FRIDAY, 5 MAY
10:30 AM - 12:00 NOON

Total marks - 70
Attempt ALL questions.
You may use a calculator.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Answers obtained by readings from scale drawings will not receive any credit.
Write your answers clearly in the spaces provided in the answer booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of the answer booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} . \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

Attempt ALL questions

Total marks - 70

1. Triangle $A B C$ is shown in the diagram below.

The coordinates of B are $(3,0)$ and the coordinates of C are $(9,-2)$.
The broken line is the perpendicular bisector of BC .

(a) Find the equation of the perpendicular bisector of $B C$.
(b) The line AB makes an angle of 45° with the positive direction of the x-axis. Find the equation of $A B$.
(c) Find the coordinates of the point of intersection of $A B$ and the perpendicular bisector of BC.
2. (a) Show that $(x-1)$ is a factor of $f(x)=2 x^{3}-5 x^{2}+x+2$.
(b) Hence, or otherwise, solve $f(x)=0$.
3. The line $y=3 x$ intersects the circle with equation $(x-2)^{2}+(y-1)^{2}=25$.

Find the coordinates of the points of intersection.
4. (a) Express $3 x^{2}+24 x+50$ in the form $a(x+b)^{2}+c$.
(b) Given that $f(x)=x^{3}+12 x^{2}+50 x-11$, find $f^{\prime}(x)$.
(c) Hence, or otherwise, explain why the curve with equation $y=f(x)$ is strictly increasing for all values of x.
5. In the diagram, $\overrightarrow{P R}=9 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$ and $\overrightarrow{R Q}=-12 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k}$.

(a) Express $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.

The point S divides $Q R$ in the ratio 1:2.
(b) Show that $\overrightarrow{P S}=\mathbf{i}-\mathbf{j}+\mathbf{4 k}$.
(c) Hence, find the size of angle QPS.
6. Solve $5 \sin x-4=2 \cos 2 x$ for $0 \leq x<2 \pi$.
7. (a) Find the x-coordinate of the stationary point on the curve with equation $y=6 x-2 \sqrt{x^{3}}$.
(b) Hence, determine the greatest and least values of y in the interval $1 \leq x \leq 9$.
8. Sequences may be generated by recurrence relations of the form $u_{n+1}=k u_{n}-20, u_{0}=5$ where $k \in \mathbb{R}$.
(a) Show that $u_{2}=5 k^{2}-20 k-20$. 2
(b) Determine the range of values of k for which $u_{2}<u_{0}$.
9. Two variables, x and y, are connected by the equation $y=k x^{n}$. The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line as shown.

Find the values of k and n.
10. (a) Show that the points $A(-7,-2), B(2,1)$ and $C(17,6)$ are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\mathrm{A}}, r_{\mathrm{B}}$ and r_{C} respectively.

- $r_{\mathrm{A}}=\sqrt{10}$
- $r_{\mathrm{B}}=2 r_{\mathrm{A}}$
- $r_{\mathrm{C}}=r_{\mathrm{A}}+r_{\mathrm{B}}$
(b) Determine the equation of the circle with centre D.

11. (a) Show that $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x=\sin ^{3} x$, where $0<x<\frac{\pi}{2}$.
(b) Hence, differentiate $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x$, where $0<x<\frac{\pi}{2}$.

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE
\square

Fill in these boxes and read what is printed below.

Full name of centre

\square

Town

Forename(s)

Surname

Number of seat

Date of birth

Write your answers clearly in the spaces provided in this booklet. The size of the space provided for an answer should not be taken as an indication of how much to write. It is not necessary to use all the space.

Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not you may lose all the marks for this paper.

$\substack{\text { QuESTION } \\ \text { NUMER } \\ \text { 1.(a) } \\ \hline}$		
1.(b)		

(a)
3.
3.

N|
4. (a)

\square
4.(b)

4.(c)

\square

7. (a)

* X 747760209 *
8.(a)

10.(a)
10.(b)
\square
11.(b)

* X 747760214 *

