huynh and Feldt, 1970) is based on a different formula 
for e. Once again, however, an estimate of this adjustment factor is computed 
from the sample data. The degrees of freedom for critical values of the F statistics 
are then adjusted using the estimate of e. This adjustment is labeled “H–F” in the 
PROC GLM output. Although the Greenhouse–Geisser e and Huynh–Feldt e both 
must be in the interval 0 , e # 1, the H–F estimate of e can sometimes be greater 
than 1. In these situations, a value of e  1 is used in determining the appropriate 
degrees of freedom for the F test.
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EXAMPLE 18.4

Refer to the SAS output for Example 18.3.

a. Locate the estimated values for the Greenhouse–Geisser adjustment 
 factor and the Huynh–Feldt adjustment factor.

b. Are the conclusions for the tests on time effects and the time–vitamin 
E interaction affected by these adjustments?

Solution
a. The Greenhouse–Geisser estimate of e is .4856, and the Huynh–Feldt 

 estimate of e is .7191.
b. Time Effects: F tests based on the G–G adjustment and on the H–F 

 adjustment yield p-values of ,.0001 and ,.0001, respectively, which 
are the same as the values from the original F test. The adjustments 
did not change the conclusion obtained from the unadjusted F test.

    Time by Treatment Interaction Effects: F tests based on the 
G–G  adjustment and on the H–F adjustment yield p-values of .1457 
and .1103, respectively. These values are somewhat higher than the 
p-value from the original F test, .0801. The adjustments would not 
change the conclusion  obtained from the unadjusted F test if an 
a  .05 value was used but would change the conclusion if a higher 
type I error rate was used, such as a  .10. For a  .10, the unad-
justed F test would have declared the interaction  effect significant, 
whereas the G–G and H–F adjusted F tests would not. ■

 18.5 Crossover Designs

We will now consider an extension to the single-factor experiment discussed in 
Section 18.3. Recall that in Table 18.7 we presented data for an experimental sit-
uation in which each of the n patients received the same three treatments in a 
random order. Thus, each patient was observed n times in the experiment. It is 
important to emphasize the difference between a crossover design and the general 
repeated mea sures design. In a repeated measures experiment, the experimental 
unit receives a treatment and then the experimental unit has multiple observations 
or measurements made on it over time or space. The experimental unit does not 
receive a new treatment, between successive measurements.

In a crossover design, each experimental unit is observed under each of the t 
treatments during t observation times. That is, every experimental unit has multiple 
treatments applied to it, and then a new measurement or observation is obtained. 
Because the treatments are compared on the same experimental units, the between-
experimental unit variation is greatly reduced. The individual experimental units 
serve as blocks in order to reduce the experimental variation (reduced SSE) and 
hence there is an increase in the efficiency of the estimation of the treatment means.

When comparing treatments, the effect of the time period in which the treat-
ment was applied comes into the analysis. Differences in observations may be due 
to treatment differences and/or time period differences. Crossover designs are con-
structed to avoid confounding the time period effects with the treatment effects.

EXAMPLE 18.5

Suppose we have three treatments—T1, T2, and T3–with each treatment applied 
to each of 12 patients during three time periods—Pl, P2, and P3. The drugs were 
applied in the same order to all 12 patients, as shown in Table 18.15.
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Suppose that from the data collected under the above design a large difference 
was observed in the treatment means: y1.., y2.., and y3... Was this difference due to 
treatment differences or time period differences?

Solution With the above design, it would be impossible to determine. The sample 
mean responses for estimating the effects of the three treatment means are identical to 
the sample mean responses for estimating the effects of the three time period means. 
That is, with this design, the effects of treatment and time period are confounded.

To avoid the confounding of the treatment and time period effects, it is neces-
sary to consider multiple sequences in which the treatments are administered to 
the experimental units. There are 3!  6 possible sequences in which the three 
treatments could be administered to the 12 subjects during the three treatment 
 periods. Table 18.16 lists those sequences.

TABLE 18.16
Sequences for 

administrating three 
treatments in three  

time periods

 Time Period

 Sequence 1 2 3

 1 T1 T2 T3

 2 T2 T3 T1

 3 T3 T1 T2

 4 T2 T1 T3

 5 T3 T2 T1

 6 T1 T3 T2

The experimenter could randomly assign two patients to each of the six 
sequences. This would eliminate the confounding among the effects due to treat-
ments, sequences, and time periods. Every treatment would be observed in every 
sequence and in every time period. In many experiments, the researcher will select 
a subset of all t! sequences in order to increase the number of subjects per sequence. 
This yields a more accurate assessment of the sequence effect. ■

EXAMPLE 18.6

Twelve males volunteered to participate in a study to compare the effect of three 
formulations of a drug product: formulation 1 was a 5-mg tablet, formulation 2 was 
a 100-mg tablet, and formulation 3 was a sustained-release capsule. Suppose it is 
decided to use only three of the six sequences listed in Table 18.16. Select three of 
the six possible sequences, and describe how to randomize this experiment. Also, 
include a model for this experiment.

TABLE 18.15
Design layout for  

Example 18.5

 Time Period Time Period

 Patients 1 2 3 Patients 1 2 3

 1 T1 T2 T3    7 T1 T2 T3

 2 T1 T2 T3    8 T1 T2 T3

 3 T1 T2 T3    9 T1 T2 T3

 4 T1 T2 T3 10 T1 T2 T3

 5 T1 T2 T3 11 T1 T2 T3

 6 T1 T2 T3 12 T1 T2 T3
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Solution The experimenter selected the first three of the six sequences and ran-
domly assigned four subjects to each sequence. On each treatment day, volunteers 
were given their assigned formulation and were observed to determine the dura-
tion of effect of the treatment (blood pressure lowering). The data would be as 
shown in Tables 18.17 and 18.18.

TABLE 18.17
Design layout for  

Example 18.6

 Time Period

 Sequence 1 2 3

 1 T1 T2 T3

 2 T2 T3 T1

 3 T3 T1 T2

TABLE 18.18
Blood pressure data  Time Period

 Sequence Patient (Seq) 1 2 3

  1 1.5 2.2 3.4
 1 2 2.0 2.6 3.1
  3 1.6 2.7 3.2
  4 1.1 2.3 2.9

  1 2.5 3.5 1.9
 2 2 2.8 3.1 1.5
  3 2.7 2.9 2.4
  4 2.4 2.6 2.3

  1 3.3 1.9 2.7
 3 2 3.1 1.6 2.5
  3 3.6 2.3 2.2
  4 3.0 2.5 2.0

A model for this experiment would be the following. Let yijk be the response 
 observed in time period k from the jth patient in sequence i.

yijk  m 1 di 1 bj1i2 1 gk 1 td1i,k2 1 eijk

with di, i  1, 2, 3, as the fixed sequence effect; bj(i), j  1, 2, 3, 4, as the random patient 
within  sequence effect; gk, k  1, 2, 3, as the fixed time period effect; td(i,k), d  1,  
2, 3, as the fixed treatment effect; and eijk as the random experimental error effect. ■

The general setting of a crossover design will now be described. Suppose we 
have t treatments that are to be compared with respect to their mean responses. 
In the experiment, we have either very heterogeneous experimental units or a lim-
ited number of experimental units and decide that each experimental unit will be 
observed under all t treatments. The experimental units serve as blocks and thus 
control the variation in response from experimental unit to experimental unit for 
a given treatment. An obvious question of concern is whether or not the order in 
which the experimental unit receives the treatments has an effect on the responses. 
There are t! possible sequences in which the t treatments may be applied. Gene-
rally only a subset of the t! possible sequences will be used in the study. The 
experimenter decides on n sequences that are of greatest interest. There will be 
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ri experimental units randomly assigned to the ith treatment sequence, which will 
be observed during p time periods. There is generally a time delay between when 
the treatment is administered and when the response is measured on the experi-
mental unit. Furthermore, after the measurement is taken, there will be a further 
delay before the next treatment is applied in order that the previously adminis-
tered treatment will not have a carryover effect on the experimental unit during 
the administering of the next treatment. This is called the washout period. The 
following model would be applicable:

yijkdc  m 1 di 1 bj1i2 1 gk 1 td1i,k2 1 lc1i,k2 1 eijk

with m the overall mean response; di, i  1, . . . , n, the fixed effect of the ith sequence; 
bj(i), j  1, . . . , ri, the random effect for the jth experimental unit within the ith 
 sequence; gk, k  1, . . . , p, the kth fixed time period effect; td(i,k) the direct effect of 
the treatment applied during period k in sequence i; and lc(i,k) the carryover  effect 
of the treatment applied during period k in sequence i.

Note that there is randomization of the subjects to the sequences. Fur-
thermore, there are two sizes of experimental units. The experimental unit for 
sequence is “subject,” and the experimental unit for treatment is “time period.” 
The sequence effect measures some form of the time period by treatment interac-
tion and may be an indication of a carryover effect and/or correlation in the meas-
urements over time periods.

The analysis of variance table for a three-period crossover design with three 
sequences (fixed effects), n subjects per sequence (random effect), three treat-
ments (fixed effects), three time periods (fixed effects), and a fixed carryover effect 
is given in Table 18.19.

In those studies in which the carryover effect is found to be highly significant, 
the tests for treatment effects would be confounded with the carryover effects. This 
would invalidate the conclusions about the treatment differences due to the fact 
that the order in which the treatments were applied to the subjects has a significant 
effect on the responses. In the case that the carryover effect is significant, the over-
all conclusions about the treatment effects would be in question. However, there 
is still information in the study that can be used in assessing treatment effects. The 
data from the first time period can be used in testing for treatment effects because 
there would be no carryover from any previous applications of the treatments.

A particularly unique characteristic of the crossover design is that each subject 
receives all t treatments. A degree of balance is obtained in the crossover design by 
having each treatment follow every other treatment the same number of times in the 
study, having each treatment occur the same number of times in each time period, 
and observing each treatment only once on each experimental unit. These character-
istics create some particular advantages and disadvantages for the crossover design.

carryover effect
washout period

first time period

TABLE 18.19
Analysis of variance for a 

crossover design

Source df Expected Mean Square

Sequence 2 s2
e 1 3s2

b 1 3nud

Patient (Seq) 3(n 2 1) s2
e 1 3s2

b

Period 2 s2
e 1 3nug

Treatment 2 s2
e 1 3nut

Carryover 2 s2
e 1 3nul

Error 3(2)(n 2 1) s2
e

Total 9n 2 1
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Advantages:

  1. Reduction in the between-experimental unit variation (subject is 
serving as a blocking variable)

2. Increased precision in comparing treatment means
3. Reduction in the experimental cost when experimental units are expen-

sive and/or difficult to recruit for study and/or difficult or expensive to 
maintain during study

Disadvantages:

  1. May be a carryover effect, which will invalidate much of the study
2. Reduced information about and coverage of the population of 

experimental units

There is a further complication with the above model besides the potential of the car-
ryover effect. There are t observations on each experimental unit under the t different 
treatments. Thus, we have a multivariate response on each experimental unit, not a 
single response. Under special conditions, which were discussed in the repeated meas-
ures section of this text, we can validly analyze the data as a univariate experiment. 
Furthermore, if there was not a carryover effect, then we could analyze the experiment 
as a Latin Square design with blocking variables sequence and time period. In order to 
test for the carryover effect in the model, it is necessary to create a new variable to be 
included in the data analysis. The carryover variable is defined as follows:

 1. Let Cijk be the value of the carryover variable for the jth experimen-
tal unit in the ith sequence during the kth period.

2. All values of Cikj are set equal to 0 during period 1: Cij1  0 for all ij.
 3. The values of Cikj are values for the treatment variable in period k 2 1.

We will illustrate these ideas in the following example.

EXAMPLE 18.7

Refer to the experimental data in Example 18.6. Using the data from Example 18.6, 
construct the carryover variable necessary for testing for a carryover effect. Then 
conduct an analysis of variance and test for carryover and direct treatment effects.

Solution Using the notation S  sequence, EU  patient, T  treatment, P  period, 
and CAR  carryover, we obtain the data shown in Table 18.20.

TABLE 18.20
Data structure for evaluating carryover effect

S EU T P y CAR S EU T P y CAR S EU T P y CAR

1 1 T1 1 1.5 0 1 1 T2 2 2.2 T1 1 1 T3 3 3.4 T2

1 2 T1 1 2.0 0 1 2 T2 2 2.6 T1 1 2 T3 3 3.1 T2

1 3 T1 1 1.6 0 1 3 T2 2 2.7 T1 1 3 T3 3 3.2 T2

1 4 T1 1 1.1 0 1 4 T2 2 2.3 T1 1 4 T3 3 2.9 T2

2 1 T2 1 2.5 0 2 1 T3 2 3.5 T2 2 1 T1 3 1.9 T3

2 2 T2 1 2.8 0 2 2 T3 2 3.1 T2 2 2 T1 3 1.5 T3

2 3 T2 1 2.7 0 2 3 T3 2 2.9 T2 2 3 T1 3 2.4 T3

2 4 T2 1 2.4 0 2 4 T3 2 2.6 T2 2 4 T1 3 2.3 T3

3 1 T3 1 3.3 0 3 1 T1 2 1.9 T3 3 1 T2 3 2.7 T1

3 2 T3 1 3.1 0 3 2 T1 2 1.6 T3 3 2 T2 3 2.5 T1

3 3 T3 1 3.6 0 3 3 T1 2 2.3 T3 3 3 T2 3 2.2 T1

3 4 T3 1 3.0 0 3 4 T1 2 2.5 T3 3 4 T2 3 2.0 T1



1030 ChApteR 18 SplIt-plot, RepeAted MeASuReS, And CRoSSoveR deSIgnS

Note that the carryover effect variable, CAR, has all zeros in period 1. The val-
ues of CAR in period 2 are identical for the values of TRT in period 1, and the values 
of CAR in period 3 are identical to the values of TRT in period 2. The following 
output from SAS will provide us with the appropriate tests of the carryover effect.

CROSSOVER DESIGN WITH TEST FOR CARRYOVER
MODEL WITH BOTH TRT AND CARRYOVER

The GLM Procedure

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y

Source
Model
Error
Corrected Total

DF
15
20
35

Sum of
Squares

10.43750000
2.71222222

13.14972222

Mean Square
0.69583333
0.13561111

F Value
5.13

Pr > F
0.0005

Source
Seq
Pat(Seq)
Trt
Per

 DF
2
9
2
2

Type III SS
0.23388889
0.66916667
9.51722222
0.01722222

Mean Square
0.11694444
0.07435185
4.75861111
0.00861111

F Value
0.86
0.55

35.09
0.06

Pr > F
0.4373
0.8221
<.0001
0.9387

Source
Seq

Error                   26.568
Error: 0.5*MS(P(Seq)) + 0.5*MS(Error)

 DF
2

Type III SS
0.055833

2.510443

Mean Square
0.027917

0.094491

F Value
0.30

Pr > F
0.7466

Dependent Variable: Y

Source
Model
Error
Corrected Total

DF
17
18
35

Sum of
Squares

11.08638889
2.06333333
13.14972222

Mean Square
0.65214052
0.11462963

F Value
5.69

Pr > F
0.0003

Source

Seq
P(Seq)
Trt
Period
Carry

 DF

2
9
2
1
2

Type III SS

0.05583333
0.66916667
3.98433333
0.00041667
0.64888889

Mean Square

0.02791667
0.07435185
1.99216667
0.00041667
0.32444444

F Value

0.24
0.65
17.38
0.00
2.83

Pr > F

0.7864
0.7425
<.0001
0.9526
0.0853

Dependent Variable: Y

In the above output, it was necessary to run two models, one with the carryover 
effect and one without the carryover effect, in order to obtain the sum of squares 
for period. We will summarize the information from the SAS output into the AOV 
table in Table 18.21, in which sequence, time period, direct effect of formulations, 
and carryover are fixed effects and patient in sequence is a random effect.

First, we examine the carryover effect. The p-value from the F test is .0853. 
Thus, there is a hint of a carryover effect, but it is not significant at the .05 level. 
The carryover effect is imbedded in the time period by treatment interaction. Fig-
ure 18.8 is a plot of the treatment means (mean duration for each formulation) 
by time period. This reveals an indication of an interaction between time period 
and treatment. Although formulation 3 has the highest mean duration followed by 
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formulation 2 and then formulation 1 in all three time periods, the amount of dif-
ference in the three formulations is considerably more in period 1 than in the other 
two time periods. However, after taking into account the variability in the treat-
ment means, the interaction is found to be nonsignificant. Therefore, we can next 
examine the direct effect of the treatment: drug formulations. The F test for a direct 
effect of formulations on mean duration is highly significant (p-value , .0001). A 
Tukey multiple-comparison analysis of the three formulations reveals that all pairs 
of treatment means are significantly different at the .05 level.

TABLE 18.21
AOV table for evaluating 

 carryover effect

Source df Sum of Squares Mean Square F p-value

Seq 2 .0558 .0279 .30 .7466
P(Seq) 9 .6692 .0744
Trt 2 3.9843 1.9922 17 .38 ,.0001
Period 2 .0172 .0086 .06 .9387
Carry 2 .6489 .3244 2.83 .0853
Error 18 2.0633 .1146

Total 35 13.1497

FIGURE 18.8
Profile plot of mean dura-

tion versus time period  
for three formulations
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When there are only two compounds to be examined, the Latin square 
arrangement, called a two-period crossover design, would have 2n patients randomly 
assigned to the two sequences, n to each sequence. The two-period crossover design 
is shown in Table 18.22.

The model for this experiment is

yijkl  m 1 di 1 bj1i2 1 gk 1 tl 1 eijkl

where di is the fixed effect due to sequence i, bj(i) is the random patient j in  sequence 
i effect, gk is the fixed time period effect, tl is the fixed effect due to treatment l, 
and eijkl is the random experimental error effect.

 ■
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Note there is no carryover term in this model. We must assume this term is 
negligible; otherwise, the design is inappropriate because there are no degrees of 
freedom available for testing the significance of the carryover effect. The AOV table 
for a two-period crossover design is shown in Table 18.23.

There are many other extensions to the repeated measures designs discussed 
in this chapter. For example, one could combine the concept of repeated meas-
ures on the same factor illustrated in Table 18.7 with the crossover design. Such 
a plan is illustrated in Table 18.24. Thus, rather than taking one observation per 
patient within each period, we would take observations at t different time points. 
For example, we could measure blood pressure every 15 minutes for the first hour 
following treatment with compound i and then hourly for the next 7 hours. This 
would be done in each of the periods for a total of 10 blood pressure measurements 
on each patient in each time period.

Although we will not give the analysis of variance for this extension to the 
 repeated measures experiments discussed in this chapter and will not cover other, 
more complicated repeated measures designs, we want you to be aware of the 
wealth of possible designs that are available if you are willing to take more than 
one observation per experimental unit. The interested reader is referred to Vonesh 
and Chinchilli (1997); Crowder and Hand (1990); Jones and Kenward (2015);  and 
Diggle, Liang, and Zeger (1996).

TABLE 18.23
AOV table for a two-

period crossover design

   EMS 
Source  SS df (A, B fixed; patient random)

Sequence SSSeq 1 s2
e 1 2s2

b 1 2nud

Patient(Seq) SSP(Seq) 2(n 2 1) s2
e 1 2s2

b

Treatment SSA 1 s2
e 1 2nut

Period SSB 1 s2
e 1 2nug

Error SSE 2(n 2 1) s2
e

Totals TSS 4n 2 1

TABLE 18.22
Layout for a two-period 

crossover design

 Factor B  
 (periods)

 Sequence Patient 1 2

 1 n A1 A2

 2 n A2 A1

TABLE 18.24
Two-period crossover 
design with repeated 

measures 

 Period

  1 2 
  Time Time  
 Sequence 1 2 . . . t 1 2 . . . t

 1 A1 A2

 2 A2 A1
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 18.6 RESEARCH STuDy: Effects of an Oil Spill  
on Plant Growth

On January 7, 1992, an underground oil pipeline ruptured and caused the contami-
nation of a marsh along the Chiltipin Creek in San Patricio County, Texas. The 
cleanup process consisted of burning the contaminated regions in the marsh. To 
evaluate the influence of the oil spill on the flora, the researchers designed a study 
of plant growth after the burning was completed. They focused their findings on 
Distichlis spicata, a flora of particular importance to the area of the spill. Two ques-
tions of importance to the researchers were as follows:

  1. Did the oil site recover after the spill and burning?
2. How long did it take for the recovery?

To answer these questions, the researchers needed to have a baseline to which 
they could compare the Distichlis spicata density in the months after the burning of 
the site. The density of the flora depended on soil characteristics, slope of the land, 
environmental conditions, weather, and many other factors. The researchers des-
ignated as the control site a nearby section of land that was not affected by the oil 
spill but that had soil and environmental properties similar to those of the spill site. 
At both the oil spill site and the control site, 20 tracts were randomly chosen. After 
a 9-month transition period, measurements were taken at approximately 3-month 
intervals for a total of eight time periods. During each time period, the number of 
Distichlis spicata within each of the 40 tracts was recorded.

The experimental design is a repeated measures design with two treatments, 
the oil spill and the control region, and eight measurements taken over time on 
each of the tracts over a 2-year period. The data consisted of the number of Dis-
tichlis spicata plants found on each tract during the eight observation periods on 
both the control and the burned (oil spill) sites. There were a total of 320 data 
values, as displayed in Table 18.2. The mean flora counts by treatment and date 
are given in Table 18.25.

Analyzing the Data
The flora counts were plotted in Figure 18.1, using boxplots for each date and 
 treatment. The boxplots reveal that the control plots have higher median flora 
counts than the oil spill plots. The control plots, however, are somewhat more vari-
able than the oil spill plots. This may be due to the burning treatment that was used 
on the oil spill plots, which often results in more homogeneous tract conditions 
than those that were present prior to the burning. The objective of the study was 
to examine the effects of the oil spill and subsequent burning of the tracts on which 
the oil spill occurred on the density of the flora Distichlis spicata. Since baseline 
density of the flora prior to the oil spill and burning did not exist, a comparison will 
be made with tracts that were not involved in the oil spill. In Figure 18.9, a profile 

TABLE 18.25
Flora count means by  

treatment and date

 Inspection Date

 Treatment Oct-92 Jul-93 Oct-93 Jan-94 Apr-94 Jul-94 Oct-94 Jan-95

Burned 27 .20 32.65 28.60 31.95 28.90 24.10 22.55 26.65
Control 34.45 40.25 42.80 45.10 39.05 35.55 37 .75 39.35
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plot of the flora densities is displayed for the control and burned tracts across the 
eight observation dates. The mean densities for the control (C) tracts are consist-
ently higher than the mean densities for the burned (B) tracts. The changes in 
mean densities have similar trends except on two of the observation dates (D3 and 
D7). On these two dates, the mean density of the flora on the burned tracts had a 
decrease from the previous date, whereas the mean density for the control plots 
increased. We will next construct the repeated measures AOV to confirm these 
observations.

An analysis of the data yields the AOV table in Table 18.26 for the flora 
density data.

There is a highly significant date by treatment interaction, which confirms 
the observations we had made from examining the profile plot. Furthermore, there 
is a significant difference between the mean densities of the burned and control 
plots. The control plots had larger mean flora densities than the burned plots. This 
difference was 7.25 at the first observation date and increased to a final difference 
of 12.70 on the final observation date, slightly more than 2 years later. The tracts 
on which the oil spill occurred showed no recovery in mean flora density, dropping 
from 27.20 on October 1992 to 26.65 on January 1995. Since the flora density on 
the control tracts, which had similar soil conditions and environmental exposures 
during the study period, increased from 34.45 to 39.35, we would conclude that the 
oil spill and subsequent burning resulted in reduced flora density on the affected 
tracts.

TABLE 18.26
AOV table for  
research study

      Adj p-value  
Source SS df MS F p-value G–G H–F

Treatment 10,511.11 1 10,511.11 6.56 .0045
Tracts in treatment 60,844.63 38 1,601.17
Date 2,845.09 7 406.44 19.35 .0001 .0001 .0001
Date 3 treatment 602.29 7 86.04 4.10 .0001 .0001 .0001
Error 5,587 .88 266 21.01

   Greenhouse–Geisser Epsilon  .5269
         Huynh–Feldt Epsilon  .5355

FIGURE 18.9
Profile plot of flora 

 densities by type and date

D1
20

25

35

30

C

B

C

B

B

B

B

B
B

B

C
C

C

C
C

C

45

D4
Observation date

Fl
or

a 
co

un
t

D8D3D2 D7D6D5

50

40



18.8 Exercises    1035

 18.7 Summary

In this chapter, we have discussed some of the initial concepts and designs associ-
ated with split-plot and repeated measures experiments. We introduced single- 
and two-factor experiments, analyses for these experiments, and the special topics 
of two- and three-period crossover designs. These methods are only a beginning, 
however. Rather than presenting an exhaustive, detailed account of the subject, we 
have looked at these few situations to see the applicability and utility of some of 
the repeated measures designs and procedures. Facility in designing and analyzing 
such experiments can be gained only after more detailed study of repeated meas-
ures topics through additional reading and course work.

 18.8 Exercises

 18.2 Split-Plot Designed Experiments

 Basic 18.1  An experiment is to be designed as a completely randomized design with a split-plot treat-
ment assignment. Suppose the wholeplot treatment (A) has four levels and the split-plot treat-
ment (B) has three levels. There are a total of 10 replications of the wholeplot treatment. Assume 
that both factors A and B have fixed levels.

 a. Describe a method of randomizing the experimental units to the levels of factors A 
and B in this experiment.

 b. Write a linear model for this experiment. Make sure to identify each of the terms 
in the model and list the range of values for all subscripts.

 c. Construct an analysis of variance table for this experiment, including columns for 
sources of variation, degrees of freedom, and expected mean squares.

 Basic 18.2  An experiment is to be designed as a completely randomized design with a split-plot treat-
ment assignment. Suppose the wholeplot treatment A has four levels. The split-plot treatments 
consist of the cross of two factors: factor B having three levels and factor C with two levels. 
There are a total of five replications of the wholeplot treatment and three of the split treatments. 
Assume that factors A, B, and C have fixed levels.

 a. Describe a method of randomizing the experimental units to the levels of factors A, 
B, and C in this experiment.

 b. Write a linear model for this experiment. Make sure to identify each of the terms 
in the model and list the range of values for all subscripts.

 c. Construct an analysis of variance table for this experiment, including columns for 
sources of variation, degrees of freedom, and expected mean squares.

 Basic 18.3  An experiment is to be designed as a randomized complete block experiment with three 
blocks and a split-plot treatment assignment. Each block is divided into four units. Suppose the 
wholeplot treatment (A) has four levels and the split-plot treatment (B) has three levels with 
both factors having fixed levels. The researcher wants to have two replications of each level of 
factor B in each block.

 a. Describe a method of randomizing the experimental units to the levels of factors A 
and B in this experiment.

 b. Write a linear model for this experiment. Make sure to identify each of the terms 
in the model and list the range of values for all subscripts.

 c. Construct an analysis of variance table for this experiment, including columns for 
sources of variation, degrees of freedom, and expected mean squares.

 Sci. 18.4  A meat science researcher designed a study to investigate the impact of increasing the portion 
of grain (and hence decreasing the portion of hay) in the daily ration for cattle on the tenderness of 
beef steaks obtained from the cattle. Twelve steers of the same breed, age, and weight were selected 
for the study. Four of the steers were randomly assigned to one of the following three rations, factor A:
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    Ration 1: (A1) 75% grain, 25% hay

    Ration 2: (A2) 50% grain, 50% hay

    Ration 3: (A3) 25% grain, 75% hay

   After being on the ration for 90 days, the steers were butchered, and four sirloin steaks were 
 obtained from each carcass. The steaks were then randomly assigned to one of four aging times, 
factor B: 1, 7, 14, or 21 days. After being stored at 18C for 90 days, the steaks were thawed and then 
cooked to an internal temperature of 708C. Next, 68 cores (1.27 cm in diameter) were removed paral-
lel to fiber orientation from each steak, and the peak shear force was measured on each core using a 
Warner–Bratzler shearing device. The mean shear force values (kg) are given in the following table.

 Ration 1 Ration 2 Ration 3

 Age 1 2 3 4 5 6 7 8 9 10 11 12 Mean

   1 3.1 3.2 4.9 6.0 4.9 5.9 3.1 4.6 5.3 4.8 4.7 4.9 4.62
  7 2.9 2.1 4.1 5.2 5.2 5.8 2.8 4.4 5.2 4.6 4.5 4.8 4.30
 14 2.4 2.5 3.4 5.1 4.4 5.1 3.1 4.7 5.1 4.2 4.2 4.7 4.08
 21 2.1 2.1 3.7 5.0 4.6 4.9  2.1 3.8 4.8 4.1 3.8 4.4 3.78
Mean 3.61 4.34 4.63

   The treatment means are given in the following table.

 Age

 Ration 1 7 14 21 Mean

 1 4.30 3.58 3.35 3.23 3.61
 2 4.63 4.55 4.33 3.85 4.34
 3 4.93 4.78 4.55 4.28 4.63
 Mean 4.62 4.30 4.08 3.78

 a. Provide the linear model for this study. Include the ranges on all subscripts.
 b. Provide a profile plot that will allow an assessment of the age by ration interaction.
 c.  Based on the table of means and your profile plot, does the decrease in mean shear 

force with increased aging of the steaks appear to be the same for all three rations?

  18.5  Refer to Exercise 18.4.
 a. Construct an analysis of variance table for this study.
 b. Is there a significant interaction between age and type of ration?
 c. Are there significant differences in the mean shear forces for the three rations?
 d. Are there significant differences in the mean shear forces for the four aging times?

  18.6  Refer to Exercise 18.4.
 a.  Explain how this study could have been conducted as a completely randomized  design.
 b.  What would be the gain in conducting the experiment as a completely randomized 

design over the split-plot design?
 c.  If the completely randomized design is an improvement over the split-plot design, 

why was the split-plot design used?

 18.4  Two-Factor Experiments with Repeated Measures on One  
of the Factors

 Env. 18.7  The cayenne tick is recognized as a pest of wildlife, livestock, and humans. It is distributed 
in the Western Hemisphere between 308N and 30°S latitude. This tick has been identified as a 
potential vector of several diseases, but the ecology of the cayenne tick is poorly understood. 
The following study was conducted to examine the survival potential of this tick as a function of 
the saturation deficit (SD) of the environment. Saturation deficit is an index of environmental 
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conditions that combines both temperature and relative humidity, with SD increasing with tem-
perature but decreasing with relative humidity. Thus, high values of SD are associated with high 
temperatures and low relative humidities, conditions that cause ticks to experience maximum 
water loss. Five values were selected for SD (2.98, 4.83, 5.80, 8.88, and 13.38 mmHg) for use in 
the study. The conditions were established in an artificial environment, with five ticks randomly 
assigned to each of these conditions. The whole-body water loss of the ticks was recorded every 2 
days over approximately a 3-week study period. The water losses (mg) of the ticks are given here. 

 Days of Exposure

 SD Tick 1 2 3 4 5 6 7 8 9 10 11

 2.98 1 .54 .59 .64 .73 .76 .89 .93 1.01 1.08 1.15 1.23
  2 .69 .75 .81 .90 .97 1.20 1.14 1.19 1.26 1.38 1.43
  3 .77 .80 .87 .94 1.01 1.10 1.17 1.24 1.34 1.41 1.51
  4 .64 .69 .77 .83 .88 .96 1.04 1.09 1.20 1.23 1.31
  5 .51 .58 .62 .71 .74 .81 .88 .93 .99 1.03 1.13

 4.83 1 .64 .71 .77 .89 .90 1.00 1.06 1.14 1.22 1.34 1.39
  2 .80 .91 .97 1.01 1.11 1.19 1.29 1.31 1.37 1.47 1.54
  3 .79 .85 .89 .99 1.04 1.05 1.16 1.21 1.32 1.39 1.47
  4 .77 .82 .88 .92 1.01 1.09 1.19 1.27 1.35 1.44 1.58
  5 .79 .84 .91 .98 1.07 1.14 1.19 1.31 1.37 1.46 1.55

 5.80 1 .72 .79 .83 .94 .98 1.09 1.12 1.21 1.28 1.34 1.41
  2 .89 .94 1.01 1.21 1.27 1.40 1.44 1.49 1.49 1.58 1.63
  3 .97 .99 1.07 1.09 1.21 1.30 1.37 1.44 1.54 1.61 1.73
  4 .85 .88 .97 1.05 1.09 1.17 1.24 1.29 1.30 1.23 1.51
  5 .71 .78 .82 .91 .94 1.11 1.19 1.23 1.29 1.33 1.43

 8.88 1 .93 .99 1.03 1.14 1.18 1.29 1.33 1.36 1.38 1.54 1.62
  2 1.09 1.14 1.21 1.41 1.47 1.55 1.64 1.69 1.71 1.78 1.83
  3 1.19 1.20 1.07 1.29 1.31 1.50 1.57 1.64 1.74 1.81 1.93
  4 1.05 1.08 1.17 1.25 1.29 1.37 1.44 1.49 1.50 1.53 1.71
  5 1.01 1.09 1.18 1.21 1.29 1.31 1.39 1.43 1.49 1.53 1.63

13.38 1 1.05 1.09 1.13 1.24 1.28 1.39 1.43 1.56 1.68 1.74 1.82
  2 1.29 1.34 1.41 1.51 1.57 1.65 1.74 1.79 1.83 1.88 1.93
  3 1.38 1.40 1.47 1.49 1.51 1.60 1.69 1.74 1.79 1.87 2.03
  4 1.23 1.28 1.37 1.45 1.49 1.57 1.64 1.69 1.70 1.73 1.81
  5 1.23 1.29 1.38 1.41 1.49 1.52 1.48 1.53 1.59 1.63 1.78

 a.  Display the profile plot for these data, showing mean whole-body weight loss by 
time period for each value of SD.

 b.  Does an increase in SD appear to increase the whole-body weight loss for the  
cayenne tick? 

  18.8  Refer to the data in Exercise 18.7.
 a. Provide a model for this design. 
 b. Construct an AOV table for the study. 
 c. Is there significant evidence that an increase in SD results in an increase the 

whole-body weight loss for the cayenne tick? Use a  .05.
 d.  Is the increase in whole-body weight loss for the cayenne tick over the study the 

same for all levels of SD? Use a  .05.

 Med. 18.9  An antihistamine is frequently studied using a model to examine its effectiveness (compared 
to a placebo) in inhibiting a positive skin reaction to a known allergen. Consider the following situ-
ation. Individuals are screened to find 20 subjects who demonstrate sensitivity to the allergen to 
be used in the study. The 20 subjects are then randomly assigned to one of two treatment groups  
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(the known antihistamine and an identical-appearing placebo), with 10 subjects per group. At the start 
of the study, a baseline (predrug) sensitivity reading is obtained, and then each patient begins taking 
the assigned medication for 3 days. Skin sensitivity readings are taken at 1, 2, 3, 4, and 8 hours follow-
ing the first dose. The percentage inhibition of skin sensitivity reaction (reduction in swelling of the 
area where the allergen is applied compared to the baseline) is shown here for each of the 20 patients.

 Time (hours)

Treatment Patient 1 2 3 4 8

Antihistamine 1 10.5 28.2 15.3 43.0 29.0
  2 41.2 25.3 27 .8 28.0 53.2
  3 43.0 20.8 29.3 5.2 26.5
  4 61.4 61.6 62.8 43.8 19.6
  5 5.0 28.2 31.6 19.5 2.3
  6 210.2 27 .2 38.1 35.5 18.0
  7 212.9 22.1 34.0 43.4 34.2
  8 27 .1 26.5 38.8 28.5 17 .4
  9 13.0 19.7 23.5 29.4 39.6
  10 28.9 26.1 11.2 18.1 16.5
Placebo 1 3.0 9.3 1.0 15.0 3.0
  2 21.5 210.1 20.2 18.3 13.5
  3 10.8 20.6 28.3 25.2 15.8
  4 15.3 19.8 25.4 31.3 21.7
  5 8.7 8.0 17 .5 26.6 16.4
  6 24.6 5.8 12.7 15.6 29.6
  7 216.6 28.4 32.7 34.4 15.8
  8 9.4 15.7 22.7 29.8 23.2
  9 219.3 15.7 21.7 30.4 26.1
  10 212.8 12.3 0.1 21.3 10.6

   (A negative value means there was an increase in swelling compared to the baseline.) 
 a. Compare means and standard deviations by time period for the two treatment groups.
 b.  Plot these data showing the mean percentage inhibition by time for each treatment 

group. Does the antihistamine group appear to differ from the placebo group?

  18.10  Refer to the data from Exercise 18.9. Give a model for this design, and run a repeated 
measures analysis of variance to compare the two treatment groups. Do the analysis of variance 
results agree with your intuition based on the plot of Exercise 18.9?

  18.11  Refer to Exercise 18.9. An important question of interest to the researchers is how long 
after the first dose there is evidence of antihistamine activity. Perform a multiple-comparison 
procedure to determine the first time at which there is significant evidence of a difference in the 
mean percentage inhibitions.

 Sci. 18.12  There are many running shoes on the market of varying degrees of quality. Long-distance 
runners require a shoe that provides a significant reduction in impact shock compared to the stand-
ard running shoe intended for weekend joggers. A runners’ magazine commissioned a study to 
evaluate three brands of shoes that claim to provide a reduction in impact shock. Ten experienced 
long-distance runners were selected to participate in the study. The study would consist of plac-
ing sensors in the runners’ shoes to measure impact forces as the runner ran on a treadmill set at 
a speed of 4 meters per second. Because the impact force is very dependent on the weight and 
individual stride of the runner, each of the 10 runners will be observed while using all three brands 
and a widely sold brand that will serve as a control. The runners were evaluated wearing the four 
brands in a random order with sufficient time between evaluations to allow the runners to be well 
rested prior to each evaluation. The impact forces (in Newtons) are presented in the following 
table with the following notation: BC  control brand and B1, B2, and B3  three new brands.
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 Runner B1 B2 B3 BC

   1 2,059.3 1,851.6 1,610.9 2,499.9
  2 2,663.1 1,442.1 1,145.8 2,075.2
  3 2,107 .1 1,947 .9 1,608.4 2,638.8
  4 1,847 .7 1,682.5 1,409.8 2,400.2
  5 1,875.6 1,743.1 1,419.2 2,389.7
  6 1,947 .8 1,727 .9 1,398.9 2,406.2
  7 2,055.8 1,831.9 1,545.5 2,549.3
  8 1,747 .8 1,571.0 1,185.4 2,307 .1
  9 1,788.1 1,616.9 1,298.6 2,366.8
 10 2,112.9 1,800.0 1,553.6 2,592.3

 a.  Is there significant (a  0.05) evidence of a difference in the four brands of shoes 
with respect to their mean peak force?

 b.  How many runners would be needed to conduct this study as a completely rand-
omized experiment? What would be the gains and losses in conducting the study 
as a completely randomized design?

 c.  What conditions are necessary in order for the test conducted in part (a) to pro-
vide valid p-values?

 d. What is the population to which the results of this study can be validly applied?

 18.5 Crossover Designs

 Psy. 18.13  An investigational drug product was studied under sleep laboratory conditions to deter-
mine its effect on duration of sleep. A group of 16 patients willing to participate in the study was 
randomly assigned to one of two drug sequences; 8 were to receive the investigational drug in 
 period 1 and an identical-appearing placebo in period 2, and the remaining 8 patients were to 
 receive the treatment in the reverse order.

 a. Identify the design. 
 b. Give a model for this design.
 c. State the assumptions that might affect the appropriateness of this design.

  18.14  Sleep duration data (in hours/night) are shown for the patients of Exercise 18.13. 

 Period

Sequence Patient 1 2

  1 1 8.6 8.0
 2 7 .5 7 .1
 3 8.3 7 .4
 4 8.4 7 .3
 5 6.4 6.4
 6 6.9 6.8
 7 6.5 6.1
 8 6.0 5.7
  2 9 7 .3 7 .9
 10 7 .5 7 .6
 11 6.4 6.3
 12 6.8 7 .5
 13 7 .1 7 .7
 14 8.2 8.6
 15 7 .2 7 .8
 16 6.7 6.9
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   Sequence 1 received the investigational drug first and the placebo second; the reverse order applied 
to sequence 2.

 a. Compute means and standard errors per sequence per period. 
 b.  Plot these data to show what happened during the study. Does the investigational 

drug appear to affect sleep duration? In what way? Use a  .05.
 c.  Run a repeated measures analysis of variance for this design. Draw conclusions. 

Does the analysis of variance confirm your impressions in part (b)?

  18.15  Refer to Exercise 18.13. Suppose we ignore the order in which the patients received the 
treatments. Count the number of patients who had higher sleep duration on the investigational 
drug than on placebo.

 a.  Suggest another simple test for assessing the effectiveness of the investigational drug.
 b. Give a p-value for the test of part (a).

  18.16  Refer to Exercise 18.13. Suppose the sleep durations for period 2 of sequence 1 were as follows:

 8.5    7.6    8.5    8.3    7.2    7.0    6.4    6.1
 a. Plot the study data for both sequences. 
 b.  Does the design still seem to be appropriate? Is there a possible explanation for 

what happened?

  18.17  Refer to Exercise 18.13. In spite of the results from period 2, we can still get a between-
patient comparison of the treatment groups if we use the period 1 results only. Suggest an appro-
priate test, run the test, and give the p-value for your test. Draw a conclusion.

 Med. 18.18  Many of us have been exposed to advertising related to the “bioavailability” of generic 
and brand-name formulations of the same drug product. One way to compare the bioavailability 
of two formulations of a drug product is to compare areas under the concentration curve (AUC) 
for subjects treated with both formulations. For example, the shaded area in the figure represents 
the AUC for a patient treated with a single dose of a drug. 

1 2 3 4 5

Drug
concentration
(ng/mL)

Time (h)

A three-period crossover design was used to compare the bioavailability of two brand-name  
(A1 and A2) and one generic version (A3) of weight-reducing agents. Three sequences of admin-
istering the drugs were used in the study: 

 Sequence 1: A1, A2, A3

 Sequence 2: A2, A3, A1

 Sequence 3: A3, A1, A2

A random sample of five subjects was assigned to each of the three sequences. The AUCs for 
these 15 patients are shown here. 

 Period

Sequence Patient 1 2 3

 1 1 80.2 40.4 38.4
 2 79.1 38.5 36.1 
 3 108.4 78.3 56.5 
 4 41.2 38.2 26.2 
 5 72.7 58.5 36.3

(continues)

AUC for a patient treated 
with a single dose of drug, 

Exercise 18.18



18.8 exercises    1041

(continued)

 Period

Sequence Patient 1 2 3

 2 1 74.6 51.2 48.6
 2 125.3 100.5 86.4
 3 145.5 108.5 96.4
 4 86.7 68.8 58.2
 5 107 .8 78.5 53.1
 3 1 79.7 40.4 37 .2
 2 89.2 68.8 56.2
 3 99.1 76.5 43.9
 4 102.4 88.1 53.4
 5 109.3 98.5 76.8

 a. Plot the formulation means (AUCs) by period for each sequence. 
 b. Is there evidence of a period effect? 
 c. Do the formulations appear to differ relative to AUC?

  18.19  Refer to Exercise 18.18. Run an analysis of variance for a three-period crossover design. 
Does your analysis confirm the intuition you expressed in Exercise 18.18? Use a  .05.

  18.20  Refer to Exercise 18.18. Compare the mean AUCs for the three formulations using only the 
period 1 data. Does this analysis confirm the analysis of Exercise 18.19? Why might the analysis of 
Exercise 18.19 be more suitable or not be more suitable than the “parallel” analysis of this exercise?

Supplementary Exercises

 Med. 18.21  The following study is described in Chinchilli, Schwab, and Sen (1989). The pain of angina 
is caused by a deficit in oxygen supply to the heart. Calcium channel blockers like verapamil will 
dilate blood vessels, increasing the supply of blood and oxygen to the heart. This controls chest 
pain—but only when used regularly. It does not stop chest pain once it starts. The research goal 
of the study was to assess if there was a difference in four commercial formulations of verapamil 
(denoted by A, B, C, and D). Twenty-six healthy male volunteers were randomly assigned to one 
of four treatment sequences (ABCD, BCDA, CDBA, or DABC). The study protocol required 
lengthy washouts between treatment periods, and, thus, it was thought that any drug carryover 
effects from previous time periods would be negligible. The response variable was the area under 
the plasma time curve (AUC), with values given in the following table.

 AUC AUC

Subject Sequence Period 1 Period 2 Period 3 Period 4 Subject Sequence Period 1 Period 2 Period 3 Period 4

 1 ABCD 224.29 190.19 135.59 123.19 14 CDAB 399.92 291.57 308.83 301.74
 2 BCDA 231.35 265.73 231.22 149.34 15 DABC 117 .45 204.20 226.72 127 .23
 3 CDAB 253.88 202.93 513.31 368.93 16 BCDA 183.20 96.70 200.27 327 .96
 4 DABC 327 .95 453.84 167 .11 123.23 17 CDAB 344.18 279.88 317 .13 265.73
 5 ABCD 326.06 247 .43 266.52 212.35 18 DABC 181.75 140.86 254.60 340.48
 6 BCDA 259.53 214.41 157 .00 188.74 19 ABCD 94.25 58.65 92.93 181.84
 7 DABC 347 .43 248.74 289.27 329.91 20 BCDA 195.67 297 .55 434.38 172.60
 8 ABCD 270.10 216.78 273.42 259.00 21 CDAB 458.89 277 .73 327 .52 345.12
 9 BCDA 618.61 401.56 581.72 555.01 22 DABC 383.64 494.78 436.15 380.31
10 CDAB 476.27 210.17 393.30 340.34 23 ABCD 413.53 335.44 291.82 387 .86
11 DABC 337 .45 169.75 233.68 254.78 24 BCDA 132.88 174.67 105.94 148.22
12 ABCD 483.25 731.50 683.28 366.38 25 CDAB 245.21 142.33 231.53 215.21
13 BCDA 223.04 152.35 107 .72 239.81 26 DABC 298.06 324.03 324.13 309.00
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 a. Plot the formulation means (AUCs) by period for each sequence.
 b. Does there appear to be evidence of a period effect?
 c. Do the formulations appear to have different AUC means?

  18.22  Refer to Exercise 18.21.
 a.  Write a linear model for the above study. Make sure to identify all parameters in 

the model.
 b.  Run an analysis of variance for the data in the study. Does your analysis confirm 

your intuition expressed in Exercise 18.21?
 c. Which pairs of formulations are significantly different?

  18.23  Refer to Exercise 18.21. Create a carryover variable as was done in Example 18.7, and 
conduct a formal test for a significant carryover effect. How are your conclusions altered from the 
analysis conducted in Exercise 18.22?

  18.24  Refer to Exercise 18.21. Using just the period 1 data, test for a difference in the four 
 formulations’ mean AUCs. Are your results consistent with the conclusions from Exercise 18.22? 
Why might the analysis of Exercise 18.22 be more suitable or not be more suitable than the analy-
sis using just the period 1 data?

 Med. 18.25  A study was conducted to demonstrate the effectiveness of an investigational drug prod-
uct in reducing the number of epileptic seizures in patients who have not been helped by standard 
therapy. Thirty patients participated in the study, with 15 randomized to the drug treatment group 
and 15 to the placebo group. Patient demographic data are displayed here. 

 Group

  Investigational Placebo 
  Drug (n1 5 15) (n2 5 15)

Age (yr) Mean (6SD) 37 .2 (610.5) 39.5 (69.6)
 Range 19–  68 21–  65
Gender M 20 16
 F 10 14
Duration of illness (yr) Mean (6SD) 10.7 (66.5) 11.5 (67 .3)
 Range 1–18 1–26

 a. Do the groups appear to be comparable in terms of these demographic  
variables? 

 b.  Are the mean ages or durations of illness different? How would you make this 
 comparison?

 c. How might you compare the sex distributions of the two groups? 

  18.26  The seizure data for the study of Exercise 18.25 are shown here. Note that we have base-
line seizure rates, as well as seizure rates for 5 months while on therapy. 

 Time (months)

Group Patient Baseline 1 2 3 4 5

Drug  1 15 11 10 6 5 3
 2 13 6 5 1 2 1
 3 12 8 3 0 3 0

 (continues)



18.8 exercises    1043

(continued)

 Time (months)

Group Patient Baseline 1 2 3 4 5

 4 18 4 2 3 1 2

 5 30 15 14 10 8 20

 6 14 7 9 3 4 1

 7 25 12 18 13 10 6

 8 22 21 18 16 17 25

 9 23 17 14 10 7 1

 10 14 2 1 0 0 0

 11 15 4 5 6 3 2

 12 17 8 7 8 2 6

 13 26 13 10 9 7 4

 14 28 2 1 3 1 3

 15 29 27 29 25 24 22

Placebo 1 16 15 18 14 13 12

 2 18 14 13 12 10 15

 3 14 10 5 4 6 7

 4 19 15 16 9 12 15

 5 12 10 14 16 17 12

 6 11 13 8 7 6 11

 7 31 32 30 21 24 20

 8 32 35 34 31 20 24

 9 21 20 18 15 16 18

 10 26 22 23 21 15 14

 11 13 10 14 12 8 6

 12 17 15 10 3 2 3

 13 18 16 12 14 13 11

 14 23 15 14 18 19 20

 15 10 8 11 10 9 6

 a.  Plot the mean seizure rates by month for the two groups. Does the investigational 
drug appear to work?

 b. Run a repeated measures AOV, and draw conclusions based on a  .01.

  18.27  Refer to the data of Exercise 18.26.
 a.  Consider the change in seizure rates from the baseline to the 5-month reading. 

 Compare the two groups using these data. Do you reach a similar conclusion as 
was reached in Exercise 18.26?

 b.  Because seizure rates can be quite variable, some people might compare the 
 maximum change for patients in the two groups. Do these data support your 
 previous conclusions?

 Env. 18.28  Gasoline efficiency ratings were obtained on a random sample of 12 automobiles, 6 
each of two different models. These ratings were taken at five different times for each of the 
12 automobiles.
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Model Car Time 1 Time 2 Time 3 Time 4 Time 5

1 1 1.43 1.47 1.39 1.40 1.44
1 2 1.50 1.41 1.51 1.53 1.41
1 3 1.79 1.88 1.89 2.00 1.90
1 4 1.87 1.78 2.00 2.00 2.11
1 5 1.85 1.89 1.93 1.86 1.81
1 6 1.89 1.66 1.78 1.77 1.67
2 1 1.63 1.62 1.64 1.63 1.53
2 2 1.81 1.83 1.84 1.83 1.86
2 3 2.25 2.10 2.34 2.27 2.32
2 4 1.79 1.80 1.92 2.03 2.02
2 5 2.11 2.00 2.33 2.46 2.35
2 6 2.10 2.03 2.00 2.09 1.87

 a.  Compute the mean efficiency for each model at each time point, and plot these data.
 b. Draw conclusions from the analysis of variance. Use a  .05.
 c.  What effects, if any, do the Greenhouse-Geisser and Huynh-Feldt correction factors 

have on the within-model comparisons?

 Psy. 18.29  A researcher is designing an experiment in which she plans to compare nine  different 
formulations of a meat product. One factor, F, is percentage of (10%, 15%, and 20%) in the meat. 
The other factor, C, is cooking method (broil, bake, and fry). She will prepare samples of each of 
the nine combinations and present them to tasters who will score the samples based on various 
criteria. Four tasters are available for the study. Each taster will taste nine samples. There are 
taster-to-taster differences, but the order in which the samples are tasted will not influence the 
taste scores. The samples will be prepared in the following manner so that the meat samples can 
be prepared and kept warm for the tasters. A portion of meat containing 10% fat will be divided 
into three equal portions. Each of the three methods of cooking will then be randomly assigned 
to one of the three portions. This procedure will be repeated for meat samples having 15% and 
20% fat. The nine meat samples will then be tasted and scored by the taster. The whole process is 
repeated for the other three tasters. The taste scores (0 to 100) are given here.

 10% Fat 15% Fat 20% Fat

 Broil Bake Fry Broil Bake Fry Broil Bake Fry

Taster 1 75 79 82 78 82 81 81 85 87
Taster 2 74 78 81 78 81 83 84 87 88
Taster 3 75 78 79 80 82 83 87 88 92
Taster 4 91 88 83 80 76 73 81 77 74

 a. Identify the design. 
 b. Give an appropriate model with assumptions. 
 c. Give the sources of variability and degrees of freedom for an AOV. 
 d.  Perform an analysis of variance, and draw conclusions about the effect of fat 

 percentage and method of cooking on the taste of the meat product.  
Use a  .05. 

  18.30  The following data are from Gennings, Chinchilli, and Carter, (1989). An in vitro toxicity study 
of isolated hepatocyte  suspensions was conducted to study the impact of combining carbon tetrachlo-
ride (CCl4) and chloroform (CHCl3) on the toxicity of cells. Cell toxicity was measured by the amount 
of  lactic dehydrogenase (LDH) enzyme leakage. The study involved randomly assigning four flasks to 
each of the 16 treatments obtained by combining four levels of CCl4 (0, 1.0, 2.5, and 5.0 mM) with four 
 levels of CHCl3 (0, 5, 10, and 25 mM). The percentage of LDH leakage from the cells in each of the  
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64 flasks was measured just prior to applying the treatment to the flasks and at .01, .25, .5, 1, 2, and 3 
hours after applying the treatment. The percentages of LDH leakage are given in the following table.

 Time Since Treatment (hours) Time Since Treatment (hours)

CCl4 CHCl3 0 .01 .25 .5 1.0 2.0 3.0 CCl4 CHCl3 0 .01 .25 .5 1.0 2.0 3.0

0 0 .08 .09 .09 .08 .10 .10 .12 0 0 .07 .08 .08 .08 .09 .09 .10
0 0 .08 .10 .10 .09 .12 .15 .13 0 0 .06 .08 .06 .07 .08 .10 .11
0 5 .06 .11 .14 .12 .14 .13 .12 0 5 .05 .07 .13 .08 .10 .10 .12
0 5 .11 .14 .16 .18 .20 .21 .14 0 5 .06 .06 .07 .13 .14 .15 .16
0 10 .06 .11 .20 .36 .46 .44 .46 0 10 .06 .07 .17 .18 .21 .22 .22
0 10 .08 .14 .24 .27 .29 .32 .34 0 10 .05 .05 .15 .16 .19 .22 .23
0 25 .07 .10 .25 .51 .65 .66 .70 0 25 .07 .07 .17 .24 .34 .37 .41
0 25 .11 .11 .33 .39 .48 .52 .55 0 25 .07 .06 .16 .24 .31 .36 .41
1 0 .06 .11 .13 .09 .10 .11 .11 1 0 .05 .08 .10 .10 .11 .12 .13
1 0 .08 .14 .15 .14 .16 .19 .21 1 0 .05 .09 .08 .09 .11 .12 .13
1 5 .05 .13 .18 .37 .41 .42 .46 1 5 .06 .10 .14 .16 .16 .20 .18
1 5 .10 .16 .22 .22 .29 .30 .21 1 5 .05 .08 .15 .18 .19 .21 .21
1 10 .06 .10 .25 .61 .57 .60 .63 1 10 .05 .07 .24 .27 .29 .32 .32
1 10 .11 .14 .26 .30 .30 .35 .29 1 10 .05 .06 .16 .21 .24 .27 .27
1 25 .07 .09 .23 .39 .58 .53 .67 1 25 .06 .06 .15 .22 .30 .44 .56
1 25 .08 .11 .28 .40 .42 .75 .72 1 25 .06 .05 .15 .27 .36 .43 .55
2.5 0 .06 .09 .19 .56 .64 .33 .34 2.5 0 .05 .08 .18 .19 .19 .21 .20
2.5 0 .10 .10 .19 .21 .23 .28 .23 2.5 0 .05 .10 .21 .23 .28 .29 .31
2.5 5 .07 .10 .22 .57 .62 .66 .70 2.5 5 .06 .08 .19 .23 .24 .27 .31
2.5 5 .07 .11 .24 .28 .30 .35 .30 2.5 5 .06 .07 .21 .25 .28 .30 .32
2.5 10 .05 .12 .28 .33 .43 .49 .58 2.5 10 .06 .09 .33 .26 .31 .34 .36
2.5 10 .08 .14 .23 .37 .43 .47 .40 2.5 10 .06 .09 .19 .23 .29 .34 .34
2.5 25 .05 .07 .22 .59 .65 .67 .67 2.5 25 .04 .05 .21 .29 .36 .54 .72
2.5 25 .09 .09 .24 .31 .35 .46 .45 2.5 25 .05 .04 .15 .25 .36 .40 .48
5 0 .06 .09 .52 .77 .78 .73 .76 5 0 .06 .08 .45 .50 .49 .60 .71
5 0 .08 .09 .60 .60 .57 .73 .79 5 0 .06 .10 .42 .44 .62 .62 .73
5 5 .05 .11 .21 .27 .30 .36 .41 5 5 .05 .10 .20 .22 .24 .28 .33
5 5 .09 .12 .21 .22 .27 .32 .28 5 5 .05 .08 .17 .21 .26 .27 .32
5 10 .04 .10 .24 .26 .33 .39 .47 5 10 .06 .09 .25 .29 .33 .37 .40
5 10 .11 .11 .23 .27 .31 .36 .31 5 10 .05 .05 .12 .16 .22 .27 .29
5 25 .07 .07 .21 .55 .60 .66 .66 5 25 .05 .05 .23 .31 .35 .53 .66
5 25 .08 .09 .23 .31 .41 .58 .67 5 25 .06 .04 .12 .20 .31 .41 .57

 a.  Plot the mean percentages of LDH leakage by time for the 16 treatments. Does 
there appear to be an effect due to increasing the level of CCl4 or CHCl3?

 b.  From the plot, does there appear to be an increase in the mean percentages of 
leakage as time after treatment increases?

 c.  Plot a profile plot of the mean percentage of LDH leakage separately for each 
time  period. Does there appear to be a difference in the profile plots?

  18.31  Refer to Exercise 18.30.
 a.  Run a repeated measures analysis of variance, and determine if there are signifi-

cant  interaction and/or main effects due to CCl4 and CHCl3. Is there a significant 
time effect?

 b.  Do the conditions necessary for using a split-plot analysis of repeated measures 
data appear to be valid?
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  18.32  Refer to Exercise 18.30. Consider as your response variable the proportional change in 
the mean percentage of leakage at time 3 hours and at time 0. That is,

y 
P3 2 P0

P0

where P0 and P3 are the percentage of leakage values at times 0 and 3 hours, respectively. Run 
an analysis of variance on y, and test for significant interaction and/or main effects due to CCl4 
and CHCl3. Do you reach conclusions similar to those obtained in Exercise 18.31?

 Engin. 18.33  A group of researchers at a company that produces a leading brand of ice cream design an 
experiment to evaluate the impact of several artificial sweeteners on the texture of the product. It 
is well known that replacing natural sweeteners with artificial sweeteners in ice cream can result 
in a product that is has an unappealing texture. A proposed method to overcome this problem 
is to increase the blending time in the production process. The researchers decided to use four 
types of sweeteners: a natural sweetener (control), Aspartame, Saccharin, and Sucralose. Twelve 
containers of ice cream were made, 3 for each of the four types of sweeteners, with the type of 
sweetener randomly assigned to the containers. Each of the 12 containers of ice cream was then 
split into four portions. The four portions were then randomly assigned to one of four blending 
times: 1 minute, 2 minutes, 5 minutes, and 8 minutes. At the end of the specified blending period, 
the ice cream was assigned a texture score. The researchers were particularly interested in the 
impact of the four sweeteners and the blending times on the average texture scores.

 Blending Time(min.)

Sweetener Container 1 2 5 8

Control 1 7 10 17 22
   2 4 4 11 23
   3 4 11 10 31
Aspartame 1 8 12 22 27
   2 6 7 27 30
   3 9 8 29 32
Saccharin 1 7 8 21 35
   2 1 4 13 25
   3 5 4 13 28
Sucralose 1 3 11 21 37
   2 1 12 25 31
   3 4 9 27 32

 a. What type of randomization was utilized in this experiment (completely rand-
omized design, randomized complete block design, Latin square design, etc.)?

 b. What type of treatment structure was used (single factor, crossed factors, nested 
factors, etc.)?

 c. Identify each of the factors as being fixed or random.
 d. Describe the experimental units for each factor and the measurement units.
 e. Write a statistical model for this experiment, and include all necessary conditions 

on the model parameters and variables.

 Engin. 18.34  Refer to Exercise 18.33.
 a. Do the necessary conditions for testing hypotheses and constructing confidence 

intervals appear to be satisfied? Justify your answers using the residuals from fit-
ting the model from Exercise 18.33.

 b. Construct an ANOVA table for this experiment. Make sure to include expected 
mean squares and the p-values for the F tests.
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 c. At the a  .05 level, which main effects and interaction effects are significant? 
Justify your answer by including the relevant p-values.

 d. What are your overall conclusions about the impact of the four sweeteners and 
the blending times on the average texture scores?

 Engin. 18.35  Refer to Exercise 18.33.
 a. Group the three types of sweeteners along with the control such that all sweeten-

ers in a group are not significantly different from one another with respect to their 
mean texture scores. Use an experimentwise error rate of a  .05.

 b. Group the four blending times such that all blending times in a group are not 
significantly different from one another with respect to their mean texture scores. 
Use an experimentwise error rate of a  .05.

 c. In forming the groups in part (a), was it necessary to consider blending times?
 d. Provide a 95% confidence interval on the mean texture score for each of four levels 

of sweetener.
 e. Provide a 95% confidence interval on the mean texture score for each of four levels 

of blending time.

 Health 18.36  Sodium nitrate, a preservative that is used in some processed meats, such as bacon, jerky, 
and luncheon meats, could increase your heart disease risk. A consumer protection organization 
is evaluating the level of sodium nitrate (NaNO2) from sausages obtained from the three larg-
est food processors—P1, P2, and P3—in the United States. Each manufacturer produces three 
grades of quality for their sausage—Q1, Q2, and Q3. The processing of different grades of sau-
sage from a common production run may involve different sources of raw materials and process-
ing environments, and these factors sometimes are problematic. Each food processor submits two 
sausages of each grade from each of three production runs. The amount of NaNO2 is determined 
and is reported in the following table. The three food processors are the only processors under 
evaluation, the production runs were randomly selected and are representative of general pro-
duction runs of each food processor.

 Manufacturer

 P1 P2 P3
 Run Run Run

 Grade R1 R2 R3 R4 R5 R6 R7 R8 R9

 Q1 253 265 253 230 234 231 225 228 232
  256 270 251 226 239 232 229 227 232
 Q2 262 263 255 257 268 265 277 276 289
  260 266 264 267 258 266 276 277 287
 Q3 279 285 277 275 286 284 280 278 282
  279 288 272 272 283 284 276 277 282

 a. What type of randomization was utilized in this experiment (completely  
randomized design, randomized complete block design, Latin square  
design, etc.)?

 b. What type of treatment structure was used (single factor, crossed factors, nested 
factors, etc.)?

 c. Identify each of the factors as being fixed or random.
 d. Describe the experimental units for each factor and the measurement units.
 e. Write a statistical model for this experiment, and include all necessary conditions 

on the model parameters and variables.
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 Health 18.37  Refer to Exercise 18.36.
 a. Do the necessary conditions for testing hypotheses and constructing confidence 

intervals appear to be satisfied?
 b. At the a  .05 level, which main effects and interactions are significant? Justify 

your answer by including the relevant p-values.
 c. Separate the three quality levels into groups of levels such that all  levels in a 

group are not significantly different from one another with respect to their mean 
NaNO2 levels. Use an experimentwise error rate of a  .05.

 d. Provide a 95% confidence interval on the mean NaNO2 level for each of the three 
quality levels.

 e. Provide a 95% confidence interval on the mean NaNO2 level for each of the three 
food processors.

 Health 18.38  Refer to Exercise 18.36.
 a. Estimate the size of the variance associated with each of the random factors in the 

study.
 b. Provide the proportions of the total variation associated with each of the sources 

of random variation in the study.
 c. Is the amount of variation in the quantity of NaNO2 across the runs consistent for 

the three quality levels?
In Exercises 18.39–18.42, describe the experimental situations by provide the following 
 information:

 1. Identify the type of randomization (completely randomized design, randomized 
complete block design, Latin square design, split-plot, crossover, etc.).

 2. Identify the type of treatment structure (single factor, crossed factors, nested  
factors, fractional, etc.).

 3. Identify each of the factors as being fixed or random.
 4. Describe the experimental units and measurement units.
 5. Describe the measurement process: response variable, covariates, subsampling, 

and repeated measures.
 6. Provide a partial AOV table containing just sources of variation and degrees  

of freedom.

 Health 18.39  A research specialist for a large seafood company investigated bacterial growth on oysters 
and mussels subjected to three different storage temperatures. Nine cold storage units were avail-
able. Three storage units were randomly assigned to be used for each of the storage temperatures: 
0, 5, and 10°C. Oysters and mussels were stored for 2 weeks in each of the cold storage units. A 
bacterial count was made from a sample of oysters and a sample of mussels from each storage 
unit at the end of 2 weeks, so that for each storage unit there is a bacterial value for oysters and a 
bacterial value for mussels, yielding a total of 18 observations.

 Bio. 18.40  A study was designed to compare the effect of a vitamin E supplement on the growth of  
guinea pigs. There were 15 guinea pigs available for the study. The guinea pigs were randomly 
assigned to one of the three dose levels of vitamin E with 5 animals per level. For each ani-
mal, the body weight was recorded at the end of weeks 1, 3, 4, 5, 6, and 7. All 15 animals were 
given a growth-inhibiting substance during week 1 and given identical diets during the first four 
weeks of the study. At the beginning of week 5, the vitamin E treatments were implemented. The 
three treatment levels (doses of vitamin E) were 0, L (low), and H (high). The data include the 
response variable WEIGHT for each of the 15 animals for each of the 6 weekly weighings (total 
of 90 measurements). The other information available for each observation is the levels of DOSE 
(0, L, and H) and the WEEK (1, 3, 4, 5, 6, and 7). The animals are numbered 1 through 15. In 
addition, a variable called BEFAFT is created, which has the following values: 

BEFAFT  B for weeks 1, 3, and 4—that is, before the start of the vitamin E doses
BEFAFT  A for weeks 5, 6, and 7—that is, after starting the vitamin E doses

 Nutrition 18.41  Commercial cheese is manufactured by bacterial fermentation of pasteurized milk. 
Selected bacteria, referred to as starter cultures, are added to the milk to implement the fer-
mentation. However, some Wild bacteria, nonstarter bacteria, may also be present in cheese, 
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which may alter the desired quality of the cheese. Thus, cheese manufactured under seemingly 
identical conditions in two cheese-making facilities may produce cheese of differing quality due 
to the present of different indigenous nonstarter bacteria. To test the impact of two nonstarter 
bacteria, R50 and R21, on cheese quality, the nonstarter bacteria were added to the cheese to see 
if it impacted the quality of the cheese. The researchers decided to use four types of nonstarter 
bacteria: a control (no nonstarter bacteria added), addition of R50, addition of R21, and addition 
of a blend of R50 and R21. Twelve containers of cheeses were made, 3 of each of the four types 
of nonstarter bacteria, with the type of bacteria randomly assigned to the cheese containers. Each 
of the 12 containers of cheese was then divided into four portions. The four portions were then 
randomly assigned to one of four aging times: 1 day, 28 days, 56 days, and 84 days. At the end of 
the specified aging period, the cheese was measured for total free amino acids. The researchers 
were particularly interested in the bacterial effects and their interaction with aging times.

 Engin. 18.42  An industrial engineer is studying the hand insertion of electronic components on printed 
circuit boards in order to improve the speed of the assembly operation. She has designed three 
assembly fixtures (F1, F2, and F3) and two workplace layouts (Ll and L2) that seem promising. 
Specialized operators are required to perform the assembly, and it was initially decided to ran-
domly select four operators from the many qualified operators at the plant. However, because 
the workplaces are in different locations within the plant, it is difficult to use the same operators 
for each layout. Therefore, the four operators randomly chosen for layout 1 are different indi-
viduals from the four operators randomly chosen for layout 2. Each of the operators assembles 4 
circuit boards for each of the three fixture types, with the 12 circuit boards assembled in random 
order. The 96 assembly times are measured in seconds. The engineer is interested in the effects 
of assembly fixtures (F), workplace layout (L), and operator (O) on the average time required to 
assemble the circuit boards.



 19.1 Introduction and Abstract of Research Study

We examined the analysis of variance for balanced designs in Chapters 8, 14, and 
15, where we used appropriate formulas (and corresponding computer solutions) 
to construct AOV tables and set up hypothesis tests. We also considered another 
way of performing an analysis of variance. We saw that the sum of squares associ-
ated with a source of variability in the analysis of variance table can be found as the 
drop in the sum of squares for error obtained from fitting reduced and complete 
models. Although we did not advocate the use of complete and reduced models 
for obtaining the sums of squares for sources of variability in balanced designs, we 
did indicate that the procedure was completely general and could be used for any 
experimental design. In particular, in this chapter, we will make use of complete and 
 reduced models for obtaining the sums of squares in the analysis for  unbalanced 
designs, where formulas are no longer readily available and easy to apply.

You might ask why an experimenter would run a study using an unbalanced 
 design, especially since unbalanced designs seem to be more difficult to analyze. In 
point of fact, most studies do begin by using a balanced design, but for any one of 
many different reasons, the experimenter is unable to obtain the same number of 
 observations per cell as dictated by the balanced design being employed. Consider a 
study of three different weight-reducing agents in which five different clinics (blocks) 
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are employed and patients are to be randomly assigned to the three treatment groups 
according to a randomized block design. Even if the experimenter plans to have six 
overweight persons assigned to each treatment at each clinic, the final count will 
almost certainly show an imbalance of persons assigned to each treatment group. 
Almost every clinic could be expected to have a few people who would not complete 
the study. Some people might move from the community,  others might drop out due 
to a lack of efficacy in the program, and so on. In addition, the experimenter might 
find it impossible to locate 18 overweight people at each clinic who are willing to par-
ticipate in the study. Because an unbalanced design at the end of a study occurs quite 
often, we must learn how to analyze data arising from unbalanced designs.

We will next consider a research study in which we are aware of the unbal-
anced nature of the design prior to running the experiment and hence can design 
the study to partially accommodate the imbalance so as to minimize any bias with 
respect to estimating the treatment effects.

Abstract of Research Study: Evaluation of the Consistency  
of Property Assessors
The county in which a large southwestern city is located received over the past 
year a large number of complaints concerning the assessed valuation of residential 
homes. Some of the county residents stated that there was wide variation in residen-
tial property valuations depending on which county property  assessor determined 
the property’s value. The county employs numerous assessors who determine the 
value of residential property for the purposes of computing property taxes due 
from each property owner in the county. The county manager decided to design a 
study to see whether the assessors differ systematically in their determinations of 
property values.

The manager needed to determine how to evaluate the consistency in the 
 assessors’ determinations of property values. Because the county assessor’s office 
is generally understaffed and the assessors have a complete work schedule, it was 
decided to randomly select 16 assessors for participation in the study. There is a 
wide variety in the types of homes and extent of landscaping in the properties 
throughout the county. This variation in values and styles is thought to be one of 
the sources of deviations in the assessed valuations of the properties. Thus, the 
manager carefully selected 16 properties that would represent the wide diversity of 
properties in the county but all within the midpriced range of homes. To determine 
consistency, it would be necessary to have the assessors evaluate the same proper-
ties, and initially, the study was to have each of the 16 assessors determine a value 
for each of the 16 properties. This would have required a total of 256 valuations to 
be done by the 16 assessors. However, this would have been too time consuming. 
Thus, each assessor was assigned to evaluate 6 of the 16 properties. The necessary 
number of valuations would be reduced from 256 to 96. The design is a randomized 
block design with the blocking variable being the 16 properties and the treatment 
variable being the 16 assessors. Note that the design is no longer a randomized 
complete block design because each assessor valuated only 6 of the 16 properties. 
The county statistician was concerned about the incomplete nature of the block 
 design because some of the properties may be more difficult to evaluate than others. 
Although it would not be possible to have a complete block design, the statistician 
decided on the following method of assigning the properties to the assessors. We 
will demonstrate that the design is in fact a balanced incomplete block design when 
we provide the analysis of the research study in Section 19.5.

balanced incomplete 
block design
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Because the design is not a complete block design—only 96 of the 256 
 possible block–treatment combinations were observed—we cannot use the models 
and analysis techniques from Chapter 15. The analysis of the research study will be 
provided in Section 19.5.

 19.2 A Randomized Block Design with One or More  
Missing Observations

Any time the number of observations is not the same for all factor–level combina-
tions, we call the design unbalanced. Thus, a randomized block design or a Latin 
square design with one or more missing observations is an unbalanced design. We 
will begin our examination by considering a simple case, a randomized block design 
with one missing observation.

The analysis of variance for a randomized block design with one missing 
 observation can be performed rather easily by using the formulas for a randomized 
complete block design after we have estimated the value of the missing observation 
and corrected for the estimation bias.

Let yij be the response from the experimental unit observed under treatment 
i in block j. Suppose that the missing observation occurs in cell (k, h), the observa-
tion on treatment k in block h. The formula for estimating the missing observation 
ykh is given by

ŷkh 
tyk. 1 by.h 2 y..

1t 2 1 2 1b 2 1 2
where t is the number of treatments; b is the number of blocks; yk. is sum of all 
 observations on treatment k, the treatment that has the missing observation; y.h is 
the sum of all measurements in block h, the block that has the missing observation; 
and y.. is the sum of all the observations.

The sums of squares for the analysis of variance table are obtained by replacing 
the missing value, ykh, with its estimate, ŷkh, and then applying the formulas for a 
balanced design to the data set that now has no missing cells:

 TSS  a
t

i1
a

b

j1

1yij 2 y.. 2 2

 SST  ba
t

i1

1yi. 2 y.. 2 2

 SSB  ta
b

j1

1y.j 2 y.. 2 2

 SSE  TSS 2 SST 2 SSB

The value of SST has a bias in its estimation given by

Bias 
1 y.h 2 1t 2 1 2ŷkh 2 2

t 1t 2 1 2
The corrected treatment sum of squares is SSTC  SST 2 bias. The other sums of 
squares are given in their uncorrected form.

Another difference in the analysis of variance table for the unbalanced block 
 designs is a change in the entries for degrees of freedom for total and error. Because n 
in the unbalanced design refers to the number of actual observations, the value of n is 

unbalanced design

value of missing 
 observation  

estimation bias
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given by n  tb 2 1 due to the missing data point. Therefore, the degrees of freedom 
for error will be decreased by one to n 2 t 2 b 1 1  tb 2 t 2 b as compared to 
tb 2 t 2 b 1 1 for the corresponding balanced design. The AOV table for an unbal-
anced design with t treatments, b blocks, and one missing value is shown in Table 19.1.

We illustrate the analysis of variance for this design with an example.

EXAMPLE 19.1

Prior to spinning cotton, the cotton must be processed to remove foreign matter and 
moisture. The most common lint cleaner is the controlled-batt saw-type lint cleaner. 
Although the controlled-batt saw-type lint cleaner M1 is one of the most highly 
effective cleaners, it is also one of the cleaners that causes the most damage to the 
cotton fibers. A cotton researcher designed a study to investigate four  alternative 
methods for cleaning cotton fibers: M2, M3, M4, and M5. Methods M2 and M3 are 
mechanical, whereas methods M4 and M5 are a combination of  mechanical and 
chemical procedures. The researcher wanted to take into account the impact of dif-
ferent growers on the process and hence obtained bales of cotton from six different 
cotton farms. The farms will be considered as blocks in the study. After a prelimi-
nary cleaning of the cotton, the six bales were thoroughly mixed, and then an equal 
amount of cotton was processed by each of the five lint-cleaning methods. The losses 
in weight (in kg) after cleaning the cotton fibers are given in Table 19.2 for the five 
cleaning methods. During the processing of the  cotton samples, the measurements 
from farm 1 processed by the M1 cleaner were lost.

TABLE 19.1 
AOV table for testing the 
 effects of treatments with  

one missing observation

Source SS df MS F

Blocksunadj SSBunadj b 2 1 MSBunadj

TreatmentsC SSTC t 2 1 MSTC MSTC /MSE
Error SSE tb 2 t 2 b MSE
Total TSS bt 2 2

TABLE 19.2
Measurements of loss 

(kg) during cotton fiber 
cleaning

 Farm

Method 1 2 3 4 5 6 Mean

M1 * 6.75 13.05 10.26 8.01 8.42 9.300
M2 5.54 3.53 11.20 7 .21 3.24 6.45 6.190
M3 7 .67 4.15 9.79 8.27 6.75 5.50 7 .022
M4 7 .89 1.97 8.97 6.12 4.22 7 .84 6.170
M5 9.27 4.39 13.44 9.13 9.20 7 .13 8.760

Mean 7 .593 4.158 11.290 8.198 6.280 7 .068 7 .426

Estimate the value for the missing observation and then perform an analysis 
of variance to test for differences in the mean weight losses for the five methods of 
cleaning cotton fibers.

Solution  For this randomized block design, b  6 and t  5 with one missing value 
in cell (1, 1). Therefore, we need to compute the following values:

 y1.  sum of all measurements on method M1

  6.75 1 13.05 1 10.26 1 8.01 1 8.42  46.49
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y.1  sum of all measurements on batch 1

  5.54 1 7.67 1 7.89 1 9.27  30.37

  y..  sum of all measurements

  6.75 1 13.05 1 c1 7.13  215.36

The estimate of the missing value, y11, is given by

 ŷ11 
ty1. 1 by.1 2 y..

1t 2 1 2 1b 2 1 2 
5 146.49 2 1 6 130.37 2 2 215.36

15 2 1 2 16 2 1 2  

 
199.31

20
 9.9655 

Replacing the missing value with its estimate, 9.9655, we next compute the 
sum of squares using the formulas of Chapter 15 for a balanced randomized block 
design with t  5 and b  6. First, we obtain the treatment and farm means (with 
the missing value replaced with 9.9655), as shown in Table 19.3.

TABLE 19.3
Method and batch means

Method Mean Farm Mean

    y1.  9.409 y.1  8.067
    y2 .  6.190 y.2  4.158
    y3 .  7.022 y.3  11.290
    y4 .  6.170 y.4  8.198
    y5 .  8.760 y.5  6.280
  y.6  7.068

Overall mean  y..  7.511

Note that the means for method 1 and farm 1 and the overall mean incorpo-
rate the estimated value for the missing observation. We next obtain the four sums 
of squares.

 TSS  a
t

i1
a

b

j1

1 yij 2 y.. 2 2

  19.9655 2 7.511 2 2 1 16.75 2 7.511 2 2 1c1 17.13 2 7.511 2 2 219.887

 SST  ba
t

i1

1 yi. 2 y.. 2 2

  6 3 19.409 2 7.511 2 2 1 16.190 2 7.511 2 2 1 17.022 2 7.511 2 2 
 1 16.170 2 7.511 2 2 1 18.760 2 7.511 2 2 4  53.624

 SSB  ta
b

j1

1 y.j 2 y.. 2 2

  5 3 18.067 2 7.511 2 2 1 14.158 2 7.511 2 2 1 111.290 2 7.511 2 2 
 1 18.198 2 7.511 2 2 1 16.280 2 7.511 2 2 1 17.068 2 7.511 2 2 4  140.032

 SSE  TSS 2 SST 2 SSB  219.887 2 53.624 2 140.032  26.231

 Bias 
1 y.1 2 1t 2 1 2ŷ11 2 2

t 1t 2 1 2 
330.37 2 15 2 1 29.9655 42

5 15 2 1 2  4.5049

Corrected treatment SS  SSTC  SST 2 bias  53.624 2 4.5049  49.119
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The AOV table for Example 19.1 is shown in Table 19.4.

TABLE 19.4
AOV table for testing the  
effects of treatments with  

one missing observation

Source SS df MS F p-value

Blocksunadj 140.032 5 28.01
TreatmentsC 49.119 4 12.28 7 .96 .0008
Error 26.231 19 1.543

Total 219.887 28

The F test for a significant difference in the five method means is highly 
 significant ( p-value  .0008). The mean losses in cotton fiber were somewhat higher 
when using methods 1 and 5 in comparison to the other three methods. ■

Having seen an analysis of variance, we may wish to make certain compari-
sons among the treatment means. We’ll run pairwise comparisons using the Tukey-
Kramer W procedure. The value of W for comparing the treatment with a missing 
observation and any other treatment mean is

W* 
qa 1t, v 2
!2 ÅMSEa2

b
1

t
b 1b 2 1 2 1t 2 1 2 b

For any pair of treatments with no missing value, the least significant difference is 
as before—namely,

W  qa 1t, v 2Å
MSE

b

EXAMPLE 19.2

In Example 19.1, we found that there was significant evidence of a difference in 
the mean loss in cotton fiber for the five methods. The researchers would like to 
determine which pairs of methods have differences. Run a pairwise comparison of 
the five methods using the Tukey-Kramer W procedure.

Solution  Example 19.1 involved a study in which the design was a randomized 
block design with t  5 treatments and b  6 blocks. There was a single missing 
 observation. From Table 19.4, we have MSE  1.543 with 19 degrees of freedom. 
Using a  .05, the value of W for comparing the method with the missing observa-
tion, method 1, with the other four methods is computed as

 W* 
q.05 15, 19 2

!2 ÅMSEa2
b

1
t

b 1b 2 1 2 1t 2 1 2 b

  3.01Å1.543a2
6

1
5

6 16 2 1 2 15 2 1 2 b  2.289

For comparing any pair not including method 1, the value of LSD is

W  q.05 15, 19 2Å
MSE

b
 4.25Å

1.543
6

 2.155

Using the two values of W, we obtain the results shown in Table 19.5, with the mean 
for method 1 computed using the estimated missing observation.

comparisons among 
treatment means
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We can group the five methods on the basis of an LSD pairwise comparison as  follows:

Method 1 Method 5 Method 3 Method 2 Method 4
    9.409 8.760 7.022 6.190 6.170
        a ab bc c   c    

The formulas for estimating missing observations in a randomized block 
 design  become more complicated with more missing data, as do the formulas for 
Ws. Because of this, we will consider fitting complete and reduced models to ana-
lyze unbalanced designs. We will illustrate the procedure first by  examining an 
unbalanced randomized block design.

Because it would require more data input for a computer solution using the 
general linear model format with dummy variables presented in Chapter 12, we will 
represent the complete and reduced models for testing treatments as follows:

 Complete model (model 1): yij  m 1 ti 1 bj 1 eij

  Reduced (model 2): yij  m 1 bj 1 eij

where bj is the jth block effect and ti is the ith treatment effect.
By fitting model 1 (using SAS or other computer software), we obtain SSE1. 

Similarly, a fit of model 2 yields SSE2. The difference in the two sums of squares 
for error, SSE2 2 SSE1, gives the drop in the sum of squares due to treatments. 
Because this is an unbalanced design, the block effects do not cancel out when 
comparing treatment means as they do in a balanced randomized block  design 
(see Chapter 15). The difference in the sums of squares, SSE2 2 SSE1, has been 
adjusted for any  effects due to blocks caused by the imbalance in the design. This 
difference is called the sum of squares due to treatments adjusted for blocks.

SSE2 2 SSE1  SSTadj

The sum of squares due to blocks unadjusted for any treatment differences is 
 obtained by subtraction:

SSB  TSS 2 SSTadj 2 SSE
where SSE and TSS are sums of squares from the complete model. (Note: We could also 
obtain SSB, the uncorrected sum of squares for blocks, using the formula of Section 15.2).

The analysis of variance table for testing the effect of treatments is shown in 
Table 19.6. In the table, n is the number of actual observations.

fitting complete and 
reduced models

SSTadj

AOV table, 
 treatments

TABLE 19.5
Paired comparison  

of five methods

Pair Compared Difference in Means W Conclusion

M1 & M2 9.409 2 6.190  3.219 2.289 Significant
M1 & M3 9.409 2 7.022  2.387 2.289 Significant
M1 & M4 9.409 2 6.170  3.239 2.289 Significant
M1 & M5 9.409 2 8.760  .649 2.289 Not Significant
M2 & M3 6.190 2 7.022  2.832 2.155 Not Significant
M2 & M4 6.190 2 6.170  .020 2.155 Not Significant
M2 & M5 6.190 2 8.760  22.570 2.155 Significant
M3 & M4 7.022 2 6.170  .852 2.155 Not Significant
M3 & M5 7.022 2 8.760  21.738 2.155 Not Significant
M4 & M5 6.170 2 8.760  22.590 2.155 Significant

TABLE 19.6
AOV table for testing  

the effects of treatments,  
unbalanced randomized  

block design

Source SS df MS F

Blocks SSB b 2 1 — —
Treatmentsadj SSTadj t 2 1 MSTadj MSTadj /MSE
Error SSE n 2 b 2 t 1 1 MSE

Total TSS n 2 1

■
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The corresponding sum of squares for testing the effect of blocks has the same 
complete model (model 1) as before, and

yij  m 1 ti 1 eij

is the reduced model (model 2). The sum of squares drop, SSE2 2 SSE1  SSBadj, 
is the sum of squares due to blocks after adjusting for the effects of treatments. By 
subtraction, we obtain

SST  TSS 2 SSBadj 2 SSE

The AOV table is shown in Table 19.7.
Note that SST and SSTadj are not the same quantity in an unbalanced design; 

they will be the same only for a balanced design. Similarly, SSB and SSBadj are 
 different quantities in an unbalanced design. For an unbalanced design, we have 
the following identities:

TSS  SSTadj 1 SSB 1 SSE  SST 1 SSBadj 1 SSE

but
TSS 2 SSTadj 1 SSBadj 1 SSE

EXAMPLE 19.3

Use the data in Example 19.1 to obtain the sum of squares due to treatments after 
adjusting for the effects of blocks and the sum of squares due to blocks after adjust-
ing for the effects of treatments by using the full versus reduced models technique. 
Compare your answers to the calculations from Example 19.1.

Solution  The following output from Minitab was obtained from fitting the fol-
lowing three models:

Model 1, complete model: yij  m 1 ti 1 bj 1 eij

Model 2, reduced model for treatments: yij  m 1 bj 1 eij

Model 3, reduced model for blocks: yij  m 1 ti 1 eij

SSBadj

Source
Batch
Method
Error
Total

DF
5
4
19
28

Seq SS
138.304
49.120
26.230

213.653

Adj SS
139.661
49.120
26.230

Adj MS
27.932
12.280
1.381

F
20.23
8.90

P
0.000
0.000

Model 1: Analysis of Variance for Loss, using Adjusted SS for Tests

Source
Batch
Error
Total

DF
5
23
28

Seq SS
138.304
75.349
213.653

Adj SS
138.304
75.349

Adj MS
27.661
3.276

F
8.44

P
0.000

Source
Method
Error
Total

DF
4

24
28

Seq SS
47.763

165.891
213.653

Adj SS
47.763

165.891

Adj MS
11.941
6.912

F
1.73

P
0.177

Model 2: Analysis of Variance for Loss, using Adjusted SS for Tests

Model 3: Analysis of Variance for Loss, using Adjusted SS for Tests

TABLE 19.7
AOV table for testing  

effects of blocks, 
unbalanced randomized 

block design

Source SS df MS F

Blocksadj SSBadj b 2 1 MSBadj MSBadj /MSE
Treatments SST t 2 1 — —
Error SSE n 2 t 2 b 1 1 MSE —

Total TSS n 2 1
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To obtain the sum of squares due to methods after adjusting for the effects of farm, 
we use the sum of squares for error from models 1 and 2:

SSTadj  SSE2 2 SSE1  75.349 2 26.230  49.119

This is the same value that we obtained in Example 19.1 by using the formulas. The 
F test for comparing the five method means is given by

F 
SSTadj / 1t 2 1 2

MSE1


49.119 /4
1.381

 8.89 with p-value  Pr 3F4, 19 $ 8.89 4  .0003

To obtain the sum of squares due to farm after adjusting for the effects of methods, 
we use the sum of squares for error from models 1 and 3:

SSBadj  SSE3 2 SSE1  165.891 2 26.230  139.66

The F test for comparing the six farm means is given by

F 
SSBadj / 1b 2 1 2

MSE1


139.66 /5
1.381

 20.23 with p-value  Pr 3F5, 19 $ 20.23 4 , .0001

Thus, there is a very significant difference in the farm means and in the method  
means. ■

 19.3 A Latin Square Design with Missing Data

Recall that a t 3 t Latin square design can be used to compare t treatment means 
while filtering out two additional sources of variability (rows and columns). The 
treatments are randomly assigned in such a way that each treatment appears in 
every row and in every column. In this section, we will illustrate the method for 
performing an analysis of variance in a Latin square design when one observation 
is missing. Then we will use the general method of fitting complete and reduced 
models with missing observations, described for the randomized block design in 
Section 19.2, for more complicated designs.

Let yijk be the response from the experimental unit observed in the ith row 
and jth column receiving treatment k. Suppose that the missing observation occurs 
in cell (g, h, m), the response from the experimental unit observed in the gth row 
and hth column receiving treatment m. The formula for estimating a single missing 
observation, yghm, in a t 3 t Latin square is given by

ŷghm 
t 1 yg.. 1 y.h. 2 y..m 2 1 2y...

1t 2 1 2 1t 2 2 2
where yg.. is the sum of all observations in the gth row, y.h. is the sum of all obser-
vations in the hth column, y..m is the sum of all observations receiving the mth 
treatment, y... is the sum of all n  t 2 2 1 observations, and t is the number of 
treatments in the Latin square.

The sums of squares for the analysis of variance table are obtained by replac-
ing the missing value, yghm, with its estimate, ŷghm, and then applying the formulas 
for a balanced design to the data set that now has no missing cells:

 TSS  a
t

i1
a

t

j1

1
 
yijk 2 y... 2 2

 SST  ta
t

k1

1 y..k 2 y... 2 2

estimating missing 
value
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 SSR  ta
t

i1

1 yi.. 2 y... 2 2

 SSC  ta
t

j1

1 y.j. 2 y... 2 2

 SSE  TSS 2 SST 2 SSR 2 SSC

The mean square for treatment is a biased estimator for the expected mean square 
treatment in a balanced Latin square, s2

e 1 tut. An estimator of this bias is given by

Bias  a
y... 2 yg.. 2 y.h. 2 1t 2 1 2y..m

1t 2 1 2 1t 2 2 2 b
2

The corrected treatment sum of squares is

SSTC  SST 2 bias

The other sums of squares are given in their uncorrected form. This results in 
MSTC  SSTC / 1t 2 1 2  being an unbiased estimator of s2

e 1 tut. With n  t 2 2 1, 
the number of observed data values in the Latin square design, we obtain the AOV 
table shown in Table 19.8 for the Latin square design with the one missing obser-
vation estimated by ŷghm.

EXAMPLE 19.4

A company has considered the properties (such as strength, elongation, and so on) 
of many different variations of nylon stockings in trying to select the experimental 
stockings to be the subject of extensive consumer acceptance surveys.

Five versions (A, B, C, D, and E) of the stockings have passed the preliminary 
screening and are scheduled for more extensive testing. As part of the testing, five 
samples of each type are to be examined for elongation under constant stress by 
each of five investigators on five separate days. The analyses are to be performed 
following the random assignment of a Latin square. The elongation data (in cen-
timeters) are displayed in Table 19.9.

TABLE 19.8
AOV table for a  

Latin square design with  
one missing value

Source SS df MS F

Row SSR t 2 1 MSR —
Column SSC t 2 1 MSC —
Treatment SSTC t 2 1 MSTC MSTC /MSE
Error SSE n 2 3t 1 2 MSE

Total TSS n 2 1

TABLE 19.9
Elongation data for  

Example 19.4

 Day

Investigator 1 2 3 4 5

1 B 22.1 A 18.6 C 23.0 E 24.3 D 17 .1
2 C 23.5 D 16.5 A 18.7 B 22.0 E M
3 D 17 .4 E 23.8 B 22.8 C 23.9 A 20.0
4 A 20.3 B 23.4 E 25.9 D 18.7 C 24.2
5 E 25.7 C 24.8 D 18.9 A 20.6 B 24.6
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Note that the measurement on variety E stockings for investigator 2 is missing 
and that the experiment was not rerun to obtain an observation. Use the methods 
of this section to estimate the missing value.

Solution  For our data, the treatment, row, and column totals corresponding to the 
missing observation, and the overall total are

y..5  99.70    y2..  80.70    y.5.  85.90    y...  520.80

Then with t  r  c  5, we find

ŷ255 
5 180.70 1 85.90 1 99.70 2 2 2 1520.80 2

15 2 1 2 15 2 2 2  24.1583

We will replace the missing observation with its least-squares estimate, ŷ255, and 
compute the sums of squares using the formulas for a complete 5 3 5 Latin square. 
The investigator, day, and version sample means are shown in Table 19.10.

Investigator Day Version Overall

y1..  21.020 y.1.  21.800 y..1  19.640 y...  21.79833
y2..  20.97166 y.2.  21.420 y..2  22.980
y3..  21.580 y.3.  21.860 y..3  23.880
y4..  22.500 y.4.  21.900 y..4  17.720
y5..  22.920 y.5.  22.01166 y..5  24.77166

TABLE 19.10
Sample means for  

Example 19.4

 TSS  122.1 2 21.79833 2 2 1 118.6 2 21.79833 2 2 1 c1 124.6 2 21.79833 2 2

  197.20

 SSR  55 121.020 2 21.79833 2 2 1 120.97166 2 21.79833 2 2 1 c1 122.920

 2 21.79833 2 26  15.44

 SSC  55 121.8 2 21.79833 2 2 1 121.42 2 21.79833 2 2 1 c 1  122.01166

 2 21.79833 2 26  1.01

 SST  55 119.64 2 21.79833 2 2 1 122.98 2 21.79833 2 2 1 c1 124.77166

 2 21.79833 2 26  179.31

 SSE  197.20 2 15.44 2 1.01 2 179.31  1.44

 Bias  a520.80 2 80.70 2 85.90 2 15 2 1 299.70
15 2 1 2 15 2 2 2 b

2

 13.82

Corrected treatment  SSTC  179.31 2 13.82  165.49

The analysis of variance table for this study is given in Table 19.11.

TABLE 19.11
AOV table for  
Example 19.4

Source SS df MS F

Investigator 15.44 4 3.86 —
Day 1.01 4 .25 —
Version 165.49 4 41.37 316.04
Error 1.44 11 .13

Total 197 .20 23
■■
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Having located a significant effect due to treatments, we can make pairwise 
treatment comparisons using the following formulas. The Tukey-Kramer W for 
comparing the treatment with the missing value and any other treatment is

W* 
qa 1t, v 2
!2 ÅMSEa2

t
1

1
1t 2 1 2 1t 2 2 2 b

For any other pair of treatments, the LSD is as before:

W  qa 1t, v 2Å
MSE

t

The value for MSE is taken from the analysis of variance table.

EXAMPLE 19.5

Refer to Example 19.4.

a. Test for a significant difference in the mean elongations of the five 
 versions of the stockings.

b. Determine which pairs of the five versions of the stockings are 
 significantly different.

Solution
a. We want to test the hypotheses H0: mA  mB  mC  mD  mE versus  

Ha: Not all ms are equal. The test statistic for testing for differences 
in the mean elongations is given by

 F 
SSTC / 1t 2 1 2

SSE / 1n 2 3t 1 2 2 
165.49 /4
1.44 /11

 316.04

 using the values from Table 19.11. The F test has p-value  Pr 1F4, 11 $ 
316.04 2 , .0001. Therefore, we conclude that there is significant evidence 
of a difference in mean elongations of the five versions of the stockings.

b. For comparing pairs of versions of the stockings that do not having 
 missing observations, we will use

 W  q.05 15, 11 2Å
MSE

t
 4.57Å

.131
5

 .740

 For comparing pairs of versions of the stockings that have missing 
 observations, we will use

  W* 
q.05 15, 11 2

!2 ÅMSEa2
t

1
1

1t 2 1 2 1t 2 2 2 b

   3.231Å 1.131 2 a2
5

1
1

15 2 1 2 15 2 2 2 b  .813

Using the two values of LSD, we obtain the results shown in Table 
19.12, with the mean for method 1 computed using the estimated 
missing observation.

TABLE 19.12
Paired comparison  

of five versions

Pair Compared Difference in Means W Conclusion

A & B 19.64 2 22.98  23.34 .740 Significant
A & C 19.64 2 23.88  24.24 .740 Significant
A & D 19.64 2 17.72  1.92 .740 Significant
A & E 19.64 2 24.77  25.13 .813 Significant
 (continues)
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The treatment sample means and comparisons are given in Table 19.13.

TABLE 19.12
(continued) Pair Compared Difference in Means W Conclusion

B & C 22.98 2 23.88  2.90 .740 Significant
B & D 22.98 2 17.72  5.26 .740 Significant
B & E 22.98 2 24.77  21.79 .813 Significant
C & D 23.88 2 17.72  6.16 .740 Significant
C & E 23.88 2 24.77  2.89 .813 Significant
D & E 17.72 2 24.77  27.05 .813 Significant

TABLE 19.13
Results of paired  

comparisons

Version D A B C E*

Mean 17 .72 19.64 22.98 23.88 24.77
Grouping a b c d e

*Version E is missing an observation

All pairs of versions of the stockings have significantly different mean 
elongations. ■

For Latin square designs with more than one missing observation, it is easier 
to use the method of fitting full and reduced models to adjust the treatment sum 
of squares for imbalances in the design due to missing observations. The complete 
model is given by

Model 1:  yijk  m 1 tk 1 bi 1 gj 1 eijk

where yijk is the observation in the ith row and jth column on treatment k. This 
model is fit to the observed data without estimating the missing values. We obtain 
the error sum of squares, which we will denote as SSE1. Next, we fit the reduced 
model without the treatment effect,

Model 2:  yijk  m 1 bi 1 gi 1 eijk

to the observed data without estimating the missing values. We again obtain an 
error sum of squares, which we will denote as SSE2. The difference in these two error 
sums of squares is the corrected sum of squares for treatments:

SSTC  SSE2 2 SSE1

The test for treatment effects is the F test given in Table 19.8:

F 
SSTC / 1t 2 1 2

SSE1 / 1n 2 3t 1 2 2
where n is the number of observed data values. We could obtain the corrected sums 
of squares for row and column effects in a similar fashion. By fitting a reduced 
model including the treatment effect and row effect but without the column  effect, 
we could obtain the sum of squares error for needed to obtain the adjusted  column 
effect. Similarly, we could obtain the adjusted row effect. In most cases, the test for 
significant column or row effects is not of interest.

EXAMPLE 19.6

Refer to Example 19.4.
Use the following output to compute the sums of squares for version of stock-

ings and error. Compare these values to the values computed using the estimated 
missing value formulas. The output was obtained without replacing the missing 
value with its estimate.

fitting full and 
 reduced models
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SSE  1.44 with df  11. SSTadj  SSEreduced 2 SSEcomplete  166.9375 2 
1.4432  165.4943 with df  15 2 11  4.

These are the same values that we obtained in Example 19.4 using the 
 estimated missing value formulas. ■

 19.4 Balanced Incomplete Block (BIB) Designs

The designs we have discussed thus far in this chapter were unbalanced due to 
 unforeseen circumstances caused by some accident while conducting the experiment 
or during data processing. Sometimes, however, we may be forced to design an exper-
iment in which we must sacrifice some balance in order to perform the experiment. 
This often occurs when the number of experimental units per block is fewer than the 
number of treatments under consideration. Consider the following example.

EXAMPLE 19.7

Suppose the quality control laboratory of a chemical company needs to evaluate 
five different formulations (A, B, C, D, and E) of a paint for consistency of color. 
Four samples of each formulation are evaluated on a daily basis. The laboratory has 
five technicians available for running the tests, and each technician can evaluate at 
most four samples per day. Thus, it is not possible to conduct a randomized complete 
block design because every formulation cannot be evaluated by every technician. 

Source
Model
Error
Corrected Total

DF
12
11
23

Sum of
Squares

189.9568333
1.4431667

191.4000000

Mean Square
15.8297361
0.1311970

F Value
120.66

Pr > F
<.0001

Source
INVEST
DAY
VERSION

 DF
4
4
4

Type III SS
14.3688333
0.9428333

165.4943333

Mean Square
3.5922083
0.2357083

41.3735833

F Value
27.38
1.80

315.35

Pr > F
<.0001
0.1998
<.0001

The SAS System  GLM Procedure

Number of Observations Read           25
Number of Observations Used           24

Model 1: Full Model

Dependent Variable: ELONG

Source
Model
Error
Corrected Total

DF
8
15
23

Sum of
Squares

24.4625000
166.9375000
191.4000000

Mean Square
3.0578125

11.1291667

F Value
0.27

Pr > F
0.9646

Source
INVEST
DAY

 DF
4
4

Type III SS
23.49000000
2.13400000

Mean Square
5.87250000
0.53350000

F Value
0.53
0.05

Pr > F
0.7172
0.9952

Model 2: Reduced Model

Dependent Variable: ELONG

Class
INVEST
DAY
VERSION

Values
1 2 3 4 5
1 2 3 4 5
A B C D E

Levels
5
5
5
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However, it may be possible to achieve a partial balance in the design by having each 
pair of formulations evaluated by the same number of technicians. Display the treat-
ment assignments to achieve this partial balance in the design.

Solution  The treatment assignments are displayed in Table 19.14.

TABLE 19.14
Assignment of 

formulations  
to quality control 

technicians

Technician Formulation

1 D B A E
2 E A C D
3 A C D B
4 C E B A
5 B D E C

Note that each pair of formulations is evaluated by three technicians. ■

Any randomized block design in which the number of treatments t to be 
 investigated is larger than the number of experimental units available per block is 
called an incomplete block design. Thus, whenever homogeneous blocks of k , t  
experimental units exist or can be constructed, an incomplete block design cannot 
be avoided. However, it may be possible to achieve partial balance in the design. 
One such incomplete block design is defined here.

From Definition 19.1, we can conclude that for a design to be a BIB design,

●● Every pair of treatments appears in the same block equally often.
●● Each treatment is observed r times.
●● The number of observations, n, must satisfy n  rt  kb.
●● l , r , b.
●● l  r 1k 2 1 2 / 1t 2 1 2  must be an integer.

EXAMPLE 19.8

Refer to Example 19.7. Verify that the design displayed in Table 19.14 satisfies the 
conditions for a BIB design.

Solution  We had b  5 blocks (technicians) and t  5 treatments (formulations). 
There were k  4 treatments per block; hence, k  4 , 5  t, which results in an 
incomplete block design. Now, each formulation appeared in exactly r  4 blocks. 
For the design to be a BIB design, we would need to have every pair of formula-
tions evaluated by l  r 1k 2 1 2 / 1t 2 1 2  4 14 2 1 2 / 15 2 1 2  3 technicians. Ex-
amining the assignment of technicians to formulations in Table 19.14, we find that 
each pair of formulations is evaluated by three technicians. Thus, the  design given 
in Table 19.14 is a BIB design. ■

A balanced incomplete block (BIB) design is an experimental design in which 
there are t treatments assigned to b blocks such that

 1. Each block contains k , t experimental units.
 2. Each treatment appears at most once in each block.
 3. Each block contains k treatments.
 4. Every treatment appears in exactly r blocks.
 5. Every pair of treatments occurs together in l blocks.

DEFINITION 19.1
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In many situations, we do not have complete flexibility in designing an exper-
iment because a BIB design does not exist for all possible choices of t, k, b, and r. 
For example, suppose we have t  6 treatments to be investigated and b  4 blocks, 
each containing k  3 experimental units. Thus, each treatment could be observed 
r  2 times. However, for the design to be a BIB design, l  r 1k 2 12 /1t 2 12 would 
have to be an integer. In fact, however, l  213 2 12 /16 2 12  4 /5, which is obviously 
not an integer. Thus, a BIB design cannot be constructed for this combination of 
treatments and blocks. There are procedures for constructing BIB designs and more- 
complicated incomplete block designs. The books by Cochran and Cox (1957), 
Lentner and Bishop (1993), and Kuehl (2000) contain tables of BIB designs and 
methods for constructing such designs. Several statistical software programs (SAS and 
Minitab, for example) will construct BIB designs for specified values of t, k, b, and r.

The analysis of variance for a balanced incomplete block design can be 
 performed either by using specifically developed formulas or by using the method 
of fitting complete and reduced models as discussed for unbalanced designs. We 
will present the shortcut formulas for the analysis of variance table shown in 
Table 19.15.

The model for a BIB design is given here:

yijg  m 1 ti 1 bj 1 eijg    for i  1, . . . , t;  j  1, . . . , b;  g  dij

where dij is 1 if the ith treatment appears in the jth block and is 0 otherwise. The 
terms in the model are m, the overall mean; ti, the ith treatment effect; and bj, the 
jth block effect. The eijgs are independent and normally distributed with mean 
0 and variance s2

e. From this model, we compute the sum of squares for blocks, 
unadjusted for treatments (SSB) and the total sum of squares (TSS) as we did 
previously:

TSS  a
t

i1
a

b

j1

1
 
yij 2 y.. 2 2

where n  rt  bk is the actual number of data values and

SSB  ka
b

j1

1 y.j 2 y.. 2 2

where y.j is the mean of all observations in the jth block and y.. is the overall mean. 
Then, if we define

  yi.  sum of all observations on treatment i

B(i)  sum of all measurements for blocks that contain treatment i

the sum of squares for treatments adjusted for blocks is

SSTadj 
t 2 1

nk 1k 2 1 2 ai

1kyi. 2 B1i2 2 2

TABLE 19.15
Analysis of variance  
table for a balanced 

incomplete block design

Source SS df MS F

Blocks SSB b 2 1 — —
Treatmentsadj SSTadj t 2 1 MSTadj MSTadj /MSE
Error SSE n 2 t 2 b 1 1 MSE

Total TSS n 2 1
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The sum of squares for error is found by subtraction:

SSE  TSS 2 SSB 2 SSTadj

As indicated in Table 19.15, the test statistic for testing the hypothesis of no 
difference among the treatment means is MSTadj /MSE.

EXAMPLE 19.9

A large company enlisted the help of a random sample of 12 potential consumers 
in a given geographical location to compare the physical characteristics (such as 
firmness and rebound) of eight experimental pillows and one presently marketed 
pillow. Because the company knew from previous studies that most people’s atten-
tion span allowed for them to evaluate at most three pillows at a given time, it 
decided to employ the design shown in Table 19.16.

After the pillow types were randomly assigned the letters from A to I, tables 
were prepared with the appropriate pillow types assigned to each table. Each  pillow 
was sealed in an identical white pillowcase and hence could not be distinguished 
from the others by color. The only marking on the pillowcase was a four-digit num-
ber, which provided the investigators with an identification code. With all tables in 
place, the 12 potential consumers were randomly assigned to a table to compare 
the three pillows. The consumers were to rate each pillow with a comfort score, 
based on a 1- to 100-point scale (a higher score indicates greater comfort). The 
scores for each pillow are recorded in Table 19.16 (letters identify the pillow type, 
with A being the presently marketed pillow).

TABLE 19.16
Comfort scores for  

Example 19.9

       Block   Treatment
(consumers)   (pillow)   Block Total Block Mean

          1 A 59 B 26 C 38 123 41
          2 D 85 E 92 F 69 246 82
          3 G 74 H 52 I 27 153 51
          4 A 63 D 70 G 68 201 67
          5 B 26 E 98 H 59 183 61
          6 C 31 F 60 I 35 126 42
          7 A 62 E 85 I 30 177 59
          8 B 23 F 73 G 75 171 57
          9 C 49 D 74 H 51 174 58
        10 A 52 F 76 H 43 171 57
        11 B 18 D 79 I 41 138 46
        12 C 42 E 84 G 81 207 69
       2,070 57 .5

Verify that the design used is a BIB design. Use the formulas of this section 
to perform an analysis of variance. Use a  .05 to test for a difference in mean 
comfort scores among the nine pillow types. 

Solution  We need to verify that all the conditions required for a BIB design have 
been satisfied. We note that there were nine treatments (pillows), 12 blocks (consum-
ers), and three observations per block (pillows per consumer) and that each pillow 
was rated by four consumers, with a consumer rating, at most, one pillow of each 
type. That is, t  9, b  12, k  3, and r  4, which yield n  192 142  1122 132  36.

We next compute l  r 1k 2 12 /1t 2 12  413 2 12 /19 2 12  1. That is, each 
pair of pillows was rated by exactly one consumer. We confirm this by  examining 
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Table 19.16. Thus, the design used in the study was a BIB design. For an analysis 
using the formulas given in this section, it is convenient to construct a table of 
totals and means, as shown in Table 19.17.

TABLE 19.17
Totals for the data of  

Table 19.16

Treatment yi. B(i) kyi. 2 B(i)

 A 236 672 36
 B 93 615 2336
 C 160 630 2150
 D 308 759 165
 E 359 813 264
 F 278 714 120
 G 298 732 162
 H 205 681 266
 I 133 594 2195

 Total 2,070  0

To illustrate the values in Table 19.17, let us consider the elements for treat-
ment A:

  y1.  sum of values for treatment A  59 1 63 1 62 1 52  236
B(1)  sum of block totals for blocks containing A  123 1 201 1 177 1 171
        672
kyi 2 B(i)  (3)(236) 2 672  36

To compute the sums of squares, using the values in Tables 19.16 and 19.17, we have

SSTadj 
1t 2 1 2

nk 1k 2 1 2 ai

1kyi. 2 B1i2 2 2 
19 2 1 2 1316,638 2
136 2 13 2 13 2 1 2  11,727.33

Similarly, using the block means from Table 19.16, we obtain

SSB  ka
j

1 y.j 2 y.. 2 2  35 141 2 57.5 2 2 1 c1 169 2 57.5 2 26  4,575

Using the values from Table 19.16, we obtain the total sum of squares

TSS  a
ij

1
 
yij 2 y.. 2 2  5 159 2 57.5 2 2 1 c1 181 2 57.5 2 26  16,861

and the sum of squares for error

SSE  TSS 2 SSTadj 2 SSB  16,861 2 11,727.33 2 4,575  558.67

The analysis of variance table for testing for differences in the mean comfort val-
ues among the nine types of pillows is shown in Table 19.18. Since the computed 
value of F, 41.98, exceeds the table value, 2.59, for df1  8, df2  16, and a  .05, 
we conclude that there are significant (p-value , .0001) differences in the mean 
comfort ratings among the nine types of pillows.

TABLE 19.18
AOV table for the data  

of Example 19.9

Source SS df MS F p-value

Consumer 4,575 11 415.91 — —
Treatment 11,727 .33   8 1,465.92 41.98 .0001
Error 558.67 16 34.92 — —

Total 16,861 35 — — —
■
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Following the observation of a significant F test concerning differences 
among treatment means, we would then make comparisons among treatment 
means. To do this, we make use of the  following notation: m̂i, an estimate of the 
mean for treatment i, given by

m̂i  y.. 1
kyi. 2 B1i2

tl

where y.. is the overall sample mean. An estimate of the difference between two 
treatment means, i and i9, is then

m̂i 2 m̂ir. 
3kyi. 2 B1i2 4 2 3kyir. 2 B1ir2 4

tl

The Tukey-Kramer W for comparing any pair of treatment means is 

W 
qa 1t, v 2
!2 Å

2kMSE
tl

EXAMPLE 19.10

Compute the estimated treatment means and determine all pairwise differences, 
using a  .05, for the data in Example 19.9.

Solution  For the BIB design of Example 19.9, y..  57.5, t  9, and l  1. Thus, 
using the kyi. 2 B(i) column in Table 19.17, we compute the estimated treatment 
means shown in Table 19.19 with

m̂i  y.. 1
kyi. 2 B1i2

tl
 57.5 1

kyi. 2 B1i2
19 2 11 2

comparison among 
treatment means

TABLE 19.19
Estimated treatment 

means

Treatment yi.  kyi. 2 B1i2  m̂i

        A 59.00 36 61.50
        B 23.25 2336 20.17
        C 40.00 2150 40.83
        D 77 .00 165 75.83
        E 89.75 264 86.83
        F 69.50 120 70.83
        G 74.50 162 75.50
        H 51.25 266 50.17
         I 33.25 2195 35.83

Note that when comparing the raw treatment means, yi., to the least-squares 
estimated means, m̂i, some of the raw means are increased, whereas some are de-
creased  depending on the relative sizes of the block totals in which the treatment 
appears.

Using MSE  34.92, based on dfError  16, we obtain

W 
q.05 19, 16 2

!2 Å
2kMSE

tl
 3.56  Å

2 13 2 134.92 2
19 2 11 2  17.18

The nine least-squares estimated treatment means are arranged in ascending 
order, with a summary of the significant results. Those treatments with a common 
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letter are not significantly different from each other, using the value of W to 
declare pairs significantly different.

 B I C H A F G D E

20.17 35.83 40.83 50.17 61.50 70.83 75.50 75.83 86.83
 a ab b bc cd de de de e

Alternatively, the computation of the adjusted sum of squares for treatments 
and the corresponding F test for testing differences in the treatment means can 
be  accomplished by fitting two models. First, fit a full model with both block and 
treatment effects to obtain SSE1. Next, fit a reduced model without treatments 
 effects to obtain SSE2. The adjusted sum of squares for treatments, SSTAdj, is then 
obtained by

SSTAdj  SSE2 2 SSE1

with dfTrt  dfE2 2 dfE1. The F test for treatment effects is then F  MSTAdj /MSE1.

EXAMPLE 19.11

Refer to Example 19.9. Use the following output to compute the sums of squares 
for treatments and error. Compare these values to the values computed using the 
estimated missing value formulas in Example 19.9.

■

Source
Model
Error
Corrected Total

DF
19
16
35

Sum of
Squares

16302.33333
558.66667

16861.00000

Mean Square
858.01754
34.91667

F Value
24.57

Pr > F
<.0001

Source
Consumer
Pillow

 DF
11
8

Type III SS
454.33333

11727.33333

Mean Square
41.30303

1465.91667

F Value
1.18

41.98

Pr > F
0.3694
<.0001

SAS Output from The GLM Procedure

Number of Observations Read        108
Number of Observations Used         36

Model 1: Full Model

Dependent Variable: Y=Rating

Source
Model
Error
Corrected Total

DF
11
24
35

Sum of
Squares

4575.00000
12286.00000
16861.00000

Mean Square
415.90909
511.91667

F Value
0.81

Pr > F
0.6284

Source
Consumer

 DF
11

Type III SS
4575.000000

Mean Square
415.909091

F Value
0.81

Pr > F
0.6284

Model 2: Reduced Model:

Dependent Variable: Y=Ratings

Class
C
P

Values
C1 C10 C11 C12 C2 C3 C4 C5 C6 C7 C8 C9
P1 P2 P3 P4 P5 P6 P7 P8 P9

Levels
12
9
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From the full model, we obtain SSE  558.67 with df  16.
Using the full model and the reduced model, we obtain the adjusted sum of 

squares for the treatment (pillow):

SSTadj  SSEreduced 2 SSEfull  12,286 2 558.67  11,727.33

with df  24 2 16  8.
Using the reduced model, we obtain the unadjusted sum of squares for blocks 

(consumers):

SSB  4,575

These are the same values that we obtained in Example 19.9 using the estimated 
missing value formulas. ■

 19.5 RESEARCH STuDy: Evaluation of the Consistency  
of Property Assessors

As was described in Section 19.1, there were a large number of complaints con-
cerning the assessed valuation of residential homes by residents in a county located 
in a southwestern state. A group of property owners informed the county man-
ager that there was wide variation in residential property valuations depending on 
which county property assessor determined the property’s value. There are numer-
ous assessors who determine the value of residential property for the purposes of 
computing property taxes due from each property owner in the county. The county 
manager designed a study to determine whether the assessors differ systematically 
in their determinations of property values.

The objective of the study was to determine whether the county assessors 
provided a consistent valuation of residential property values. The factors in the 
study were the blocking factor, 16 residential properties, and the treatment fac-
tor, 16 county property assessors. The treatment effects are random because the 
assessors were randomly selected from the population of county assessors and 
the county manager was interested in the results not only for the 16 assessors in the 
study but also for all county assessors.

The assessed valuations provided by the 16 assessors (in thousands of dollars) 
are presented in Table 19.20.

The design was an incomplete block design because each treatment (assessor) 
was observed in only 6 of the 16 blocks (properties). We will next verify that the 
 design was a BIB design.

First, we identify the parameters in a BIB:

t  16    r  6    b  16    k  6

This would require that n  1162 162  96 observations and l  6 16 2 12 /116 2 12  2. 
From this, we would conclude that for the study to be a BIB design, it is necessary 
for every pair of assessors to valuate two of the same properties, each assessor must 
valuate 6 of the 16 properties, and we have a total of 96 valuations. An examination 
of the data reveals that all these conditions have been satisfied. We next fit the 
models necessary for an evaluation of the data. The model for relating the variation 
in valuations to assessor effects, property effects, and all other sources is given by

Full model: yijg  m 1 ti 1 bj 1 eijg
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where m is the overall mean valuation across all assessors, ti is the random effect 
on the valuation due to assessor i, bj is the random effect on the valuation due to 
property j, and eijg represents the random effect of all other sources of variation 
on the valuation. Next, we fit the reduced models. First is the model without the 
assessor effect:

Reduced model I: yijg  m 1 bj 1 eijg

From this model, we obtain the adjusted sum of squares for assessors. Next, we fit 
the model without the property effect:

Reduced model II: yijg  m 1 ti 1 eijg

From this model, we obtain the adjusted sum of squares for properties.
The computer output given here provides us with the sums of squares for 

error from the three fitted models, SSEfull, SSEred I, and SSEred II.

TABLE 19.20  Property assessments (in thousands of dollars) by 16 county assessors

 Assessor

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1    125 120     112  115 118  110
2    126  118  110  128 125   125
3 110        125 118 138 110    126
4  131 150 157   125    150 156
5 150 154 152  125   157  139
6  138   118 110   120  124  129
7 134    144 146 130     130  145
8 157 159  150  134         120 158
9   156  155      150   138 124 156

10   156   128  155    153 155   122
11 155  158 157     142    123 155
12  118     110   113   118 125  111
13   152   111 150  112 128     130
14 115      112 110   135  130  128
15  115      110 145   135  124 120
16    157 120  150 135 120       132

General Linear Models: FULL MODEL

Dependent Variable: VALUATION

F>rPeulaVFserauqSfomuSFDecruoS
1000.015.49129190.6796103ledoM

4114142.161856rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
1920.000.29129190.957351RSA
1000.094.52710088.3430151P

General Linear Models: REDUCED MODEL WITHOUT TREATMENT VARIABLE (ASSESSOR)

Dependent Variable: VAL

F>rPeulaVFserauqSfomuSFDecruoS
1000.019.50000000.7123151ledoM

3333333.0291108rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
1000.019.50000000.7123151P

General Linear Models: REDUCED MODEL WITHOUT BLOCK VARIABLE (PROPERTY)

F>rPeulaVFserauqSfomuSFDecruoS
9330.019.167409112.236651ledoM

75824121.5058108rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
9330.019.167409112.236651RSA
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The test for statistically significant differences in the mean valuations due to 
assessor differences is obtained as follows:

SSTadj  SSEred I 2 SSEfull  11,920.33 2 8,161.24  3,759.09

with dftrt  dfEred I 2 dfEfull  80 2 65  15. We can then test whether there is a 
significant variation in the valuations due to differences in the assessors. Since 
 assessor is a random source of variation, we want to test

H0: s2
t  0  versus  Ha: s2

t 2 0

We compute the value of the test statistic

F 
SSTadj /dftrt

SSEfull /dfEfull


3,759.09 /15
8,161.24 /65

 2.00

with p-value  .0291. We can compare the F-value to the tabled .05 percentile 
from an F distribution with df1  15 and df2  65, 1.82 and conclude that there 
is  significant (p-value  .0291) variation due to the differences in the assessors. 
 Similarly, we obtain the adjusted sum of squares due to the differences in the 
properties.

SSBadj  SSEred II 2 SSEfull  18,505.12 2 8,161.24  10,343.88

with dfblock  dfEred II 2 dfEfull  80 2 65  15. We can summarize our findings in 
an AOV table shown in Table 19.21.

General Linear Models: FULL MODEL

Dependent Variable: VALUATION

F>rPeulaVFserauqSfomuSFDecruoS
1000.015.49129190.6796103ledoM

4114142.161856rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
1920.000.29129190.957351RSA
1000.094.52710088.3430151P

General Linear Models: REDUCED MODEL WITHOUT TREATMENT VARIABLE (ASSESSOR)

Dependent Variable: VAL

F>rPeulaVFserauqSfomuSFDecruoS
1000.019.50000000.7123151ledoM

3333333.0291108rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
1000.019.50000000.7123151P

General Linear Models: REDUCED MODEL WITHOUT BLOCK VARIABLE (PROPERTY)

F>rPeulaVFserauqSfomuSFDecruoS
9330.019.167409112.236651ledoM

75824121.5058108rorrE
Corrected Total 95 25137.3333333

F>rPeulaVFSSIIIepyTFDecruoS
9330.019.167409112.236651RSA

TABLE 19.21
AOV table for research 

study

Source df SS EMS F p-value

Property 15 10,343.88 s2
e 1 5.33s2

b — —
Assessor 15   3,759.09 s2

e 1 5.33s2
t 2.00 .0291

Error 65   8,161.24 s2
e — —
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Note that the multipliers for the variances from property and assessor effects 
are not 16, as they would be in a randomized complete design. Because of the 
incompleteness of the design, we have the following values for the expected mean 
squares:

Expected mean square for blocks:  EMSblock  s2
e 1

bk 2 t
b 2 1

 s2
b

and

Expected mean square for treatment:  EMStrt  s2
e 1

lt
k

 s2
t

From Table 19.21, we can obtain the following estimates of the variance 
components:

ŝ2
e  8,161.24 /65  125.56

ŝ2
b  110,343.88 /15 2 125.56 2 /5.33  105.82

ŝ2
t  13,759.09 /15 2 125.56 2 /5.33  23.46

Thus, we have the proportional allocations of the total variability in the valuations, 
as shown in Table 19.22.

Although we found that there was significant (p-value  .0291) variability due 
to the assessors, less than 10% of the variability in the assessed valuations of the prop-
erties was due to assessors. Thus, we have determined that the assessors are reasonably 
consistent in their valuations of midpriced residental properties in the county.

Reporting Conclusions  The report from the county staff to the county manager 
should include the following items.

 1. Statement of objectives of study
2. Description of study design, how the properties used in the study 

were selected, how the assessors were selected, and the manner in 
which the valuations were conducted

3. Discussion of the relevance of the conclusions of this study to valua-
tions throughout the county

4. Numerical and graphical representations of the data
5. Description of all inference methodologies:

●● Statement of research hypotheses
●● Model that represents experimental conditions
●● Verification of model conditions
●● AOV table, including p-values

6. Discussion of results and conclusions
7. Interpretation of findings relative to residential complaints about the 

biases in property valuations
8. Listing of data

TABLE 19.22
Allocation of total  
variance to sources

Source of Variation Estimated Variance Proportion of Total Variation (%)

Properties 105.82 41.5
Assessors 23.46 9.2
Exp. Error 125.56 49.3

Total 254.84 100
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 19.6 Summary and Key Formulas

In this chapter, we discussed the analysis of variance for some unbalanced designs, 
beginning with a discussion of the analysis for a randomized block design with one 
missing observation. Two possible analyses were proposed. The first required that 
we estimate the missing value and then proceed with the usual formulas developed 
in Chapter 15. Although estimating a single missing value is quite easy to do, the 
procedure becomes more difficult when there is more than one missing value. The 
second procedure, that of fitting complete and reduced models to obtain adjusted 
sums of squares, can be used for one or more missing observations. 

With the Latin square design, we again showed how to estimate a single miss-
ing observation and proceed with the usual analysis. However, as with the random-
ized block design, the method of analysis by fitting complete and reduced models 
is more appropriate when there is more than one missing value.

Finally, we considered another class of unbalanced designs, incomplete 
block designs. The particular designs that we discussed were incomplete randomized 
block designs in which not all treatments appear in each block. These incomplete block 
 designs retain a certain amount of balance because all pairs of treatments appear 
 together in a block the same number of times. We illustrated the analysis for balanced 
incomplete block designs using appropriate formulas. The method of analysis for BIB 
designs can be accomplished by fitting full and reduced models as was done in the 
case of missing values in the randomized block design and Latin square design.

Key Formulas
1. Missing observation, ykh, in a randomized block design

a.  ŷkh 
tyk. 1 by.h 2 y...

1t 2 1 2 1b 2 1 2
b. Bias correction for sum of squares for treatment

 
 Bias 

1 y.h 2 1t 2 1 2 ŷkh 2 2

t 1t 2 1 2
 The corrected treatment sum of squares is then SSTC  SST 2 bias.

2. Tukey-Kramer W for a randomized block design

a. For any pair of treatments with no missing value

  W  qa 1t, v 2Å
MSE

b

b. Between the treatment with a missing value and any other treatment

  W* 
qa 1t, v 2
!2 ÅMSEa2

b
1

t
b 1b 2 1 2 1t 2 1 2 b

3. Equalities for randomized block design

  SSB  TSS 2 SSTadj 2 SSE

  SST  TSS 2 SSBadj 2 SSE

4. Missing observation, yghm, in a Latin square design

a.  ŷghm 
t 1 yg.. 1 y.h. 1 y..m 2 2 2y...

1t 2 1 2 1t 2 2 2



b. Bias correction for sum of squares for treatment

  Bias  a
y... 2 yg.. 2 y.h. 2 1t 2 1 2y..m

1t 2 1 2 1t 2 2 2 b
2

 The corrected treatment sum of squares is then SSTC  SST 2 bias.

5. Tukey-Kramer W for a Latin square design
a. For any pair of treatments with no missing value

  W  qa 1t, v 2Å
MSE

t
b. Between the treatment with the missing value and any other treatment

  W* 
qa 1t, v 2
!2 ÅMSEa2

t
1

1
1t 2 1 2 1t 2 2 2 b

6. Sums of squares for an incomplete block design

   SSTadj 
t 2 1

n 1k 2 1k 2 1 2 ai

1kyi. 2 B1i2 2 2

   SSE  TSS 2 SSB 2 SSTadj

7. Pairwise comparisons of treatment means for an incomplete block design

   m̂i 2 m̂ir 
3kyi. 2 B1i2 4 2 3kyir. 2 B1ir2 4

tl

   W 
qa 1t, v 2
!2 Å

2kMSE
tl

8. In a balanced incomplete block design
a. n  rt  kb.
b. l , r , b.
c. l  r 1k 2 1 2 / 1t 2 1 2  must be an integer.

 19.7 Exercises

 19.2  A Randomized Block Design with One or More Missing  
Observations

 Ag. 19.1  In Exercise 15.1, we described an experiment in which a horticulturist was investigating the 
 effectiveness of five methods for the irrigation of blueberry shrubs. The methods are surface, trickle, 
center pivot, lateral move, and subirrigation. There are 10 blueberry farms available for the study rep-
resenting a wide variety of types of soils, terrains, and wind gradients. The horticulturist wants to use 
each of the five methods of irrigation on all 10 farms to moderate the effect of the many  extraneous 
sources of variation that may impact the blueberry yields. Each farm is divided into five plots, and the 
response variable will be the weight of the harvested fruit from each plot of blueberry shrubs. During 
the study, a problem occurred on the plot irrigated using the surface method on farm 1, and no yield 
was obtained. The yields in pounds of blueberries over a growing season are given here.

 Method of Irrigation

Farm Surface Trickle Center Pivot Lateral Subirrigation

  1 * 248 391 423 350
  2 636 382 434 461 370
  3 591 348 492 504 460
  4 603 366 468 580 452
  5 649 258 457 449 343
  6 512 321 406 464 340

(continues)
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 Method of Irrigation

Farm Surface Trickle Center Pivot Lateral Subirrigation

  7 588 423 466 550 327
  8 689 406 502 526 378
  9 690 400 559 469 419
 10 608 380 469 550 458

 a. Estimate the yield value for the missing plot.
 b. Analyze the data by replacing the missing value with the estimate obtained in part 

(a), and then perform an analysis of variance using the formulas for a randomized 
block design with no missing observations.

 c. Is there a significant difference in the mean yields for the different methods of 
 irrigation? Use a  0.05.

  19.2  Refer to Exercise 19.1. Use the least significant difference criterion to identify which pairs 
of methods of irrigation have significantly different mean yields.

  19.3  Refer to Exercise 19.1. Obtain the sums of squares for an AOV table by fitting complete and 
 reduced models using a statistical software program. Compare your results with those in  Exercise 19.1.

 Edu. 19.4  The business office of a large university is in the process of selecting amongst the Postal 
Service and three private couriers as its sole delivery method for the university’s responses to 
 applications for admission. After consulting with the university’s statistics department, it was 
 decided that over the next month the following study would be conducted. Ten cities with at least 
100 applicants would be selected for inclusion in the study. To each of these cities 100 standard 
packages would be sent by each of the four methods of delivery. The percentage of packages not 
delivered within 5 days was recorded for each method of delivery, yielding the following data. For 
four of the cities, at least one of the methods of delivery did not provide service, and, hence, there 
are missing data in these cells.

 City

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

  Ml * 90.2 82.9 89.4 98.0 91.5 97 .2 83.4 88.6 *
  M2 87 .1 99.5 92.0 91.4 99.2 91.5 97 .6 88.7 92.7 97 .6
  M3 91.6 99.7 * 99.2 99.3 98.1 98.2 95.4 93.7 98.3
   M4 95.5 99.9 93.8 98.9 99.4 98.6 * 94.1 93.1 99.3

 a. Obtain the sums of squares for an AOV table by fitting complete and reduced 
models using a statistical software program.

 b. Is there significant evidence of a difference in the four methods of delivery based 
on the percentage of packages delivered within 5 days?

  19.5  Refer to Exercise 19.4. Use the Tukey-Kramer W procedure to identify which pairs of 
methods of delivery have significantly different mean percentages.

 19.3 A Latin Square Design with Missing Data

 Env. 19.6  Carbon monoxide (CO) emissions from automobiles can be influenced by the formula-
tion of the gasoline that is used. Oxygenated fuels are used in northern states during the winter 
to  decrease CO emissions. There are eight gasoline blends that are of interest to the researchers 
(B1—B8). Each of the eight blends will be placed in a car that will then be driven over a 50-mile 
route during which the total amount of CO emissions will be measured. There are large car-to-car 
differences in CO emissions, and there are large route-to-route differences in city driving (stop-
and-go driving on city streets versus a freeway route). The researchers have eight cars and eight 
routes available to study the eight blends, with every blend observed in all eight cars, which will 
be driven over all eight routes. The following table contains the amount of CO emissions (grams) 
per mile by each vehicle, route, and blend. During the study, the device used to measure CO 

(continued)



emissions failed to function properly when vehicle V7 was driven over route R3 using blend B1. 
The research goal is to determine how the different blends impact the mean CO readings.

 Route

Vehicle R1 R2 R3 R4 R5 R6 R7 R8

  V1 B1 12.0 B2 11.2 B3 11.8 B4 10.0 B5 20.1 B6 18.7 B7 21.7 B8 30.2
  V2 B2 10.1 B3 12.2 B4 12.1 B5 12.4 B6 18.4 B7 18.6 B8 22.3 B1 15.0
  V3 B3 21.4 B4 24.2 B5 26.7 B6 23.3 B7 32.5 B8 34.1 B1 21.4 B2 27 .7
  V4 B4 15.4 B5 20.3 B6 17 .5 B7 17 .6 B8 25.3 B1 12.2 B2 12.4 B3 18.9
  V5 B5 25.0 B6 24.4 B7 24.0 B8 26.5 B1 20.6 B2 19.6 B3 19.6 B4 27 .3
  V6 B6 18.9 B7 20.9 B8 25.2 B1     8.3 B2 15.6 B3 15.1 B4 17 .4 B5 25.9
  V7 B7 16.2 B8 18.2 B1 *** B2    4.4 B3 10.2 B4   9.9 B5 12.7 B6 17 .9
  V8 B8 29.5 B1 21.3 B2 18.3 B3 16.1 B4 26.0 B5 26.4 B6 26.0 B7  35.0

 a. Estimate the amount of CO emissions for vehicle V7 while driving over route R3 
using blend B1.

 b. Analyze the data by replacing the missing value with the estimate obtained in 
part (a), and then perform an analysis of variance using the formulas for a Latin 
square design with no missing observations.

 c. Is there a significant difference in the mean CO emissions for the different 
blends? Use a  .05.

  19.7  Refer to Exercise 19.6. Use the Tukey-Kramer W to identify which pairs of blends have 
significantly different mean CO emissions.

  19.8  Refer to Exercise 19.6. Obtain the sums of squares for an AOV table by fitting complete 
and reduced models using a statistical software program. Compare your results with those in 
Exercise 19.7.

  19.9  Refer to Exercise 19.6. Suppose upon examining the data logs from the study the researchers 
determined that the CO emissions monitoring device was probably not functioning properly for the 
following two data values: vehicle V7 on route R4 using blend B2, y742, and vehicle V6 on route 
R4 using blend B1, y641. Reanalyze the data after deleting these two values. Do your conclusions 
about the differences in the eight blends change?

  19.10  Refer to Exercise 19.9.
 a. Identify vehicle and route as fixed or random effects.
 b. How would you test for a significant effect due to vehicle?
 c. How would you test for a significant effect due to route?

 Sci. 19.11  A horticulturist is interested in examining the yield potential of three new varieties of asparagus. 
She designed a study to evaluate the three new varieties relative to the standard variety. There 
were 16 plots available on a large test field for the study, but the plots were not homogeneous 
in that there was a distinct sloping from north to south throughout the field. Also, a soil analysis 
 revealed a discernible nitrogen gradient, which ran from west to east across the field. Therefore, 
the horticulturists decided to assign the varieties V1, V2, V3, and V4, with V1 being the standard 
variety, to the plots in a Latin square arrangement. The values for marketable yield per plot (in kg/
ha) are given in the following table. Note that there is a missing yield for variety V4 in row 4 and 
column 1. This was due to a problem that occurred during one of the harvesting  periods.

 Sloping

Nitrogen S1 S2 S3 S4

     N1 V3 1,045.38 V1    807 .69 V2    967 .36 V4 1,084.23
     N2 V1    821.40 V2     992.56 V4    992.47 V3 1,029.53
     N3 V2 1,004.02 V4 1,091.23 V3 1,062.01 V1    836.53
     N4 V4             * V3 1,090.97 V1    893.32 V2 1,053.97
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 a. Estimate the amount of marketable yield for variety V4 planted in a plot with 
 nitrogen level N4 and slope S1.

 b. Analyze the data by replacing the missing value with the estimate obtained in part 
(a), and then perform an analysis of variance using the formulas for a Latin square 
design with no missing observations.

 c. Is there a significant difference in the mean marketable yields for the four 
 varieties? Use a  0.05.

  19.12  Refer to Exercise 19.11. Use the Tukey-Kramer W to identify which pairs of varieties 
have significantly different mean marketable yields.

  19.13  Refer to Exercise 19.11. Obtain the sums of squares for an AOV table by fitting complete 
and reduced models using a statistical software program. Compare your results with those in 
 Exercise 19.12.

  19.14  Refer to Exercise 19.11.
 a. Identify nitrogen level and slope level as either fixed or random effects.
 b. How would you test for a significant difference in the mean marketable yields due 

to differences in nitrogen levels?
 c. How would you test for a significant difference in the mean marketable yields due 

to differences in the amount of slope in the plots?

 19.4 Balanced Incomplete Block (BIB) Designs

  19.15  An incomplete block design consisted of five blocks (B1, B2, B3, B4, and B5) and five 
treatments (T1, T2, T3, T4, and T5). The treatments were randomly assigned to the blocks in 
the  following manner.

Block Treatments

   B1 T5 T1 T4 T3
   B2 T2 T5 T4 T3
   B3 T2 T1 T4 T3
   B4 T2 T5 T1 T4
   B5 T2 T5 T1 T3

 a. What are the values of the design parameters: t, k, b, and r?
 b. What is the value of l for this design?
 c. Is the incomplete block design balanced? Justify your answer.

  19.16  An incomplete block design consisted of six blocks (B1, B2, B3, B4, B5, and B6) and six 
treatments (T1, T2, T3, T4, T5, and T6). The treatments were randomly assigned to the blocks in 
the following manner.

Block Treatments

   B1 T5 T6 T1
   B2 T3 T4 T1
   B3 T5 T2 T4
   B4 T2 T6 T1
   B5 T3 T4 T6
   B6 T5 T2 T3

 a.  What are the values of the design parameters: t, k, b, and r?
 b. What is the value of l for this design?
 c. Is the incomplete block design balanced? Justify your answer.



19.7 exercises    1079

 Sci. 19.17  A study of the difference in the effects of six newly created diets on the weight gain of 
young rabbits is proposed. Because weight varies considerably amongst young rabbits, it is pro-
posed to block the experiment based on litters. There are 10 litters of rabbits available for the 
study, but they are of varying sizes. The minimum litter size is three. Therefore, only three of the 
six diets can be observed in any particular litter. A balanced incomplete block design was proposed 
for this situation. The researcher conducted the study and obtained the following weight gains.

 Diet

Litter 1 2 3 4 5 6 Litter Total Litter Mean

     1  32.6 35.2   42.2 110.0 36.67
     2 40.1 38.1 40.9    119.1 40.43
     3   34.6 37 .5  34.3 106.4 39.70
     4 44.9  43.9  40.8  129.6 35.47
     5   40.9 37 .3 32.0  110.2 43.20
     6  37 .3   40.5 42.8 120.6 36.73
     7 45.2 40.6  37 .9   123.7 40.20
     8 44.0    38.5 51.9 134.4 41.23
     9  30.6  27 .5 20.6  78.7 44.80
   10 37 .3   42.3  41.7 121.3 26.23

Diet total 211.5 179.2 195.5 182.5 172.4 212.9 1,154.0 
Diet mean 42.3 35.84 39.1 36.5 34.48 42.58  38.47

Do the data provide significant evidence of a difference in mean weight gains amongst the 
six diets? Use the formulas given in this Section 19.4 to obtain your answers.

 Sci. 19.18  Refer to Exercise 19.17. Use the Tukey-Kramer W to determine which pairs of diets have 
significantly different mean weight gains.

 Sci. 19.19  Refer to Exercise 19.17. Analyze the data using a computer program. Is the analysis of 
variance table from the output of the computer program the same as your results in Exercise 19.18?

 Sci. 19.20  Refer to Exercise 19.17. Test for a significant effect due to litter.

Supplementary Exercises
 Env. 19.21  A petroleum company was interested in comparing the miles per gallon achieved by four 

different gasoline blends (I, II, III, and IV). Because there can be considerable variability due to 
differences in drivers and car models, these two extraneous sources of variability were included 
as blocking variables in the following Latin square design. Each driver drove each car model over 
a standard course with the assigned gasoline blend. However, when driver 3 was  operating car 
model 4 using blend II gasoline, there was a malfunction of the car’s carburator that invalidated 
the data. This malfunction was not discovered until well after the completion of the study, and, 
hence, the data could not be replaced. The miles per gallon data are given here.

 Car Model

Driver 1 2 3 4

 1 IV  15.5 II  33.9 III  13.2 I  29.1
 2 II  16.3 III  26.6 I  19.4 IV  22.8
 3 III  10.8 I  31.1 IV  17.1 II    —
 4 I  14.7 IV  34.0 II  19.7 III  21.6

 a. Run an analysis of variance by estimating the missing value. Use a  .05.
 b. Make treatment comparisons by using the Tukey-Kramer W, with a  .05.
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 Env. 19.22  Use the method of fitting complete and reduced models to obtain an analysis of variance 
for the data in Exercise 19.21.

 Med. 19.23  A physician was interested in comparing the effects of six different antihistamines in 
persons extremely sensitive to antihistamine injections. To do this, a random sample of 10 allergy 
patients was selected from the physician’s private practice, with treatments (antihistamines) 
assigned to each patient according to the experimental design shown in the following table. Each 
person then received injections of the assigned antihistamines in different sections of the right 
arm. The area of redness surrounding the point of injection was measured after a fixed period of 
time. The data are shown in the table.

Person Treatments

     1 B 25 A 41 F 40

     2 E 37 B 46 A 42

     3 C 45 D 33 B 37

     4 E 34 D 35 A 46

     5 B 31 F 42 D 34

     6 C 56 E 36 F 65

     7 D 33 A 42 C 67

     8 F 49 D 37 E 30

     9 C 59 A 40 F 55

   10 B 36 C 57 E 34

 a. Identify the design.
 b. Identify the characteristics of the design.
 c. Run an analysis of variance. Use a  .05.

 Med. 19.24  Refer to Exercise 19.23. Use the Tukey-Kramer W for determining treatment differences, 
with a  .05.

 Psy. 19.25  The marketing research group of a corporation examined the public response to the 
introduction of a new TV game module by comparing weekly sales volumes (in $ thousand) for 
three different store chains in each of four geographic locations. 

 Chain

Geographic Area 1 2 3

     N W1 35 17 7
    W2 30 22 12
     S W1 42 30 22
    W2 48 28 19
     E W1 35 35 15
    W2 38 40 20
      W W1 22 43 28
    W2 26 48 23

 a. Write an appropriate model (including an effect for weeks) and the sources of 
variability in an analysis of variance table.

 b. How would your model change if we analyze the total 2-week sales data?
 c. Run an analysis of variance on the 2-week sales data using formulas from 

Chapter 15. Use a  .05.

 Psy. 19.26  Refer to Exercise 19.25. Use the Tukey-Kramer W procedure to compare the different 
geographic areas by chain means. Use a  .05.



 Psy. 19.27  Refer to Exercise 19.26. Suppose that the week 1 data were not available in the north 
and east for chain 1, due to logistics problems that slowed the introduction of the product by a 
week.

 a. Write an appropriate model.
 b. Suggest a method for analyzing the data using available software.
 c. Write model(s) for the procedure described in part (b).

 H.R. 19.28  A foreign automobile manufacturer is spending hundreds of millions of dollars to con-
struct a large manufacturing plant (about 70 acres under one roof) here in the United States. 
One of its objectives is to produce cars of high quality in the United States using U.S. workers. 
One part of the massive orientation program for new employees is to send about 20% of them to 
the home country for additional training. One measure of the worth of this additional training is 
whether the product quality is better on assembly lines where 20% of the employees have had the 
homeland orientation and have been able to share it with their fellow employees. Data from six 
assembly lines (three with the additional orientation) are shown here. To measure defects, two 
different inspectors examined each of two cars chosen at random from each of the assembly lines. 
Use these data to answer the following questions.

 Additional Training No Additional Training

 Inspector  Inspector
Assembly  Assembly  
  Line 1       2 Line 1       2

   1 6 6 4 8 7
       3 4  5 5
   2 4 3 5 10 9
       2 2  4 4
   3 2 3 6 15 13
       1 1  7 6

 a. Suggest an appropriate dependent variable.
 b. Write a model for this experimental situation, and identify all terms.
 c. Fill out the sources and degrees of freedom for an AOV table.

  19.29  Refer to the conditions of Exercise 19.28.
 a. Suggest a method to analyze these data.
 b. Does the training produce fewer defects?
 c. Can you suggest any plots that might be helpful in interpreting the data?

 H.R. 19.30  Refer to Exercise 19.28. Suppose that inspector 2 was unable to evaluate the second car 
from assembly line 4 and that inspector 1 missed car 1 from assembly line 3.

 a. Does the model change? 
 b. Suggest a method for analyzing the data.

 Bus. 19.31  The state real estate commission is mandated to provide an examination that ensures a 
person passing the exam will have a minimum level of competence. This provides protection for 
the members of the public in their dealing with real estate firms. The state regulatory agency is 
responsible for establishing the acceptable level of safe practice and for determining whether an 
individual meets that standard. The real estate board has received several complaints about the 
grading of the essay questions on the exams. The board’s staff designs a study to evaluate their 
current testing procedure by evaluating the differences in the grading of the essay questions on 
the real estate exam. The study included 25 real estate exam graders and a random sample of 30 
exams taken during the past year. Because the grading of the exams is very time consuming, each 
grader was assigned 6 exams to score, with the scores given in the following table. The number in 
parenthesis is the identifer for the grader.
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Exam Score Exam Score

     1 70(1) 65(8) 61(15) 66(17) 66(24) 16 52(1) 54(6) 55(11) 62(16) 54(21)
     2 84(2) 82(9) 86(11) 85(18) 86(25) 17 56(2) 51(7) 51(12) 52(17) 57(22)
     3 72(3) 85(10) 77(12) 82(19) 79(21) 18 55(3) 60(8) 61(13) 59(18) 60(23)
     4 85(4) 75(6) 78(13) 82(20) 83(22) 19 88(4) 76(9) 74(14) 77(19) 77(24)
     5 58(5) 64(7) 58(14) 57(16) 58(23) 20 65(5) 68(10) 77(15) 72(20) 74(25)
     6 66(1) 71(7) 73(13) 70(19) 70(25) 21 79(1) 77(10) 79(14) 77(18) 77(22)
     7 73(2) 67(8) 63(14) 70(20) 66(21) 22 70(2) 66(6) 66(15) 63(19) 62(23)
     8 58(3) 70(9) 69(15) 61(16) 71(22) 23 48(3) 49(7) 50(11) 51(20) 48(24)
     9 95(4) 84(10) 88(11) 85(17) 87(23) 24 75(4) 64(8) 65(12) 75(16) 68(25)
   10 47(5) 47(6) 51(12) 49(18) 56(24) 25 79(5) 77(9) 83(13) 81(17) 79(21)
   11 60(1) 59(2) 51(3) 64(4) 53(5) 26 61(1) 67(9) 65(12) 69(20) 68(23)
   12 64(6) 69(7) 63(8) 63(9) 71(10) 27 78(2) 75(10) 72(13) 76(16) 75(24)
   13 84(11) 85(12) 86(13) 85(14) 83(15) 28 67(3) 72(6) 76(14) 72(17) 75(25)
   14 72(16) 76(17) 77(18) 74(19) 77(20) 29 84(4) 81(7) 77(15) 76(18) 79(21)
   15 65(21) 73(22) 70(23) 71(24) 70(25) 30 81(5) 84(8) 81(11) 85(19) 84(22)

 a. Describe by name the type of design used. Verify that the structural conditions of 
your selected design are satisfied in this study.

 b. Is there a difference in the average scores of the graders? Justify your answer at 
the a  .05 level.

 c. Was it necessary to include the exam factor in the design and subsequent analysis 
of the data?

 d. Using the residuals, do there appear to be any violations in the conditions needed 
to run tests of hypotheses in the analysis of variances?

 e. Do you think that the board should be concerned with the differences in the 
 graders’ evaluations of the exams if a difference of four units in their scores is 
deemed to be an important difference?

 Chem. 19.32  Functionalized styrenes are extremely useful building blocks for organic synthesis and 
for functional polymers. One of the most general syntheses of styrenes involves the combination 
of an aryl halide with a vinyl organometallic reagent under catalysis by palladium (Pd) com-
plexes. A study was designed to evaluate the effect of different levels of Pd—0.01, 0.05, 0.1, 0.5, 
and 1.0 (mol%)—on the yield of vinylboronic acid. The reactions take place in a high-pressure 
chamber at a temperature of 135°C. There are only three pressure chambers available for a single 
run of the experimental conditions. The chemists were concerned about the substantial run-to-
run variations in the yields produced by new setups of the experiment in the chambers. Thus, it 
was necessary to block on runs, but with only three chambers, it was not possible to include all 
five levels of Pd during each run. The yields of vinylboronic acid are given in the following table.

 Paladium Level (mol%)

Run 0.01 0.05 0.1 0.5 1.0

  1 66 78 *   92 *
  2 69 * * 100 100
  3 * 86 99 * 100
  4 * * 81   95 100
  5 * 79 * 100   98
  6 80 * 93   91 *
  7 73 73 94 * *
  8 81 * 90 *   97
  9 84 70 * *   99
10 * 84 91   97 *
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 a. Describe by name the type of design used. Verify that the structural conditions of 
your selected design are satisfied in this study.

 b. Is there a difference in the average yields of the five levels of paladium? Justify 
your answer at the a  .05 level.

 c. Was it necessary to include the runs factor in the design and subsequent analysis 
of the data?

 d. Using the residuals, do there appear to be any violations in the conditions needed 
to run tests of hypotheses in the analysis of variances?

 e. Do the levels of paladium appear to produce an important difference in average 
yields if a difference of 4% in yields is considered important?
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TABLE 1
Standard normal curve areas

 z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

23.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
23.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
23.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
23.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
23.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

22.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
22.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
22.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
22.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
22.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

22.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
22.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
22.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
22.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
22.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

21.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
21.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
21.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
21.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
21.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

21.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
21.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
21.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
21.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
21.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

 2.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
 2.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
 2.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
 2.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
 2.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

 2.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
 2.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
 2.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
 2.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
 2.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

 z Area

23.50 .00023263
24.00 .00003167
24.50 .00000340
25.00 .00000029
2`  .00000000

Source: Computed by M. Longnecker using the R function pnorm(z).

Shaded area = Pr(Z z)

0 z



 Appendix 1087

TABLE 1
(continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

 z Area

3.50 .99976737
4.00 .99996833
4.50 .99999660
5.00 .99999971
`  1.0
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TABLE 2
Percentage points of Student’s t distribution

Right-Tail Probability (a)

 df .40 .25 .10 .05 .025 .01 .005 .001 .0005

  1 .325 1.000 3.078 6.314 12.706 31.821 63.657 318.309 636.619
  2 .289 .816 1.886 2.920 4.303 6.965 9.925 22.327 31.599
  3 .277 .765 1.638 2.353 3.182 4.541 5.841 10.215 12.924
  4 .271 .741 1.533 2.132 2.776 3.747 4.604 7 .173 8.610
  5 .267 .727 1.476 2.015 2.571 3.365 4.032 5.893 6.869

  6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.208 5.959
  7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 5.408
  8 .262 .706 1.397 1.860 2.306 2.896 3.355 4.501 5.041
  9 .261 .703 1.383 1.833 2.262 2.821 3.250 4.297 4.781
 10 .260 .700 1.372 1.812 2.228 2.764 3.169 4.144 4.587

 11 .260 .697 1.363 1.796 2.201 2.718 3.106 4.025 4.437
 12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.930 4.318
 13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 4.221
 14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 4.140
 15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.733 4.073

 16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.686 4.015
 17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.646 3.965
 18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.610 3.922
 19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.579 3.883
 20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.552 3.850

 21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 3.819
 22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 3.792
 23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.485 3.768
 24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 3.745
 25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.450 3.725

 26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.435 3.707
 27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.421 3.690
 28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.408 3.674
 29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.396 3.659

 30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.385 3.646
 35 .255 .682 1.306 1.690 2.030 2.438 2.724 3.340 3.591
 40 .255 .681 1.303 1.684 2.021 2.423 2.704 3.307 3.551
 50 .255 .679 1.299 1.676 2.009 2.403 2.678 3.261 3.496
 60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 .254 .677 1.289 1.658 1.980 2.358 2.617 3.160 3.373
inf. .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 3.291

Source: Computed by M. Longnecker using the R function qt(1 2 a, df).

For level a two-tailed tests and 100(1 2 a)% C.I.s use value in column headed by the number obtained by computing a/2.

Shaded area = a

t
0

a,
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TABLE 3(a)
t Test probability of Type II

error curves for a  .01
(one-sided)
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TABLE 3(b)
t Test probability of Type II

error curves for a  .05
(one-sided)
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TABLE 4
Percentage points for confidence intervals on the median and the sign test: Ca,n

a(2) .20 .10 .05 .02 .01 .005 .002  a(2) .20 .10 .05 .02 .01 .005 .002 
a(1) .10 .05 .025 .01 .005 .0025 .001  a(1) .10 .05 .025 .01 .005 .0025 .001

n         n

1 * * * * * * *  26 9 8 7 6 6 5 4
2 * * * * * * *  27 9 8 7 7 6 5 5
3 * * * * * * *  28 10 9 8 7 6 6 5
4 0 * * * * * *  29 10 9 8 7 7 6 5
5 0 0 * * * * *  30 10 10 9 8 7 6 6
6 0 0 0 * * * *  31 11 10 9 8 7 7 6
7 1 0 0 0 * * *  32 11 10 9 8 8 7 6
8 1 1 0 0 0 * *  33 12 11 10 9 8 8 7
9 2 1 1 0 0 0 *  34 12 11 10 9 9 8 7

10 2 1 1 0 0 0 0  35 13 12 11 10 9 8 8
11 2 2 1 1 0 0 0  36 13 12 11 10 9 9 8
12 3 2 2 1 1 0 0  37 14 13 12 10 10 9 8
13 3 3 2 1 1 1 0  38 14 13 12 11 10 9 9
14 4 3 2 2 1 1 1  39 15 13 12 11 11 10 9
15 4 3 3 2 2 1 1  40 15 14 13 12 11 10 9
16 4 4 3 2 2 2 1  41 15 14 13 12 11 11 10
17 5 4 4 3 2 2 1  42 16 15 14 13 12 11 10
18 5 5 4 3 3 2 2  43 16 15 14 13 12 11 11
19 6 5 4 4 3 3 2  44 17 16 15 13 13 12 11
20 6 5 5 4 3 3 2  45 17 16 15 14 13 12 11
21 7 6 5 4 4 3 3  46 18 16 15 14 13 13 12
22 7 6 5 5 4 4 3  47 18 17 16 15 14 13 12
23 7 7 6 5 4 4 3  48 19 17 16 15 14 13 12
24 8 7 6 5 5 4 4  49 19 18 17 15 15 14 13
25 8 7 7 6 5 5 4  50 19 18 17 16 15 14 13

Note: An * means that no test or confidence interval of this level exists.

Source: Computed by M. Longnecker using the R function pbinom(c, n, .5).
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TABLE 5
Critical values for the Wilcoxon rank sum test: TL and TU.  
Test statistic is rank sum associated with smaller sample (if equal sample sizes, either rank sum can be used).

a. a  .025 one-tailed; a  .05 two-tailed

 n1

n2 3 4 5 6 7 8 9 10

  TL TU TL TU TL TU TL TU TL TU TL TU TL TU TL TU

 3 5 16 6 18 6 21 7 23 7 26 8 28 8 31 9 33
 4 6 18 11 25 12 28 12 32 13 35 14 38 15 41 16 44
 5 6 21 12 28 18 37 19 41 20 45 21 49 22 53 24 56
 6 7 23 12 32 19 41 26 52 28 56 29 61 31 65 32 70
 7 7 26 13 35 20 45 28 56 37 68 39 73 41 78 43 83
 8 8 28 14 38 21 49 29 61 39 73 49 87 51 93 54 98
 9 8 31 15 41 22 53 31 65 41 78 51 93 63 108 66 114
 10 9 33 16 44 24 56 32 70 43 83 54 98 66 114 79 131

b. a  .05 one-tailed; a  .10 two-tailed

 n1

n2 3 4 5 6 7 8 9 10

  TL TU TL TU TL TU TL TU TL TU TL TU TL TU TL TU

 3 6 15 7 17 7 20 8 22 9 24 9 27 10 29 11 31
 4 7 17 12 24 13 27 14 30 15 33 16 36 17 39 18 42
 5 7 20 13 27 19 36 20 40 22 43 24 46 25 50 26 54
 6 8 22 14 30 20 40 28 50 30 54 32 58 33 63 35 67
 7 9 24 15 33 22 43 30 54 39 66 41 71 43 76 46 80
 8 9 27 16 36 24 46 32 58 41 71 52 84 54 90 57 95
 9 10 29 17 39 25 50 33 63 43 76 54 90 66 105 69 111
 10 11 31 18 42 26 54 35 67 46 80 57 95 69 111 83 127

Source: From F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Procedures (Pearl River, NY:

Lederle Laboratories, 1964), pp. 20–23. Reproduced with the permission of American Cyanamid Company.
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One-Sided Two-Sided n 5 5 n 5 6 n 5 7 n 5 8 n 5 9

p  .1 p  .2 2 3 5 8 10
p  .05 p  .1 0 2 3 5 8
p  .025 p  .05  0 2 3 5
p  .01 p  .02   0 1 3
p  .005 p  .01    0 1
p  .0025 p  .005     0
p  .001 p  .002

One-Sided Two-Sided n 5 10 n 5 11 n 5 12 n 5 13 n 5 14

p  .1 p  .2 14 17 21 26 31
p  .05 p  .1 10 13 17 21 25
p  .025 p  .05 8 10 13 17 21
p  .01 p  .02 5 7 9 12 15
p  .005 p  .01 3 5 7 9 12
p  .0025 p  .005 1 3 5 7 9
p  .001 p  .002 0 1 2 4 6

One-Sided Two-Sided n 5 15 n 5 16 n 5 17 n 5 18 n 5 19

p  .1 p  .2 36 42 48 55 62
p  .05 p  .1 30 35 41 47 53
p  .025 p  .05 25 29 34 40 46
p  .01 p  .02 19 23 27 32 37
p  .005 p  .01 15 19 23 27 32
p  .0025 p  .005 12 15 19 23 27
p  .001 p  .002 8 11 14 18 21

One-Sided Two-Sided n 5 20 n 5 21 n 5 22 n 5 23 n 5 24

p  .1 p  .2 69 77 86 94 104
p  .05 p  .1 60 67 75 83 91
p  .025 p  .05 52 58 65 73 81
p  .01 p  .02 43 49 55 62 69
p  .005 p  .01 37 42 48 54 61
p  .0025 p  .005 32 37 42 48 54
p  .001 p  .002 26 30 35 40 45

One-Sided Two-Sided n 5 25 n 5 26 n 5 27 n 5 28 n 5 29

p  .1 p  .2 113 124 134 145 157
p  .05 p  .1 100 110 119 130 140
p  .025 p  .05 89 98 107 116 126
p  .01 p  .02 76 84 92 101 110
p  .005 p  .01 68 75 83 91 100
p  .0025 p  .005 60 67 74 82 90
p  .001 p  .002 51 58 64 71 79

Source: Computed by P. J. Hildebrand.

TABLE 6
Critical values for the

Wilcoxon signed-rank test
[n  5(1)54]
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One-Sided Two-Sided n 5 30 n 5 31 n 5 32 n 5 33 n 5 34

p  .1 p  .2 169 181 194 207 221
p  .05 p  .1 151 163 175 187 200
p  .025 p  .05 137 147 159 170 182
p  .01 p  .02 120 130 140 151 162
p  .005 p  .01 109 118 128 138 148
p  .0025 p  .005 98 107 116 126 136
p  .001 p  .002 86 94 103 112 121

One-Sided Two-Sided n 5 35 n 5 36 n 5 37 n 5 38 n 5 39

p  .1 p  .2 235 250 265 281 297
p  .05 p  .1 213 227 241 256 271
p  .025 p  .05 195 208 221 235 249
p  .01 p  .02 173 185 198 211 224
p  .005 p  .01 159 171 182 194 207
p  .0025 p  .005 146 157 168 180 192
p  .001 p  .002 131 141 151 162 173

One-Sided Two-Sided n 5 40 n 5 41 n 5 42 n 5 43 n 5 44

p  .1 p  .2 313 330 348 365 384
p  .05 p  .1 286 302 319 336 353
p  .025 p  .05 264 279 294 310 327
p  .01 p  .02 238 252 266 281 296
p  .005 p  .01 220 233 247 261 276
p  .0025 p  .005 204 217 230 244 258
p  .001 p  .002 185 197 209 222 235

One-Sided Two-Sided n 5 45 n 5 46 n 5 47 n 5 48 n 5 49

p  .1 p  .2 402 422 441 462 482
p  .05 p  .1 371 389 407 426 446
p  .025 p  .05 343 361 378 396 415
p  .01 p  .02 312 328 345 362 379
p  .005 p  .01 291 307 322 339 355
p  .0025 p  .005 272 287 302 318 334
p  .001 p  .002 249 263 277 292 307

One-Sided Two-Sided n 5 50 n 5 51 n 5 52 n 5 53 n 5 54

p  .1 p  .2 503 525 547 569 592
p  .05 p  .1 466 486 507 529 550
p  .025 p  .05 434 453 473 494 514
p  .01 p  .02 397 416 434 454 473
p  .005 p  .01 373 390 408 427 445
p  .0025 p  .005 350 367 384 402 420
p  .001 p  .002 323 339 355 372 389

TABLE 6
(continued)



 Appendix 1095

TABLE 7
Percentage points of the chi-square distribution

Right-Tail Probability (a)

 df .999 .995 .99 .975 .95 .90

1 .000002 .000039 .000157 .000982 .003932 .01579
2 .002001 .01003 .02010 .05064 .1026 .2107
3 .02430 .07172 .1148 .2158 .3518 .5844
4 .09080 .2070 .2971 .4844 .7107 1.064
5 .2102 .4117 .5543 .8312 1.145 1.610

6 .3811 .6757 .8721 1.237 1.635 2.204
7 .5985 .9893 1.239 1.690 2.167 2.833
8 .8571 1.344 1.646 2.180 2.733 3.490
9 1.152 1.735 2.088 2.700 3.325 4.168

10 1.479 2.156 2.558 3.247 3.940 4.865

11 1.834 2.603 3.053 3.816 4.575 5.578
12 2.214 3.074 3.571 4.404 5.226 6.304
13 2.617 3.565 4.107 5.009 5.892 7 .042
14 3.041 4.075 4.660 5.629 6.571 7 .790
15 3.483 4.601 5.229 6.262 7 .261 8.547

16 3.942 5.142 5.812 6.908 7 .962 9.312
17 4.416 5.697 6.408 7 .564 8.672 10.09
18 4.905 6.265 7 .015 8.231 9.390 10.86
19 5.407 6.844 7 .633 8.907 10.12 11.65
20 5.921 7 .434 8.260 9.591 10.85 12.44

21 6.447 8.034 8.897 10.28 11.59 13.24
22 6.983 8.643 9.542 10.98 12.34 14.04
23 7 .529 9.260 10.20 11.69 13.09 14.85
24 8.085 9.886 10.86 12.40 13.85 15.66
25 8.649 10.52 11.52 13.12 14.61 16.47

26 9.222 11.16 12.20 13.84 15.38 17 .29
27 9.803 11.81 12.88 14.57 16.15 18.11
28 10.39 12.46 13.56 15.31 16.93 18.94
29 10.99 13.12 14.26 16.05 17 .71 19.77
30 11.59 13.79 14.95 16.79 18.49 20.60

40 17 .92 20.71 22.16 24.43 26.51 29.05
50 24.67 27 .99 29.71 32.36 34.76 37 .69
60 31.74 35.53 37 .48 40.48 43.19 46.46
70 39.04 43.28 45.44 48.76 51.74 55.33
80 46.52 51.17 53.54 57 .15 60.39 64.28

90 54.16 59.20 61.75 65.65 69.13 73.29
100 61.92 67 .33 70.06 74.22 77 .93 82.36
120 77 .76 83.85 86.92 91.57 95.70 100.62
240 177 .95 187 .32 191.99 198.98 205.14 212.39

Source: Computed by M. Longnecker using the R function qchisq(1 2 a, df).

For level a two-tailed tests and 100(1 2 a)% C.I.s use value in columns headed by the numbers obtained by computing 1 2 a
2  and a

2 .

2
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Right-Tail Probability (a)

.10 .05 .025 .01 .005 .001 df

2.706 3.841 5.024 6.635 7 .879 10.83 1
4.605 5.991 7 .378 9.210 10.60 13.82 2
6.251 7 .815 9.348 11.34 12.84 16.27 3
7 .779 9.488 11.14 13.28 14.86 18.47 4
9.236 11.07 12.83 15.09 16.75 20.52 5

10.64 12.59 14.45 16.81 18.55 22.46 6
12.02 14.07 16.01 18.48 20.28 24.32 7
13.36 15.51 17 .53 20.09 21.95 26.12 8
14.68 16.92 19.02 21.67 23.59 27 .88 9
15.99 18.31 20.48 23.21 25.19 29.59 10

17 .28 19.68 21.92 24.72 26.76 31.26 11
18.55 21.03 23.34 26.22 28.30 32.91 12
19.81 22.36 24.74 27 .69 29.82 34.53 13
21.06 23.68 26.12 29.14 31.32 36.12 14
22.31 25.00 27 .49 30.58 32.80 37 .70 15

23.54 26.30 28.85 32.00 34.27 39.25 16
24.77 27 .59 30.19 33.41 35.72 40.79 17
25.99 28.87 31.53 34.81 37 .16 42.31 18
27 .20 30.14 32.85 36.19 38.58 43.82 19
28.41 31.41 34.17 37 .57 40.00 45.31 20

29.62 32.67 35.48 38.93 41.40 46.80 21
30.81 33.92 36.78 40.29 42.80 48.27 22
32.01 35.17 38.08 41.64 44.18 49.73 23
33.20 36.42 39.36 42.98 45.56 51.18 24
34.38 37 .65 40.65 44.31 46.93 52.62 25

35.56 38.89 41.92 45.64 48.29 54.05 26
36.74 40.11 43.19 46.96 49.64 55.48 27
37 .92 41.34 44.46 48.28 50.99 56.89 28
39.09 42.56 45.72 49.59 52.34 58.30 29
40.26 43.77 46.98 50.89 53.67 59.70 30

51.81 55.76 59.34 63.69 66.77 73.40 40
63.17 67 .50 71.42 76.15 79.49 86.66 50
74.40 79.08 83.30 88.38 91.95 99.61 60
85.53 90.53 95.02 100.43 104.21 112.32 70
96.58 101.88 106.63 112.33 116.32 124.84 80

107 .57 113.15 118.14 124.12 128.30 137 .21 90
118.50 124.34 129.56 135.81 140.17 149.45 100
140.23 146.57 152.21 158.95 163.65 173.62 120
268.47 277 .14 284.80 293.89 300.18 313.44 240

TABLE 7
(continued) 
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TABLE 8
Percentage points of the F distribution (df2 between 1 and 6)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

1 .25 5.83 7 .50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32
 .10 39.86 49.50 53.59 55.83 57 .24 58.20 58.91 59.44 59.86 60.19
 .05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9
 .025 647 .8 799.5 864.2 899.6 921.8 937 .1 948.2 956.7 963.3 968.6
 .01 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.4 5981.0 6022.5 6055.8

2 .25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38
 .10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
 .05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
 .025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40
 .01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40
 .005 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.4 199.4
 .001 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.4 999.4

3 .25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44
 .10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
 .05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
 .025 17 .44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42
 .01 34.12 30.82 29.46 28.71 28.24 27 .91 27 .67 27 .49 27 .35 27 .23
 .005 55.55 49.80 47 .47 46.19 45.39 44.84 44.43 44.13 43.88 43.69
 .001 167 .0 148.5 141.1 137 .1 134.6 132.8 131.6 130.6 129.9 129.2

4 .25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08
 .10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
 .05 7 .71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
 .025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84
 .01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55
 .005 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97
 .001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05

5 .25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89
 .10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30
 .05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
 .025 10.01 8.43 7 .76 7 .39 7 .15 6.98 6.85 6.76 6.68 6.62
 .01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05
 .005 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62
 .001 47 .18 37 .12 33.20 31.09 29.75 28.83 28.16 27 .65 27 .24 26.92

6 .25 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77
 .10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
 .05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
 .025 8.81 7 .26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46
 .01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7 .98 7 .87
 .005 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39 10.25
 .001 35.51 27 .00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41

Source: Computed by M. Longnecker using the R function qf(1 2 a, df1, df2).
Additional values can be obtained using the same R function.

F
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TABLE 8
Percentage points of the F distribution (df2 between 1 and 6)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.80 9.83 9.85 .25 1
60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.19 63.33 .10

243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 253.8 254.3 .05
976.7 984.9 993.1 997 .2 1001.4 1005.6 1009.8 1014.0 1016.1 1018.3 .025

6106.3 6157 .3 6208.7 6234.6 6260.6 6286.8 6313.0 6339.4 6352.6 6365.9 .01

3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.47 3.47 3.48 .25 2
9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 9.49 .10

19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.49 19.50 .05
39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.49 39.50 .025
99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50 99.50 .01

199.4 199.4 199.4 199.5 199.5 199.5 199.5 199.5 199.5 199.5 .005
999.4 999.4 999.4 999.5 999.5 999.5 999.5 999.5 999.5 999.5 .001

2.45 2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47 2.47 .25 3
5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.14 5.13 .10
8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.54 8.53 .05

14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.92 13.90 .025
27 .05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.17 26.13 .01
43.39 43.08 42.78 42.62 42.47 42.31 42.15 41.99 41.91 41.83 .005

128.3 127 .4 126.4 125.9 125.4 125.0 124.5 124.0 123.7 123.5 .001

2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 .25 4
3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.77 3.76 .10
5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.64 5.63 .05
8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.28 8.26 .025

14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.51 13.46 .01
20.70 20.44 20.17 20.03 19.89 19.75 19.61 19.47 19.40 19.32 .005
47 .41 46.76 46.10 45.77 45.43 45.09 44.75 44.40 44.23 44.05 .001

1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87 1.87 1.87 .25 5
3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11 3.10 .10
4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.38 4.36 .05
6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.04 6.02 .025
9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.07 9.02 .01

13.38 13.15 12.90 12.78 12.66 12.53 12.40 12.27 12.21 12.14 .005
26.42 25.91 25.39 25.13 24.87 24.60 24.33 24.06 23.92 23.79 .001

1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74 1.74 .25 6
2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.73 2.72 .10
4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.69 3.67 .05
5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.88 4.85 .025
7 .72 7 .56 7 .40 7 .31 7 .23 7 .14 7 .06 6.97 6.92 6.88 .01

10.03 9.81 9.59 9.47 9.36 9.24 9.12 9.00 8.94 8.88 .005
17 .99 17 .56 17 .12 16.90 16.67 16.44 16.21 15.98 15.86 15.75 .001
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TABLE 8
Percentage points of the F distribution (df2 between 7 and 12)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

7 .25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.69
 .10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
 .05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
 .025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76
 .01 12.25 9.55 8.45 7 .85 7 .46 7 .19 6.99 6.84 6.72 6.62
 .005 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38
 .001 29.25 21.69 18.77 17 .20 16.21 15.52 15.02 14.63 14.33 14.08

8 .25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63
 .10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
 .05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
 .025 7 .57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30
 .01 11.26 8.65 7 .59 7 .01 6.63 6.37 6.18 6.03 5.91 5.81
 .005 14.69 11.04 9.60 8.81 8.30 7 .95 7 .69 7 .50 7 .34 7 .21
 .001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54

9 .25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59
 .10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42
 .05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
 .025 7 .21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96
 .01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26
 .005 13.61 10.11 8.72 7 .96 7 .47 7 .13 6.88 6.69 6.54 6.42
 .001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89

10 .25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55
 .10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
 .05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
 .025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72
 .01 10.04 7 .56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
 .005 12.83 9.43 8.08 7 .34 6.87 6.54 6.30 6.12 5.97 5.85
 .001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75

11 .25 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52
 .10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
 .05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
 .025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53
 .01 9.65 7 .21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
 .005 12.23 8.91 7 .60 6.88 6.42 6.10 5.86 5.68 5.54 5.42
 .001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 7 .92

12 .25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50
 .10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
 .05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
 .025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37
 .01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
 .005 11.75 8.51 7 .23 6.52 6.07 5.76 5.52 5.35 5.20 5.09
 .001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7 .71 7 .48 7 .29

F
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TABLE 8
Percentage points of the F distribution (df2 between 7 and 12)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65 1.65 1.65 .25 7
2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.48 2.47 .10
3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.25 3.23 .05
4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.20 4.17 4.14 .025
6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.69 5.65 .01
8.18 7 .97 7 .75 7 .64 7 .53 7 .42 7 .31 7 .19 7 .13 7 .08 .005

13.71 13.32 12.93 12.73 12.53 12.33 12.12 11.91 11.80 11.70 .001

1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58 1.58 .25 8
2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.30 2.29 .10
3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.95 2.93 .05
4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.70 3.67 .025
5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.90 4.86 .01
7 .01 6.81 6.61 6.50 6.40 6.29 6.18 6.06 6.01 5.95 .005

11.19 10.84 10.48 10.30 10.11 9.92 9.73 9.53 9.43 9.33 .001

1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53 1.53 1.53 .25 9
2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.17 2.16 .10
3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.73 2.71 .05
3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.36 3.33 .025
5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.35 4.31 .01
6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.30 5.24 5.19 .005
9.57 9.24 8.90 8.72 8.55 8.37 8.19 8.00 7 .91 7 .81 .001

1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.49 1.49 1.48 .25 10
2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.07 2.06 .10
2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.56 2.54 .05
3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.11 3.08 .025
4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.95 3.91 .01
5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.75 4.69 4.64 .005
8.45 8.13 7 .80 7 .64 7 .47 7 .30 7 .12 6.94 6.85 6.76 .001

1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.46 1.45 1.45 .25 11
2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.99 1.97 .10
2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.43 2.40 .05
3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.91 2.88 .025
4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.65 3.60 .01
5.24 5.05 4.86 4.76 4.65 4.55 4.45 4.34 4.28 4.23 .005
7 .63 7 .32 7 .01 6.85 6.68 6.52 6.35 6.18 6.09 6.00 .001

1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.43 1.43 1.42 .25 12
2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.92 1.90 .10
2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.32 2.30 .05
3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.76 2.72 .025
4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.41 3.36 .01
4.91 4.72 4.53 4.43 4.33 4.23 4.12 4.01 3.96 3.90 .005
7 .00 6.71 6.40 6.25 6.09 5.93 5.76 5.59 5.51 5.42 .001
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TABLE 8
Percentage points of the F distribution (df2 between 13 and 18)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

13 .25 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48
 .10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
 .05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
 .025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25
 .01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
 .005 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82
 .001 17 .82 12.31 10.21 9.07 8.35 7 .86 7 .49 7 .21 6.98 6.80

14 .25 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46
 .10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
 .05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
 .025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15
 .01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94
 .005 11.06 7 .92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60
 .001 17 .14 11.78 9.73 8.62 7 .92 7 .44 7 .08 6.80 6.58 6.40

15 .25 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45
 .10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
 .05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
 .025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06
 .01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
 .005 10.80 7 .70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42
 .001 16.59 11.34 9.34 8.25 7 .57 7 .09 6.74 6.47 6.26 6.08

16 .25 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44
 .10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
 .05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
 .025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99
 .01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
 .005 10.58 7 .51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27
 .001 16.12 10.97 9.01 7 .94 7 .27 6.80 6.46 6.19 5.98 5.81

17 .25 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43
 .10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
 .05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
 .025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92
 .01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
 .005 10.38 7 .35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14
 .001 15.72 10.66 8.73 7 .68 7 .02 6.56 6.22 5.96 5.75 5.58

18 .25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42
 .10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
 .05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
 .025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87
 .01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
 .005 10.22 7 .21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03
 .001 15.38 10.39 8.49 7 .46 6.81 6.35 6.02 5.76 5.56 5.39

F
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TABLE 8
Percentage points of the F distribution (df2 between 13 and 18)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40 1.40 .25 13
2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.86 1.85 .10
2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.23 2.21 .05
3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.63 2.60 .025
3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.21 3.17 .01
4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.76 3.70 3.65 .005
6.52 6.23 5.93 5.78 5.63 5.47 5.30 5.14 5.05 4.97 .001

1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.39 1.38 1.38 .25 14
2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.81 1.80 .10
2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.15 2.13 .05
3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.52 2.49 .025
3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.05 3.00 .01
4.43 4.25 4.06 3.96 3.86 3.76 3.66 3.55 3.49 3.44 .005
6.13 5.85 5.56 5.41 5.25 5.10 4.94 4.77 4.69 4.60 .001

1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.37 1.36 1.36 .25 15
2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.77 1.76 .10
2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.09 2.07 .05
2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.43 2.40 .025
3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.91 2.87 .01
4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.37 3.32 3.26 .005
5.81 5.54 5.25 5.10 4.95 4.80 4.64 4.47 4.39 4.31 .001

1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.35 1.34 .25 16
1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.73 1.72 .10
2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.03 2.01 .05
2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.35 2.32 .025
3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.80 2.75 .01
4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.22 3.17 3.11 .005
5.55 5.27 4.99 4.85 4.70 4.54 4.39 4.23 4.14 4.06 .001

1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.33 .25 17
1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.70 1.69 .10
2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.99 1.96 .05
2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.28 2.25 .025
3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.70 2.65 .01
3.97 3.79 3.61 3.51 3.41 3.31 3.21 3.10 3.04 2.98 .005
5.32 5.05 4.78 4.63 4.48 4.33 4.18 4.02 3.93 3.85 .001

1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.32 .25 18
1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.67 1.66 .10
2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.94 1.92 .05
2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.22 2.19 .025
3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.61 2.57 .01
3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.99 2.93 2.87 .005
5.13 4.87 4.59 4.45 4.30 4.15 4.00 3.84 3.75 3.67 .001
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TABLE 8
Percentage points of the F distribution (df2 between 19 and 24)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

19 .25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41
 .10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
 .05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
 .025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82
 .01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43
 .005 10.07 7 .09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93
 .001 15.08 10.16 8.28 7 .27 6.62 6.18 5.85 5.59 5.39 5.22

20 .25 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40
 .10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
 .05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
 .025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77
 .01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
 .005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85
 .001 14.82 9.95 8.10 7 .10 6.46 6.02 5.69 5.44 5.24 5.08

21 .25 1.40 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39
 .10 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
 .05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
 .025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73
 .01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
 .005 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77
 .001 14.59 9.77 7 .94 6.95 6.32 5.88 5.56 5.31 5.11 4.95

22 .25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39
 .10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
 .05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
 .025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70
 .01 7 .95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
 .005 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70
 .001 14.38 9.61 7 .80 6.81 6.19 5.76 5.44 5.19 4.99 4.83

23 .25 1.39 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38
 .10 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
 .05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
 .025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67
 .01 7 .88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
 .005 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64
 .001 14.20 9.47 7 .67 6.70 6.08 5.65 5.33 5.09 4.89 4.73

24 .25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38
 .10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
 .05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
 .025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64
 .01 7 .82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17
 .005 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59
 .001 14.03 9.34 7 .55 6.59 5.98 5.55 5.23 4.99 4.80 4.64

F
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TABLE 8
Percentage points of the F distribution (df2 between 19 and 24)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.30 .25 19
1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.65 1.63 .10
2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.90 1.88 .05
2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.17 2.13 .025
3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.54 2.49 .01
3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.89 2.83 2.78 .005
4.97 4.70 4.43 4.29 4.14 3.99 3.84 3.68 3.60 3.51 .001

1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.30 1.29 .25 20
1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.63 1.61 .10
2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.87 1.84 .05
2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.12 2.09 .025
3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.47 2.42 .01
3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.81 2.75 2.69 .005
4.82 4.56 4.29 4.15 4.00 3.86 3.70 3.54 3.46 3.38 .001

1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.29 1.28 .25 21
1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.60 1.59 .10
2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.84 1.81 .05
2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.08 2.04 .025
3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.41 2.36 .01
3.60 3.43 3.24 3.15 3.05 2.95 2.84 2.73 2.67 2.61 .005
4.70 4.44 4.17 4.03 3.88 3.74 3.58 3.42 3.34 3.26 .001

1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28 1.28 .25 22
1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.59 1.57 .10
2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.81 1.78 .05
2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.04 2.00 .025
3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.35 2.31 .01
3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.66 2.60 2.55 .005
4.58 4.33 4.06 3.92 3.78 3.63 3.48 3.32 3.23 3.15 .001

1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28 1.28 1.27 .25 23
1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.57 1.55 .10
2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.79 1.76 .05
2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 2.01 1.97 .025
3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.31 2.26 .01
3.47 3.30 3.12 3.02 2.92 2.82 2.71 2.60 2.54 2.48 .005
4.48 4.23 3.96 3.82 3.68 3.53 3.38 3.22 3.14 3.05 .001

1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.28 1.27 1.26 .25 24
1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.55 1.53 .10
2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.76 1.73 .05
2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.97 1.94 .025
3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.26 2.21 .01
3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.55 2.49 2.43 .005
4.39 4.14 3.87 3.74 3.59 3.45 3.29 3.14 3.05 2.97 .001
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TABLE 8
Percentage points of the F distribution (df2 between 25 and 30)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

25 .25 1.39 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37
 .10 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
 .05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
 .025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61
 .01 7 .77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
 .005 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54
 .001 13.88 9.22 7 .45 6.49 5.89 5.46 5.15 4.91 4.71 4.56

26 .25 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37
 .10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
 .05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
 .025 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59
 .01 7 .72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
 .005 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60 3.49
 .001 13.74 9.12 7 .36 6.41 5.80 5.38 5.07 4.83 4.64 4.48

27 .25 1.38 1.46 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36
 .10 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
 .05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
 .025 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57
 .01 7 .68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
 .005 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56 3.45
 .001 13.61 9.02 7 .27 6.33 5.73 5.31 5.00 4.76 4.57 4.41

28 .25 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36
 .10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
 .05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
 .025 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55
 .01 7 .64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
 .005 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52 3.41
 .001 13.50 8.93 7 .19 6.25 5.66 5.24 4.93 4.69 4.50 4.35

29 .25 1.38 1.45 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35
 .10 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
 .05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18
 .025 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53
 .01 7 .60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00
 .005 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.48 3.38
 .001 13.39 8.85 7 .12 6.19 5.59 5.18 4.87 4.64 4.45 4.29

30 .25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35
 .10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
 .05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
 .025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51
 .01 7 .56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
 .005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34
 .001 13.29 8.77 7 .05 6.12 5.53 5.12 4.82 4.58 4.39 4.24

F
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TABLE 8
Percentage points of the F distribution (df2 between 25 and 30)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.27 1.26 1.25 .25 25
1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.54 1.52 .10
2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.74 1.71 .05
2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.94 1.91 .025
2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.22 2.17 .01
3.37 3.20 3.01 2.92 2.82 2.72 2.61 2.50 2.44 2.38 .005
4.31 4.06 3.79 3.66 3.52 3.37 3.22 3.06 2.98 2.89 .001

1.35 1.34 1.32 1.31 1.30 1.29 1.28 1.26 1.26 1.25 .25 26
1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.52 1.50 .10
2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.72 1.69 .05
2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.92 1.88 .025
2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.18 2.13 .01
3.33 3.15 2.97 2.87 2.77 2.67 2.56 2.45 2.39 2.33 .005
4.24 3.99 3.72 3.59 3.44 3.30 3.15 2.99 2.90 2.82 .001

1.35 1.33 1.32 1.31 1.30 1.28 1.27 1.26 1.25 1.24 .25 27
1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.51 1.49 .10
2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.70 1.67 .05
2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.89 1.85 .025
2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.15 2.10 .01
3.28 3.11 2.93 2.83 2.73 2.63 2.52 2.41 2.35 2.29 .005
4.17 3.92 3.66 3.52 3.38 3.23 3.08 2.92 2.84 2.75 .001

1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.25 1.24 1.24 .25 28
1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.50 1.48 .10
2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.68 1.65 .05
2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.87 1.83 .025
2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.12 2.06 .01
3.25 3.07 2.89 2.79 2.69 2.59 2.48 2.37 2.31 2.25 .005
4.11 3.86 3.60 3.46 3.32 3.18 3.02 2.86 2.78 2.69 .001

1.34 1.32 1.31 1.30 1.29 1.27 1.26 1.25 1.24 1.23 .25 29
1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.49 1.47 .10
2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.67 1.64 .05
2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.85 1.81 .025
2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.09 2.03 .01
3.21 3.04 2.86 2.76 2.66 2.56 2.45 2.33 2.27 2.21 .005
4.05 3.80 3.54 3.41 3.27 3.12 2.97 2.81 2.73 2.64 .001

1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.24 1.23 1.23 .25 30
1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.48 1.46 .10
2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.65 1.62 .05
2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.83 1.79 .025
2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.06 2.01 .01
3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.30 2.24 2.18 .005
4.00 3.75 3.49 3.36 3.22 3.07 2.92 2.76 2.68 2.59 .001
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TABLE 8
Percentage points of the F distribution (df2 at least 40)

 df1

df2 a 1 2 3 4 5 6 7 8 9 10

40 .25 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33
 .10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
 .05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
 .025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39
 .01 7 .31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
 .005 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12
 .001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87

60 .25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30
 .10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
 .05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
 .025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27
 .01 7 .08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
 .005 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90
 .001 11.97 7 .77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54

90 .25 1.34 1.41 1.39 1.37 1.35 1.33 1.32 1.31 1.30 1.29
 .10 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67
 .05 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94
 .025 5.20 3.84 3.26 2.93 2.71 2.55 2.43 2.34 2.26 2.19
 .01 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52
 .005 8.28 5.62 4.57 3.99 3.62 3.35 3.15 3.00 2.87 2.77
 .001 11.57 7 .47 5.91 5.06 4.53 4.15 3.87 3.65 3.48 3.34

120 .25 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28
 .10 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65
 .05 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91
 .025 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16
 .01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47
 .005 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71
 .001 11.38 7 .32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24

240 .25 1.33 1.39 1.38 1.36 1.34 1.32 1.30 1.29 1.27 1.27
 .10 2.73 2.32 2.10 1.97 1.87 1.80 1.74 1.70 1.65 1.63
 .05 3.88 3.03 2.64 2.41 2.25 2.14 2.04 1.98 1.92 1.87
 .025 5.09 3.75 3.17 2.84 2.62 2.46 2.34 2.25 2.17 2.10
 .01 6.74 4.69 3.86 3.40 3.09 2.88 2.71 2.59 2.48 2.40
 .005 8.03 5.42 4.38 3.82 3.45 3.19 2.99 2.84 2.71 2.61
 .001 11.10 7 .11 5.60 4.78 4.25 3.89 3.62 3.41 3.24 3.09

inf. .25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25
 .10 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60
 .05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
 .025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05
 .01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32
 .005 7 .88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52
 .001 10.83 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96

F
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TABLE 8
Percentage points of the F distribution (df2 at least 40)

 df1

12 15 20 24 30 40 60 120 240 inf. a df2

1.31 1.30 1.28 1.26 1.25 1.24 1.22 1.21 1.20 1.19 .25 40
1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.40 1.38 .10
2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.54 1.51 .05
2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.68 1.64 .025
2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.86 1.80 .01
2.95 2.78 2.60 2.50 2.40 2.30 2.18 2.06 2.00 1.93 .005
3.64 3.40 3.14 3.01 2.87 2.73 2.57 2.41 2.32 2.23 .001

1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.17 1.16 1.15 .25 60
1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.32 1.29 .10
1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.43 1.39 .05
2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.53 1.48 .025
2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.67 1.60 .01
2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.83 1.76 1.69 .005
3.32 3.08 2.83 2.69 2.55 2.41 2.25 2.08 1.99 1.89 .001

1.27 1.25 1.23 1.22 1.20 1.19 1.17 1.15 1.13 1.12 .25 90
1.62 1.56 1.50 1.47 1.43 1.39 1.35 1.29 1.26 1.23 .10
1.86 1.78 1.69 1.64 1.59 1.53 1.46 1.39 1.35 1.30 .05
2.09 1.98 1.86 1.80 1.73 1.66 1.58 1.48 1.43 1.37 .025
2.39 2.24 2.09 2.00 1.92 1.82 1.72 1.60 1.53 1.46 .01
2.61 2.44 2.25 2.15 2.05 1.94 1.82 1.68 1.61 1.52 .005
3.11 2.88 2.63 2.50 2.36 2.21 2.05 1.87 1.77 1.66 .001

1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.13 1.12 1.10 .25 120
1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.23 1.19 .10
1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.31 1.25 .05
2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.38 1.31 .025
2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.46 1.38 .01
2.54 2.37 2.19 2.09 1.98 1.87 1.75 1.61 1.52 1.43 .005
3.02 2.78 2.53 2.40 2.26 2.11 1.95 1.77 1.66 1.54 .001

1.25 1.23 1.21 1.19 1.18 1.16 1.14 1.11 1.09 1.07 .25 240
1.57 1.52 1.45 1.42 1.38 1.33 1.28 1.22 1.18 1.13 .10
1.79 1.71 1.61 1.56 1.51 1.44 1.37 1.29 1.24 1.17 .05
2.00 1.89 1.77 1.70 1.63 1.55 1.46 1.35 1.29 1.21 .025
2.26 2.11 1.96 1.87 1.78 1.68 1.57 1.43 1.35 1.25 .01
2.45 2.28 2.09 1.99 1.89 1.77 1.64 1.49 1.40 1.28 .005
2.88 2.65 2.40 2.26 2.12 1.97 1.80 1.61 1.49 1.35 .001

1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.08 1.06 1.00 .25 inf.
1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.12 1.00 .10
1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.15 1.00 .05
1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.19 1.00 .025
2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.22 1.00 .01
2.36 2.19 2.00 1.90 1.79 1.67 1.53 1.36 1.25 1.00 .005
2.74 2.51 2.27 2.13 1.99 1.84 1.66 1.45 1.31 1.00 .001
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 p̂ y p̂ y p̂ y p̂ y p̂ y

.001 .0633 .041 .4078 .36 1.2870 .76 2.1177 .971 2.7993

.002 .0895 .042 .4128 .37 1.3078 .77 2.1412 .972 2.8053

.003 .1096 .043 .4178 .38 1.3284 .78 2.1652 .973 2.8115

.004 .1266 .044 .4227 .39 1.3490 .79 2.1895 .974 2.8177

.005 .1415 .045 .4275 .40 1.3694 .80 2.2143 .975 2.8240

.006 .1551 .046 .4323 .41 1.3898 .81 2.2395 .976 2.8305

.007 .1675 .047 .4371 .42 1.4101 .82 2.2653 .977 2.8371

.008 .1791 .048 .4418 .43 1.4303 .83 2.2916 .978 2.8438

.009 .1900 .049 .4464 .44 1.4505 .84 2.3186 .979 2.8507

.010 .2003 .050 .4510 .45 1.4706 .85 2.3462 .980 2.8578

.011 .2101 .06 .4949 .46 1.4907 .86 2.3746 .981 2.8650

.012 .2195 .07 .5355 .47 1.5108 .87 2.4039 .982 2.8725

.013 .2285 .08 .5735 .48 1.5308 .88 2.4341 .983 2.8801

.014 .2372 .09 .6094 .49 1.5508 .89 2.4655 .984 2.8879

.015 .2456 .10 .6435 .50 1.5708 .90 2.4981 .985 2.8960

.016 .2537 .11 .6761 .51 1.5908 .91 2.5322 .986 2.9044

.017 .2615 .12 .7075 .52 1.6108 .92 2.5681 .987 2.9131

.018 .2691 .13 .7377 .53 1.6308 .93 2.6061 .988 2.9221

.019 .2766 .14 .7670 .54 1.6509 .94 2.6467 .989 2.9314

.020 .2838 .15 .7954 .55 1.6710 .95 2.6906 .990 2.9413

.021 .2909 .16 .8230 .56 1.6911 .951 2.6952 .991 2.9516

.022 .2978 .17 .8500 .57 1.7113 .952 2.6998 .992 2.9625

.023 .3045 .18 .8763 .58 1.7315 .953 2.7045 .993 2.9741

.024 .3111 .19 .9021 .59 1.7518 .954 2.7093 .994 2.9865

.025 .3176 .20 .9273 .60 1.7722 .955 2.7141 .995 3.0001

.026 .3239 .21 .9521 .61 1.7926 .956 2.7189 .996 3.0150

.027 .3301 .22 .9764 .62 1.8132 .957 2.7238 .997 3.0320

.028 .3363 .23 1.0004 .63 1.8338 .958 2.7288 .998 3.0521

.029 .3423 .24 1.0239 .64 1.8546 .959 2.7338 .999 3.0783

.030 .3482 .25 1.0472 .65 1.8755 .960 2.7389

.031 .3540 .26 1.0701 .66 1.8965 .961 2.7440

.032 .3597 .27 1.0928 .67 1.9177 .962 2.7492

.033 .3653 .28 1.1152 .68 1.9391 .963 2.7545

.034 .3709 .29 1.1374 .69 1.9606 .964 2.7598

.035 .3764 .30 1.1593 .70 1.9823 .965 2.7652

.036 .3818 .31 1.1810 .71 2.0042 .966 2.7707

.037 .3871 .32 1.2025 .72 2.0264 .967 2.7762

.038 .3924 .33 1.2239 .73 2.0488 .968 2.7819

.039 .3976 .34 1.2451 .74 2.0715 .969 2.7876

.040 .4027 .35 1.2661 .75 2.0944 .970 2.7934

Source: Computed by M. Longnecker using the R function 2*asin(sqrt (p̂)).

TABLE 9
Values of y  2 arcsin Ëp̂    
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TABLE 10
Percentage points of the Studentized range

Error
 t 5 Number of Treatment Means

   df a 2 3 4 5 6 7 8 9 10 11

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7 .17
 .01 5.70 6.98 7 .80 8.42 8.91 9.32 9.67 9.97 10.24 10.48

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65
 .01 5.24 6.33 7 .03 7 .56 7 .97 8.32 8.61 8.87 9.10 9.30

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
 .01 4.95 5.92 6.54 7 .00 7 .37 7 .68 7 .94 8.17 8.37 8.55

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
 .01 4.75 5.64 6.20 6.62 6.96 7 .24 7 .47 7 .68 7 .86 8.03

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87
 .01 4.60 5.43 5.96 6.35 6.66 6.91 7 .13 7 .33 7 .49 7 .65

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72
 .01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7 .05 7 .21 7 .36

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61
 .01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7 .13

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51
 .01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
 .01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
 .01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
 .01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
 .01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
 .01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17
 .01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
 .01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
 .01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
 .01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
 .01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82
 .01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73
 .01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
 .01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37

` .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
 .01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23

Source: Computed by M. Longnecker using the R function qtukey(1 2 a, t, df).
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TABLE 10
(continued)

Error
 t 5 Number of Treatment Means

   df 12 13 14 15 16 17 18 19 20 a

5 7 .32 7 .47 7 .60 7 .72 7 .83 7 .93 8.03 8.12 8.21 .05
 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 .01

6 6.79 6.92 7 .03 7 .14 7 .24 7 .34 7 .43 7 .51 7 .59 .05
 9.48 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54 .01

7 6.43 6.55 6.66 6.76 6.85 6.94 7 .02 7 .10 7 .17 .05
 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65 .01

8 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 .05
 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 .01

9 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 .05
 7 .78 7 .91 8.03 8.13 8.23 8.33 8.41 8.49 8.57 .01

10 5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47 .05
 7 .49 7 .60 7 .71 7 .81 7 .91 7 .99 8.08 8.15 8.23 .01

11 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33 .05
 7 .25 7 .36 7 .46 7 .56 7 .65 7 .73 7 .81 7 .88 7 .95 .01

12 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 .05
 7 .06 7 .17 7 .26 7 .36 7 .44 7 .52 7 .59 7 .66 7 .73 .01

13 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 .05
 6.90 7 .01 7 .10 7 .19 7 .27 7 .35 7 .42 7 .48 7 .55 .01

14 5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03 .05
 6.77 6.87 6.96 7 .05 7 .13 7 .20 7 .27 7 .33 7 .39 .01

15 5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96 .05
 6.66 6.76 6.84 6.93 7 .00 7 .07 7 .14 7 .20 7 .26 .01

16 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 .05
 6.56 6.66 6.74 6.82 6.90 6.97 7 .03 7 .09 7 .15 .01

17 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84 .05
 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7 .00 7 .05 .01

18 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 .05
 6.41 6.50 6.58 6.65 6.73 6.79 6.85 6.91 6.97 .01

19 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75 .05
 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89 .01

20 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 .05
 6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82 .01

24 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59 .05
 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61 .01

30 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 .05
 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41 .01

40 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36 .05
 5.76 5.83 5.90 5.96 6.02 6.07 6.12 6.16 6.21 .01

60 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24 .05
 5.60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01 .01

120 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13 .05
 5.44 5.50 5.56 5.61 5.66 5.71 5.75 5.79 5.83 .01

` 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 .05
 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 .01
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TABLE 11
Percentage points for Dunnett’s test: da(k, n)

 a 5 .05 (one-sided)

n k 5 2 3 4 5 6 7 8 9 10 11 12 15 20

5 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30 3.36 3.41 3.45 3.57 3.72
6 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12 3.17 3.22 3.26 3.37 3.50
7 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01 3.05 3.10 3.13 3.23 3.36
8 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 2.96 3.01 3.04 3.14 3.25
9 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86 2.90 2.94 2.97 3.06 3.18

10 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 2.85 2.89 2.92 3.01 3.12
11 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77 2.81 2.85 2.88 2.96 3.07
12 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 2.78 2.81 2.84 2.93 3.03
13 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71 2.75 2.78 2.82 2.90 3.00
14 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 2.72 2.76 2.79 2.87 2.97

15 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67 2.70 2.74 2.77 2.85 2.95
16 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.72 2.75 2.83 2.93
17 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64 2.67 2.71 2.74 2.81 2.91
18 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 2.66 2.69 2.72 2.80 2.89
19 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61 2.65 2.68 2.71 2.79 2.88

20 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.67 2.70 2.77 2.87
24 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.64 2.66 2.74 2.83
30 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54 2.57 2.60 2.63 2.70 2.79
40 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.57 2.60 2.67 2.75
60 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48 2.51 2.54 2.56 2.63 2.72

120 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 2.48 2.51 2.53 2.60 2.68
` 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.48 2.50 2.56 2.64

From C. W. Dunnett. (1955). ‘‘A Multiple Comparison Procedure for Comparing Several Treatments with a Control,’’ Journal of the American Statistical  
Association 50, 1112–1118. Reprinted with permission from Journal of the American Statistical Association. Copyright 1955 by the American Statistical 
Association. All rights reserved. C. W. Dunnett. (1964). ‘‘New Tables for Multiple Comparisons with a Control,’’ Biometrics 20, 482–491. Also additional 
tables produced by C. W. Dunnett in 1980.
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TABLE 11
(continued)

 a 5 .01 (one-sided)

n k 5 2 3 4 5 6 7 8 9 10 11 12 15 20

5 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 5.11 5.17 5.24 5.39 5.59
6 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59 4.64 4.70 4.76 4.89 5.06
7 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30 4.35 4.40 4.45 4.57 4.72
8 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.19 4.23 4.34 4.48
9 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94 3.99 4.04 4.08 4.18 4.31

10 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83 3.88 3.92 3.96 4.06 4.18
11 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 3.79 3.83 3.86 3.96 4.08
12 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 3.71 3.75 3.79 3.88 3.99
13 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61 3.65 3.69 3.73 3.81 3.92
14 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56 3.60 3.64 3.67 3.76 3.87

15 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52 3.56 3.60 3.63 3.71 3.82
16 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 3.52 3.56 3.59 3.67 3.78
17 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45 3.49 3.53 3.56 3.64 3.74
18 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42 3.46 3.50 3.53 3.61 3.71
19 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40 3.44 3.47 3.50 3.58 3.68

20 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 3.42 3.45 3.48 3.56 3.65
24 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 3.35 3.38 3.41 3.48 3.57
30 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24 3.28 3.31 3.34 3.41 3.50
40 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 3.21 3.24 3.27 3.34 3.42
60 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12 3.15 3.18 3.20 3.27 3.35

120 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06 3.09 3.12 3.14 3.20 3.28
` 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00 3.03 3.06 3.08 3.14 3.21
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TABLE 11
(continued)

 a 5 .05 (two-sided)

n k 5 2 3 4 5 6 7 8 9 10 11 12 15 20

5 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97 4.03 4.09 4.14 4.26 4.42
6 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71 3.76 3.81 3.86 3.97 4.11
7 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53 3.58 3.63 3.67 3.78 3.91
8 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 3.46 3.50 3.54 3.64 3.76
9 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.40 3.44 3.53 3.65

10 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 3.29 3.33 3.36 3.45 3.57
11 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 3.23 3.27 3.30 3.39 3.50
12 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14 3.18 3.22 3.25 3.34 3.45
13 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10 3.14 3.18 3.21 3.29 3.40
14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.14 3.18 3.26 3.36

15 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04 3.08 3.12 3.15 3.23 3.33
16 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.09 3.12 3.20 3.30
17 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00 3.03 3.07 3.10 3.18 3.27
18 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.05 3.08 3.16 3.25
19 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96 3.00 3.03 3.06 3.14 3.23

20 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.02 3.05 3.12 3.22
24 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 2.97 3.00 3.07 3.16
30 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 2.89 2.92 2.95 3.02 3.11
40 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.85 2.87 2.90 2.97 3.06
60 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77 2.80 2.83 2.86 2.92 3.00

120 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73 2.76 2.79 2.81 2.87 2.95
` 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.74 2.77 2.83 2.91
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TABLE 11
(continued)

 a 5 .01 (two-sided)

n k 5 2 3 4 5 6 7 8 9 10 11 12 15 20

5 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89 5.98 6.05 6.12 6.30 6.52
6 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.41 5.47 5.62 5.81
7 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.95 5.01 5.06 5.19 5.36
8 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.73 4.78 4.90 5.05
9 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 4.53 4.57 4.68 4.82

10 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.37 4.42 4.52 4.65
11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 4.21 4.25 4.29 4.39 4.52
12 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.16 4.19 4.29 4.41
13 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99 4.04 4.08 4.11 4.20 4.32
14 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.01 4.05 4.13 4.24

15 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88 3.92 3.95 3.99 4.07 4.18
16 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 3.91 3.94 4.02 4.13
17 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79 3.83 3.86 3.90 3.98 4.08
18 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75 3.79 3.83 3.86 3.94 4.04
19 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72 3.76 3.79 3.83 3.90 4.00

20 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.77 3.80 3.87 3.97
24 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.68 3.70 3.78 3.87
30 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.59 3.62 3.69 3.78
40 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.51 3.53 3.60 3.68
60 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37 3.40 3.42 3.45 3.51 3.59

120 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29 3.32 3.35 3.37 3.43 3.51
` 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.27 3.29 3.35 3.42
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TABLE 12
Random numbers

Line/
 Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1 10480 15011 01536 02011 81647 91646 69179 14194 62590 36207 20969 99570 91291 90700
2 22368 46573 25595 85393 30995 89198 27982 53402 93965 34095 52666 19174 39615 99505
3 24130 48360 22527 97265 76393 64809 15179 24830 49340 32081 30680 19655 63348 58629
4 42167 93093 06243 61680 07856 16376 39440 53537 71341 57004 00849 74917 97758 16379
5 37570 39975 81837 16656 06121 91782 60468 81305 49684 60672 14110 06927 01263 54613

6 77921 06907 11008 42751 27756 53498 18602 70659 90655 15053 21916 81825 44394 42880
7 99562 72905 56420 69994 98872 31016 71194 18738 44013 48840 63213 21069 10634 12952
8 96301 91977 05463 07972 18876 20922 94595 56869 69014 60045 18425 84903 42508 32307
9 89579 14342 63661 10281 17453 18103 57740 84378 25331 12566 58678 44947 05585 56941

10 85475 36857 53342 53988 53060 59533 38867 62300 08158 17983 16439 11458 18593 64952

11 28918 69578 88231 33276 70997 79936 56865 05859 90106 31595 01547 85590 91610 78188
12 63553 40961 48235 03427 49626 69445 18663 72695 52180 20847 12234 90511 33703 90322
13 09429 93969 52636 92737 88974 33488 36320 17617 30015 08272 84115 27156 30613 74952
14 10365 61129 87529 85689 48237 52267 67689 93394 01511 26358 85104 20285 29975 89868
15 07119 97336 71048 08178 77233 13916 47564 81056 97735 85977 29372 74461 28551 90707

16 51085 12765 51821 51259 77452 16308 60756 92144 49442 53900 70960 63990 75601 40719
17 02368 21382 52404 60268 89368 19885 55322 44819 01188 65255 64835 44919 05944 55157
18 01011 54092 33362 94904 31273 04146 18594 29852 71585 85030 51132 01915 92747 64951
19 52162 53916 46369 58586 23216 14513 83149 98736 23495 64350 94738 17752 35156 35749
20 07056 97628 33787 09998 42698 06691 76988 13602 51851 46104 88916 19509 25625 58104

21 48663 91245 85828 14346 09172 30168 90229 04734 59193 22178 30421 61666 99904 32812
22 54164 58492 22421 74103 47070 25306 76468 26384 58151 06646 21524 15227 96909 44592
23 32639 32363 05597 24200 13363 38005 94342 28728 35806 06912 17012 64161 18296 22851
24 29334 27001 87637 87308 58731 00256 45834 15398 46557 41135 10367 07684 36188 18510
25 02488 33062 28834 07351 19731 92420 60952 61280 50001 67658 32586 86679 50720 94953

Abridged from William H. Beyer, ed., Handbook of Tables for Probability and Statistics, 2nd ed. © The Chemical Rubber Co., 1968.  
Used by permission of CRC Press, Inc.
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TABLE 13
F test power curves  

for AOV (a  .05, t  3)
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 Data from Biometrika Tables for Statisticians, 1966, edited by E. S. Pearson and H. O. Hartley.  
Cambridge University, New York.

F test power curves  
for AOV (a  .05,  t  4)
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TABLE 13
F test power curves  

for AOV (a  .05, t  5)
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TABLE 13
F test power curves  

for AOV (a  .05, t  7)
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TABLE 14
Poisson probabilities P(Y  y) (m between .1 and 4.0)

     m 
y .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679
2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839
3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613
4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153
5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031
6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

     m 
y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353
1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707
2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707
3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804
4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902
5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361
6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120
7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034
8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

     m 
 y 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498
1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494
2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240
3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240
4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680
5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008
6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504
7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216
8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081
9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008
11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

     m 
y 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183
1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733
2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465
3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954
4 .1733 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954
5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563
6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042

Source: Computed by M. Longnecker using the R function dpois(y, m).
Additional values can be obtained using the same R function.
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TABLE 14
Poisson probabilities P(Y  y) (m between 3.1 and 10.0)

     m 
y 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595
8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298
9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053
11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019
12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006
13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

     m 

y 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067
1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337
2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842
3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404
4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755
5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755
6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462
7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044
8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653
9 .0150 .0168 .0188 .0209 .0232 .0255 .0281 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181
11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082
12 .0008 .0009 .0011 .0013 .0016 .0019 .0022 .0026 .0030 .0034
13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013
14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005
15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002

     m 
y 5.5 6.0 6.5 7 .0 7 .5 8.0 8.5 9.0 9.5 10.0

0 .0041 .0025 .0015 .0009 .0006 .0003 .0002 .0001 .0001 .0000
1 .0225 .0149 .0098 .0064 .0041 .0027 .0017 .0011 .0007 .0005
2 .0618 .0446 .0318 .0223 .0156 .0107 .0074 .0050 .0034 .0023
3 .1133 .0892 .0688 .0521 .0389 .0286 .0208 .0150 .0107 .0076
4 .1558 .1339 .1118 .0912 .0729 .0573 .0443 .0337 .0254 .0189
5 .1714 .1606 .1454 .1277 .1094 .0916 .0752 .0607 .0483 .0378
6 .1571 .1606 .1575 .1490 .1367 .1221 .1066 .0911 .0764 .0631
7 .1234 .1377 .1462 .1490 .1465 .1396 .1294 .1171 .1037 .0901
8 .0849 .1033 .1188 .1304 .1373 .1396 .1375 .1318 .1232 .1126
9 .0519 .0688 .0858 .1014 .1144 .1241 .1299 .1318 .1300 .1251

10 .0285 .0413 .0558 .0710 .0858 .0993 .1104 .1186 .1235 .1251
11 .0143 .0225 .0330 .0452 .0585 .0722 .0853 .0970 .1067 .1137
12 .0065 .0113 .0179 .0263 .0366 .0481 .0604 .0728 .0844 .0948
13 .0028 .0052 .0089 .0142 .0211 .0296 .0395 .0504 .0617 .0729
14 .0011 .0022 .0041 .0071 .0113 .0169 .0240 .0324 .0419 .0521
15 .0004 .0009 .0018 .0033 .0057 .0090 .0136 .0194 .0265 .0347
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TABLE 14
Poisson probabilities P(Y  y) (m between 5.5 and 20.0)

     m 
y 5.5 6.0 6.5 7 .0 7 .5 8.0 8.5 9.0 9.5 10.0

16 .0001 .0003 .0007 .0014 .0026 .0045 .0072 .0109 .0157 .0217
17 .0000 .0001 .0003 .0006 .0012 .0021 .0036 .0058 .0088 .0128
18 .0000 .0000 .0001 .0002 .0005 .0009 .0017 .0029 .0046 .0071
19 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014 .0023 .0037
20 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0006 .0011 .0019
21 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0009
22 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0004
23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

     m 
y 11.0 12.0 13.0 14.0 15.0 16.0 17 .0 18.0 19.0 20.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0010 .0004 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0037 .0018 .0008 .0004 .0002 .0001 .0000 .0000 .0000 .0000
4 .0102 .0053 .0027 .0013 .0006 .0003 .0001 .0001 .0000 .0000
5 .0224 .0127 .0070 .0037 .0019 .0010 .0005 .0002 .0001 .0001
6 .0411 .0255 .0152 .0087 .0048 .0026 .0014 .0007 .0004 .0002
7 .0646 .0437 .0281 .0174 .0104 .0060 .0034 .0019 .0010 .0005
8 .0888 .0655 .0457 .0304 .0194 .0120 .0072 .0042 .0024 .0013
9 .1085 .0874 .0661 .0473 .0324 .0213 .0135 .0083 .0050 .0029

10 .1194 .1048 .0859 .0663 .0486 .0341 .0230 .0150 .0095 .0058
11 .1194 .1144 .1015 .0844 .0663 .0496 .0355 .0245 .0164 .0106
12 .1094 .1144 .1099 .0984 .0829 .0661 .0504 .0368 .0259 .0176
13 .0926 .1056 .1099 .1060 .0956 .0814 .0658 .0509 .0378 .0271
14 .0728 .0905 .1021 .1060 .1024 .0930 .0800 .0655 .0514 .0387
15 .0534 .0724 .0885 .0989 .1024 .0992 .0906 .0786 .0650 .0516
16 .0367 .0543 .0719 .0866 .0960 .0992 .0963 .0884 .0772 .0646
17 .0237 .0383 .0550 .0713 .0847 .0934 .0963 .0936 .0863 .0760
18 .0145 .0255 .0397 .0554 .0706 .0830 .0909 .0936 .0911 .0844
19 .0084 .0161 .0272 .0409 .0557 .0699 .0814 .0887 .0911 .0888
20 .0046 .0097 .0177 .0286 .0418 .0559 .0692 .0798 .0866 .0888
21 .0024 .0055 .0109 .0191 .0299 .0426 .0560 .0684 .0783 .0846
22 .0012 .0030 .0065 .0121 .0204 .0310 .0433 .0560 .0676 .0769
23 .0006 .0016 .0037 .0074 .0133 .0216 .0320 .0438 .0559 .0669
24 .0003 .0008 .0020 .0043 .0083 .0144 .0226 .0328 .0442 .0557
25 .0001 .0004 .0010 .0024 .0050 .0092 .0154 .0237 .0336 .0446
26 .0000 .0002 .0005 .0013 .0029 .0057 .0101 .0164 .0246 .0343
27 .0000 .0001 .0002 .0007 .0016 .0034 .0063 .0109 .0173 .0254
28 .0000 .0000 .0001 .0003 .0009 .0019 .0038 .0070 .0117 .0181
29 .0000 .0000 .0001 .0002 .0004 .0011 .0023 .0044 .0077 .0125
30 .0000 .0000 .0000 .0001 .0002 .0006 .0013 .0026 .0049 .0083
31 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0015 .0030 .0054
32 .0000 .0000 .0000 .0000 .0001 .0001 .0004 .0009 .0018 .0034
33 .0000 .0000 .0000 .0000 0000 .0001 .0002 .0005 .0010 .0020
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TABLE 15
Percentage points of the normal probability plot correlation coefficent, r

n/a = .005 .01 .025 .05 .10 .25 .50 .75 .90 .95 .975 .99 .995

10 .860 .876 .900 .917 .934 .954 .970 .981 .987 .990 .992 .994 .995
11 .868 .883 .906 .922 .938 .957 .972 .982 .988 .990 .992 .994 .995
12 .875 .889 .912 .926 .941 .959 .973 .982 .988 .990 .992 .994 .995
13 .882 .895 .917 .931 .944 .962 .975 .983 .988 .991 .993 .994 .995
14 .888 .901 .921 .934 .947 .964 .976 .984 .989 .991 .993 .994 .995
15 .894 .907 .925 .937 .950 .965 .977 .984 .989 .991 .993 .994 .995
16 .889 .912 .928 .940 .952 .967 .978 .985 .989 .991 .993 .994 .995
17 .903 .916 .931 .942 .954 .968 .979 .986 .990 .992 .993 .994 .995
18 .907 .919 .934 .945 .956 .969 .979 .986 .990 .992 .993 .995 .995
19 .909 .923 .937 .947 .958 .971 .980 .987 .990 .992 .993 .995 .995
20 .912 .925 .939 .950 .960 .972 .981 .987 .991 .992 .994 .995 .995
21 .914 .928 .942 .952 .961 .973 .981 .987 .991 .993 .994 .995 .996
22 .918 .930 .944 .954 .962 .974 .982 .988 .991 .993 .994 .995 .996
23 .922 .933 .947 .955 .964 .975 .983 .988 .991 .993 .994 .995 .996
24 .926 .936 .949 .957 .965 .975 .983 .988 .992 .993 .994 .995 .996
25 .928 .937 .950 .958 .966 .976 .984 .989 .992 .993 .994 .995 .996
26 .930 .939 .952 .959 .967 .977 .984 .989 .992 .993 .994 .995 .996
27 .932 .941 .953 .960 .968 .977 .984 .989 .992 .994 .995 .995 .996
28 .934 .943 .955 .962 .969 .978 .985 .990 .992 .994 .995 .995 .996
29 .937 .945 .956 .962 .969 .979 .985 .990 .992 .994 .995 .995 .996
30 .938 .947 .957 .964 .970 .979 .986 .990 .993 .994 .995 .996 .996
35 .943 .952 .961 .968 .974 .982 .987 .991 .993 .995 .995 .996 .997
40 .949 .958 .966 .972 .977 .983 .988 .992 .994 .995 .996 .996 .997
45 .955 .961 .969 .974 .978 .985 .989 .993 .994 .995 .996 .997 .997
50 .959 .965 .972 .977 .981 .986 .990 .993 .995 .996 .996 .997 .997
55 .962 .967 .974 .978 .982 .987 .991 .994 .995 .996 .997 .997 .997
60 .965 .970 .976 .980 .983 .988 .991 .994 .995 .996 .997 .997 .998
65 .967 .972 .977 .981 .984 .989 .992 .994 .996 .996 .997 .997 .998
70 .969 .974 .978 .982 .985 .989 .993 .995 .996 .997 .997 .998 .998
75 .971 .975 .979 .983 .986 .990 .993 .995 .996 .997 .997 .998 .998
80 .973 .976 .980 .984 .987 .991 .993 .995 .996 .997 .997 .998 .998
85 .974 .977 .981 .985 .987 .991 .994 .995 .997 .997 .997 .998 .998
90 .976 .978 .982 .985 .988 .991 .994 .996 .997 .997 .998 .998 .998
95 .977 .979 .983 .986 .989 .992 .994 .996 .997 .997 .998 .998 .998

100 .979 .981 .984 .987 .989 .992 .994 .996 .997 .998 .998 .998 .998

From J. J. Filliben. (1975). “The Probability Plot Correlation Coefficient Test for Normality,” Technometrics 17, 111–117 .



Chapter 1: Statistics and the Scientific Method

1.6 a. All freshman at the university
b. Just the freshman enrolled in HIST 101
c. The students taking HIST 101 may have a different level of knowledge about history than the general student body.
d.  The initial lectures would certainly give the students information about the original 13 colonies and hence make the students 

more likely to answer the question correctly than a student not hearing the lectures.

Chapter 2: Using Surveys and Experimental Studies to Gather Data

2.9 a. Alumni (men only?) graduating from Yale in 1924.
b. No. Alumni whose addresses were on file 25 years later would not necessarily be representative of their class.
c.  Alumni who responded to the mail survey would not necessarily be representative of those who were sent the questionnaires. 

Income figures may not be reported accurately (intentionally) or may be rounded off to the nearest $5,000, say, in a self- 
administered questionnaire.

d.  Rounding income responses would make the figure $25,111 highly unlikely. The fact that higher-income respondents would be 
more likely to respond (bragging) and the fact that incomes are likely to be exaggerated would tend to make the estimate too 
high.

2.14 a. Heat treatment temperature and type of hardener
b. Heat treatment temperature: 175°F, 200°F, 225°F and 250°F
 Type of hardener: H1, H2 , H3
c. Manufacuring plants
d. Plastic pipe
e. Locations on plastic pipe
f. 2 Pipes per treatment from each plant
g. None
h. 12 treatments

2.26 If phosphorus first: [P, N]

    [10, 40], [10, 50], [10, 60], then [20, 60], [30, 60]

 Or [20, 40], [20, 50], [20, 60], then [10, 60], [30, 60]

 Or [30, 40], [30, 50], [30, 60], then [10, 60], [20, 60]

 If nitrogen first: [N, P]

    [40, 10], [40, 20], [40, 30], then [50, 30], [60, 30]

 Or [50, 10], [50, 20], [50, 30], then [40, 30], [60, 30]

 Or [60, 10], [60, 20], [60, 30], then [40, 30], [50, 30]

2.28 a. Group dogs by sex and age:

Group Dog

Young female 2, 5, 13, 14
Young male 3, 5,  6, 16
Old female 5, 9, 10, 11
Old male 4, 8, 12, 15

b. Generate a random permutation of the numbers 1 to 16:
 15  7  4  11  3  13  8  1  12  16  2  5  6  10  9  14

 Go through the list and the first two numbers that appear in each of the four groups receive treatment L1 and the other two receive 
treatment L2.

Group Treatment–Dog

Young female 2—L2, 7—L1, 13—L1, 14—L2
Young male 3—L1, 5—L2,  6—L2, 16—L1
Old female  1—L1, 9—L2, 10—L2, 11—L1
Old male  4—L1, 8—L2, 12—L2, 15—L1

*Expanded Answers to Selected Exercises are available at www.cengage.com/statistics/ott.

Answers to Selected Exercises
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Chapter 3: Data Description

3.4 a. Range  1.05 2 0.72  0.33
b.  Frequency histogram should be plotted with 7 classes 

ranging from 0.705 to 1.555. 
     The intervals have width .05.

3.7 a. Construct separate relative frequency histograms.
b.  The histogram for the new therapy has one more class 

than the standard therapy. This would indicate that the 
new therapy generates a few more large values than 
the standard therapy. However, there is not convinc-
ing evidence that the new therapy generates a longer 
survival time.

3.8 The plot has a bimodal shape. This would be an indication 
that there are two separate populations. However, the ev-
idence is not very convincing because the individual plots 
were similar in shape with the exception that the New 
Therapy had a few times somewhat larger than the sur-
vival times obtained under the Standard Therapy. 

3.12 The shapes of the 1985, 1996, and 2002 histograms and 
stem-and-leaf plots are asymmetric. The six plots are uni-
modal and left skewed.

3.15 Mean  55.19, median  58, two modes: 24, 58
3.21 a. Mean  8.04, median  1.54

b. Terrestrial: mean  15.01, median  6.03
    Aquatic: mean  .38, median  .375

3.29 The quantile plot is given at right.
a.  The 25th percentile is the value associated with u  .25 on 

the graph, which is 14 minutes. Also, by definition, 14 min-
utes is the 25th percentile, since 25% of the times are less 
than or equal to 14 and 75% of the times are greater than or 
equal to 14 minutes.

b.  Yes; the 90th percentile is 31.5 minutes. This means that 90% 
of the patients have a treatment time less than or equal to 
31.5 minutes (which is less than 40 minutes).

3.33 The box plot is given at right.

3.35 a. Can: Q1 2 1.45,  Q2 2 1.65,  Q3 2 2.4
Dry: Q1 2 .55,  Q2 2 .60,  Q3 2 .7

b.  Canned dog food is more expensive (median 
much greater than that for dry dog food), 
highly skewed to the right with a few large out-
liers. Dry dog food is slightly left skewed with a 
considerably smaller degree of variability than 
canned dog food.

3.39 a. The stacked bar graph is given at right.
b.  Illiterate: 46%; primary schooling: 4%; at least 

middle school: 50%

Shifting cultivators: 28%; settled agriculturists: 
21%; town dwellers: 51%

There is a marked difference in the distribu-
tion in the three literacy levels for the three 
subsistence groups. Town dwellers and shift-
ing cultivators have the reverse trends in the 
three categories, whereas settled agriculturists 
fall into essentially two classes.
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3.41 A scatterplot of M3 versus M2 is given at right.
a.  Yes, it would because we want to determine the  

relative changes in the two over the 20 month period 
of time.

b.  See scatterplot. The two measures follow an approxi-
mately increasing linear relationship.

Chapter 4: Probability and Probability Distributions

4.1 a. Subjective probability
b. Classical probability
c. Relative frequency

4.27 a. P(both customers pay in full)  (.70) (.70)  .49
b.  P(at least one of two customers pays in full)  

 1 2 P (neither customer pays in full)  
 1 2 (1 2 .70)(1 2 .70)  1 2 (.30)2  .91

4.29 Let D be the event loan is defaulted, R1 applicant is poor 
risk, R2 fair risk, and R3 good risk.
 P(D)  .01,    P(R1|D)  .30,    P(R2|D)  .40,    P(R3|D)  .30,
P(D)  .99,  P(R1|D)  .10,  P(R2|D)  .40,  P(R3|D)  .50

P 1D 0R1 2 
P 1R1 0D 2P 1D 2

P 1R1 0D 2P 1D 2  1 P 1R1 0D 2P 1D 2 
1.30 2 1.01 2

1.30 2 1.01 2  1 1.10 2 1.99 2  .0294

4.31 P(D1|A1) 
P 1A1 0D1 2P 1D1 2

P 1A1 0D1 2P 1D1 2  1 P 1A1 0D2 2P 1D2 2  1 P 1A1 0D3 2P 1D3 2  1 P 1A1 0D4 2P 1D4 2
 

              
1.90 2 1.028 2

1.90 2 1.028 2  1 1.06 2 1.012 2  1 1.02 2 1.032 2  1 1.02 2 1.928 2  .55851 

P(D2|A2) 
1.80 2 1.012 2

1.05 2 1.028 2  1 1.80 2 1.012 2  1 1.06 2 1.032 2  1 1.01 2 1.928 2  .43243 

P(D3|A3) 
1.82 2 1.032 2

1.03 2 1.028 2  1 1.05 2 1.012 2  1 1.82 2 1.032 2  1 1.02 2 1.928 2  .56747 

4.33 Let F be the event fire occurs and Ti be the event a type i furnace is in the home for i  1, 2, 3, 4, where T4 represents other types.

P(T1|F) 
P 1F 0T1 2P 1T1 2

P 1F 0T1 2P 1T1 2  1 P 1F 0T1 2P 1T1 2  1 P 1F 0T1 2P 1T1 2  1 P 1F 0T1 2P 1T1 2

  
1.05 2 1.30 2

1.05 2 1.30 2  1 1.03 2 1.25 2  1 1.02 2 1.15 2  1 1.04 2 1.30 2  .40

4.35  P 1A2 0B1 2 
1.17 2 1.15 2

1.08 2 1.25 2 1 1.17 2 1.15 2 1 1.10 2 1.12 2  .4435

 P 1A2 0B2 2 
1.12 2 1.15 2

1.18 2 1.25 2 1 1.12 2 1.15 2 1 1.14 2 1.12 2  .2256

 P 1A2 0B3 2 
1.07 2 1.15 2

1.06 2 1.25 2 1 1.07 2 1.15 2 1 1.08 2 1.12 2  .2991

 P 1A2 0B4 2 
1.64 2 1.15 2

1.68 2 1.25 2 1 1.64 2 1.15 2 1 1.68 2 1.12 2  .2762

4.43 Yes, if the people not responding are ignored.
4.45 Binomial experiment with n  15, p  .2, and y  number exceeding limit

a. P(y  15) < 0
b. P(y  6)  .043
c. P(y $ 6)  1 2 P(y , 6)  1 2 (P(0) 1 P(l) 1 P(2) 1 P(3) 1 P(4) 1 P(5))  1 2 (.0389)  .0611
d. P(y  0)  .0352

4.73 No. The sample would be biased toward homes for which the homeowner is at home much of the time. For example, the sample 
would tend to include more people who work at home and retired persons.

4.75 Starting at column 2, line 1, we obtain 150, 465, 483, 930, 399, 069, 729, 919, 143, 368, 695, 409, 939, 611, 973, 127, 213, 540, 539, 976, 
912, 584, 323, 270, 330. These would be the women selected for the study.

4.77 The sampling distribution would have a mean of 60 and a standard deviation of 
5

Ë16
  1.25. If the population distribution is somewhat 

 mound shaped then the sampling distribution of y should be  approximately mound shaped. In this situation, we would expect 
approximately 95% of the possible values of y to lie in 60 6 (2)(1.25)  (57.5, 62.5).

Money supply (trillions of dollars)

M
3 3.05

3.00

2.90

2.85

2.80

2.95

2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60

M2

2.75

3.10

3.15

3.20

3.25

3.30

Answer 3.41



1128 Answers to selected exercises

4.83 m  2.1,  s  .3

a. P(y . 2.7)  Paz .
2.7 2 2.1

0.3
b   P(z . 2)  .0228

b. P(z . .6745)  .25 1 y.75  2.1 1 (.6745)(.3)  2.30
c. Let mN be the new value of the mean. We need P(y . 2.7) , .05.

From Table 1 in the Appendix, .05  P(z . 1.645) and .05  P(y # 2.7)  Pay 2 mN

.3
.

2.7 2 mN

.3
b 1

2.7 2 mN

.3
  1.645 1  

mN  2.7 2 (.3)(1.645)  2.2065.
4.85  Individual baggage weight has m  95; s  35; total weight has mean nm  (200)(95)  19,000; 

 and standard deviation Ëns  Ë200 135 2  494.97. Therefore, P(y . 20,000)  Paz .
20,000 2 19,000

494.97
b   P(z . 2.02)  .0217.

4.89 n  10, p  .5
a.  P(4 # y # 6)  P(y  4) 1 P(y  5) 1 P(y  6)  (10

 4 )(.5)4(.5)6 1 (10
 5 )(.5)5(.5)5 1 (10

 6 )(.5)6(.5)4  .65625

b. m  (10)(0.5)  5; s  Ë 110 2 10.5 2 10.5 2   1.58;

    P(4 # y # 6)  Paz ,
6 2 5
1.58

b  2 Paz ,
4 2 5
1.58

b   P(z , .63) 2 P(z , 2.63)  .4714. It did not work well.

4.99 No, there is strong evidence that the new fabric has a greater mean breaking strength.
4.101 m  5.35,  s  .12

a. P(y . log(250))  P(y . 5.52)  Paz .
5.52 2 5.35

.12
b   .0078  .78%

b.  P(log(150) , y , log(250))  P(5.01 , y , 5.52)  Pa5.01 2 5.35
.12

, z ,
5.52 2 5.35

.12
b  .9194  91.94%

c. P(y . log(300))  P(y . 5.7)  Paz .
5.7 2 5.35

.12
b   .0018  .18%

4.103 n  20,000, p  .0001. There are two possible outcomes, and each birth is an independent event. We cannot use the normal 
approximation because np  (20,000)(.0001)  2 , 5. We can use the binomial formula:
P(y $ 1)  1 2 P(y  0)  1 2 (20,000

     0 )(.0001)0(.9999)20,000  .8647

Chapter 5: Inferences About Population Central Values

5.13 ŝ  13, E  3, a  .01 1 n  
12.58 2 2 113 2 2

13 2 2   125

5.21 H0: m # 2 versus Ha: m . 2, y  2.17, s  1.05, n  90

a. z  
2.17 2 2

1.05 /Ë90
  1.54 , 1.645  z0.05 1

Fail to reject H0. The data do not support the hypothesis that the mean has been increased from 2.

b. b(2.1)  P(z # 1.645 2 
02 2 2.1 0
1.05 /Ë90

  P(z # .74)  .7704

5.24 n 
180 2 2 11.645 1 1.96 2 2

1525 2 550 2 2  133.1 1 n  134

5.27 H0: m # 30 versus Ha: m . 30,
a  .05, n  37, y  37.24, s  37.12

a. z 
37.24 2 30

37.12 /Ë37
 1.19 , 1.645  z0.05 1 Fail to reject H0.

There is not sufficient evidence to conclude that the mean lead concentration exceeds 30 mg kg21 dry weight.

b. b(50)  Paz # 1.645 2
030 2 50 0
37.12 /Ë37

b   P(z # 21.63)  .0513

c. No, the data values are not very close to the straight line in the normal probability plot.
d.  No; since there is a substantial deviation from a normal distribution, the sample size should be somewhat larger to use the 

z test.  Section 5.8 provides an alternative test statistic for handling this situation.
5.33 H0: m  1.6 versus Ha: m 2 1.6,

n  36, y  2.2, s  .57, a  .05

p-value  2Paz $
02.2 2 1.6 0

.57 /Ë36
b   2P(z $ 6.32) , .0001 , .05  a 1

Yes, there is significant evidence that the mean time delay differs from 1.6 seconds.
5.39 n  15, y  31.47, s  5.04

a. 31.47 6 (2.977)(5.04) / Ë15 1 31.47 6 3.87 1 (27,600, 35,340) is a 99% C.I. on the mean miles driven.
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b. H0: m $ 35 versus Ha: m , 35;

    t 
31.47 2 35

5.04 /Ë15
  22.71 1 Reject 

    H0 if t # 22.624.
Reject H0 and conclude the data sup-
port the hypothesis that the mean 
miles driven is less than 35,000 miles.
Level of significance is given by 
p-value  P(t # 22.71) 1  
.005 , p-value , .01.

5.41 a.  4.95 6 (2.365)(0.45) / Ë8 1 4.95 6 
.38 1 (4.57, 5.33) is a 95% C.I. on 
the mean dissolved  oxygen level.

b.  There is inconclusive evidence that 
the mean is less than 5 ppm since 
the C.I. contains values both less and 
greater than 5 ppm.

c.  H0: m $ 5 versus Ha: m , 5, p-value 
 P(t # 2.31) 1 .25 , p-value , 
.40 (using a computer program, 
p-value  .3828). Fail to reject H0 
and conclude the data do not support that the mean is less than 5 ppm.

5.52 a. The graphs are given at right.
b.  99% C.I. on mean: .247 6 (2.979) 

(.129) / Ë25 1 (.175, .319); 99% C.I. 
on median: (y(5), y(21)) 1 (.07, .36)

c. Yes, t  
.247 2 0

.129 /Ë25
  9.57 1 p-value

   P(t $ 9.57) , .0001. Thus, there is 
significant evidence of an  increase in 
mean reaction time.

d.  Yes, B  25 . 21 1 Reject H0 at 
the a  .001 level. Thus, there is sig-
nificant evidence of an increase in 
median reaction time.

e.  Using the normal probability plot 
and boxplot, it is observed that the 
data appear to be from a distribu-
tion that is bimodal, skewed to the 
left. Thus, the median is a more ap-
propriate representative of  reaction 
time differences.

5.54 a.  Fund A: 95% C.I. on the mean: 
13.65 6 (2.262) (15.87) /Ë10 1

(2.30, 25.00), median  20; 95% 
C.I. on the median: (y(2), y(9))
1 (28.5, 26.7)

Fund B: 95% C.I. on the mean: 
16.56 6 (2.262) (16.23) /Ë10 1

(4.95, 28.17), median  16.6; 95% 
C.I. on the median: (y(2), y(9)) 1

(22.1, 31.9)
b.  The normal probability and box 

plots are given at right.
      Based on the boxplots and nor-

mal probability plots, the median 
is the more appropriate measure 
for fund A, and the mean is more 
appropriate for fund B.
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5.62 a. y  74.2; 95% C.I.: 74.2 6 (2.145)(44.2) / Ë15 1 (49.72, 98.68)
b. H0: m # 50 versus Ha: m . 50,
     n  15, a  .05

     p-value  Pat $
74.2 2 50

44.2 /Ë15
b   P(t $ 2.12)

                    .0262 , .05  a
     Yes, there is sufficient evidence to conclude that the average daily output is greater than 50 tons of ore.

5.64 a. The summary statistics are given here:

Time Mean Std Dev n 95% C.I.

6 a.m. .128 .0355 15 (.108, .148)
2 p.m. .116 .0406 15 (.094, .138)
10 p.m. .142 .0428 15 (.118, .166)
All day .129 .0403 45 (.117, .141)

b. No, the three C.I.s have a considerable overlap.
c. H0 : m $ .145 versus Ha : m , .145

p-value  Pat #
.129 2 .145

.0403 /Ë45
b   P(t # 22.66)  .0054

There is significant evidence (very small p-value) that the average SO2 level using the new scrubber is less than .145.

5.66 n  
112.36 2 2 11.96 2 2

11 2 2
  586.9 1 n  587

5.68 n  40, y  58, s  10

99% C.I. on m: 58 6 (2.708)(10) / Ë40 1 (53.7, 62.3)
5.76 a. Let mC  mBefore 2 mAfter. The probabilities of Type II error are computed using Table 3 in the Appendix with 

d  
0mC 2 0 0

7.54
 and are given here:

mC 21.0 22.0 23.0 24.0 25.0 26.0 27 .0 28.0 29.0
d    0.13      .27     .40    0.53    0.66     .80     .93    1.06    1.19
b(mC)     0.89    0.81    0.68    0.54    0.39    0.25    0.14    0.07    0.03

The probabilities of Type II error are large for values of mC, which are of practical importance.
b.  Since the probabilities of Type II errors are large, the sample size should be increased. The models, ages, and conditions of the cars 

used in the study should be considered. The type of driving conditions and experience of drivers are also important factors to be 
considered in order for the results to be generalizable to a broad population of potential users of the device.

Chapter 6: Inferences Comparing Two Population Central Values

6.5 a. H0: m26 2 m5 $ 0 versus Ha: m26 2 m5 , 0; reject H0 if t # 21.812.

t 
165.8 2 378.5

19.9Å
1
6

1
1
6

   218.51 , 21.812 1 Reject H0 and conclude there is significant evidence that m26 is less than m5, with 

p-value , .0005.
b.  The sample sizes are too small to evaluate the normality condition, but the sample variances are fairly close, considering the 

sample sizes. We would need to check with the experimenter to determine if the two random samples were independent.
c.  A 95% C.I. on the mean difference is (2238.3, 2187.1), which indicates that the average warm temperature rat blood pressure is 

between 187 and 239 units lower than the average 5°C rat blood pressure.
6.7 a.  H0: mU # mS versus Ha: mU . mS; p-value , .0005 1 The data provide sufficient evidence to conclude that successful companies 

have a lower percentage of returns than unsuccessful companies.
b. n1 1 n2 2 2  98  df for pooled t test. The printout shows df  86, which is the df for the separate variance test.
c.  The boxplots indicate that both data sets appear to be from normally distributed populations; however, the successful data sets 

indicate a higher variability than the unsuccessful.
d.  A 95% C.I. on the difference in the mean percentages is (2.15%, 4.35%) 1 We are 95% confident that successful businesses 

have roughly 2% to 4.5% fewer returns.
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6.11 a. H0: m96 $ m82 versus Ha: m96 , m82;

t 
15.52 2 54.30

Å
15.96 2 2

13
1

115.7 2 2

13

  28.35 1 with df  13, p-value , .0005 1

Reject H0 and conclude the data provide sufficient evidence that there has been a 
significant  decrease in mean PCB content.

b.  A 95% C.I. on the difference in the mean PCB contents of herring gull eggs is 
(248.7, 228.9), which would indicate that the decrease in mean PCB content from 
1982 to 1996 is between 28.9 and 48.7.

c. The boxplots are given at right.
The boxplots of the PCB data from the two years both appear to support random 
samples from normal distributions, although the 1982 data are somewhat skewed 
to the left. The variances for the two years are substantially different; hence, the 
separate variance t test was applied in part (a).

d.  Since the data for 1982 and 1996 were collected at the same sites, there may be cor-
relation between the two years. There may also be spatial correlation depending 
on the distance between sites.

6.27 a.  To conduct the study using independent samples, the 30 participants should be 
very similar  relative to age, body fat percentage, diet, and general health prior to 
the beginning of the study. The 30 participants would then be randomly assigned 
to the two treatments.

b.  The participants should be matched to the greatest extent possible based on age, body fat, diet, and general health before the 
treatment is applied. Once the 15 pairs are configured, the two treatments are randomly assigned within each pair of participants.

c.  If there is a large difference in the participants with respect to age, body fat, diet, and general health and if the pairing results 
in a strong positive correlation in the responses from paired participants, then the paired procedure would be more effective. If 
the participants are quite similar in the desired characteristics prior to the beginning of the study, then the independent samples 
procedure would yield a test statistic having twice as many df as the paired procedure and hence would be more powerful.

6.35 a.  The boxplot and normal probability plots both indicate that the distribution of the data is somewhat skewed to the left. Hence, 
the Wilcoxon would be more appropriate, although the paired t test would not be inappropriate, since the differences are nearly 
normal in distribution.

b.  H0: The distribution of differences (female minus male) is symmetric about 0 versus Ha: The differences (female minus male) 
tend to be larger than 0.
With n  20, a  .05, T  T2, reject H0 if T2 # 60.
From the data, we obtain T2  18 , 60; thus, reject H0 and conclude that repair costs are generally higher for female customers.

6.43 a. H0: mNarrow  mWide versus Ha: mNarrow 2 mWide;

t 
118.37 2 110.20

Å
17.87 2 2

12
1

14.71 2 2

15

  3.17 1 with df < 17, .002 , p-value , .010 1  

Reject H0 and conclude there is sufficient evidence in the data that the two types of jets have different average noise levels.
b. A 95% C.I. on mWide 2 mNarrow is (2.73, 13.60).
c.  Because maintenance could affect noise levels, jets of both types from several different airlines and manufacturers should be 

selected. They should be of approximately the same age. This study could possibly be improved by pairing narrow and wide body 
airplanes based on factors that may affect noise level.

6.47 a. H0: mWithin  mOut versus Ha: mWithin 2 mOut

Since both n1 and n2 are greater than 10, the normal approximation can be used.
T  122, mT  (12)(12 1 14 1 1) /2  162, s  Ë 112 2 114 2 112 1 14 1 1 2 /12  19.44

z  
122 2 162

19.44
  2.06 1 p-value  .0394 1  

Reject H0 and conclude the data provide sufficient evidence that there is a difference in average population abundance.
b.  The Wilcoxon rank sum test requires independently selected random samples from two populations that have the same shape 

but may be shifted from one another.
c.  The two population distributions may have different variances but the Wilcoxon rank sum test is very robust to departures from 

the required conditions.
d.  The separate variance test failed to reject H0 with a p-value of .384. The Wilcoxon test rejected H0 with a p-value of .0394. The 

difference in the two procedures is probably due to the skewness observed in the outside data set. This can result in inflated 
p-values for the t test, which relies on a normal distribution when the sample sizes are small.

6.51 a. H0: mLow  mCon versus Ha: mLow, 2  mCon
Separate variance t test: t  22.09 with df < 35, p-value  .044. 1  
Reject H0 and conclude there is significant evidence of a difference in the mean drop in blood pressure between the low-dose and 
control groups.

b.  95% C.I. on mLow 2 mCon: (251.3, 20.8); that is, the low-dose group’s mean drop in blood pressure was, with 95% confidence, 51.3 
to .8 points less than the mean drop observed in the control group.

c.  Provided the researcher independently selected the two random samples of participants, the conditions for using a pooled t test were 
satisfied, since the plots do not detect a departure from a normal distribution and the sample variances are similar in size.

Ratio of DDE to PCB in herring gull eggs
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6.57 Let d  before 2 after
a. H0: mBefore  mAfter versus Ha: mBefore 2 mAfter;

t  
20.122

0.106 /Ë15
  24.45 with df  14, p-value , .0005. 1

Reject H0 and conclude the data provide sufficient evidence that the mean soil pH has changed after mining on the land.
b. Ha: mBefore 2 mAfter
c. 99% C.I. on mBefore 2 mAfter: (.04, .20)
d.  The findings are highly significant (p-value , .0005), statistically. The question is, How significant are the results in a practical 

sense? Unless a change in pH of between .04 and .20 has an impact on the soil with respect to common usages of the soil, the 
mining company should not be cited.

6.59 a. The average potency after 1 year is different than the average potency right after production.
b. The two test statistics are equal, since the sample sizes are equal: t  t9  4.2368.
c.  The p-values are different, since the test statistics have different degrees of freedom (df): for t, p-value  .0006, and for t9, p-value 

 .0005.
d. In this particular experiment, the test statistics reach the same conclusion, reject H0.
e.  Because s1 < s2 and a test of equal variances has p-value equal to .3917, the pooled t test (t) would be the more appropriate test statistic.

Chapter 7: Inferences About Population Variances

7.7 a.  The middle 50% of the data are symmetric, but there are four outliers. Since the sample size is 150, a few outliers would be 
expected. However, 4 out of 150 may indicate the population distribution may have heavier tails than a normal distribution. 
This may cause the values of the sample standard deviation to be inflated.

b. 99% C.I. on s: aÅ
1150 2 1 2 19.537 2 2

197.21
, Å

1150 2 1 2 19.537 2 2

108.29
b 1 (8.290, 11.187)

c. H0: s2 # 90 versus Ha: s2 . 90

     With a  .05, reject H0 if 
1n 2 1 2 1s 2 2

90
 $ 178.49.

    
1150 2 1 2 19.537 2 2

90
  150.58 , 178.49 1

     Fail to reject H0 and conclude the data fail to support the statement that s2 is greater than 90.
7.19 The skewness in the data produces outliers, which may greatly distort both the mean and the standard deviation. Thus, BFL’s test 

statistic minimizes both of these effects by replacing the mean with the median and using the absolute deviations about the median 
in place of the squared deviations about the mean.

7.20 a. The boxplots are at right.
The boxplots and normal probability plots indicate that both samples are from 
normally  distributed populations.

b. The C.I.s are given here:

   95%  95% 
Method n Mean C.I. on m Std. Dev. C.I. on s

    I 10 38.79 (37.39, 40.19) 1.9542 (1.34, 3.57)
   II 10 40.67 (36.68, 44.66) 5.5791 (3.84, 10.19)

c. A comparison of the population variances yields:
     H0: s2

I  s2
II  versus Ha: s2

I 2 s2
II

      With a  .01, reject H0 if 
s2

I

s2
II

#
1

6.54
  .15 or 

s2
1

s2
2

 $ 6.54.

     s2
1 /s2

2  (5.5791)2 /(1.9542)2  8.15 . 6.54 1

Reject H0 and conclude there is significant evidence that the population variances 
are different.
A comparison of the population means using the separate variance t test yields:
     H0: mI  mII versus Ha: mI 2 mII ;

     t 
38.79 2 40.67

Å
11.9542 2 2

10
1

15.5791 2 2

10

  21.01 with df  11 1 p-value  .336 1

Fail to reject H0 and conclude that the data do not support a difference in the tread wear means for the two brands of tires. How-
ever, Brand I has a more uniform tread wear, as reflected by its significantly lower standard deviation.

7.22 a. H0: s2
1 $ s2

2 versus Ha: s2
1 , s2

2

With a  .05, reject H0 if 
s2

2

s2
1

 $ 3.18.
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s2
2 /s2

1  (5.9591)2 /(3.5963)2  2.75 , 3.18 1

Fail to reject H0 and conclude there is not significant evidence that portfolio 2 has 
a larger variance than portfolio 1.

95% C.I. on 
s2

2

s2
1

: a 15.9591 2 2

13.5963 2 2 1.248 2 , 15.9591 2 2

13.5963 2 2 14.03 2 b 1 (.68, 11.07)

b. p-value  P(F(9,9) $ 2.75) 1 .05 , p-value , .10
c. The boxplots are given at right.

From the boxplots, the condition of normality appears to be satisfied for 
both portfolios.

7.24 The boxplots are given at right.
The boxplots indicate that both samples are from populations that are normally 
distributed but that have different levels of variability.
The C.I.s are given here:

Preparation n Mean 95% C.I. on m St. Dev.

 A 13 27 .62 (21.68, 33.55) 9.83

 B 13 34.69 (32.26, 37 .13) 4.03

A comparison of the population variances yields:

H0: s2
A  s2

B versus Ha: s2
A 2 s2

B;

s2
A /s2

B  (9.83)2 /(4.03)2  5.955 1 .001 , p-value , .005 1

 Reject H0 and conclude there is significant evidence that the population variances 
are different.

A comparison of the population means using the separate variance t test yields:

   H0: mA  mB versus Ha: mA 2 mB;

   t 
27.62 2 34.69

Å
19.83 2 2

13
1

14.03 2 2

13

  22.40 with df  15 1 p-value  .030 1

Reject H0 and conclude that the data indicate a difference in the mean length of 
time people remain on the two therapies.

Chapter 8: Inferences About More Than Two Population Central Values

8.7 a. The AOV F test yields F 
2.292 /2

11.738 /18
 2.06 ,  3.55  F.05, 2, 18. 

Thus, there is not significant evidence of a difference in the mean soil densities for 
the three grazing regimens. 

b.  The associated p-value is p-value  1 2 pf(2.06, 2,18)  .156 . .05, thus  
confirming our conclusion in part (a).

c.  Based on a plot of the residuals versus the fitted values, the condition of constant 
variance does not appear to be violated. This is confirmed by the BFL test, which has a p-value equal to 0.366. 
The normal quantile plot of the residuals indicates somewhat of a deviation from normality with the test for normality having 
p-value  0.049. Based on the robustness of the F text with modest deviations from normality, the p-value from the F test will 
be considered valid. 

8.27 a.  The BFL test yields L  2.74 with p  .042. Thus, there is significant evidence that the equal variance condition is also violated.
b. The AOV table is given here:

Source df SS MS F p-value

Supplier  4 28,024 7,006.09 265.94 , .0001

Error 40 1,054 26.34

Total 44 29,087

With p-value , .0001, reject H0 and conclude there is a significant evidence of a difference in the mean deviations of the five 
suppliers.

 c.  The Kruskal–Wallis test yields H  41.59 with df  2 1 p-value , .0001. Thus, reject H0 and conclude there is a significant 
difference in the distributions of deviations for the five suppliers.
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8.29 a.  Based on the boxplots and the normal probability plot, the condition of normality of the population distributions appears to be 
satisfied. 
The BFL test yields L  .17 with p-value  .913 1 There is not significant evidence of a difference in the four population 
 variances.

b.  From the AOV table, we have p-value , .001. Thus, there is significant evidence that the mean ratings differ for the four groups.

c. 95% C.I. on mI : 8.3125 6 2.048
Ë.9763

Ë8
  (7 .6, 9.0)

   95% C.I. on mII : 6.4375 6 2.048
Ë.9763

Ë8
  (5.7, 7 .1)

   95% C.I. on mIII : 4.0000 6 2.048
Ë.9763

Ë8
  (3.3, 4.7)

   95% C.I. on mIV : 2.5000 6 2.048
Ë.9763

Ë8
  (1.8, 3.2)

8.31 a. The model for this experiment is given by

 yij  m 1 ti 1 eij;  i  1, 2, 3  and  j  1, · · · , ni

where n1  12, n2  14, n3  11; m  overall mean; ti  effect of ith division; eij  random error  associated with the jth response from 
the ith division.

F  
286.3 /2

611.1 /34
  7.97 with p-value  1 2 pf (7.97, 2, 34)  .0015 , .01 1

There is significant evidence of a difference in the mean responses for the three divisions.
8.33 The Kruskal2Wallis test yields H9  16.56 with df  3 1 p-value , .001.

There is significant evidence of a difference in the distribution of the yields for the four varieties.
The two procedures yield similar conclusions.

8.35 a. F 
4,020.0 /3
881.9 /36

  54.70 with df  3, 36 1 p-value , .001 , .05 1

There is significant evidence of a difference in the average leaf sizes under the four growing  conditions.

b. 95% C.I. on mA : 23.37 6 2.028
Ë881.9 /36

Ë10
  (20.20, 26.54)

   95% C.I. on mB : 8.58 6 2.028
Ë881.9 /36

Ë10
  (5.41, 11.75)

   95% C.I. on mC : 14.93 6 2.028
Ë881.9 /36

Ë10
  (11.76, 18.10)

   95% C.I. on mD : 35.35 6 2.028
Ë881.9 /36

Ë10
  (32.18, 38.52)

The C.I. for the mean leaf size for condition D implies that the mean is much larger for condition D than for the other 
three conditions.

c. F 
18.08 /3

103.17 /36
  2.10 with df  3, 36 1 .05 , .10 , p-value , .25 1

There is not significant evidence of a difference in the average nicotine contents under the four growing conditions.
d. From the given data, it is not possible to conclude that the four growing conditions produce different average nicotine contents.
e. No. If the testimony was supported by this experiment, then the test conducted in part (c) would have had the opposite conclusion.

8.37 a. Generate a plot for each diet.
b. The summary statistics are given here:

Diet n Mean Variance

Control 6 3.783 0.278
Control 1 level 1 of A 6 5.500 0.752
Control 1 level 2 of A 6 6.983 0.334
Control 1 level 1 of B 6 7 .000 0.128
Control 1 level 2 of B 6 9.383 0.086

c.  The BFL test yields L  2.23 with p-value  .095 1 There is not significant evidence of a difference in the five variances. The 
boxplots do not reveal any deviations from the normality  condition.

d. F  
103.04 /4
7.885 /25

  81.67 with df  4, 25 1 p-value , .001 , .05 1

There is significant evidence of a difference in the average weight gains under the five diets.
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8.39 F  
1,146.33 /2
219.67 /15

  39.14 with df  2, 15 1 p-value , .001 , .05 1

There is significant evidence of a difference in the average seedling heights for the three groups.
8.41 The value of the Kruskal–Wallis statistic is identical to the value calculated prior to replacing 9.8 with 15.8. This will not happen 

in general, but 9.8 was the largest value in the original data, and, hence, its rank would not be altered by increasing its size. If 
there is an extreme value in the data set, it may greatly alter the conclusion reached by the AOV F test. The Kruskal–Wallis test 
is not sensitive to extreme values, since it just replaces these extremes with their corresponding ranks.

8.43 The Kruskal–Wallis test yields identical results for the transformed and original data because the transformation was strictly 
 increasing, which maintains the order of the data after the transformation has been performed.
 H  9.89 with df  2 1 .005 , p-value , .01 , .05 using the chi-square table

Thus, our conclusion is the same as was reached using the transformed data.

Chapter 9: Multiple Comparisons

9.5 a. l1  4m1 2 m2 2 m3 2 m4 2 m5

b. l2  3m2 2 m3 2 m4 2 m5

c. l3  m3 2 2m4 1 m5

d. l4  m3 2 m5

9.13 The boxplot indicates the distribution of the residuals is slightly right skewed. This is confirmed with an examination of the normal 
probability plot. The BFL test yields L  .24 with p-value  .917 . Thus, the conditions needed to run the AOV F test appear to be 
satisfied. From the output, F  15.68 with p-value , .0001 , .05. Thus, we reject H0 and conclude there is significant evidence of 
a difference in the average weight losses obtained using the five different agents.

9.17 a. l1  mA1
1 mA2

1 mA3
1 mA4

2 4mS

b. l2  mA1
2 mA2

1 mA3
2 mA4

c. l3  mA1
1 mA2

2 mA3
2 mA4

d. l4  mA1
1 mA3

2 2mS

9.20 a. Using Dunnett’s procedure: D  (1.94) Ë2 152.62 2 /30  3.63.
 y1 2 yC  5.2 . 3.63,  y2 2 yC  4.3 . 3.63 1

There is significant evidence that both m1 and m2 are larger than mC.
b.  Because the goal of the study was to determine if the use of herbicides increased the mean yield, the appropriate procedure would 

be one-sided.
c. There is significant evidence that both herbicides have larger mean yields than the control.

Chapter 10: Categorical Data

10.1 b. n  35, p̂   .80 1 y  28 1 y~  28 1 .5(2.576)2  31.318,  n~  35 1 (2.576)2  41.636, p~   31.318 /41.636  .7522 1 99% C.I. is 
.7522 6 2.576Ë.7522 11 2 .7522 2 /41.636  (.580, .925). Without correction C.I. is .8 6 2.576)Ë 1.8 2 11 2 .8 2 /35  (.626, .974).

10.10 a.  By grouping the classes into similar types, it might be possible to summarize the data more concisely. Percentages are helpful 
but would not add to 100% because one adult might use more than one of the remedies. The numerator of the percentage 
would refer to users of an OTC remedy and the denominator to the number of patients.

b.  A 95% C.I. using the normal approximation requires that both np̂ and n 11 2p̂ 2  exceed 5. This condition would hold in every 
OTC category except room vaporizers and nasal sprays.

10.35 H0: p1  .0625, p2  .25, p3  .375, p4  .25, p5  .0625

 Ha: At least one of the pis differs from its hypothesized value.

 Ei  npio 1 E1  125(.0625)  7 .8125, E2  125(.25)  31.25,

 E3  125(.375)  46.875, E4  125(.25)  31.25, E5  125(.0625)  7.8125

 x2  g 5
i1

1ni 2 Ei 2 2

Ei
 7.608 with df  5 2 1  4 1 p-value . .107 1

 Fail to reject H0. The data appear to fit the hypothesized theory that the securities analysts perform no better than chance, how-
ever, we have no indication of the probability of a Type II error.

10.39 a. From the data, y 
1

100
g i 1ni 2 1yi 2  5.57.

 s2 
1

99
g i ni 1yi 2 5.57 2 2  1,056.5 /99  10.67

b.  Using m  5.5, the Poisson table yields the following probabilities after combining the first two categories and combining the 
last four  categories, so that Ei . 1 and only one Ei is less than 5:
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k # 1 2 3 4 5 6 7 8 $ 9

pi  P(y  k)       .0266       .0618        .1133         .1558        .1714         .1571         .1234       .0849         .1057
Ei  100pi 2.66 6.18 11.33 15.58 17 .14 15.71 12.34 8.49 10.57

 x2  g 9
i1

1ni 2 Ei 2 2

Ei

 13.441 with df  9 2 2  7 1 p-value  .062.

Fail to reject H0. The conclusion that the number of fire ant hills follows a Poisson distribution appears to be supported by 
the data. However, we have not computed the probability of making a Type II error, so the conclusion is somewhat tenuous.

c.  The fire ant hills are somewhat more clustered than randomly distributed across the pastures,  although the data failed to reject 
the null hypothesis that the fire ant hills were randomly distributed.

10.67 a. Under the hypothesis of independence, the expected frequencies are given in the following table:

 Opinion

Commercial 1 2 3 4 5

A 42 107 78 34 39
B 42 107 78 34 39
C 42 107 78 34 39

b. df  (3 2 1)(5 2 1)  8
c. The cell chi-squares are given in the following table:

 Opinion

Commercial 1 2 3 4 5

A 2.3810 3.7383 2.1667 4.2353 0.6410
B 2.8810 10.8037 0.0513 5.7647 21.5641
C 0.0238 1.8318 1.5513 0.1176 14.7692

x2  g i, j 

1nij 2 Eij 2 2

Eij

 72.521 with df  8 1 p-value , .001 1

Reject H0. There is significant evidence that the commercial viewed and opinion are related.
10.78 a. Control 10%; low-dose 14%; high-dose 19%

H0: p1  p2  p3 versus Ha: The proportions are not all equal, where pj is probability of a rat in group j having one or more 
tumors.

 Eij  100n.j /300 and x2  g i,j 

1nij 2 Eij 2 2

Eij

 3.312 with df  (2 2 1)(3 2 1)  2 and p-value  .191

Because the p-value is fairly large, we fail to reject H0 and conclude there is not significant evidence of a difference in the prob-
ability of  having one or more tumors for the three rat groups.

b. No, since the chi-square test failed to reject H0.
10.81 a. The results are summarized in the following table, with ŝp̂  Ë 1p̂2 11 2p̂ 2 /500 and 95% C.I. p̂ 6 1.96 ŝp̂ :

Question p̂  ŝp̂   95% C.I.

Did not explain? .254 .01947 (.216, .292)
Might bother? .916 .0124 (.892, .940)
Did not ask? .471 .02232 (.427, .515)
Drug not changed? .877 .0147 (.848, .906)

b.  It would be important to know how the patients were selected, how the questions were phrased, the condition of the illness, and many 
other factors.

10.83 The combined rate for Anglo-Saxon and German: p̂1 
7 1 6

55 1 58
 .1150

 The combined rate for the other four groups: p̂2 
34 1 38 1 20 1 31
52 1 54 1 30 1 49

 .6649

 ŝp̂12p̂2
 Å

1.1150 2 11 2 .1150 2
113

1
1.6649 2 11 2 .6649 2

185
 .0459
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 H0: p1 $ p2 versus Ha: p1 , p2  z 
.1150 2 .6649

.0459
 211.98 1 p-value , .0001 1

 Reject H0 and conclude there is substantial evidence that the rate for combined group 1 is less than the rate of combined group 2.
10.85 y  g i yi /500  1.146

After combining the last three categories, so that all Ei . 1 and only 1 Ei , 5, we obtain the following using a Poisson distribution 
with m  1.146:

Mites/Leaf (ki) 0 1 2 3 4 $ 5

pi  P(y  ki) .3179 .3643 .2088 .0797 .0228 .0065
Ei  500pi 158.95 182.15 104.40 39.85 11.40 3.25
ni 233 127 57 33 30 20

 x2  g i 
1ni 2 Ei 2 2

Ei

 190.57 with df  6 2 1  5 1

 p-value , .001 1

 Reject H0 and conclude there is significant evidence that the 
data do not fit a Poisson distribution with m  1.146.

Chapter 11: Linear Regression and Correlation

11.18 The original data and the log base 10 of recovery are given 
below:

Data Display

Cloud

1
2
3
4
5
6
7
8
9
10
11
12
13

0
5
10
15
20
25
30
35
40
45
50
55
60

70.6
52.0
33.4
22.0
18.3
15.1
13.0
10.0
9.1
8.3
7.9
7.7
7.7

1.849
1.716
1.524
1.342
1.262
1.179
1.114
1.000
0.959
0.919
0.898
0.886
0.886

Time Recovery LogRecovery

a. Scatterplot of the data is given at right.
b. Scatterplot of the data using log10(y) is given at right.

11.20 H0: b1  0 versus Ha: b1 2 0
Test statistic: |t|  9.64 
p-value  2P(t4 . 9.64) , .0001 , .05 1 Reject H0 and con-
clude there is significant evidence that b1 is not 0.

11.32 a. ŷ   21.733333 1 1.316667x
b.  The p-value for testing H0: b1 # 0 versus Ha: b1 . 0 is 

p-value  P(t10 $ 6.342) , .0005 1 Reject H0 and con-
clude there is significant  evidence that the slope b1 is 
greater than 0.

11.34 a.  ̂y   99.77704 1 51.9179x 1 When x  2.0, E(y)  99.77704 
1 (51.9179)(2.0)  203.613.

b. The 95% C.I. is given in the output as (198.902, 208.323).
11.38 a. Scatterplot of the data is given at right.

b. ŷ   3.37 1 4.065x
c.  The residual plot indicates that higher-order terms in x 

may be needed in the model.
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Logarithm of biological recovery as a function of exposure time
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Height of detergent versus amount of detergent
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11.74 An examination of the data in the scatterplot indicates that two of the 
points may possibly be outliers, since they are somewhat below the general 
pattern in the data. This may indicate that the data are nonnormal. Also, 
there appears to be an increase in the variability of the rate values as the 
mileage increases. This would indicate that the condition of constant vari-
ance may be violated.

11.78 a.  The point is a very high influence outlier, which has distorted the slope 
considerably.

b.  The regression line with the one point eliminated has a negative slope, 
b̂1   2.0015766. This confirms the opinion of the group, which had 
argued that the smallest towns would have the highest per capita 
expenditures, with decreasing expenditures as the size of the towns 
increased.

11.84 a.  The estimated intercept is b̂0   53.99. This is the estimated mean price 
of houses of size 0. This could be interpreted as the estimated price of 
land upon which there is no building. However, there were no data val-
ues with x near 0. Therefore, the estimated intercept should not be di-
rectly interpreted but just taken as a portion of an overall model.

b.  A slope of 0 would indicate that the estimated mean price of houses 
does not increase as the size of the houses increases. That is, large 
houses have the same price as small houses. This is not very realistic; 
t  12.31 with df  54 1 p-value  Pr(t54 $ 12.31) , .0005. Thus, 
there is highly significant evidence that the slope is not 0.

c.  A 95% C.I. for b1 is 59.040 6 (2.005)(4.794) 1 (49.428, 
68.652).

11.88 Scatterplot of the data is given at right.
There appears to be a curvature in the plotted points, which 
would indicate that a straight-line model is not appropriate to 
model sales as a function of density.

11.90 a.  ̂y   47.020 1 .3075x. The estimated slope b̂1   .3075 can 
be interpreted as follows: There is a .3075 increase in aver-
age durability when the concentration is increased 1 unit.

b.  The coefficient of determination, R2  11.6%. That is, 
11.6% of the variation in durability is explained by its lin-
ear relationship with concentration. Thus, a straight-line 
model relating durability to concentration would not yield 
very accurate predictions.

11.92 Scatterplot of the data is given at right.
a.  From the scatterplot, there is a definite curvature in the 

relation between durability and concentration. A straight-
line model would not appear to be appropriate.

b.  The coefficient of determination, R2, measures the strength 
of the linear (straight-line) relation only. A straight-line 
model does not adequately describe the relation between 
durability and concentration. This is indicated by the 
small percentage of the variation, 11.6%, in the values of 
durability explained by the model containing just a linear 
relation with concentration. A more complex relation 
exists  between the durability and concentration.

Chapter 12: Multiple Regression and the General Linear Model

12.10 a. The logarithm of the dose levels are given here:

Dose Level (x) 2 4 8 16 32
log(x)  .693 1.386 2.079 2.773 3.466

A scatterplot of the data is given on page 1139.
b. ŷ   1.2 1 7.021 ln(x)
c.  The model using ln(x) provides a better fit based on the 

scatterplot, and the residual plot appears to be a random 
scatter of points about the horizontal line, whereas there 
was a bit of curvature in the residual plot from the fit of the 
quadratic model.

12.12 b.  No, the two independent variables, distance and population, do not appear to be  severely collinear, based on the correlation 
(2.24) and the scatterplot.
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c.  There are two potential leverage points in the air miles direction (around 300 
and 350 miles). In addition, there is one possible leverage point in the population 
direction; this point has a value above 200.

12.22 a.  ̂y   7.20439 1 1.36291 METAL 1 .30588 TEMP 1 .01024 WATTS 2 .00277 
METXTEMP

b. The results of the various t tests are given here:

H0 Ha T.S. t Conclusion

b0  0 b0 2 0  t  .41 p-value  .6855 Fail to Reject H0
b1  0 b1 2 0  t  1.47 p-value  .1559 Fail to Reject H0
b2  0 b2 2 0  t  .19 p-value  .8522 Fail to Reject H0
b3  0 b3 2 0  t  2.16 p-value  .0427 Reject H0
b4  0 b4 2 0 t  2.04 p-value  .9717 Fail to Reject H0

Of the four independent variables, only WATTS appears to have predictive value 
given the remaining three variables have already been included in the model.

c.  t.025, 20  2.086 1 95% C.I. on b4 is given by 2.00277 6 (2.086) (.07722) 1

(2.164, .158).
d.  VIF measures how much the standand error of a regression coefficient (bi) is 

increased due to collinearity. If the value of VIF is very large, such as 10 or more, 
collinearity is a serious problem. The variables TEMP and METXTEMP have extremely large VIF values (250 and 246.4, respec-
tively). An examination of the Pearson correlations reveals that the correlation between TEMP and METXTEMP is .9831—that 
is, nearly a perfect correlation between the two variables. One of the variables, TEMP or METXTEMP, should be removed from 
the model and the coefficients of the remaining variables  recomputed.

12.28 a. For the reduced model: R2 is 89.53%, which is a reduction of 8.43 percentage points from the complete model’s R2 of 97.96%.
b. In the complete model, we want to test H0: b1  b3  0 versus Ha: b1 2 0 and/or b3 2 0.

For the reduced model, SS(Regression, Reduced)  (R2
Reduced)SS(Total)  (.895261)(99,379.032)  88,970.17157.

The F statistic has the form:

F  
3SSReg., Complete 2 SSReg., Reduced 4 / 1k 2 g 2

SS Residual, Complete / 3n 2 1k 1 1 2 4 
397,348.339 2 88,970.17157 4 / 13 2 1 2

2,030.693 / 3500 2 4 4   1,023.19

with df  2, 496 1 p-value  Pr(F2, 496 $ 1,023.19) , .0001 1  
Reject H0. There is substantial evidence to conclude that b1 2 0 and/or b3 2 0. Based on the F test, omitting age and debt frac-
tion from the model has substantially changed the fit of the model. Dropping one or both of these independent variables from 
the model will result in a decrease in the predictive value of the model.

12.32 The predicted y-value at x  3, w  1, v  6 is ŷ   33.000 with 95% P.I.: (21.788, 44.212). The  selected values of the independent 
variables are at the extremes of the data used to fit the model. Therefore, the prediction is identified as being computed at “very 
extreme X values.”

12.41 a.  For testing H0: b1  0 versus Ha: b1 2 0, is p-value , .0001. Thus, we can reject H0 and conclude there is significant evidence 
that the amount of additive is related to the probability of tumor development.

b. p̂ (100)  .827 with 95% C.I. (.669, .919)

12.47  a. F  
.894477 /4

11 2 .894477 2 / 143 2 5 2   80.53 with df  4, 38. The p-value  Pr(F4, 38 $ 80.53) , .0001 1  

Reject H0: b1  b2  b3  b4  0 and conclude that at least one of the four independent variables has predictive value for loan 
volume.

b.  Using a  .01, none of the p-values for testing H0: bi  0 versus Ha: bi 2 0 (.0999, .0569, .5954, and .3648, respectively) is less 
than .01. Thus, none of the independent variables provides substantial predictive value given the remaining three variables in 
the model. That is, given a model with three variables included in the model, the fourth variable does not add much when it is 
included.

c.  The contradiction is due to the severe collinearity that is present in the four independent variables. The F test demonstrates that 
as a group the four independent variables provide predictive value, but because the four independent variables are highly cor-
related, the information concerning their relationship with the dependent variable, loan volume, is highly overlapping. Thus, it is 
very difficult to determine which of the independent variables are useful in predicting loan volume.

12.51 a. ŷ   0.8727 1 2.548 size 1 .220 parking 1 .589 income
         (1.946)      (1.201)              (0.155)                   (0.178)
b. The interpretation of coefficients is given here:

Coefficient Interpretation

b̂0   y-intercept  The estimated average daily sales for the population of stores having 0 size, 0 parking, 0 income

b̂1 b̂SIZE  The estimated change in average daily sales per unit change in size, for fixed values of parking and income

b̂2  b̂PARKING The estimated change in average daily sales per unit change in parking, for fixed values of size and income

b̂3  b̂INCOME  The estimated change in average daily sales per unit change in income, for fixed values of size and parking
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c. R2  .7912 and se  .7724
d.  A better indicator of collinearity is the values for VIF or the R2 values from predicting each independent variable from the remain-

ing independent variables. Examining the correlations does not reveal any very large values. Only size and parking, with a correla-
tion of .6565 appear to be near a value that would be of concern relative to collinearity.

12.53 a. ŷ   102.708 2 .833 PROTEIN 2 4.000 ANTIBIO 2 1.375 SUPPLEM
b. se  1.70956
c. R2  90.07%
d.  There is no collinearity problem in the data set. The correlations between the pairs of independent variables are 0 for each 

pair, and the VIF values are all equal to 1.0. This total lack of collinearity is due to the fact that the independent variables are 
perfectly balanced. Each combination of PROTEIN and ANTIBIO values appears exactly three times in the data set. Each 
combination of PROTEIN and SUPPLEM occur twice, and so on.

12.55 a. ŷ   89.8333 2 .83333 PROTEIN
b. R2  .5057
c. In the complete model, we want to test
   H0: b2  b3  0 versus Ha: At least one of b2, b3 2 0.
   The F statistic has the form:

F  
3371.083 2 208.333 4 / 13 2 1 2

40.9166 / 318 2 4 4   27.84

with df  2, 14 1 p-value  Pr(F2, 14 $ 27.84) , .0001 1 Reject H0.
There is substantial evidence to conclude that at least one of b2, b3 2 0. Based on the F test, omitting x2 and/or x3 from the model 
would substantially change the fit of the model. Dropping ANTIBIO and/or SUPPLEM from the model may result in a large 
decrease in the predictive value of the model.

12.57 a. R2  .3844  38.44%
b. R2 has decreased dramatically to .0358  3.58%.
c. In the complete model, we want to test

H0: b2  b3  0 versus Ha: At least one of b2, b3 2 0.
The F statistic has the form:

F  
339.31706 2 3.66167 4 / 13 2 1 2

62.95698 / 367 2 4 4   17.93

with df  2, 63 1 p-value  Pr(F2, 63 $ 17.93) , .0001 1 Reject H0.
There is substantial evidence to conclude that at least one of b2, b3 2 0. Based on the F test, omitting MARGIN and/or IPCOST 
from the model would substantially change the fit of the model. Dropping MARGIN and IPCOST from the model will result in a 
large decrease in the predictive value of the model.

12.61 When NUMEMP  500, SIZE  2.5, PERSCOSTS  55, ŷ   69.7627%, and a 95% P.I. for y is (58.1829%, 81.3424%). The value 
88.9% falls outside the P.I. and hence would appear to be somewhat unreasonable in this situation.

Chapter 13: Further Regression Topics

13.21 a.  The estimated coefficient associated with promotion is 219.960. This indicates that for fixed values of price and category, the 
average value of sales is estimated to be reduced by 19.960 if a competing brand is having a promotion; otherwise, the average 
value of sales does not change.

b.  One would suspect that a promotion by a truly competing brand would result in a decrease in sales. The model predicts this result, 
since the estimated coefficient is negative.

c.  The t statistic for testing whether the promotion coefficient if different from 0 has p-value , .0001. Thus, there is significant evi-
dence that the promotion coefficient differs from 0.

13.23 When promotions are offered by a competing brand, PROMOTION  1, the model becomes:
ŷ   26.807 1 90.233 PRICE 1 .134 CATEGORY 1 287.609(1) 2 142.433 (PRICE)(1) 2 .024 (CATEGORY)(1)
ŷ    314.416 2 52.200 PRICE 1 .110 CATEGORY
When promotions are not offered by a competiting brand, PROMOTION  0, the model becomes:
ŷ    26.807 1 90.233 PRICE 1 .134 CATEGORY 1 287.609(0) 2 142.433 (PRICE)(0) 2 .024 (CATEGORY)(0)
ŷ    26.807 1 90.233 PRICE 1 .134 CATEGORY
The models for predicting sales have considerably different intercepts depending on whether or not there is a promotion for a 
competing brand. The partial slopes for PRICE for the two models have different signs and very different magnitudes. The change 
in sign is of interest. It demonstrates that when there is a promotion for a competing brand, if the price is increased, sales drop con-
siderably, whereas if there is not a promotion for a competing brand, a price increase does not result in a decrease in sales.

13.31 a. ŷ    22.704 1 .517 RATE5 1 1.450 UNEMPLOY 1 .0353 RT5*UNEP
The fitted model has R2  92.67%, and the three residual plots do not indicate any major pattern; thus, the model appears to fit 
quite well.

b. A check of model conditions:
 1.  Zero expectation: The model appears to not need any higher-order terms.
 2.  Constant variance: From the residuals versus predicted values, there does not appear to be an indication of unequal variation.
 3.  Normality: The boxplot appears slightly skewed to the right, but there are no outliers. There is a slight indication of nonnor-

mality in the normal probability plots. Neither of these indications appears to require a transformation of the data.
 4.  The Durbin–Watson statistic equals 2.403, which would indicate a mild negative serial correlation, but because it is less than 

2.5, a differencing of the data is probably unnecessary.
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13.33 The residual plot indicates that the model is underestimating y for small values of ŷ  
and overestimating y for large values of ŷ  . Thus, additional terms may be needed in the 
model. Since the data are quarterly earnings, there is the possibility of serial correlation. 
A plot of the residuals versus time would be recommended.

13.37 b. Linear model: ŷ   8.667 1 .575 DOSE
Quadratic model: ŷ   4.484 1 1.506 DOSE 2 .0270 (DOSE)2

c.  The quadratic model appears to be more appropriate: It has a larger R2 (88.15% 
versus 77.30%) and a smaller MS(Error) (7.548 versus 13.345); the term DOSE2 has 
p-value  .0062, which indicates that the quadratic term significantly improves the 
fit in comparison to the linear model; and the residuals are somewhat smaller in the 
quadratic model with a less apparent pattern when compared to the residuals from 
the linear model.

13.41 a. A scatterplot of the data is given at right.
It would appear that a quadratic model in machine speed is needed.

b. The estimated regression equation is
   ŷ   63.139 2 .70507x1 1 .0032768x2

1
c. A residual plot for the fitted model is given at right.

It would appear that the model is not an adequate represen-
tation of the variation in wear, since at some machine speeds 
all the residuals are positive and at other machine speeds 
all the residuals are negative. Although the model overall 
is providing an excellent fit to the data, this pattern would 
indicate that further modeling is needed. For example, there 
may be other independent variables besides machine speed 
that may affect wear.

13.43 The first fitted regression equation is

ŷ  60.477 2 .705x1 1 .00328x2
1 1 8.875x2

 The second fitted regression equation is

ŷ  42.28 2 .421x1 1 .00224x2
1 1 69.54x2 2 .949x1x2  

1 .00345x2
1x2

These two models provide only marginal improvement over 
the quadratic model in just x1. However, the pattern in the 
residual plot noted from the quadratic model in x1 is not as 
noticeable in the residual plots from these two models.
A residual plot of the first fitted model is given at right.

13.45 There is no indication of the plot of height by amount of 
a quadratic curvature. Hence, the second-order terms in 
amount are probably unnecessary.

13.49 a. The fitted model is ŷ   44.182 2 .494x 1 .00143x2.

b. From the output, F 
36.7 /3
91.8 /9

 1.20 1 p-value  .364.

Thus, there is not significant evidence of lack of fit of the 
model; higher-order terms in temperature (x) are not 
needed to adequately fit the data. 

c. There are no obvious patterns in the residual plot.

13.51 The calculations for the test of lack of fit are given here:

 x (Dose Level) 
_
yi Sj (yij 2

_
yi)2 ni 2 1

 2 5 8  2
 4 12 8  2
 8 16.667 4.667  2
 16 20 2  2
 32 25.333 20.667  2

 Total  43.334 10

SSPexp  43.334, dfexp  10

From the output from Exercise 13.37, SS(Residual)  90.579 and dfResidual  12.

The SSLack  90.579 2 43.334  47.245 and dfLack  12 2 10  2.
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F 
47.245 /2

43.334 /10
 5.45  df  2, 10 1 p-value  .0251

There is significant evidence of lack of fit of the quadratic model. Hence, higher-order terms in dose level, such as x3 and x4 may be 
required to improve the fit of the model.

13.63 a. The question is a test of H0: b1  b2  0 versus Ha: b1 2 0 and/or b2 2 0.

From the output, F 
MS 1Model 2
MS 1Error 2   15.987 with p-value , .0001 , .05 1

Reject H0 and conclude there is significant evidence that ROOMS and SQUARE FEET, taken together, contain information 
about PRICE.

b. Test H0: b1  0 versus Ha: b1 2 0;
t  .717 with p-value  .4822 . .05 1

Fail to reject H0 and conclude there is not significant evidence that the coefficient of ROOMS is different from 0.
c. Test H0: b2  0 versus Ha: b2 2 0;

t  1.468 with p-value  .1585 . .05 1

Fail to reject H0 and conclude there is not significant evidence that the coefficient of SQUARE FEET is different from 0.
13.65 The F test of the overall model is 4.42 with p-value  .0041.

The indicator variable RC3 measures the difference in risk of infection between hospitals in the south and west, holding all other 
variables constant. The coefficient of RC3 is b7, and we want to test H0: b7 # .5% versus Ha: b7 . .5%. The test statistic is

t 
b̂7 2 .5
SE 1b̂7 2


.7024 2 .5

.8896
 .23 with df  20

p-value  Pr(t20 . .23)  .4102 1

Fail to reject H0; there is not significant evidence that the infection rate in the south is at least .5% higher than in the west.
13.67 The following model is selected:

y  b0 1 b1 STAY 1 b3 INS 1 e

The R2 for this model is .5578 versus .6072 for the seven-variable model.
The MS(Error) for this model is 28.765 versus 25.546 for the seven-variable model.
A test of H0: Two-variable model versus Ha: Seven-variable model is given by testing the following  parameters in the seven-variable 
model:
H0: b2  b4  b5  b6  b7  0 versus Ha: At least one of b2, b4, b5, b6, b7 2 0;

F 
139.49805177 2 36.27961297 2 /5

25.54623394 /20
  .50 with df  5, 20 1 p-value  Pr(F5, 20 . .50)  .7726 1

Fail to reject H0; there is not significant evidence that any of the five parameters is not 0. Thus, there is not significant evidence of a 
difference between the two-variables and seven-variables models.
Based on the above test, the marginal difference in R2, and MS(Error), the model with fewer variables is the more desirable model.

Chapter 14: Analysis of Variance for Completely Randomized Designs

14.9 a. A profile plot of the data is given at right.
The profile plot indicates an increasing effect of 
product type as age increases.

b.  The p-value for the interaction term is .013. There 
is significant evidence of an interaction between 
the factors age and product type. Thus, the amount 
of difference in mean attention spans of children 
between breakfast cereals and video games would 
vary across the three age groups. From the profile 
plots, the estimated mean attention span for video 
games is larger than for breakfast cereals, with 
the size of the difference becoming larger as age 
 increases.

14.17 The necessary parameters are t  8, D  20, a  .05, 

 s  9 1 w  Å
r 120 2 2

12 2 16 2 19 2 2  .5556Ër

Determine r so that power is .80. Select values for r; 
compute v1  t 2 1  8 2 1  7, v2  t(r 2 1)  8(r 2 1),  
and f  5556 Ër; then use Table 14 with a  .05 and  
t  8 to determine power:
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r v2 f Power

5 32 1.24 .61
6 40 1.36 .73
7 48 1.47 .82

Thus, it would take seven reps to obtain a power of at 
least .80.

14.21 a.  The test for an interaction has F  11.34 with 
df  9, 16 which yields a p-value  0.0001. This im-
plies there is significant evidence of an interaction 
between Cu rate and Mn rate on  soybean yield.

b. Mn  110
c. Cu  7
d. (Cu, Mn)  (7, 110)

14.23 a. The profile plot is given at right.
There appears to be an interaction between Ca rate 
and pH with respect to the increase in trunk diam-
eters. At low pH value, a 200 level of Ca yields the 
largest increase, whereas at high pH value, a 100 level 
of Ca yields the largest increase in trunk diameter.

b. A model for this experiment is given here:
yijk  m 1 ti 1 bj 1 tbij 1 eijk; i  1, 2, 3, 4; j  1, 2, 3; k  1, 2, 3
where yijk is the increase in trunk diameter of the kth tree in soil having the ith pH level using the jth Ca rate,
ti is the effect of the ith pH level on diameter increase,
bj is the effect of the jth Ca rate on diameter increase, and
tbij is the interaction effect of the ith pH level and jth Ca rate on diameter increase.

c.  This is a completely randomized 4 3 3 factorial experiment with factor A: pH level and factor B: Ca rate. There are three com-
plete replications of the experiment. The AOV table is given here:

Source df SS MS F p-value

pH  3  4.461 1.487 21.94 .0001
Ca  2  1.467  .734 10.82 .0004
Interaction  6  3.255  .543   8.00 .0001
Error 24  1.627    .0678

Total 35 10.810

14.25 a. Using Tukey’s W procedure with a  .05, s2
e  MSE  .0678, qa(t, dferror)  q.05(3, 24)  3.53 1 W  (3.53) Å

.0678
3

 .53 1  

 Ca Rate

  100 200 300

pH  4 Mean 5.80 7 .33 6.37
 Grouping a c b
pH  5 Mean 7 .33 7 .27 7 .33
 Grouping a a a
pH  6 Mean 7 .40 7 .63 7 .17
 Grouping a a a
pH  7 Mean 7 .30 7 .10 6.60
 Grouping b ab a

b.  From the above table, we observe that at pH  5, 6 there is not significant evidence of a difference in mean increases in diameter 
between the three levels of Ca. However, at pH  4, 7 there is significant evidence of a difference, with Ca  200 yielding the 
largest increase at pH  4 and Ca  100 or 200 yielding the largest increase at pH  7. This illustrates the interaction between 
Ca and pH; i.e., the size of differences in the means across the levels of Ca depends on the level of pH.

14.27 a.  The design is a completely randomized 3 3 9 factorial experiment with five replications; factor A is level of severity and factor 
B is type of medication.

b. A model for this experiment is given here:
yijk  m 1 ti 1 bj 1 tbij 1 eijk;  i  1, 2, 3;  j  1, · · · , 9;  k  1, 2, 3, 4, 5
where yijk is the temperature of the kth patient having the ith severity level using the jth medication,
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ti is the effect of the ith severity level on temper-
atures,
bj is the effect of the jth medication on tempera-
ture, and
tbij is the interaction effect of the ith severity level 
and jth medication on temperature.

14.35 a.  The test for an interaction yields p-value  .0255. 
There is significant evidence that an interaction 
exists between ratio and supply in regard to the 
mean profit. The profile plot on the right displays 
the interaction.

Chapter 15: Analysis of Variance for Blocked Designs

15.7 The model conditions appear to be satisfied:
The normal probability plots and boxplots of the re-
siduals do not indicate nonnormality.
Plot of residuals versus estimated mean does not in-
dicate nonconstant variance.
Interaction plot indicates a potential interaction 
between subjects and type of music, but the indica-
tions are fairly weak.

15.11 a.  The boxplot and normal probability plot do not 
indicate a deviation from a normal distribution for 
the residuals.
The plot of residuals versus estimated means does 
not indicate a deviation from the constant variance 
condition.
Based on these plots, there is no indication of any 
deviations from the model conditions.

15.29 a. A profile plot of the data is given at right.
Based on the profile plot, the additive model ap-
pears to be appropriate because the three lines 
are relatively parallel. Note further that the plot-
ted points are means of a single observation and 
hence may be quite variable in their estimation 
of the population means mij. Thus, exact parallel-
ism is not required in the profile plots to ensure 
the validity of the additive model.
It would not be possible to test for an interac-
tion between  region and job type because there 
is only one observation per region–job type 
combination.

b. RE 1RCB,CR 2 
1b 2 1 2MSB 1 b 1t 2 1 2MSE

1bt 2 1 2MSE


18 2 1 2 16.089 2 1 18 2 13 2 1 2 1.422 2
1 18 2 13 2 2 1 2 1.422 2   5.09 1

It would take 5.09 times as many observations (approximately 41) per treatment in a completely randomized design to achieve 
the same level of precision in estimating the treatment means as was accomplished in the randomized complete block design.

c.  Other possible important factors may be average salaries of all government employees in the region, education requirements for 
the position, and so on.

15.33 a.  Randomized complete block design with the five specimens of fabrics serving as the blocks and the three dyes being the 
treatments.

b.  The test for the differences in mean quantities of the three dyes has p-value  .0100. Thus, there is  significant evidence of a 
difference in the mean quantities of the three dyes.
Using Tukey’s W procedure with a  .05, s2

e  MSE  34.367, qa(t, dferror)  q.05(3, 8)  4.04 1

W  (4.04) Å
34.367

5
  10.59 1

 Dye

  A B C

Mean 77 .40 84.60 92.80
Grouping a ab b
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c. t  3, b  5 1 RE 1RCB,CR 2 
15 2 1 2 123.567 2 1 15 2 13 2 1 2 134.367 2

1 15 2 13 2 2 1 2 134.367 2   .91 1

It would take .91 times as many observations (approximately 5) per treatment in a completely randomized design to achieve the 
same level of precision in estimating the treatment means as was accomplished in the randomized complete block design. Since 
RE was slightly less than 1, we would conclude that the blocking was not effective.

15.35 a. Latin square design with blocking variables farm and plot. The treatment is the five types of fertilizers.
b. There is significant evidence (p-value , .0001) the mean yields are different for the five fertilizers.

Chapter 16: The Analysis of Covariance

16.15 a.  Randomized complete block design with the three antidepressants as treatments, the age–gender combinations as six blocks, 
and the pretreatment rating serving as a covariate.

b. yi  b0 1 b1x1i 1 b2x2i 1 b3x3i 1 b4x1ix2i 1 b5x1ix3i 1 b6x4i 1 b7x5i 1 b8x6i 1 b9x7i 1 b10x8i 1 ei for i  1, . . . , 16
x1  covariate

x2  e 1
0

if
if

antidepressant B
otherwise

  x3  e 1
0

if
if

antidepressant C
otherwise

x4  e 1
0

if
if

observation in block 2
otherwise

 x5  e 1
0

if
if

observation in block 3
otherwise

x6  e 1
0

if
if

observation in block 4
otherwise

 x7  e 1
0

if
if

observation in block 5
otherwise

x8  e 1
0

if
if

observation in block 6
otherwise

16.19 a. Test for parallelism of the four treatment lines:

F 
13,316.8281 2 3,180.7299 2 / 175 2 72 2

3,180.7299 /72
  1.03, with df  3, 72 1  

p-value  Pr(F3, 72 $ 1.03)  .385 1  
There is not significant evidence that the lines are not parallel.

b. Test for difference in adjusted treatment means:

F 
18,724.7852 2 3,316.8281 2 / 178 2 75 2

3,316.8281
  40.76, with df  3, 75 1  

p-value  Pr(F3, 75 $ 40.76) , .000l 1

There is significant evidence that the adjusted mean ratings are different for the four socioeconomic classes.

c. m̂adj, 1  1 b̂0 1 b̂2 2 1 b̂1x..  (37 .197 2 22.490) 1 (.27472)(28.95)  22.66

m̂adj, 2  1 b̂0 1 b̂3 2 1b̂1x..  (37 .197 2 15.951) 1 (.27472)(28.95)  29.20

m̂adj, 3  1  ̂b0 1b̂4 2 1b̂1x..  (37 .197 2 14.784) 1 (.27472)(28.95)  30.37

m̂adj, 4  b̂0 1b̂1x..  37 .197 1 (.27472)(28.95)  45.15

SE 1m̂adf, 12  ÅMSEa 1
ni

1
1x1. 2 x.. 2 2

Exx
b  Å 144.2244 2 a 1

20
1

128.95 2 28.95 2 2

9135.8
b  1.4870

SE 1m̂adf, 22  ÅMSEa 1
ni

1
1x2. 2 x.. 2 2

Exx
b  Å 144.2244 2 a 1

20
1

128.70 2 28.95 2 2

9135.8
b  1.4871

SE 1m̂adf, 3 2  ÅMSEa 1
ni

1
1x3. 2 x.. 2 2

Exx
b  Å 144.2244 2 a 1

20
1

128.60 2 28.95 2 2

9135.8
b  1.4872

SE 1m̂adf, 4 2  ÅMSEa 1
ni

1
1x4. 2 x.. 2 2

Exx
b  Å 144.2244 2 a 1

20
1

129.55 2 28.95 2 2

9135.8
b  1.4876

t12(.05)y(2)(4), 75  t.00625, 75  2.559
95% C.I.s for the mean adjusted verbalization scores:
Socioeconomic class 1: 22.66 6 (2.559)(1.4870) 1 (18.9, 26.5)
Socioeconomic class 2: 29.20 6 (2.559)(1.4871) 1 (25.4, 33.0)
Socioeconomic class 3: 30.37 6 (2.559)(1.4872) 1 (26.6, 34.2)
Socioeconomic class 4: 45.15 6 (2.559)(1.4876) 1 (41.3, 49.0)
The four confidence intervals indicate that socioeconomic classes 1, 2, and 3 had similar adjusted mean verbalization scores, but 
socioeconomic class 4 appears to have considerably higher scores than the other three classes.
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Chapter 17: Analysis of Variance for Some Fixed-, Random-, and Mixed-Effects Models

17.17 a.  The mixed-effects model is most appropriate. The researcher would be concerned about specific chemicals, not a population of 
chemicals. He would want to determine which of the four chemicals is most effective in controlling fire ants.

b.  A fixed-effects model would be appropriate if the researcher was interested only in a set of specific locations, such as those with 
specific environmental conditions, or different levels of human activity or specific soil conditions. The fixed-effects model would 
have both the levels of chemicals and the levels of locations used in the experiment as the only levels of interest. The levels used 
in the experiment were not randomly selected from a population of levels.

17.23 a. A test for the equality of the treatment means in the fixed-effects model is
H0: t1  · · ·  tt  0 versus Ha: At least one ti is not 0.
In the fixed-effects model, we are testing the difference in the means for the t treatments used in the  experiment.

b. A test concerning the variability in the population of means in the random-effects model is
H0: s2

t  0 versus Ha: s2
t . 0.

In the random- effects model, we are testing the difference in a population of means from which the t treatments used in the 
experiment were randomly selected, and not just the means used in the study.

17.25 a. This is two reps of a completely randomized mixed model with
Factor A: Temperature is fixed with five levels
Factor B: Pane design is random with five levels
The AOV table is given here:

Source df SS MS EMS F p-value

Temp  4 39.7788 9.9447 s2
e 1 2s2

tb 1 10ut 14.50 .0001
Panes  4  7 .3228 1.8307 s2

e 1 2s2
tb1 10s2

b  2.67 .0703
Interaction 16 10.9712  .6857 s2

e 1 2s2
tb  2.97 .0072

Error 25  5.7800  .2312 s2
e 

Total 49 63.8528

b.  The interaction between temperature and pane design is significant (p-value  .0072), the main  effect of temperature is significant  
(p-value , .0001), but the main effect of pane design is not significant (p-value  .0703).

c.  In Exercise 14.31, all three terms were also significant at essentially the same p-values. Another difference is that in this case the 
inferences made concern the population of pane designs and not just the five designs used in the study.

d.  If there is a very large number of commercial thermal pane designs available, then it would be reasonable to randomly select 
a few for comparison in the study. If the only pane designs available are the five used in the study, then the fixed-effects model 
would be the appropriate model.

17.31 a. This is a nested design with samples nested within batches.
b. A model for this situation is:

yijk  m 1 ti 1 bj(i) 1 eijk

where yijk is the hardness of the kth tablet from sample j selected from batch i,
m is the overall mean hardness,
ti is the random batch effect, iid N(0, s2

t),
bj(i) is the random sample within batch effect, iid N(0, s2

b(t)),
eijk is the random effect due to all other factors, iid N(0, s2

e) , and
ti, bj(i), and eijk are all independent.

c. The AOV table is given here:

Source df SS MS F p-value

Batch  2  9,095.5238 4,547 .7619 101.635 .000l
Sample  6    268.4762   44.7460   1.533 .1851
Error 54  1,576.0000   29.1852
Total 62 10,940.0000

d.  There is significant evidence (p-value , .0001) that the batches produced different mean hardness values. There does not appear 
to be a significant (p-value  .1851) variation in the samples within the batches.

     The variance components are given here:

Source Var Component % of Total

Batch 214.429 87 .22
Sample   2.223  0.90
Error  29.185 11.87
Total 245.837

The major source of variation in hardness of the tablets is due to the batch-to-batch variation.
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Chapter 18: Split-Plot, Repeated Measures, and Crossover Designs

18.7 b. There appears to be an increase in the mean water loss as the level of saturation deficit increases.
18.9 a. The mean and standard deviation of percentage inhibition by treatment and time are given here:

 Time

Treatment (Means) 1 2 3 4 8

Antihistamine 20.70 28.57 31.24 29.44 25.63
Placebo 20.76 12.55 18.23 24.79 17 .57

Treatment (St. Dev.) 1 2 3 4 8

Antihistamine 23.98 12.00 14.30 12.65 14.26

Placebo 12.26 10.43 10.83 6.91 7 .83

The antihistamine-treated patients uniformly, across all five hours, have larger mean percentage inhibitions than the placebo- 
treated patients. The pattern for the standard deviations is similar, with somewhat higher values during the first hour after 
treatment.

b. A profile plot of the skin sensitivity data is given here:

Yes, the antihistamine-treated patients appear to have higher mean percentage inhibitions than the placebo-treated patients with 
the size of the difference between the placebo and antihistamine patients fairly consistent across the five hours of measurements.

18.19 Based on the results in the AOV table, the conclusions based on the profile plot are confirmed. There is a significant period effect 
(p-value , .0001), the effect due to formulations is not significant, (p-value  .733), and there is not an effect due to sequence (p-value 
 .071).

Chapter 19: Analysis of Variance for Some Unbalanced Designs

19.21 a. SSTadj  SSEred.1 2 SSEcomplete  100.21 2 17 .91  82.3, with df  8 2 5  3
SSRadj  SSEred.2 2 SSEcomplete   25.40 2 17 .91  7 .49, with df  8 2 5  3
SSCadj  SSEred.3 2 SSEcomplete  713.00 2 17 .91  695.10, with df  8 2 5  3 with df  18 2 3 2 11  4
Summarize these values in an AOV table:

Source df SS MS F p-value

Blend (corrected)  3  82.30 27 .43 7 .66 .0257
Driver (corrected)  3   7 .49 * * *
Model (corrected)  3 695.10 * * *
Error  5  17 .91  3.58 * *

Total 14 806.58 * * *
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19.23 c. The following table contains the intermediate calculations needed to obtain the sum of squares for the treatment:

Block Block Total Block Mean

  1 106 35.33
  2 125 41.667
  3 115 38.333
  4 115 38.333
  5 107 35.667
  6 157 52.333
  7 142 47 .333
  8 116 38.667
  9 154 51.333
 10 127 42.333

Treatment A B C D E F Total

yi 211    175       284    172       171        251   1,264
Bi 642    580       695    595      640       640
3yi. 2 Bi 29   255       157   279   2127       113          0
(3yi. 2 Bi)2   81 3,025 24,649 6,241 16,129 12,769 62,894

y..  1,264/30  42.133
TSS  g ij (yij 2 42.133)2  3,235.467

SSB  kg j (y.j 2 y..)2  3g j (y.j 2 42.133)2  1,034.80

SSTadj 
t 2 1

nk 1k 2 1 2 g i 1kyi. 2 B1i2 2 2 
6 2 1

130 2 13 2 13 2 1 2  162,894 2  1,747.056

SSE  TSS 2 SSTadj 2 SSB  3,235.467 2 1,747 .056 2 1,034.8  453.611
Summarizing in an AOV table:

Source df SS MS F p-value

Treatment (ADJ)  5 1,747 .056 349.411 11.55 .0001
Block  9 1034.8 * * *
Error 15 4,53.6111 30.241 * *

Total 29 3,235.467 * * *

Because the p-value , .0001, we conclude that there is significant evidence that the six antihistamines have different mean responses.
19.24 The adjusted treatment means are obtained from the equation:

m̂i  y.. 1
kyi. 2 B1i2

tl
 42.133 1

3yi. 2 B1i2
16 2 12 2

MSE  30.241  dfError  15  t.025, 15  2.131

W 
q.025 16, 15 2

!2 Å
2kMSE

tl
 12.64

The calculations are summarized in the following table:

Treatment A B C D E F

yi. 42.2 35 56.8 34.4 34.2  50.2
3yi. 2 Bi  29 255 157 279 2127 113
m̂i 41.38 37 .55   55.22   35.55   31.55    51.54

The groupings based on LSD are given here:

Treatment E D B A F C

m̂i 31.55 35.55 37 .55 41.38 51.54 55.22
Groups a a a ab bc c

The treatments with common letters are not significantly different. Thus, the significantly different pairs of treatments are
(E,F), (E,C), (D,F), (D,C), (B,F), (B,C), (A,C).
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19.25 a.  The experiment consists of the same three chains ob-
served in four different geographical areas. In each 
area, we obtain the weekly sales volume during two 
different weeks for each of the three chains. This is a 
randomized complete block experiment with blocks 
(weeks) and treatments consisting of a 4 3 3 factorial 
structure with factors area and chain. The model for 
this situation is:
yijk  m 1 gk 1 ti 1 bj 1 tbij 1 eijk

where yijk is the sales volume during week k at chain 
i in area j,
gk is the effect of week k,
ti is the effect of chain i,
bj is the effect of area j,
tbij is the interaction effect of chain i in area j, and
eijk is the random effect of all other factors.

b.  The study would then simply be a single replication 
of a complete randomized design with treatments 
consisting of a 4 3 3 factorial structure with factors 
area and chain. Since there is only a single replication, 
the interaction term cannot be estimated or tested. 
The model would reduce to:
yij  m 1 ti 1 bj 1 eij

c. The AOV table is given here:

Source df SS MS F p-value

Area 3 522.12 174.04 18.69 .0001
Chain 2 1,281.58 640.79 68.80 .0001
Area*chain 6 953.75 158.96 17 .07 .0001
Week 1 22.04 22.04 2.37 .1519
Error 11 102.46 9.31

Total 23 2,881.96

There is significant evidence (p-value , .0001) of an interaction between area and chain. The profile plot displays an estimate 
of the type of interaction involved in the two factors.

The chain having the greatest mean sales volume changes from area to area.
19.27 a. The model for this situation is:

yijk  m 1 gk 1 ti 1 bj 1 tbij 1 eijk

where yijk is the sales volume during week k at chain i in area j,
gk is the effect of week k,
ti is the effect of chain i,
bj is the effect of area j,
tbij is the interaction effect of chain i in area j, and
eijk is the random effect of all other factors.

b.  To test for an interaction between area and chain, we would fit a reduced model with the interaction removed. Compute the 
difference in SSE between the reduced and complete models.

c. The complete model is given in part (a). The reduced model is
yijk  m 1 gk 1 ti 1 bj 1 eijk

where the interaction is removed from the model.
If the interaction term is significant, then the test for main effects, in most situations, is not meaningful. If the interaction is found 
to be nonsignificant, then a test for main effect due to area can be conducted by fitting a reduced model with both the interaction 
term and the area main effect term deleted from the model. The complete model is now the model with both main effects but the 
interaction term removed. The reduced model is the model with both the interaction and the main effect due to area removed, 
but the main effect due to chain retained in the model. A similar procedure could be conducted to test for a main effect due to 
chain.

19.29 a. We can use a mixed-model approach to test the relevant hypotheses.
b.  The interaction between training and inspector and the main effects due to training and inspector are the factors to be tested. 

We obtain the following test statistics:

Training*inspector: F 
MST*I

MSE


1.5 /1
106.33 /16

  .23 1 p-value  .6380 1

There is not significant evidence of an interaction effect between inspectors and training.
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Training: To determine the test statistic for testing the main effect due to training, we need to examine the expected MS column. 
We note that under the null hypothesis of no main effect due to training, uT  0. This implies that under the null hypothesis of 
no main effect due to training
EMST  EMSL(T) 1 EMST*I 2 EMSE
Thus, the denominator of our test statistic is
M  MSL(T) 1 MST*I 2 MSE  14.17 1 1.5 2 6.65  9.02. Using the Satterthwaite approximation, we obtain df > 1.47. Therefore, 

F 
MST

M


130.67
9.02

 14.49
 
with p-value  .0987

There is not significant evidence of an effect due to training. That is, the additional training does not appear to have reduced the 
mean number of defects.
Similarly, we determine there is not a significant effect due to inspectors (p-value  .6257).

c. A profile plot of the mean number of defects for the levels of training is give here:
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boxplot, 104–109

exercises, 135
side-by-side boxplots, 115–119

Breusch-Pagen (BP) statistic, 748–750
Brown-Forsythe-Levene (BFL) test, 382–385
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conditional probability
defined, 159
exercises, 216–218
independence and, 158–161
interpreting results and, 8

conditions, mixed-effects analysis of variance mod-
els, 967–968

confidence coefficient, 236
confidence coefficient (1-a), 239
confidence interval

99% confidence interval, 239
analysis of variance and, 411
for correlation coefficient, 595
inferences about (m1-m2), 303–315
intercept b0, 577
linear regression parameter inferences and, 

574–577
for median, 275–280
multiple regressions, estimated partial slope, 

650–651
nonnormal populations, 274–275
population proportion (p), 484–488
population variance (s2), 370, 379–380
sample size for estimating m, 240–242
Scheffé’s S method, 458
slope b1, 576
Tukey’s W procedure, 461
two population means, 312
two population proportion (p), 492–493
unknown mean (m) and standard deviation  

(s), 266
WAC (Wilson-Agresti-Coull) confidence interval, 

485–486
Wald confidence interval, 485
md paired data, 328–329

confounding variables, 21, 866–867
constant variance, residual plots and, 746–747
Consumer Price Index (CPI), 24–25, 61
consumer surveys, problem definition, 13
contingency tables

combining 2x2 data sets, 522–525
independence and homogeneity tests, 508–515
overview, 109–110

continuity correction, 202
continuous probability distribution

exercises, 222–223
normal distribution, 180–187

continuous random variable, 166
probability distributions, 177–180

continuous variables, 164–166
exercises, 219–220, 222–223

contrasts, linear, 447–454

central tendency, measures of (continue)
mode, 82–83
skewness, 88–90

chi-square distribution, 503
graph of, 179
percentage points table, 1095–1096
population variance estimates, 368–375

chi-square goodness-of-fit test, 501–508
exercises, 538–541

chi-square test of independence, 510–511
strength of relation, measures of, 517

class frequency, 71
class intervals, frequency tables, 70–71
classical interpretation of probability, 151
classifying interactions, rules for, 971
clinical trials, statistical applications for, 10–11
cluster bar graph, 111–112
cluster effect, 310
cluster sampling, defined, 27–28
CMH (Cochran-Mantel-Haenszel) statistic, 523–525
Cobb-Douglas production function, 739–740
Cochran-Mantel-Haenszel (CMH) statistic,  

523–525
coefficient estimates, multiple regression, 636–643

exercises, 687–695
testing of, 652–655

coefficient of determination, 590–591
multiple regression, 644

coefficient of variation (CV), 103
more than two populations, 421

cohort studies, defined, 23
coin toss, probability, 153–155
collinearity, multiple regression, 644–645

variable selection and, 713–714
comparative study, 21
comparisons among treatment means, 1055, 1068
complement, 156
complete models, regression predictors, 653
completely randomized experimental designs, 38–40. 

See also analysis of variance (AOV), com-
pletely randomized designs

advantages and disadvantages, 802
analysis of covariance, one covariate, 920–931

exercises, 942–944
analysis of variance and, 406–407
balanced design, 852
exercises, 436–437, 942–944
observation model, 412–414
randomization, justification for, 803

completely randomized split-plot design, 1009–1010
compound symmetry, 1015, 1019
computing b, 250–255. See also population central 

values, inferences about
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bar chart, 69–70, 73
boxplot, 104–109
correlation, 109–119
exercises, 125–148
frequency histograms, 69–76
graphics, guidelines for, 82
measures of central tendency, 82–90
overview of, 60–62
pie charts, 67–68, 73
R commands for data summary, 124
single variables, graphical methods, 66–82
software tools for, 65–66
stem-and-leaf plots, 75–78
time-series displays, 78–82
variability measures, 90–103

data dredging, 446. See also multiple comparison 
procedures

data mining, statistical applications, 9–10
data snooping, 446. See also multiple comparison 

procedures
degrees of freedom (df), chi-square test of 

independence, 510–511
degrees of freedom (df), defined, 262
dependence, defined, 508
dependent events, defined, 160
descriptive statistics, overview of, 60–61. See also 

data description
descriptive study, 21
designed experiment, defined, 33
determinants, matrices, 671
deviation, 96–100
diagnostic measures, leverage and influence, 570
direct observation, survey data, 32
discrete random variable, 165

binomial experiment, 166–175
exercises, 219–222
Poisson distribution, 175–177
probability distributions for, 166–167

discrete variables, 164–166
disorderly interaction, 820
drug development, 10–11, 61–62
dummy variable, 630–632

multiple regression model formulation, 732
Dunnett’s procedure, 462–464

percentage points table for, 1112–1115
Durbin-Watson test statistic, 761–762

E
E. coli, detection methods, 366–368, 385–390, 564, 

598–601
effect of collinearity, 650

Bonferroni inequality, 455–456
exercises, 475–476
Scheffé’s S method, 456–458

control treatment
defined, 35
Dunnett’s procedure, 462–464

Cook’s D statistic, 757–761
correlation. See also linear regression

completely randomized designs and, 803–805
compound symmetry, 1019
exercises, 135–137
graphing data for, 109–119
linear regression and, 587–598

assumptions for correlation inference, 591–595
coefficient of determination, 590–591
correlation coefficient, 588–590
exercises, 612–614
Spearman rank correlation coefficient rs, 596–598

serial correlation, 761–765
serially correlated, 310
spatial correlation, 310

correlation coefficient (r), 114–119
assumptions for correlation inferences, 591–595
linear regression and, 588–590
percentage points table normal probability plot, 

1124
correlation matrix

multiple regression variable selection, 713–714
count data, 482. See also categorical data
covariates. See also analysis of covariance

defined, 45, 917
experimental study design, 47–48

crime, statistical applications, 11
cross tabulations, 508. See also contingency tables
crossed factors, defined, 982
crossover designs, 1024–1032

vs. repeated measure design, 1024
carryover effect, 1028
exercises, 1039–1049
experimental units, 1028
first time period, 1028
introduction, 1004–1006
washout period, 1028

cross-product term, 627

D
data collection. See also surveys

experimental studies, overview, 32–37
observational studies, overview, 20–26
study design, overview of, 18–20
survey sampling designs, 26–32

data description
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linear regression, 604–624
multiple comparison procedures, 475–481
multiple regression, applications, 773–797
observational studies, 50–51
population central values, inferences for two 

populations, 344–365
population variance (s2), 391–399
probability, 214–229
split-plot design, 1035–1036, 1041–1049
survey sampling design, 51–53, 56–58
two-factor experiments, repeat measures on one 

factor, 1036–1039, 1041–1049
variability, 132–135
Wilcoxon rank sum test, 348–349
Wilcoxon signed-rank test, 352–353

exit polls, 19–20, 48–50
expected cell counts, 502
expected mean squares, 802

classifying interactions, 971
mixed-effects analysis of variance models, 968
random- and fixed-effects models, 956
randomized complete block designs, 873
rules for obtaining, analysis of variance methods 

and, 971–981
expected number of outcomes, 502
expected value of e, 625
experimental error, 36
experimental studies

complicated designs, 43–44
data collection design, overview of, 18–20
defined, 20
designs, overview, 38–40
error, controlling for, 44–47
exercises, 53–58
factorial treatment, randomized designs, 40–43
overview of, 22, 32–37
procedures and measurements, 45–46

experimental unit, crossover designs, 1028
experimental unit, defined, 35
experimentwise error rate, 459
experimentwise Type I error, 454–456
explanation, linear regression and, 555–558
explanatory power, collinearity and, 645
explanatory variables. See also linear regression

defined, 20
regression analysis and, 555

exploratory data analysis (EDA), 75–78
exploratory hypothesis generation, 446
extrapolation in analysis of covariance, 931–934

exercises, 944–945

effect size, 379
either A or B occurs, events, 155–156
election results, exit polls and, 19–20, 48–50
electric drill performance study, 633–634, 676–683
employment interview decisions, research study, 

446–447, 467–474
error

error rate, multiple comparison procedures and, 
454–456

error terms, 413
experimental error, 36
experimentwise error rate, 459
factorial treatment structures, 815
Latin square design, 883
randomized complete block designs, 872

estimated expected value, 509
estimated standard error

multiple regression, 675
multiple regression inferences, 649–650
unequal replications, 830

estimates
defined, 233
of linear contrast variance, 448
pooled estimate, 403
population variance estimates, 368–375
unbiased estimates, 802

estimating missing values, 1058
estimation bias, 1052
events. See also probability

dependent events, 160
event, defined, 151
independent events, 160

Exercises
analysis of covariance, 942–951
analysis of variance, blocked designs, 904–916
analysis of variance, completely randomized 

designs, 852–864
analysis of variance, fixed-, random-, and mixed-

models, 992–1003
analysis of variance, unbalanced designs, 

1075–1083
boxplots, 135
categorical data, 533–554
central tendency, measures of, 130–132
correlation, 135–137
crossover design, 1039–1049
data description, 125–148
evaluating results, 14–15
experimental studies, 53–58
inferences, population central values, 285–299
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expected mean squares (EMS), 956
expected mean squares, rules for obtaining, 

971–981
introduction, 952–954
research study, 954, 986–991
test for equality of means, 956
test for variability of population, 956

forecasting. See also linear regression
data mining models, 9–10
with multiple regression, 656–658

exercises, 695–696
forensic analysis, 11
forward selection, 725
four-step process, data analysis, 2–6
fractional factorial treatment structure, 35
frequency histograms, 69–76
frequency table, 70–71
Friedman’s test

exercises, 909
randomized block designs and, 893–897

G
gender bias in student selection, research study,  

483, 525–531
general linear model, 635–636

analysis of covariants and, 935
exercises, 685–687

genomic data, 9–10
goodness-of-fit test, chi-square, 501–508
graphical methods

bar charts, 69–70
box-and-whiskers plot, 106–109
boxplot, 104–109
chi-square distribution, 179
cluster bar graphs, 111–112
correlation, 109–119
exercises, 125–148
F distribution, 179
frequency histograms, 69–76
guidelines for, 82
normal distribution, 180–187
percentiles, 92
pie charts, 67–68
probability distribution, continuous random 

variable, 178
quartiles, 92–95
residual plots, limitations of, 748
scatterplots, 112–119
side-by-side boxplots, 115–119
standard normal distribution, 179

extrapolation in multiple regression, 657–658
extrapolation penalty, 579–580

F
F distribution

graph of, 179
percentage points table, 1097–1108
population variance and, 376–382

F test
for contrasts, 452–454
of Ho , multiple regressions, 646–649
null hypothesis of no predictive value, 576–577
power curves for AOV, 1117–1120
replication decisions and, 843–844
two-factor experiments, repeat measures on one 

factor, 1024
factorial treatment, randomized complete block 

designs, 889–893
exercises, 907–909
mixed-effects analysis of variance models, 968

factorial treatment design, 33, 40–43
factorial treatment structure. See also split-plot 

design
analysis of variance and, 805–829

error, 815
main effect of factor A and B, 815–816
model for observation, 821–829
one-at-a-time approach, 806–807
profile plot, 813–814
sum of squares for error (SSE), 816–819
unequal number of replications, 830–837

defined, 43, 808
exercises, 855–857

factors, defined, 33, 40
false negative, 161
false positive, 161
fat calories, research study, 234–235, 280–283
filtering, 870

Latin square design, 881–882
first differences, regression and, 765
first time period, crossover designs, 1028
first-order model, multiple regression, 627
Fisher Exact test, 495–497
fitting complete and reduced models, 1056
fitting full and reduced models, 1062
fixed-effect models, analysis of variance

vs. random-effects model, 955–959
assumptions, 955
defined, 953
exercises, 992–1003
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inferences. See also population central values, 
inferences about; population variance (s2)

categorical data
chi-square goodness-of-fit test, 501–508
population proportion (p), 483–491
two population proportions, 491–500

linear regression
assumptions for correlation inference, 

591–595
in multiple regression, 644–652
nonconstant variance and, 750

inferential statistics, overview, 60–61. See also data 
description

interaction, factorial treatment designs
defined, 42
disorderly interaction, 820
factorial treatment structures, 807–808, 809, 

811–813
interaction effect of factors A and B, 815–816
significant interaction, 819

interaction, multiple regression, 628–629
intercept, 557. See also linear regression

least squares estimate, 564–569
interquartile range (IQR), 95–96
intersection of events, 157
interval estimate, 236
interviews, surveys and, 30–32
inverse, matrices, 671–672

K
Kruskal-Wallis nonparametric procedure, 464–467
Kruskal-Wallis test, 425–428

exercises, 438–444
key formulas, 434
use of, 418

kurtosis, population variance and, 374–375

L
lack of fit, linear regression, 581–587

exercises, 611–612
large-sample approximation, 277–280
Latin square design, 40, 878–889

additive model, 881
advantages and disadvantages, 880
crossover designs and, 1029, 1031–1032
defined, 880
exercises, 906–907
filtering, 881–882
key formulas, 903
with missing data, 1058–1064

graphical methods (continue)
stem-and-leaf plots, 75–78
t distribution, 179
time-series displays, 78–82

grouping
data mining models, 9–10
grouped data, range and, 91
median for grouped data, 84–86
sample mean, 86–88

H
Hat matrix, 757
heavy-tailed distributions, 267–269
high influence point, 569–571
high leverage point, 569–571
histograms

defined, 72
empirical rule, 100–103
frequency and relative frequency, 69–76
sample histogram, 200

homogeneity tests, contingency tables, 508–515
exercises, 541–543

Huynh-Feldt condition, 1019
hypothesis generation, exploratory, 446
hypothesis testing. See also population central values, 

inferences about
chi-square goodness-of-fit probability model, 

505–508
contingency tables, 508–515
defined, 233
difference between two population proportions, 

493–500
Fisher Exact test, 495–497
levels of significance (p-value), 257–260
linear regression parameter inferences and, 574–577
population median test, 278–280

I
identity matrix, multiple regression theory, 669–675
incomplete block designs, defined, 1064. See also 

balanced incomplete block (BIB) designs
independence

chi-square test of, 510–511
conditional probability and, 158–161
exercises, 216–218, 541–543
independent events, defined, 160
Latin square designs, 883

independence tests, contingency tables, 508–515
independent samples, 161

inferences about (m1-m2), 303–315
individual comparisons, error rate of, 454–456
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multiple regression assumptions and, 746
low-fat processed meat development, 799–800, 

846–851

M
MAD (median absolute deviation), 98–100
main effect of factors, 815–816, 823
Mann-Whitney test, 317, 321
marginal probability, 159
massive data sets, statistical applications, 9–10
matched data, inferences about, 325–329
matched pairs, McNemar test, 497–500
matrix, multiple regression

correlation and scatterplot matrices, 713–714
matrix, multiple regression theory and, 669–675

addition, subtraction, and multiplication of, 670
determinants, 671
estimated standard error, 675
inverse, 671–672
rank, 671

Mauchly test, 1019
McNemar test for matched pairs, 497–500
mean (m)

analysis of variance, more than two populations, 
403–411

binomial probability distribution, 173
binomial random variable and, 201–203
bootstrap method, nonnormal populations and 

small n, 269–275
boxplots and, 104–109
Central Limit Theorems, 193, 194–200
estimation of mean (m), 235–240
exercises, estimation of, 286–290
inferences about (m1-m2), 303–315
introduction, 86–90
population proportion (p), 484
sample size for testing m, 255–257
statistical test for m, 242–255
test for equality of means, analysis of variance, 956
two random sample means, 301–302
mT , Wilcoxon signed-rank sum test, 330–331

mean square
analysis of variance, 408
expected mean squares, 802
mean square residual (MSR), 746
mean squares estimates, 585–587

measurement problems, surveys, 30
measurement unit, defined, 35–36
measurements, experimental studies, 33
median (M)

exercises, 1076–1078
relative efficiency, 888
sum of squares, applications of, 883–884
test for treatment effects, 883

least squares estimates, slope and intercept, 564–569
least squares line, 112–119
leatherjacket damage, research study, 865–866, 

897–902
level of confidence, 236
level of significance (p-value), overview, 257–260
likelihood ratio statistic, 512
likelihoods, 163
linear contrasts, 447–454

Bonferroni inequality, 455–456
exercises, 475–476
Scheffé’s S method, 456–458

linear regression
correlation and, 587–598

assumptions for correlation inference, 591–595
coefficient of determination, 590–591
correlation coefficient, 588–590
exercises, 612–614
Spearman rank correlation coefficient rs, 596–598

exercises, 604–624
introduction to, 555–563

assumptions, 557–560
comparing prediction and explanation, 555–558
random error term, use of, 558
transformations, 560–563

key formulas, 603–604
lack of fit, 581–587

exercises, 611–612
parameters, estimating of

exercises, 604–607
high leverage point and, 569–571
least-squares method, 564–569
residual analysis, 571–573

parameters, inferences about, 574–577
exercises, 607–610

research study, 564, 598–601
y-value predictions, 577–581

exercises, 610–611
linear regression lines, 659
logarithmic transformation, 739–740
logistic regression, 662–669

exercises, 697–700
logistic regression analysis, 663
lower adjacent value, boxplots, 107
LOWESS (locally weighted scatterplot smoother), 

559–560
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exercises, 687–690
model standard deviation, 642–643

exercises, 685–710, 773–797
extrapolation in, 657–658
forecasting, 656–658

exercises, 695–696
general linear model, 635–636

exercises, 685–687
inferences in, 644–652

coefficient of determination, 644
collinearity, 644–645, 650
confidence interval, estimated partial slope, 

650–651
estimated standard error, 649–650
exercises, 690–691
sequential sums of squares, 645–647
test statistic, 646–647, 651–652
variance inflation factor, 650

introduction, 625–633
assumptions for multiple regression, 627
first-order model, 627
interaction, 628–629
multiple regression model, formula for, 627
for qualitative variables, 629–633

key formulas, 685
logistic regression, 662–669

analysis, 663
exercises, 697–700
simple logistic regression model, 663–664

research study, 633–634, 676–683
testing coefficients, 652–655

complete and reduced models, 653
exercises, 691–695
F test of predictors, 652–653

theory, 669–675
estimated standard error, 675
exercises, 699–700

multiple regression, application
assumptions, checking of, 745–765

Box-Cox transformations, 750–752
Breusch-Pagen (BP) statistic, 748–750
Cook’s D statistic, 757–761
Durbin-Watson test statistic, 761–762
exercises, 781–783
outliers, 754–761
positive and negative serial correlation, 

762–765
serial correlation, 761–762
weighted least squares, 750

introduction, 711–712
key formulas, 773

median (M) (continue)
boxplots and, 104–109
characteristics of, 89–90
defined, 83–86
exercises, inferences about, 293–295
inferences about, 275–280
outliers and, 88

median absolute deviation (MAD), 98–100
median for grouped data, 84–86
mixed-effects models, analysis of variance, 967–971

conditions, 967–968
defined, 953
exercises, 992–1003
expected mean squares, rules for obtaining, 

971–981
introduction, 952–954
research study, 954, 986–991
test for expected mean squares, 968

mode
boxplots and, 104–109
characteristics of, 89
defined, 82–83

model terms, defined, 412–413
multicollinearity, 644–645
multinomial distribution, 501–508
multinomial experiment, 501–508
multiple comparison procedures

Bonferroni inequality, 455–456
Dunnett’s procedure, 462–464
error rate, control of, 454–456, 840–841

exercises, 476–477
exercises, 475–481
introduction, 445–446
key formulas, 475
linear contrasts, 447–454

exercises, 475–476
F test for contrasts, 453–454
mutually orthogonal contrasts, 449–450
t-1 contrasts, 450–452

nonparametric procedures for, 464–467
placebo effect, 462
research study, 446–447, 467–474
Scheffé’s S method, 456–458
Tukey’s W procedure, 458–461
two population proportions, inferences about, 

491–500
multiple regression

comparing slopes, 658–662
exercises, 696–697
linear regression lines, 659

estimating coefficients, 636–643
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errors, multiple comparison procedures, 454–456
levels of significance (p-value), 257–260
multiple regressions and, 646–649
population variance (s2) and, 372–375
power of the test, 250
t test and, 263

numerical outcomes, 165

O
observable events, 163
observation unit

defined, 26
survey sampling designs, 26–32

observational studies
defined, 20
exercises for, 50–51
overview of, 20–26

observations, experimental studies, 33
observed cell counts, 502
OC curve, 250–255
odds and odds ratios, 517–522

exercises, 543–546
oil spill, effects of, 302–303, 336–341
oil spill, effects on plant growth, 1006–1008, 

1033–1034
100pth percentile, 185–186
one-at-a-time approach, 41, 806–807, 809
one-tailed test, 246
orthogonal contrasts, 449–454
outcome, defined, 151
outliers

boxplots, 107–109
defined, 88
multiple regression assumptions and, 754–761

P
paired data, inferences about, 325–329
paired t test, 328
parameters, defined, 82, 233
partial slopes, 627
partition sum of TSS, 872

Latin square design, 883
percentage change estimates, 746
percentage data, transformation of, 423–425
percentage points table

chi-square distribution, 1095–1096
for confidence intervals on median and sign test, 

1091
Dunnett’s test, 1112–1115
F distribution, 1097–1108
normal probability plot correlation coefficient, 1124

logarithmic transformation, 739–740
model formulation, 729–745

exercises, 776–780
nonlinear least squares, 740–745
nonlinear relationship plots, 738–739
scatterplots, use of, 729–739

probability plot, 753–754
research study, 712, 765–772
variable selection, 712–729

adjusted R2, 719
Akaike’s information criterion (AIC), 722–723
backward elimination, 724–725
best subset regression, 724–725
collinearity, 713–714
correlation matrix, 713–714
exercises, 773–776
PRESS statistic, use of, 721
scatterplot matrix, 713–714
stepwise regression procedure, 724–725

multiple t tests, 404
multiplication, matrices, 670
multiplication law, 159
mutually exclusive events, 156
mutually orthogonal contrasts, 449–454

N
nested factors, analysis of variance, 981–986

nested factor, defined, 982
nested sampling experiment, 967
Nielsen Media Research (NMR), 25
99% confidence interval, 239
No Child Left Behind (NCLB), 62–65
nonconstant variance, weighted least squares, 750
nonlinear least squares, 740–745
nonlinearity, multiple regression assumptions, 746
nonresponse bias, 190
normal approximation to binomial probability 

distribution, 201–203
exercises, 225–226

normal distribution (curve), 180–187, 1086–1087
exercises, 222–223

normal probability plot, 203–208, 213
exercises, 226–227
percentage points table, correlation coefficient, 

1124
normal ranges, defining of normal, 8–9
normality, Latin square designs, 883
nuclear power plant construction costs, 712, 765–772
null hypothesis

analysis of variance and, 404–405, 411
defined, 243
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exercises, 286–288
interval estimate level of confidence, 236
sample size for estimating m, 240–242

mean (m) for normal population, s unknown, 
260–269

exercises, 291–292
heavy-tailed distributions, 267
robust methods, 269
skewed distributions, 267
statistical test for, summary, 263
Student’s t, 261–263

median (M), inferences about, 275–280
approximation, large samples, 277–280
confidence interval, 275–277
exercises, 293–295
sign test, 278
statistical test for, 278–280

overview, 232–235
research study, 234–235, 280–283
sample size for testing m, 255–257

exercises for, 289
statistical test for m, 242–255

null hypothesis and, 243
OC curve, 250
one-tailed test, 246
power curve, 250
rejection region, 244
research hypothesis, 243
test for population mean, 248–249
test statistic for, 243–244
two-tailed test, 247–248
Type I and Type II errors, 244–245

population central values, inferences for two 
populations

analysis of variance, 402, 403–411
AOV table, 408
completely randomized design, 406–407
exercises, 435–437
mean square, 408
multiple t tests, 404–406
pooled estimate of s2, 403
sum of squares between samples, 408
test statistic, 406
total sum of squares (TSS), 407
within-sample sum of squares, 407–408

analysis of variance, conditions of, 414–418
residuals analysis, 415–418

choosing sample sizes, 334–336
exercises, 344–365, 435–444
inferences about (m1-m2), 303–315, 325–329
introduction, 300–303, 400–401

percentage points table (continue)
Studentized range, 1109
of students t distribution, 1088

percentages, strength of relation measures, 515–517
percentiles

100pth percentile, 185–186
bootstrap method, nonnormal populations, 

269–275
overview of, 91–95

performance-enhancing drugs, research study, 
152–153, 208–210

period effect, 1015
personal interviews, surveys and, 31
personal probability, 152
pie charts, 67–68, 73
placebo, 10–11
placebo control, defined, 35
placebo effect, 462–464
Poisson distribution, 175–177

exercises, 220–222
formula for, 213
goodness-of-fit probability model and, 505–508
R instructions, 211–212
transformation of data and, 419–421

Poisson probabilities table, 1121–1123
polling data

binomial experiment, 166–175
exit polls and election results, 19–20, 48–50
problem definition, 13
uses of, 25–26

pollution, statistical applications, 12
pooled estimates, 403
pooled t test, 313–315
population

bowhead whale population estimates, 11–12
defined, 6
ozone exposure calculations, 12
parameters of, 233
sampled population, defined, 26
survey sampling designs, 26–32

population central values, inferences about
bootstrap method, nonnormal populations and 

small n, 269–275
exercises, 293
steps for, 274–275

exercises, 285–299
key formulas, summary, 284–285
levels of significance (p-value), 257–260

exercises, 290–291
mean (m), estimation of, 235–240

confidence coefficient, 236
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probability
of an event, 153–155
basic event relations, 155–158
Bayes’ formula, 161–164
binomial, normal approximation to, 200–203
binomial experiment, 166–175
conditional probability and independence, 

158–161
contingency tables, 508–515
continuous random variables and, 177–180
discrete random variables, 166–167
exercises for, 214–229
histograms and, 73
interpreting results and, 8
key formulas, 213
levels of significance (p-value), 257–260
multinomial distributions, 501–508
normal distribution, 180–187
normal probability plot, 203–208
odds and odds ratios, 517–522
overview and terminology, 150–152, 155–157
Poisson distribution, 175–177
Poisson probabilities table, 1121–1123
probability distributions, discrete random vari-

ables, 166–167
probability of the intersection, 159–160
probability of the union, 157–158
probability of Type II error curves, 1089–1090
properties of, 157
R instructions, summary of, 211–212
random sampling, 187–190
research study, 152–153, 208–210
sampling distributions, 190–200
strength of relation, measures of, 515–517
Type I and II errors, 250–255
variables, discrete and continuous, 164–166

probability plot, 753–754
outliers, identification of, 754–756

profile plot, 813–814
property assessors, consistency of, 1051–1052, 

1070–1073
proportional data, transformation of, 423–425
prospective study

defined, 22
uses of, 22–23

public health
observational studies and, 21
statistical applications for, 10–11

public opinion. See also polling data
observational studies and, 21
problem definition, 13

key formulas, 342–344, 434
Kruskal-Wallis test, 425–428

exercises, 438–444
observations for random design, model for, 

412–414
research study, 302–303, 336–341, 402–403, 

428–433
transformation of sample data, 418–425

coefficient of variance, 421–423
exercises, 437–438
guidelines for choosing transformation, 

419–421
percentage and proportion data, 423–425
power transformation, 425

Wilcoxon rank sum test, 315–325
Wilcoxon signed-rank test, 329–334
within- and between-sample variation, 401

population mean (m), defined, 86
population proportion (p)

exercises, 533–538
inferences about, categorical data, 483–491
two population proportions, inferences about, 

491–500
population standard deviation (s), 97–100

m for normal population, s unknown, 260–269
population variance (s2), 96–100

comparing more than two populations, BFL test, 
382–385

comparing two populations, 376–382
estimation and tests for, 368–375
exercises, 391–399
key formulas, summary, 390
overview, 366–368
random- and fixed-effects models, 956
research study, E. coli detection, 366–368, 385–390

port-wine stain laser treatments, research study, 
402–403, 428–433

positive serial correlation, 762–765
posterior probability, 163
power, of test, 250
power curve, 250
power transformation, 425
practically significance, misunderstanding of results, 

7–8
prediction, linear regression and, 555–558. See also 

forecasting
prediction interval, 580
PRESS statistic, use of, 721
pressure drops across expansion joints, research 

study, 954, 986–991
prior probabilities, 163



1170 Index

randomization, split-plot designs, 1014
randomized block design, 39–40

analysis of covariants, 935–936
confounding variables, 866–867
defined, 868
exercises, 904–906
expected mean squares, 873
Friedman’s Test, 893–897
key formulas, 903
with missing observations, 1052–1058

exercises, 1075–1076
random-effects model and, 959–961
relative efficiency, 874
sum of squares, applications of, 872–873
unbiased estimates, 873

randomized design, observation model, 412–414
randomly assigned, defined, 414
range

class intervals, frequency tables, 70–71
defined, 91
interquartile range, 95–96
overview of, 90–91

rank, matrices, 671
rank sum tests

Friedman’s Test, 893–897
Kruskal-Wallis test, 425–428, 464–467
Wilcoxon rank sum test, 315–325
Wilcoxon signed-rank test, 329–334

ratio estimation, 27
reduced models, regression predictors, 653
regression analysis. See also linear regression; mul-

tiple regression
analysis of covariance, conditions for, 928–931

rejection region, 244
relation, measuring strength of, 515–517
relative efficiency, 874, 888
relative frequency concept of probability, 151, 154
relative frequency histograms, 69–76
repeated measures design

vs. crossover designs, 1024
introduction, 1004–1006
research study, 1006–1008, 1033–1034
single-factor experiments, 1014–1018
two-factor experiments, repeat measures on one 

factor, 1018–1025
compound symmetry, 1019
exercises, 1036–1039, 1041–1049
F tests for, 1024
Huynh-Feldt condition, 1019
sphericity condition, 1020

replication, experimental studies, 35

public opinion. See also polling data (continue)
surveys, uses of, 24–26

pure experimental error, 584–587
putting greens, evaluation of grasses, 918–920, 

936–942
p-value (levels of significance), 257–260

Q
qualitative random variable, 165
qualitative variables, 73

multiple regression and, 629–633
quantitative random variable, 165
quantitative variables, 73

multiple regression model formulation, 732
quartiles, 92–95

boxplots and, 104–109
questionnaires, data collection, 30–32

R
R commands, data summary, 124
R instructions, summary of, 211–212
random error

multiple regression model assumptions, 745–747
regression parameters, inferences about, 574–577

random error term, 558
random number generation, 154–155
random number table, 188, 1116
random numbers, R instructions, 211–212
random sampling

exercises, 223–224
normal probability plot, 203–208
overview of, 187–190
survey sampling designs, 27

random variables, 165
random-effects models, analysis of variance

vs. fixed-effects model, 955–959
AOV table, 960
assumptions, 955, 960
defined, 953
exercises, 992–1003
expected mean squares (EMS), 956
expected mean squares, rules for obtaining, 

971–981
extensions of, 959–967
introduction, 952–954
nested sampling experiment, 967
research study, 954, 986–991
test for equality of means, 956
test for variability of population, 956
variance components, 962
a 3 b factorial treatment structure, 961–962
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nonnormal populations, bootstrap method, 
269–275

normal probability plot, 203–208
observational studies, 21–22
population central values, for two populations, 

334–336
R instructions, summary of, 211–212
random sampling, overview, 187–190
sampling distributions, 190–200
survey sampling designs, 26–32

sample histogram, 200
sample mean

defined, 86–88
estimation of mean (m), 235–240

sample size
for estimating m, 240–242
rule for binomial proportions, 492

sample standard deviation (s), 97–100
sample survey, defined, 22
sample variance (s2), 96–100
sampled population. See also sample

defined, 26
survey sampling designs, 26–32

sampling distribution, 190–200
sampling frame

defined, 27
survey sampling designs, 26–32

sampling unit
defined, 26–27
survey sampling designs, 26–32

scatterplot matrix
multiple regression variable selection, 713–714

scatterplots, 112–119
linear regression assumptions, 559–560
multiple regression outliers identification, 754–756
transformation of, 560–563

Scheffé’s S method, 456–458
scientific method, 2, 3
self-administered questionnaires, 32
sensitivity, defined, 161
separate-variance t test, 312
sequence identification, data mining models, 9–10
sequential sums of squares (SS), 645–647. See also 

multiple regression entries
serial correlation, 761–765
Serially correlated, 310
side-by-side boxplots, 115–119
sign test, 278, 1091
significance of results

level of significance (p), 257–260, 290–291
misunderstanding of results, 7–8

determining number of replications, 841–846
exercises, 857–858

research hypothesis, defined, 243
research studies

E. coli, detection methods, 366–368, 385–390, 564, 
598–601

electric drill performance, 633–634, 676–683
employment interview decisions, 446–447, 

467–474
exit polls vs. election results, 19–20, 48–50
gender bias in student selection, 483, 525–531
leatherjacket damage, 865–866, 897–902
low-fat processed meat development, 799–800, 

846–851
nuclear power plant construction costs, 712, 

765–772
observational studies, overview, 20–26
oil spill, effects of, 302–303, 336–341
oil spill, effects on plant growth, 1006–1008, 

1033–1034
percentage of calories from fat, 234–235, 280–283
performance-enhancing drugs, 152–153, 208–210
port-wine stain laser treatments, 402–403, 428–433
pressure drops across expansion joints, 954, 

986–991
property assessors, consistency of, 1051–1052, 

1070–1073
putting greens, evaluation of grasses, 918–920, 

936–942
teacher assessments, 62–65, 119–124

residual analysis
Latin square designs, 883–889
linear regression and, 571–573
multiple regression model assumptions, 745–747

residual standard deviation, 571–573
residuals analysis, 415–418
response variables, 20, 555. See also linear regression
retrospective study, uses of, 22–24
risk assessment, data mining models, 9–10
robust methods, 269

S
sample. See also multiple comparison procedures; 

population variance (s2)
data collection design, overview of, 18–20
defined, 6, 26
exercises, probability, 223–225
exercises, survey designs, 51–53
large-sample approximation, 277–280
massive data sets (data mining), 9–10
misunderstanding of results, 8
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degrees of freedom, 262
heavy-tailed distributions, 267
model standard deviation, multiple regression, 

642–643
population proportion (p), 484
residual standard deviation, 571–573, 674–675
sample size for estimating m, 240–241
skewed distributions, 267
weighted averages (s2

p), 304–315
sT, Wilcoxon signed-rank sum test, 330–331

standard error of y, 194
standard method treatment, defined, 35
standard normal distribution (curve), 179, 222–223, 

1086–1087
standardized residual, 746
states of nature, 163
statistical significance, misunderstanding of results, 

7–8
statistical test, parts of, 243. See also population 

central values, inferences about
statistics

applications of, 2–6, 9–13
defined, 2, 82
misunderstanding of, 7–9
reason for studying, 6–9

stem-and-leaf plots, 75–78
stepwise regression procedure, 724–725
stratified random sample, defined, 27
strength of association, 512
Studentized range, percentage points table, 1109
studentized range distribution, 458–461
Student’s t, 261–269
subjective probability, 152
subtraction, matrices, 670
sum of squares

between-treatment sum of squares (SST), 801
due to blocks after adjusting for effect of 

treatments (SSBadj), 1057
due to treatments adjusted for blocks (SSTadj), 

1056
for error (SSE), 801, 816–819, 873, 923–924
Latin square test and, 883–884
missing observations and, 1052–1053
between samples (SSB), 407–408
within samples (SSW), 407–408
total sum of squares (TSS), 815

survey nonresponse, 29
surveys

bias in, 8
data collection design, overview of, 18–20

significant interaction, 819
simple linear regression, 557. See also linear 

regression
simple logistic regression model, 663–664
simple random sampling, defined, 27
simulation technique, 154–155
single-factor experiments, repeated measures, 

1014–1018
skeletal boxplot, 104–109
skewed distributions, 267–269
skewed right or left histograms, 75, 76
skewness

central tendency and, 88–90, 108
population variance and, 374–375

slope, 557. See also linear regression
least squares estimate, 564–569
multiple regression comparisons, 658–662

exercises, 696–697
partial slopes, 627

smoothers, linear regression, 559–560
software tools

data calculations, 65–66
random number generation, 154

spatial correlation, 310
spatial-temporal model, 12
Spearman rank correlation coefficient rs, 596–598
specificity, defined, 161
specifying a, 245
sphericity condition, 1020
spline fit, 560
split-plot design

AOV for, 1010, 1011
compound symmetry, 1019
exercises, 1035–1036, 1041–1049
Huynh-Feldt condition and, 1019
introduction, 1004–1006
overview of, 1008–1014
sphericity condition, 1020
subplot analysis, 1010, 1011
wholeplot analysis, 1010, 1011

square matrix, defined, 669
SS (Regression), 645–647
stacked bar graph, 110–111
standard deviation (s), 97–100. See also population 

variance (s2)
binomial probability distribution, 173
binomial random variable and, 201–203
bootstrap method, nonnormal populations and 

small n, 269–275
Central Limit Theorems, 193, 194–200
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trends over time, 81
trimmed mean, 88
Tukey-Kramer W procedure

comparing treatments with missing values, 1061
comparison of treatment means, 1055

Tukey’s W procedure, 458–461, 838
randomized complete block designs and, 892–893

two-tailed test, 247
two-way interactions, 823
Type I error, 244–255

analysis of variance and, 404–405
Dunnett’s procedure, 462–464
experiment wise error, 454–456
t test and, 268–269

Type II error, 244–255
goodness-of-fit testing, 508
probability curves, 1089–1090
t test and, 268–269

ta, 262

U
unbalanced designs, defined, 1052. See also analysis 

of variance (AOV), unbalanced designs
unbiased estimates, 802, 873
unbiased estimator of variance, 97, 368–369
unconditional probability, 159
uniform histograms, 75, 76
unimodal histograms, 75, 76
union, 157
unique predictive value, 645
unit of association, 555–556
upper adjacent value, boxplots, 107
upper-tail critical value, Studentized range, 459–461
U.S. Bureau of Census, 24, 60
U.S. Bureau of Labor Statistics (BLS), 24–25, 61
Utts, J., 7–9

V
vaccines, statistical applications for, 10–11
variability. See also population variance (s2)

analysis of variance, defined, 402
analysis of variance, more than two populations, 

403–411
coefficient of variation, 103
deviation, 96
empirical rule, 100–103
exercises, 132–135
interpreting results and, 8–9
measures of, overview, 82, 90
percentiles, 91–95

exercises, sampling design, 51–53
exit polls vs. election results, 48–50
sampling designs for, 26–32
uses of, 24–26

symmetric histograms, 75, 76
systematic sample, defined, 28

T
t distribution

graph of, 179
percentage points of students t distribution, 1088
skewed or heavy-tailed distributions, 267–269
m for normal population, s unknown, 260–269

t test
independent samples, unequal variance, 311–315
multiple t tests, 404
paired t test, 328
probability of Type II error curves, 1089–1090
slope b1, 574–575

t-1 contrasts, 450
target population

defined, 26
survey sampling designs, 26–32

teacher assessments, 62–65, 119–124
telephone interviews, surveys and, 31–32
test statistics

analysis of variance and, 406
defined, 243
equality of means, 956
homogeneity of distributions, 512–515
population mean, 248–249
population median M, 278–280
treatment effects, Latin square design, 883

three-way interactions, 823
time-series displays, 78–82
tolerable error, 240–241
total sum of squares (TSS), 407, 801

factorial treatment structures, 815
Latin square design, 883–884
randomized complete block designs, 872

transformation of data
Box-Cox transformations, 750–752
exercises, 437–438
overview of, 418–425

transformations, linear regressions, 560–563
transpose, matrices, 670
treatment design, defined, 33
treatments

experimental studies, 33
multiple regression and, 630–632
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W
WAC (Wilson-Agresti-Coull) confidence interval, 

485–486
Wald confidence interval, 485
washout period, 1028
weighted averages (s2

p), 303–315
weighted least squares, 750
Welch-Satterthwaite approximation, 311–312
Wilcoxon rank sum test, 315–325, 343

critical values table, 1092
exercises, 348–349

Wilcoxon signed-rank test, 329–334, 343, 352–353
critical values table, 1093–1094

Wilson-Agresti-Coull (WAC) confidence interval, 
485–486

within-sample sum of squares (SSW), 407–408
within-sample variation, 401

Y
y-intercept, regression lines, 659
y-value predictions

exercises, 610–611
linear regression and, 577–581

Z
z test, McNemar test for matched pairs, 497–500
zero matrix, defined, 669
z-score, 182

variability. See also population variance (s2) (continue)
range, 90–91
variance, 96–100
variance components, 953
within- and between-sample variation, defined, 

401
variables

confounding variables, 21
correlation, 109–119
data collection design, overview of, 18–20
discrete and continuous, 164–166
dummy variable, 630
experimental studies, overview, 32–37
explanatory variables, 20
multiple regression, variable selection, 712–729
prediction vs. explanation, 555–558
qualitative and quantitative, 73
qualitative random variable, 165
quantitative random variable, 165
random variables, 165
response variables, 20
transformation of, 560–563

variance
Latin square designs, 883
of linear contrast, 448

variance components, defined, 953
variance inflation factor (VIF), 650
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