Name	Date	Period		
Activity #2: Rock and the Rock Cycle				
Open <u>Rock and the Rock Cycle</u> . Read and fi	ill in the blanks.			
All rock (except for meteorites) that is on Ea	arth today is mad	e of the	_ stuff as the rock	s that dinosaurs
and other ancient life forms walked, crawled	l, and swam over	. While the stuff t	hat rocks are	from
stays the, the rocks		Over millions of	years, rocks are	
into other rocks. Moving				nd
many types of rocks.				
<i>Open <u>What is a cycle</u>? Read and fill in the b</i>	blanks.			
Very simply, when scientists talk about cycle	es, they are talkir	ng about		_ of events that
repeat themselves. Some cycles are very		Other are ver	У	cycles.
Activity #3 Rock Cycle				
Open Interactives Rock Cycle. Click "Begin	n with Types of R	ocks." Read and f	îll in the blanks.	
The three main types, or classes, of rock are		,	, a	ind
and the differences amo				
rocks are forme	ed from particles	of	?	,
pebbles, and other fragments of material. To				
Gradually, the sediment accumulates in layer				
sedimentary rock is fairly	and may break a	part or crumble ea	sily. You can ofte	en see sand,
pebbles, or stones in the rock, and it is usual				
Examples of this rock type include		_and		
rocks are formed un	der the		of the earth from t	the
metamorphosis (change) that occurs due to i	ntense	and		_(squeezing).
The rocks that result from these processes of				
minerals growing slowly over time, on their	surface.			
Examples of this rock type include	a	nd		

Name	Date	Period

______rocks are formed when ______ (molten rock deep within the earth) cools and hardens. Sometimes the magma cools inside the earth, and other times it erupts onto the surface from volcanoes (in this case, it is called ______). When lava cools very quickly, ______ form and the rock looks _______ and ______. Sometimes gas bubbles are trapped in the rock during the cooling process, leaving tiny holes and spaces in the rock.

Examples of this rock type include ______ and _____.

Open <u>How Rocks Change</u>. Read and fill in the blanks. When you have completed reading the section, click on the animation on the right hand of the screen. You can either draw or describe the animation at the bottom of the appropriate section on this packet. When you are done click "Next"

Heat & Pressure

What happens to cookie dough when you put it in the oven? The ______ of the oven produces changes in the ingredients that make them interact and combine. Without melting the dough, the heat changes it into a whole new product — a cookie.

A similar process happens to rocks beneath the earth's surface. Due to movements in the ______, rocks are frequently pulled under the surface of the earth, where temperatures ______ dramatically the farther they descend. Between 100 and 200 kilometers (62 and 124 miles) below the earth's surface, temperatures are hot enough to melt most rocks. However, before the ______ point is reached, a rock can undergo fundamental changes while in a solid state — morphing from one type to another without melting.

An additional factor that can transform rocks is the _	caused by tons of other rocks
down on it from above;	and usually work together to alter the rocks
under the earth's surface. This kind of change, which	results from both rising temperature and pressure, is called
, and the resulting rock is a	rock.

Describe the animation:

Name	_ Date	_Period
Melting		
What happens to a chocolate bar when it gets ve	ry hot? It	·

The same thing happens to a rock w	then it is heated enough. Of course	, it takes a lot of heat to melt a rock. The
temperatures required	are generally found only	within the earth. The rock is
pulled down by	in the earth's crust and gets hotter	and hotter as it goes deeper. It takes
temperatures between 600 and 1,300	0 degrees Celsius (1,100 and 2,400	degrees Fahrenheit) to melt a rock,
turning it into a substance called	(molten rock).	

Describe the animation:

Cooling

What would you do to turn a melted chocolate bar back into a solid? You'd ______ it by putting it into the refrigerator until it hardens.

Similarly, liquid magma also turns into a solid — a _____ — when it is cooled. Any rock that forms from the cooling of magma is an ______ rock. Magma that cools quickly forms one kind of igneous rock, and magma that cools slowly forms another kind.

When magma rises from deep within the earth and explodes out of a volcano, it is called ______, and it cools ______ on the surface. Rock formed in this way is called ______ igneous rock. It is extruded, or pushed, out of the earth's interior and cools outside of or very near the earth's surface.

What if the magma doesn't erupt out of a volcano, but instead gets pushed slowly upward toward the earth's surface over hundreds, thousands, or even millions of years? This magma will also cool, but at a much slower rate than lava erupting from a volcano. The kind of rock formed in this way is called ______ igneous rock. It intrudes, or pushes, into the earth's interior and cools beneath the surface.

Describe the animation:

Name	_Date	_Period
Weathering & Erosion		

What do dandelions rely on to separate their seeds, carry them, and deposit them elsewhere? The wind.

All objects on the earth's surface are exposed to the	, along with many other elements —
, the,	changes. Over time, these factors wear objects down and
break them apart. The resulting bits and pieces of ma	aterial are called Sediment is then
transported by and, ofter	ending up far from where it started. These processes of
breakdown and transport due to exposure to the environment	ronment are called and
Weathering and erosion affect a	all rocks on the earth's surface.

Describe the animation:

Compaction & Cementing

What happens to a loose pile of garbage when it's put into a compactor? The squeezing of the machine produces a solid cube of compacted garbage.

The same thing happens to	formed from the weathering a	nd erosion of rock. (Over time,
sediment accumulates in oceans, lakes, and valleys,	, eventually building up in laye	ers and	down
the material underneath. This weight	_ the	particles together, c	ompacting
them passing through the spaces i	n between the particles helps to	o 1	them
together even more. This process of compacting and	d cementing sediment forms se	edimentary rock.	

Describe the animation:

Nam	e
-----	---

Open <u>Transform the Rock</u>. Write in the questions / equations.

1.			
2.			
3.			
4.			
5.			

Open the Rock Cycle Diagram. Read and fill in the blanks.

A useful way to illustrate how the three main types of rock are related to one another and how changes to rocks happen in a recurring sequence is the ______. It can be presented in a diagram like the one below.

The concept of the rock cycle is attributed to James Hutton (1726-1797), the 18th-century founder of modern geology. The main idea is that rocks are continually changing from one type to another and back again, as forces inside the earth bring them closer to the surface (where they are _____, ____, and _____) and forces on the earth sink them back down (where they are _____, _____, and _____). So the elements that make up rocks are never ______ or ______ instead, they are constantly being recycled. The rock cycle helps us to see that the earth is like a giant rock recycling machine!

Open g	<u>Complete the Cycle</u> .	Record your results here	Teacher	's initials
--------	-----------------------------	--------------------------	---------	-------------

Open <u>Test Your Skills</u>. Record your results here _____. Teacher's initials _____.