This chapter has 53 questions. Scroll down to see and select individual questions or narrow the list using the checkboxes below.	Select	0	questions at random and keep in order 🗸
Multiple Choice Questions - (45)		[Topic: Nuclear reactions and nuclear fission - (4)
Fill In The Blank Questions - (8)		[Topic: Nuclear reactors - (11)
Odd Numbered - (27)		[Topic: Nuclear weapons and nuclear fusion - (9)
Even Numbered - (26)		[Topic: Radioactive decay - (19)
Accessibility: Keyboard Navigation - (45)		[Topic: The structure of the nucleus - (10)
☐ Difficulty: Easy - (46)		Ĺ	Type: Conceptual - (50)
☐ Difficulty: Hard - (1) ☐ Difficulty: Medium - (6)		L	☐ Type: Definition - (10) ☐ Type: Numerical - (3)
1. The three types of nuclear radiation	n are	L	Type: Numerical - (3)
oprotons, electrons, neu			
electrical, strong nucle		ıclear.	
oradiation, convection, o	•		
\rightarrow \bigcirc gamma, beta, alpha.			
Select			
			Accessibility: Keyboard Navigatio
			Difficulty: Eas Topic: Radioactive deca
Multiple Choice Question			Topic: Radioactive deca
MC The three types of nuclear radiation	n are		Type: Definitio
2. The word "radioactive" means			
○ an atomic nucleus abso	orbs neutro	ns.	
 there is significant inte 	rference be	etween	atomic radiation and radio reception.
\rightarrow \bigcirc there are nuclei present	t which wil	l spont	taneously emit nuclear radiation.
Select an atom spontaneously	captures a	n elect	tron from a neighboring atom.
			A acceptability w Way haard Navigatio
			Accessibility: Keyboard Navigatio Difficulty: Eas
Multiple Choice Question			Topic: Radioactive deca
MC The word radioactive means			Type: Conceptua
3. The discovery of the neutron helpe			
			have different atomic masses.
o why the nucleus has a	•	•	
O how electrons are attra			
Select why the nucleus is much	en more ma	issive t	than the electrons in an atom.
			Accessibility: Keyboard Navigatio
			Difficulty: Eas
Multiple Choice Question	1		Topic: The structure of the nucleu
MC The discovery of the neutron help. 4. The number of protons in the nucle			Type: Conceptua
○ the half-life of the nucl		om det	termines
\rightarrow 0 the density of the nucle			
the atomic mass.	ds		
Select the number of neutrons	s in the nuc	leus	
)	1000.	
	,		Accessibility: Keyboard Navigatio
Multiple Chaige Question			Difficulty: Eas
Multiple Choice Question MC The number of protons in the nucl	eus of an a		Topic: The structure of the nucleu Type: Conceptua
5. The "alpha" particle is			71 1
two electrons bound to	two protoi	ıs.	
\rightarrow \bigcirc two protons bound to t	wo neutron	IS.	
○ an electron.			
 two electrons bound to 	two neutro	ons.	
Select a photon.			
			Accessibility: Keyboard Navigatio Difficulty: Eas
			Topic: Radioactive deca
Multiple Choice Question			Type: Conceptua
MC The alpha particle is			Type: Definitio
Select 6. The "beta" particle is			
\rightarrow \bigcirc an electron.			
electromagnetic radiati two electrons bound to			
○ two electrons bound to○ a beliam pucleus	two neutro)IIS.	
○ a helium nucleus.			
Multiple Choice Question			Accessibility: Keyboard Navigatio
MC The beta particle is			Difficulty: Eas

Topic: Radioactive decay Type: Conceptual Type: Definition Accessibility: Keyboard Navigation Difficulty: Easy Topic: Radioactive decay Type: Conceptual Type: Definition Accessibility: Keyboard Navigation Difficulty: Easy Topic: Radioactive decay Type: Conceptual Accessibility: Keyboard Navigation Difficulty: Easy Topic: Radioactive decay Type: Conceptual Accessibility: Keyboard Navigation Difficulty: Easy Topic: Radioactive decay Type: Conceptual Accessibility: Keyboard Navigation Difficulty: Easy Topic: Radioactive decay Type: Conceptual Accessibility: Keyboard Navigation Difficulty: Medium Topic: Radioactive decay Type: Conceptual

7. A "gamma" ray is o an electron. \rightarrow \bigcirc electromagnetic radiation. two electrons bound to two neutrons. a helium nucleus. Select Multiple Choice Question MC A gamma ray is 8. During radioactive decay, the daughter element is always o more massive than the parent. • the same mass as the parent. \rightarrow 0 less massive than the parent. Select O None of these. Multiple Choice Question MC During radioactive decay, the daughter eleme... 9. When a nucleus undergoes alpha decay, the daughter element always has \rightarrow \bigcirc less charge than the parent. • the same atomic number as the parent. o more neutrons than the parent. Select o more electrons than the parent. Multiple Choice Question MC When a nucleus undergoes alpha decay, the da... 10. A nucleus undergoes beta decay. Which of the following statements is true? \rightarrow \bigcirc The daughter element has more protons than the parent. O The daughter element has fewer protons than the parent. O Both daughter and parent elements have the same atomic number. • The daughter element has the same number of protons as the parent. Select Q Multiple Choice Question MC A nucleus undergoes beta decay. Which of the... 11. The "half-life" of a large collection of radioactive nuclei is the number of nuclei that decay in 1 second. • the number of nuclei that remain after 1 second. O larger for heavy nuclei than for lighter nuclei. \rightarrow \bigcirc the time for half of the collection to decay. Select Multiple Choice Question MC The half-life of a large collection of rad... 12. Which of the following mechanisms can change the half-life of radioactive nuclei? Increasing the number of nuclei in the sample Extreme high pressure Extreme high temperature Select \rightarrow \bigcirc None of these Multiple Choice Ouestion MC Which of the following mechanisms can change... **Select** 3. A nucleus undergoes radioactive decay, emitting a gamma ray. Which of the following statements is true? O The daughter nucleus has more neutrons than the parent. ○ A nuclear proton changes into an electron-positron pair. \rightarrow O Both daughter and parent nuclei have the same atomic number.

O The daughter nucleus is more massive than the parent.

	Multiple Choice Question MC A nucleus undergoes radioactive decay, emitt	Accessibility: Keyboard Navigation Difficulty: Medium
	We A nucleus undergoes radioactive decay, clinit	Topic: Radioactive decay
		Type: Conceptual
	14. What is the source of the energy released in nuclear reactions? Or The binding of orbital electrons to the nuclear protons.	
	\rightarrow \bigcirc The conversion of mass to energy.	
	 The conversion of nuclear kinetic energy to particle potential energy 	gv.
Select	 Heat released during the radioactive decay process. 	
		Accessibility: Keyboard Navigation Difficulty: Easy
	Multiple Choice Question MC What is the source of the energy released in	Topic: Nuclear reactors Type: Conceptual
	15. In nuclear fission,	Type. Conceptual
	\rightarrow 0 a nucleus is split into two less massive nuclei.	
	two heavy nuclei are induced to decay simultaneously.	
	high-energy particles are released from a nucleus that is at rest.	
Select	 a nucleus is bombarded with another nucleus in order to induce an 	alpha decay
		· mp····· woony ·
		Accessibility: Keyboard Navigation Difficulty: Easy
	Multiple Choice Question MC In nuclear fission,	Topic: Nuclear reactions and nuclear fission Type: Conceptual
	16. The separation of different isotopes of a particular element can be difficult bed	cause
	 all isotopes are dangerous because of their radioactivity. 	
	oneutrons are so small.	
	\rightarrow \bigcirc chemical reactions happen the same way for the isotopes.	
Select	the masses of the isotopes are the same.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: The structure of the nucleus
	MC The separation of different isotopes of a pa	Type: Conceptual
	17. In a nuclear reactor, "chain reaction" refers primarily to an out-of-control explosion.	
	 the process of heating water to create steam to generate electric po 	war
	the enrichment of uranium to make fuel for the reactor.	JWC1.
Select 2	 → ○ the process by which the fission of one nucleus causes other nucle 	ei to undergo fission.
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Nuclear reactors
	MC In a nuclear reactor, chain reaction refer	Type: Conceptual
	18. The substance that comes from a nuclear reactor which is used to generate powers.	wer is
	enriched uranium.	
	\rightarrow \bigcirc high-pressure steam.	
	oradioactive materials.	
Select	○ graphite.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: Nuclear reactors
	MC The substance that comes from a nuclear reac	Type: Conceptual
	19. A primary waste product of nuclear reactors that are designed for only power on the price of nuclear reactors are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors that are designed for only power of the primary waste product of nuclear reactors.	generation is
	graphite.	
	\rightarrow \bigcirc radioactive materials.	
Select	○ high-pressure steam.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question MC A primary wests product of pusher reactors	Topic: Nuclear reactors
Select	MC A primary waste product of nuclear reactors 20. In nuclear fusion,	Type: Conceptual
Select	\rightarrow 0 two smaller nuclei combine to form a larger nucleus.	
	 many radioactive nuclei decay at once. 	
	 a large nucleus splits into smaller fragments. 	
	 the temperatures required are so high that it has never been accom 	uplished on Earth.

	Multiple Choice Question MC In nuclear fusion,	Accessibility: Keyboard Navigation
	WC III nuclear rusion,	Difficulty: Easy Topic: Nuclear weapons and nuclear fusion
		Type: Conceptual
	21. The N ¹⁴ nucleus consists of	
	14 neutrons.	
	○ 14 protons.	
Select	21 protons and 7 electrons.7 protons and 7 poutrons	
Select	\rightarrow \bigcirc 7 protons and 7 neutrons.	
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Radioactive decay
	MC The N14 nucleus consists of	Type: Conceptual
	22. Two nuclei have the same number of protons b	out different numbers of neutrons. We call these two nuclei
	\rightarrow \bigcirc isotopes.	
	isobars.	
	o atomic mass units.	
Select	ions.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: The structure of the nucleus Type: Conceptual
	MC Two nuclei have the same number of protons	
	23. Energy released in a nuclear fission process is	
	o electrons moving from a higher end	
	the conversion of some charge to e	
Calant	the conversion of gravitational potential of some mass to energy	
Select	\rightarrow \bigcirc conversion of some mass to energy	
		Accessibility: Keyboard Navigation
	Multiple Chaige Question	Difficulty: Easy Topic: Nuclear reactions and nuclear fission
	Multiple Choice Question MC Energy released in a nuclear fission process	Topic: Nuclear reactions and nuclear rission Type: Conceptual
	24. In a decay of $_{90}$ Th 232 by emission of an alpha p	article, the daughter nucleus will be
	$\circ_{92}U^{232}$.	
	\bigcirc 90Th ²²⁸ .	
	\circ 87Ac ²³² .	
Select	\circ 88Ra ²³⁰ .	
Select	\rightarrow \bigcirc ₈₈ Ra ²²⁸ .	
		Accessibility: Keyboard Navigation Difficulty: Medium
	Multiple Choice Question	Topic: Radioactive decay
	MC In a decay of 90Th232 by emission of an alph	
	25. Generally, the number of neutrons present in n corresponding nuclei of stable isotopes.	uclei that are fission fragments is the number of neutrons of
	less than	
	o equal to	
Select	\rightarrow O greater than	
		Accessibility: Keyboard Navigation Difficulty: Medium
	Multiple Choice Question	Topic: Nuclear reactions and nuclear fission
	MC Generally, the number of neutrons present in	
	26. A deuterium nucleus and a tritium nucleus read chemical reaction.	et to yield one alpha particle, a neutron, and energy. This is an example of a
	fission reaction.	
	\rightarrow \bigcirc fusion reaction.	
Select	chain reaction.	
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Nuclear weapons and nuclear fusion
	MC A deuterium nucleus and a tritium nucleus re	. Type: Conceptual
Select		et to yield one alpha particle, a neutron, and energy. For this reaction, the
	sum of the masses of reaction products after th reaction.	e reaction is the sum of the masses of particles before the
	\rightarrow 0 less than	
	o equal to	

	○ greater than	
		Accessibility: Keyboard Navigation
	Multiple Choice Question MC A douterium puelous and a tritium puelous re	Difficulty: Easy Topic: Nuclear weapons and nuclear fusion
	MC A deuterium nucleus and a tritium nucleus re 28. In a modern light water reactor, the ratio of U ²³⁵ to U ²³⁸ in	Type: Conceptual the nuclear fuel is typically in the approximate ratio of
	○ 0.7%.○ 100%.	
	○ 11%.	
	→ ○ 3%.	
Select	○ 67%.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: Nuclear reactors Type: Conceptual
	MC In a modern light water reactor, the ratio o	Type: Definition
	29. The purpose of the moderator in a reactor is to	
	\rightarrow \bigcirc slow neutrons down so that they will be more 1	kely to initiate fission reactions.
	oprovide cooling for the control rods.	
Select 0	reduce the number of neutrons available for theseparate the nuclear fuel from the spent production	
Select	separate the nuclear ruer from the spent produc	ts of fission.
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Nuclear reactors
	MC The purpose of the moderator in a reactor is	Type: Conceptual
	30. Both conventional fossil fuel and nuclear power plants	
	\rightarrow \bigcirc produce waste heat that can affect the weather	
	O produce carbon dioxide, which may increase g	obal warming.
Colont	 contribute to the problem of acid rain. 	stand in ignician for thousands of years
Select	O produce hazardous waste products that must be	stored in isolation for thousands of years.
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Medium Topic: Nuclear reactors
	MC Both conventional fossil fuel and nuclear po	Type: Conceptual
	31. The primary reason that nuclear fusion has proven difficult	to adapt for commercial power generation is that
	the fuel is difficult to purify.	
	the possible fuel is scarce.the temperatures involved are too low for efficient	ant production
Select 7	 → ○ nuclei repel each other due to their positive cha 	
Select	nuclei reper each other due to their positive ena	1903.
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Nuclear weapons and nuclear fusion
	MC The primary reason that nuclear fusion has p	Type: Conceptual
	32. A sample of U^{235} that is below the critical mass will not su	
	→ ○ too many neutrons escape through the surface of	
	the inertia of the sample is too low for efficient	
Select 5	nuclei repel each other due to their positive chathe heat produced by the spontaneous fission or	
Delicar	the heat produced by the spontaneous rission of	some nuclei is msurrelent.
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Easy Topic: Nuclear reactors
	MC A sample of U235 that is below the critical	Type: Conceptual
	33. The average U.S. citizen receives measurable radiation from	
	X-rays, and consumer products. The radiation received from about the same as that received from artificial s	
	almost immeasurable.	ources.
	 → ○ more than that received from artificial sources. 	
Select	measurable but less than that received from art	ficial sources.
		Accessibility: Keyboard Navigation Difficulty: Easy
	Multiple Choice Question	Topic: Radioactive decay
	MC The average U.S. citizen receives measurable	Type: Conceptual
Select	34. Walther Bothe and Wilhelm Becker discovered a new kind to be a neutron. Bothe and Becker generated neutron radiat	of particle radiation in 1930. The particle was later determined ion by

O heating nuclei to extremely high temperatures to boil the neutrons off.

	 using an isotope that decays by emitting neutrons. 	
	 using electrons to attract protons away from the nucleus. 	
	\rightarrow \bigcirc firing a beam of alpha particles at a beryllium target.	
		Accessibility: Keyboard Navigation Difficulty: Easy
	Multiple Choice Question MC Walther Bothe and Wilhelm Becker discovered	Topic: Radioactive decay Type: Conceptual
	35. The Tokamak is a type of	Type. Conceptual
	omoderator used in pressurized heavy water reactors.	
	 → ○ experimental fusion reactor. 	
		11
	o nuclear reactor using graphite as a moderator, such as the reactor at Chern	lobyi.
Select	oparticle accelerator.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Topic	: Nuclear weapons and nuclear fusion
	Multiple Choice Question	Type: Conceptual
	MC The Tokamak is a type of	Type: Definition
	36. The number of neutrons in a stable isotope must	
	 equal the number of protons plus electrons. 	
	o equal the number of electrons.	
	o equal the number of protons.	
Select	\rightarrow \bigcirc None of the choices is correct.	•
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: The structure of the nucleus
	MC The number of neutrons in a stable isotope m	Type: Conceptual
	37. Two atoms have the same number of neutrons but different numbers of protons. Thes	e two atoms
	→ ○ will exhibit different chemical properties.	
	o are isotopes of each other.	
	 have the same number of electrons. 	
Select	○ have the same atomic mass.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: The structure of the nucleus
	MC Two atoms have the same number of neutrons b	Type: Conceptual
	38. In a nuclear fission reaction,	
	one nucleus splits into two equal halves.	
	\rightarrow 0 one nucleus splits into two parts, neither daughter having a mass close to	=
	 one nucleus splits into two parts, one very small and one almost the same 	mass as the parent.
Select	two nuclei combine to form a single, more massive nucleus.	
		Accessibility: Keyboard Navigation Difficulty: Easy
	Multiple Choice Question Topic:	Nuclear reactions and nuclear fission
	MC In a nuclear fission reaction,	Type: Conceptual
	39. A feature of the nuclear reactor at Chernobyl that contributed to the magnitude of the	
	\rightarrow \bigcirc water was used only as a coolant, not a moderator.	
	plutonium could build up quickly in the reactor.	
	the uranium fuel was more highly enriched.	
Coloret =	the reactor did not have control rods.	
Select	the reactor did not have control rods.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: Nuclear reactors
	MC A feature of the nuclear reactor at Chernoby	Type: Conceptual
	40. In all nuclear reactions,	
	energy must be conserved.	
	 the total number of protons plus neutrons must be conserved. 	
	○ charge is not created or lost.	
Select	\rightarrow 0 all of these.	
1		
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: The structure of the nucleus
	MC In all nuclear reactions,	Type: Conceptual
Select	41. A piece of uranium can be made into nuclear explosive only after it is purified into ur it has to be soldered with lead for safety.	ranium-235, because

	\rightarrow \bigcirc the other naturally occurring isotopes of uranium interfere with	efficient chain reactions.
	 uranium-235 is the heaviest isotope known to mankind. 	
	 before purification, the uranium-235 nucleus will not split apar 	t.
		Accessibility: Keyboard Navigation
		Difficulty: Easy
	Multiple Choice Question	Topic: Nuclear weapons and nuclear fusion
	MC A piece of uranium can be made into nuclear	Type: Conceptual
	42. The atomic mass system is based upon	
	the mass of uranium-238, since it is the heaviest element occur	ring in nature.
	the mass of the neutron.	
	O the mass of liquid water.	
Select	\rightarrow \bigcirc the mass of carbon-12, a very common isotope of carbon.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy
		Topic: The structure of the nucleus
	Multiple Choice Question MC The stemic mass system is based upon	Type: Conceptual
	MC The atomic mass system is based upon 13. The instability of pranium 225 compared to pranium 228, along with the re-	Type: Definition
	43. The instability of uranium-235 compared to uranium-238, along with the retritium, shows that the stability of a given nucleus depends upon	enative stability of hydrogen compared to
	the speed of electrons orbiting the nucleus: more mass means n	nore gravitational pull.
	\rightarrow adding or subtracting neutrons, which can change a stable isoto	
	the mass: heavier nuclei are always less stable.	
Select	the number of electrons in the nucleus.	
		Accessibility: Keyboard Navigation
	Multiple Chaice Overtica	Difficulty: Easy
	Multiple Choice Question MC The instability of uranium-235 compared to u	Topic: Radioactive decay Type: Conceptual
	44. Momentum and energy from focused laser beams can be used in nuclear fu	• • • • • • • • • • • • • • • • • • • •
	\rightarrow 0 light cannot be melted, so its pressure can confine the reaction.	
	olight is not magnetic.	
	 light can also function as a moderator, like graphite or water in 	a uranium reactor.
Select	the wavelength of light is small enough to penetrate each protocol	
Subjective Co.		
		Accessibility: Keyboard Navigation
	Multiple Choice Question	Difficulty: Hard Topic: Nuclear weapons and nuclear fusion
	MC Momentum and energy from focused laser beams	Type: Conceptual
	45. Neutrons were discovered by James Chadwick by observing the behavior of	of .
	ogold atoms in a thin foil.	
	 copper conducting electricity in the absence of a magnetic field 	l.
	 carbon dioxide molecules under high pressure. 	
Select 3	\rightarrow \bigcirc the collision after-effects of protons emerging from paraffin.	
ocicor 1		
		Accessibility: Keyboard Navigation
		Difficulty: Easy Topic: The structure of the nucleus
	Multiple Choice Question	Type: Conceptual
	MC Neutrons were discovered by James Chadwick b	Type: Definition
	46. Suppose a radioactive isotope has a half-life of 2.0 hours. For an initial same	pple of 6400 nuclei, the number remaining after
	6.0 hours is about	
Select	800	
		Difficulty: Easy
	Fill-in-the-Blank Question	Topic: Radioactive decay
	FB Suppose a radioactive isotope has a half-lif	Type: Numerical
	47. To make a bomb based on the fission reaction work, one must at the time of fissionable material equal to or larger than the mass.	detonation bring together an amount of
	critical	
Select	or modi	
		Difficulty: Easy
	Fill-in-the-Blank Question	Topic: Nuclear weapons and nuclear fusion
	FB To make a bomb based on the fission reaction	Type: Conceptual
	48. The energy radiated by the sun has as its primary origin energy produced b fusion	y reactions.
	IUSIOII	
Select		Difficulty: Easy
	Fill-in-the-Blank Question	Topic: Nuclear weapons and nuclear fusion
	FB The energy radiated by the sun has as its pr	Type: Conceptual
Select	49. Control rods are inserted into a nuclear reactor when you want the nuclear	reaction rate to (two words).

	slow down		
			Difficulty For
	Fill-in-the-Blank Question FB Control rods are inserted into a nuclear re	ea	Difficulty: Easy Topic: Nuclear reactors Type: Conceptual
		to exist long before it was observed because energ	gy is not conserved in beta
	decays without it.		
Select	antineutino		
	Till it Division in		Difficulty: Easy
	Fill-in-the-Blank Question FB The was a particle predicted	to e	Topic: Radioactive decay Type: Conceptual
		of a negative electron. The daughter nucleus will ha	
	and a mass number	<u></u> :	
Select	94, 239		
			Difficulty: Medium
	Fill-in-the-Blank Question		Topic: Radioactive decay
	FB The nuclide 93Np239 decays by emission 52 Materials that are used as moderators in r	nuclear power reactors are carbon (graphite) and	Type: Numerical
	water		·
Select			D:00 14 E
	Fill-in-the-Blank Question		Difficulty: Easy Topic: Nuclear reactors
	FB Materials that are used as moderators in n	nuc	Type: Conceptual
	53. The atomic mass unit is based on the mas carbon-12	ss of the atom.	
Select			Difficulty: Easy
		Top	oic: The structure of the nucleus
	Fill-in-the-Blank Question FB The atomic mass unit is based on the mas	es of	Type: Conceptual Type: Definition
	2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1)pv. 2 vv.
	•	•	