THE EMPEROR HAS NO CLOTHES:
 MUSIC AS IT ACTUALLY IS ON THE PIANO KEYBOARD

R.J.A. Buhr (v12/8/19)

INTRODUCTION

I approached the piano as an adult beginner interested in learning to play jazz, which eventually led me to wonder how jazz pianists can improvise in terms of a music notation that seemed to me to be misleadingly complex for the piano. In the words of the naive child in the fairy tale, "the emperor has no clothes," meaning the piano, seen directly without the obscuring lens of music notation, is different in kind and much simpler than music notation for it.

Nothing illustrates this better than the difference between music notation and the singer's major scale do-re-mi-fa-so-la-ti-do (called "solfege"). The solfege scale has the same symbols for any starting pitch because it represents the same interval sequence for any octave starting on that pitch. The intervals are measured in half tones, the pitch intervals between adjacent notes of a standard 12 -halftone octave (the solfege intervals are 2 half tones, mi-fa and ti-do, and five whole tones of size 2 half tones). The thing about half tones is they increase in pitch size during an octave, which means pitch sizes of half tones between overlapping octaves starting on pitches a half tone apart cannot have their half tones exactly aligned. Variable pitch piano keys would be required to play the different half tones perfectly. The piano provides only fixed-pitch piano keys, shared between overlapped octaves. The resulting slight irregularity in the pitch sizes of half tones is acceptable because half tones are dissonant intervals, human ears are insensitive to small errors in the pitch sizes of dissonant intervals, and equal temperament tuning compensates for the errors by making larger intervals sound uniformly the same within octaves. The worldwide popularity of the piano as a general purpose musical instrument is evidence that this is good enough (for insight into the difference, see the book How Equal Temperament Tuning Ruined Music). Music notation has stood the test of time, and the large legacy of music written in it guarantees that it will remain so, but that doesn't exclude exploiting the piano's simpler way of representing music, which has also stood the test of time.

These observations motivated a personal quest to understand how piano music works in terms of keyboard shapes (e.g., scales and chords) formed from building blocks of sizes measured in half tones. Such shapes are same anywhere on the keyboard in both form and musical meaning. I "reverse engineered" pieces of written music to understand them in terms only of keyboard shapes. The result is a "no-clothes" notation I call PKP, standing for Picturing Keyboard Patterns. The basic elements of PKP are hidden in plain sight on the piano keyboard and in standard practice for voicing chord progressions of music notation. PKP bundles these elements into a simple notation that may be annotated on the written music to guide understanding and playing, and can also be written down separately as a playable shorthand notation for pieces of music. The bundling together of these elements yields some surprising insights.

The keyboard shapes of PKP provide the same notes on the piano as music notation does, except in a simpler way based on parallel modes (same tonic) instead of the relative modes (same notes) of key
signatures that put parallel modes in different key signatures. ${ }^{1}$
PKP is not a replacement for music notation but a lightweight complement to it that combines simplicity and depth. This simplicity and depth are either a serendipitous side effect of the organization of the piano keyboard or a fundamental property of music that's obscured by music notation. Either way, it works in practice.

PKP provides contextual cues to help in learning and remembering new pieces, knowing while playing where to go next from where you are (and how you got there), recovering from getting lost, experimenting with harmonic and melodic variations, and improvising. This turns the conventional relationship between practicing and understanding on its head: understanding guides practicing instead of only emerging from it.

My admitted lack of musical credentials is reasonable cause for skepticism that I have anything useful to say, so the opinions of PKP of a couple of experts are worth quoting before proceeding. Musical theorist Paul Steinbeck: "The hook ... , at least in my opinion, is that it's possible to attain a deep understanding of chords (and their constituent intervals) without recourse to Western notation. This has direct consequences for physical patterning, fingerings, etc. Essentially, your method combines the utility of a play-by-ear approach with the depth of a mathematically-informed theory of music." Jazz pianist/composer/teacher Taylor Eigsti: "... a fascinating and in-depth look at various ways that keyboard shapes can lead to a whole new way to look at notation and the piano."

THE ESSENCE OF PKP IN WORDS

The difference from music notation exploited by PKP is the piano's provision of only twelve fixed-pitch piano keys for any octave, instead of the variable pitch piano keys that would be required to provide the many more sharped and flatted notes of music notation. The simplification is more than just a reduction in the number of note symbols. A more profound simplification is the sharing between overlapping octaves of the half tones that form the 12-half-tone octaves. This enables the sharing of building blocks measured in half tones. An octave may be split into three important building blocks that are hidden in plain sight on the keyboard, and in standard ways of voicing chord progressions, namely 7 -half-tone fifths, 6 -half-tone tritones, and 5 -half-tone fourths. The three building blocks are of only two kinds. Tritones are one kind, namely dissonant intervals that invert into tritones. Fifths and fourths are the other kind, namely consonant intervals that invert into each other, warranting coining the unconventional term fifo for the kind (standing for fifth or fourth). All the keyboard shapes of scales and chords turn out to be formed in simple ways from these building blocks defined in terms only of the keyboard, independently of the clothes of music notation.

Hidden in plain sight on the piano keyboard is a 12-half-tone chromatic scale that captures the intuitive way melody lines are heard and remembered, namely in terms of pitch changes measured in half tones relative to a home tonic, to which the melody line eventually resolves (or "wants to"). This understanding is independent of the many note symbols provided for the same piano key by music notation, of the durations of notes and rests (whole notes, half notes, quarter notes, eighth notes,

[^0]sixteenth notes, and more), and of the rhythm they imply. Any piano interval measured in half tones requires one more piano key than the number of half tones, so the 12 -half tone chromatic scale requires thirteen note symbols. Because of harmonic equivalence, the thirteenth symbol is a repetition of the tonic symbol, representing at once the top piano key of the home octave and the bottom piano key of the next octave up in a stack of harmonically equivalent home octaves. The scales of melody lines are shapes formed from building blocks determined by the 12 -half-tone chromatic scale of the home octave. The keyboard shapes of harmony from the scales are formed from the same building blocks. The simplicity of this is obscured by the clothes of music notation - its sharps, flats and naturals that represent pitch differences that don't exist on the piano. What's worse, the symbols of the clothes are placed differently on staff lines or in staff spaces in the same or different octaves. The most fundamental building block of music, the octave, is itself obscured by these placements.

Tonal music may visit secondary tonics but the sharing of half tones enables all the visits to be understood in terms of a single home octave. Stacked home octaves on the keyboard are harmonically equivalent, so one conceptual home octave provides all the notes of a stack of home octaves on the keyboard. Tonic scales are within the home octave by definition. Melody lines may go outside the home octave, but the set of all their notes within the home octave identifies the tonic scale that provides them; melody lines that go outside the home octave transpose selected scale notes into the same relative positions in a stack of home octaves. Chord symbols of written music, or voicings of them, may determine shapes that extend outside the home octave, but standard voicing practice tells us that harmonically equivalent shapes within the home octave are as much representations of the chords as the chord symbols.

Hidden in plain sight in the standard process for voicing chord progressions are these building blocks identified by "guide intervals." Guide intervals are understood in terms of degree numbers 1st-2nd-3rd-4th-5th-6th-7th that count notes going up from roots in the 7-note chord scales of key signatures. Guide intervals are identified by pairs of degree numbers four scale steps apart. Basic seventh chords from a key signature scale are overlapped combinations of 1st-5th and 3rd-7th guide intervals that must be parsed relative to constantly changing roots to figure out the actual piano keys. Other intervals (major thirds, minor thirds, whole tones, and inversions of them) come into play as inner or outer intervals of shapes formed from building blocks, but are not themselves building blocks. The degree number representation of building blocks gets complex for chromatic chords that originate in no key signature because the chords of key signatures provide templates for them that must be altered to account for different inter-note intervals and possibly different numbers of scale notes. The alterations are analogous to "banging square pegs into round holes - the results tend to be messy. ${ }^{2}$

The most novel insight provided by the building block view is that dissonant tritones turn out to be fundamental in identifying and structuring keyboard shapes. This follows from the two facts: 1) The classical modes that determine the scales of key signatures contain unique, single tritones that identify the modes on the keyboard relative to a home tonic as surely as key signatures do in a more indirect way. 2) Tritones and fifos form a closed set in which each morphs into the other by altering one note

[^1]by a half tone, enabling mode changes to be understood in terms of the morphs. The simplicity of this generalizes directly to multi-tritone scales that originate in no key signature.

The view that tritones are fundamental goes strongly against conventional wisdom, and is contrary to experience with music notation, in which anything involving more than one tritone is complex. This fundamental role of tritones is difficult to accept by people versed in music notation. Tritones cannot be used to identify tonic scales because a tonic scale must be identified by a key signature before the pair of notes identifying a tritone can even be written down. However, standing back from the details makes clear that only music notation stands in the way.

Tritones are simple on the keyboard and shapes formed of tritones are also simple because of symmetry - they have the same interval sequence measured in half tones going up or down the keyboard. Breaking the symmetry by morphing tritones into fifos yields asymmetric keyboard shapes that may be scales or voicings of chords, or components of either. Symmetry and symmetry breaking are well known in physics and mathematics to provide fundamental insights into complex processes. Music is complex by any measure, so it's not surprising that these ideas are useful for it (the book The Jazz of Physics by a physicist who's also a jazz musician advances related ideas, touched on in Appendix E of this document).

That tritones are fundamental not only to the structure of music but also to the sound of music becomes apparent as soon as you begin to look for tritones in written music. The sounds of tritones and fifths or fourths in harmony sliding to different keyboard positions and morphing into each other as the music moves forward are fundamental to much music. The sounds are of dissonance resolving into consonance or vice versa. The notes may be spread out in the music but the essence of their musical contribution is captured by their harmonically equivalent presence within the home octave. Chords containing tritones are signposts of important musical events such as resolving to the tonic of a mode, changing to a parallel mode (e.g., major to minor), changing to a different tonic for the same mode (e.g., the same major mode), or arriving at blues "turnarounds" (the final four bars of a 12 bar blues). "Tritone substitute" chords (same tritones in opposite inversions, all non-tritone notes different) are a staple of chord substitution in jazz. Many different kinds of chords containing tritones exist, as summarized in a table in Appendix C.

I have been asked many times: If these ideas are so good, why has no enterprising young pianist discovered them? The answer has multiple parts, based on my experience. The important idea of symmetric keyboard shapes being fundamental to the structuring of piano music does not come from music, but from exposure to symmetry concepts in advanced physics and mathematics, that identify dualities between modes of representation in which one duality is often simpler than the another. For the piano, the duality is between note-based representations and simpler interval-based ones. Seeing this possibility is a starting point, but turning it into a notation is a tall order that takes much time away from practicing, time that no young person with pianistic ambitions would be willing to take. The conventional wisdom is strongly against even trying. By the time expertise has developed, music notation gets in the way of even seeing the possibility. I was only able to follow up the ideas in depth as a retirement hobby after taking up the piano in late adulthood.

I began to get a sense of the concepts embodied in PKP after a couple of years of piano lessons as an adult beginner but the turning point was taking courses and talking to people at the Jazz School in Berkeley (now the Jazz Institute). I learned about blues scales and chords in a blues piano workshop conducted by Aaron Blumenfeld. I learned about "open" voicings of complex jazz chord progressions
expressed in standard terms in a piano comping course given by jazz pianist Susan Muscarella. At the time, jazz pianist Taylor Eigsti was an artist in residence at the school who, I heard, was teaching a chord-symbol-free way of understanding and playing chord progressions. This resonated with my developing ideas about building blocks, so I contacted him to learn about his method. He told me that he recommends, to beginning jazz piano students, a practicing regime of moving constant scale shapes - determined by fixed sequences of counts of scale steps (not keyboard steps) between successive notes - to different positions in classical modes, without reference to chord symbols. The objective is developing the instinctive moves required of jazz pianists. However, the method deliberately has no notation and is learned from exercises.

These ways, and others mentioned elsewhere in this document, require understanding to emerge from relatively deep expertise developed through extensive practicing. This seemed to me "to put the cart before the horse." So I followed an unconventional path that took me into uncharted territory, forcing me to coin some new terms and notations.

The Notation in Words

Building blocks identified directly on the keyboard, independently of scales, identify the scales that provide the building blocks. Basic chord symbols and complex altered chord symbols are represented equally simply by combined or split building blocks. Inversions of chords that often add complexity to a chord progression by being given different chord symbols are represented by inversions of building blocks. Building blocks are identified by color coded anchor symbols, namely red for tritones, blue for fifths, green for fourths. Anchor symbols identify the nearest note of a building block above the home tonic and the size of the building block going up from it. Inversions are identified by underlined anchor symbols. Thus building blocks are always directly visible in the notation. The result is a remarkably useful Lego-like view of keyboard shapes.

The home octave provides a 3-note, consonant scale frame formed of the upper and lower tonic with the pitch center in the middle (in other words, a stacked fifth and fourth). This scale frame plus six color-coded anchor symbols within its lower fifth identify all the possible building blocks from the chromatic scale. The six textual anchor symbols provide a DNA-like alphabet, words from which provide mode signatures that identify tonic scales, and letters from which identify building blocks of the scales. Anchor symbols identify six adjacent note positions in the chromatic scale but are not themselves note symbols. The chromatic scale has twelve independent note symbols, used to represent melody lines. A chord progression in tonal music may be identified by an anchor line identifying a sequence of core building blocks of chords, completion of which is often implied by context.

Representing skeleton melody lines in the home-octave chromatic scale requires only a way of indicating whether the next note up goes up or down. Details are easily added to relate such lines to music notation - bar lines, commas to indicate ends of phrases, asterisks to identify repeated notes, highlighting to help the eye see peaks and valleys, downbeat markers underneath notes to identify rhythm - but the basic purpose is simply connecting harmony to melody. The two lines that represent melody and harmony in fake books, namely a melody line on a staff and a line of chord symbols above the staff, are translated into corresponding melody and harmony lines represented in these notations. The notations are simple enough to annotate on the written music to provide guidance, but can also provide playable separate representations, such as are used in this document for explanations.

I had many questions about music notation but one stands out: Given that scales are determined by key signatures, how can altering a particular note by a half tone not only tell the ear that the scale has

The Emperor Has No Clothes v12/8/19 - p5 - ©copyright R.J.A. Buhr
changed but also what the new scale is? PKP's mode signatures provide an answer that goes to the heart of the enterprise, explained in Chapter 2.

GUIDE TO READERS

I did this as a retirement hobby for my own amusement because I became fascinated by the insights that emerged as I went along. The depth of these insights led me to think they might be of interest to others, such newcomers to the piano who have begun to be daunted by the complexity of music notation, pop and jazz musicians who are not pianists but want to explore harmony on the piano, "wannabe" expert pianists who might appreciate a helpful notation that exposes fundamentals, and anyone with a stake in the piano and curiosity about these issues. Finding a way of describing them in the simple terms in which I see them proved to be challenge because it requires stepping outside of music notation in a way that apparently seems complex to those familiar with it. This document presents the ideas in the way I discovered them, namely by reverse engineering pieces of written music, except going directly to skeleton melody and harmony lines that would be extracted from it.

Chapter 2 develops the notation and Chapter 3 develops a mode hierarchy that provides the framework for understanding music in its terms, both illustrated at every step by example pieces presented in the notation. Chapter 4 provides a smorgasbord of advanced pieces that I found difficult on first encounter (the first example is the piece with the footnoted chord progression on the opening page). Chapter 5 provides observations and conclusions. References, acknowledgements and comments from some readers of earlier drafts follow. Appendix A summarizes unfamiliar terminology, Appendices $B-E$ are about the relations between conventional representations and PKP, for scales (B), chords (C), enriched parallel modes (D), and hidden symmetries (E).

There is very little music notation in the form of notes on a staff in this document for reasons explained above. The notation doesn't resemble music notation, and so seems alien to anyone versed in it, but this is because it represents the essence of things in a dramatically simpler way. This way, once you "get it," is so directly related to how the ears hear music that it encourages the experimentation that's the source of all artistry.

The main things that have to be written down to use PKP are melody lines in chromatic scale notation (annotated on the staff or written separately), harmony lines in alphabet notation (annotated above the staff or written separately), and simple mode tables that provide a cross reference between the two. Lego-like pictures of sequences of shapes formed from building blocks are only to explain in a graphic way how details are worked out at the keyboard.

CHAPTER 2: CONCEPTS \& NOTATION

PKP concepts and notation enable probing deep and complex waters in music notation without becoming overwhelmed by details.

NOTATION

The starting point is a simple but accurate conceptual representation of a home octave on the piano as a line divided into 12 equal parts identifying 12 half tones. The octave has twelve different piano keys plus a thirteenth piano key that both completes the octave and starts the next octave up, which looks the same and is harmonically equivalent. Overlapping home octaves share the same half tones.

Splitting an octave into equal pitch halves of unequal keyboard sizes yields the fundamental consonant building blocks of music smaller than octaves, namely a 7 -half-tone fifth with a 5 -half-tone fourth on top, that warrant coining term fifo (fifth or fourth) for their kind. The two octave notes and the pitch center form a fundamental keyboard shape @-\$-@ that warrants coining the term scale frame for it, because it's the starting point for forming all primary tonic scales (secondary tonic scales without pitch centers exist but are derivatives of the primary ones). Splitting the octave into equal keyboard halves yields the other fundamental building block, namely the 6-half-tone dissonant tritone.

This sets the stage for the following two fundamental notations of PKP, namely the chromatic scale (color coding not part of the notation) and the DNA-like anchor alphabet for building blocks.

```
scale frame
master major scale (Ionian mode)
piano keys in its whole-tone gaps
chromatic scale
scale frame
DNA-like anchor alphabet
```


The chromatic scale consists of seven numbers representing the positions relative to the home tonic of the piano keys of the master major scale of any key signature (Ionian mode), and five prefixed numbers that identify the notes in its whole-tone gaps. The prefix " \mathbf{p} " stands for "phlat" and means "next piano key down." The numbers are not degree numbers that count scale notes, but position indicators. The prefix is not a conventional flat. There are no flats are sharps in this scheme, in the sense of identifying relative pitches, only twelve symbols for twelve piano keys relative to a home tonic. The scheme is adapted from a well known Roman-Numeral-based scheme for identifying chord roots, described in Mehegan's jazz piano instruction book, which is I-pII-II-pIII-III-IV-pV-V-pVI-VI-pVII-VII in this notation.

The only reason for the choice of the Ionian mode to provide seven symbols of the chromatic scale
is to provide a strong connection to music notation, in which this mode is conventionally understood as the basic major mode of a key signature. Only five additional symbols for the piano keys in the whole tone gaps of the mode complete the scale.

On the Keyboard

The scale frame and alphabet within it map to the keyboard as illustrated next for two of the twelve possible home octaves (the blue text for the scale frame is only for contrast with black piano keys).

The mix of black and white piano keys is visibly very different for different home octaves but the difference is manageable because the scale frame is simple, the alphabet is simple, and the chromatic scale mirrors the look of the C octave (plain numbers are white keys, prefixed numbers are black keys). The only caveat is the necessity of keeping the home octave fixed in the mind, to avoid confusion with recently played pieces with different home octaves that may still be in the mind. This can be helped by putting a removable stick-on label on the piano key that's the current home tonic, and by running through scales, arpeggios and chord sequences for a new tonic to get the new representations into the mind and fingers before approaching actual pieces.

Mode Tables

The following presentation of the master Ionian mode and its neighboring Lydian mode illustrates the nature of PKP's representation of tonic scales. Two header lines of a mode table provide the symbols and \mathbf{x} or \mathbf{O} entries in the body provide the note patterns. The note sequence of the form $\mathbf{p} 5-5$ violates a rule of key-signature notation that the same note symbol cannot appear in a key-signature scale on both sides of a half tone (e.g., Eb-E must be written D\#-E). This rule doesn't apply here because there are no sharps or flats. Ionian note $\mathbf{4}$ goes up a half tone to Lydian note p5 (shaded transition) creating the Lydian sequence $\mathbf{p 5 - 5}$, in which the repetition of $\mathbf{5}$ is fine because \mathbf{p} is neither a sharp nor a flat in the conventional sense, but a position indicator. The only reason for choosing this way of identifying the five piano keys beyond those of the master mode is the intuitive meaning of "phlat;" otherwise, any arbitrary sequence of single symbols would do.

This picture brings forward to the eye the possibility of constructing parallel modes from symmetric core shapes of the form $\mathbf{x} \mathbf{x}-\mathbf{x x}$ or $\mathbf{x x}-\mathbf{x} \mathbf{x}$, consisting of a tritone (red text) with inner or outer half tones. The o entries complete the scale by whole tones.

The tritones are identifiers of the modes. The half tones are determined by the positions of the tritones relative to the scale frame. The scales are completed by whole tones determined by filling in the blanks. Incidentally, the Lydian mode is interesting because it was suggested by George Russell as a better master mode for jazz - its closer than Ionian to popular jazz scales, which would simplify their representation in music notation. However, every mode is equally simple in this notation. Any mode would do as as the master and Ionian serves because of its strong connection to music notation.

Building Blocks

The DNA-like anchor alphabet consists of six letters PORMIL labeling the six keyboard positions in the bottom fifth of the scale frame. The symbols identify anchors of building blocks - their nearest notes above the home tonic. The anchor concept is unconventional, so the alphabet could be anything. This alphabet links the notation to music notation via the names of the classical modes that determine the scales of key signatures, which are known to any piano student. The meaning of the anchors is independent of the source of the anchor letters, details of which are deferred to the next section. The alphabet is in a special font (Aerial Black) that highlights it as unconventional. There are no alphabet symbols in the top fourth of the scale frame because building blocks with bass notes there are inversions of ones anchored in the bottom fifth. Inversions are identified by underlined anchor symbols, enabling building blocks to be understood as the same musical objects, independently of inversions. The different sizes of building blocks are distinguished by color coding: red for tritones, blue for fifths and green for fourths, yielding a remarkably useful Lego-like picture of shapes formed of them.

The representation of building blocks starts with tritones, as summarized next. To ensure the uniqueness of tritone anchors, only the six alphabet letters can be anchors of tritones. Notes of the scale frame may be bass notes of inverted tritones (e.g., $\underline{L}=1-p 5$ and $\boldsymbol{P}=5-\mathrm{p} 2$) but never themselves tritone anchors.

\mathbf{L}	$\mathrm{p} 5-1$	$\underline{\mathbf{L}}$	$1-\mathrm{p} 5$
\mathbf{I}	$4-7$	$\underline{\mathrm{I}}$	$7-4$
\mathbf{M}	$3-\mathrm{p} 7$	\underline{M}	$\mathrm{p} 7-3$
\mathbf{R}	$\mathrm{p} 3-6$	\underline{R}	$6-\mathrm{p} 3$
\mathbf{O}	$2-\mathrm{p} 6$	$\underline{\mathbf{O}}$	$\mathrm{p} 6-2$
\mathbf{P}	$\mathrm{p} 2-5$	$\underline{\mathbf{P}}$	$5-\mathrm{p} 2$

The six tritones in ether inversion visibly cover all the notes of the chromatic scale. Their inversions are harmonically equivalent. The "word" PORMIL is, in effect, a signature of the chromatic scale because the six tritones it identifies provide all the scale notes.

Fifths (blue anchors) and fourths (green anchors) are morphed from these tritones in visibly simple ways, to provide all possible fifos and their inversions. In this way, one tritone is the "seed" of eight fifos, as illustrated next for tritone \mathbf{M}.

morphs	$M=3-p 7$	$\underline{M}=3-6$	$\underline{M}=3-7$	$\mathbf{R}=\mathbf{p} 3-p 7$	$\\|=4-p 7$
inversions	$\underline{M}=p 7-3$	$\underline{M}=6-3$	$\underline{M}=7-3$	$\underline{R}=p 7-p 3$	$\\|=p 7-4$

Each tritone has its own suite of morphed fifos. The suites overlap. Tritones determine parallel modes, which provide context for filling in mode fifos morphed from tritones to fit the context. This is
both simple and powerful. \mathbf{M} and $\underline{\mathbf{M}}$ are opposite inversions but the same is not true for \mathbf{M} and $\underline{\mathbf{M}}$ or \mathbf{M} and \mathbb{M} because fifo inversions change size and therefore color.

PARALLEL CLASSICAL MODES

Here follows a simple table for constructing all possible parallel classical modes determined by all possible key signatures, from symmetric core shapes $\mathbf{x x}-\mathbf{x} \mathbf{x}$ and $\mathbf{x x}-\mathbf{x x}$ seen earlier. The modes are "classical" because they provide the interval sequences of the scales of key signatures, are "modes" because the interval sequence of one rotates into the interval sequence of any other, and are "parallel" in a sense that 7 check marked modes contain the home tonic, and the others are derived from them. Strictly speaking only the check-marked modes are parallel because only they contain the home tonic. More generally, they're all parallel modes of the either the home tonic or a tonic a tritone away.

The mode signatures on the left determine the modes: the prefix I/ (pronounced "parallel') identifies the six primary parallel classical modes. The prefix alt identifies secondary modes: borrowing a term from chord notation, they are tritone substitutes with the same tritone in the opposite inversion and all non-tritone notes different. One of them (Locrian) is a 7th parallel mode because its tritone \mathbf{L} includes the home tonic. The five unnamed alt modes don't include the home tonic but, looking ahead, are fundamental to understanding mode/tonic changes as "two sides of the same coin." The letters in the signatures are understood to be tritone anchors, so the color-coding shown is optional.

A visibly simple and practically important feature of this unconventional ordering of parallel modes is this: one note, provided by the next tritone, changes from one mode the next in alphabet order, considering the alphabet as a circular loop (the order goes through // modes first and then wraps around to the alt modes).

The tabular organization with two header lines and markers in the body identifying piano keys that may be interpreted in the symbols of either header, is fundamental to understanding parallel modes in PKP, independently of note symbols.

Octave Stacks

Octave stacks illustrated next in Lego-like terms for the master //I mode are the primitive elements
of PKP. The default form of an octave stack is anchor-centered, just as the default direction of a building block is up from an anchor. Inversions, if needed, are simple, but having a standard default form provides a simple starting point.

The anchor letters in white in the body are in the fixed width Courier font of the table but the meaning is the same. The meaning of the notation on the left is very simple: an anchor locates a building block going up from it and a color-coded box prefix identifies the size of the octavecompletion building block going down (red completes red, blue completes green, green completes blue). The stacks share a central note (white text), which requires thinking of the building blocks as overlapped at these points, with the building block going up from the anchor on top of the one going down. The box notation is more general than octave stacks but is shown here only for them.

Octave stacks are the primitive elements of PKP for a number of reasons:

1) Octaves are the easiest intervals to find on the keyboard, their keyboard or pitch centers follow from them in a simple way, and individual tritones or fifos come for free. For example, tritone stacks have outer and inner notes of opposite kinds (white vs. black), with one easily remembered exception (the B-F-B stack is all white keys); there are no all-black-key tritones.
2) Octave stacks are fundamental to music because they are the simplest divisions of the most fundamental interval of music, the octave.
3) Tritone stacks morphing into fifo stacks identify fifos as morphed tritones. Given that tritones determine modes, this opens the possibility of leaving fifo details to context provided by the flow of harmony from the modes. This is important because it enables leaving fifo details in harmony to context established by tritones. The fourteen building blocks in this picture are determined by only four color-coded anchor symbols, one of which (I) determines the others via the simple anchor line that is itself determined by the tritone, namely I-I-M. Thus one tritone stack is the "seed" of twelve mode fifos.
4) Octave stacks in harmony are almost chords and so provide a simple starting point for forming chords.
5) Picturing music in terms of octave stacks is simple for single-tritone classical modes but is even simpler for multi-tritone modes used by much music, for the simple reason that tritones are the simplest building blocks and more tritones provide more scale notes. This increasing simplicity is in stark contrast to the increasing complexity of music notation for the same thing.

Core Harmony

The concept of core harmony is fundamental to PKP. The core of a classical mode consists of a tritone stack and two fifo stacks morphed directly from it. "Il" and "alt" modes follow from opposite morphings of the tritone stack. Looking ahead, non-classical modes have cores with more tritones, but basic principles and notations are the same.

These morphings answer a question in opening chapter: How can altering one particular note by a half tone not only tell the ear that the scale has changed but also identify the new scale? The answer emerges from the following picture, showing that the fifo-fifo morphs between the two kinds of modes are symmetric, making the fifos mutually dissonant.

Given the establishment of a mode by one of these core sequences, morphing the tritone in the opposite direction from the one that established the mode will sound wrong to the ear, suggesting the opposite core. This answers the question: changing one core note by a half tone changes the mode.

The cores identified by I-I-M and L느-I (or its inversion L-I-I) are tritone substitutes of each other that share the same tritone and have all non-tritone notes different. As shown next, the notes of each core combine on the keyboard to form shapes $\mathbf{x} \mathbf{x}-\mathbf{x x}$ or $\mathbf{x x}-\mathbf{x} \mathbf{x}$ seen earlier. These cores establish tonics a tritone apart. This is so because the tritone substitute core is the result of transposing the primary core by a tritone. Transposing a tritone by a tritone inverts it, so the result in the home octave is the same tritone with all non-tritone notes different. Cores of this form become classical modes when the blanks are filled in by whole tones, but the cores exist independently of the modes.

```
    1 p22 p3 3 4 p5 5 p6 6 p7 7 1
    @ POR M I L $.... @ <- tonics a tritone apart
I-I-M
L_-I-I . . . . . x x . . . x x .
```

Knowing the simple relationship between primary and alt cores enables rejection of fifo possibilities that don't fit a particular mode. For example, the establishment of an Ionian mode by I-I\mathbf{M} automatically excludes the fourths of its alt mode identified by 느-III (or L-I-I).

The concept of a core determined by tritone-fifo morphs is independent of the details of particular modes. Classical modes follow from filling in the gaps in single-tritone cores with whole tones.

Looking ahead, multi-tritone modes may include some of the same tritone-fifo morphs that determine single-tritone classical modes, except the classical modes are not completed because the other tritones introduce intervals that are not whole tones.

Inversions of tritones establish different harmonic contexts when mode changes are indicated, but are otherwise no more than harmonically equivalent building blocks within an established context.

MELODY LINES

As illustrated next for the well known piece Happy Birthday to You, chromatic scale symbols annotated next to melody notes on a staff represent melody lines as people with musical ears recognize, remember and sing them, namely as intervals relative to a home tonic (F here). Commas mark the ends of phrases. This is written with the empty key signature, but implies a 1 -flat key signature for the Ionian mode of home tonic F .

This may be collapsed, as shown next, into a single, textual skeleton melody line stripped of the "clothes" of music notation. This is worth doing, even for such a simple melody line as this, because it provides a framework for adding harmony that's good for any home tonic. The only addition required is a notation for identifying whether the next note goes up or down. This consists of yellow and grey highlighting of pivot notes that mark the ends of the large arcs of the melody line trending upwards (grey to yellow) or downwards (yellow to grey). Think of yellow as peaks illuminated by sunlight and grey as valleys in shadow. The highlighting enables the overall shape of a line to be grasped at a glance, almost as it would on the staff, without parsing all the steps along the way. Highlighting local zig-zags within the large arcs is not required if they don't go beyond the ends (e.g., 5-6-5 in the first two phrases is constrained to mean a zig-zag up and down a whole tone, not down and up 10 half tones, a minor seventh). A skeleton melody line written down this way is intended only to provide a reminder of a melody line already known from memory or written music, not to be the primary source for learning it. That said, figuring it out is not generally difficult.

$$
55651 \text { 7, } 55652 \text { 1, } 555317 \text { 6, } 443121
$$

Adding bar lines and representing repeated notes by asterisks yields the following easy-to-read skeleton melody line for a typical written version of this piece.

$$
5^{*}|651| 7, \quad 5^{*}|652| 1, \quad 5^{*}|531| 76, \quad 4^{*}|312| 1
$$

Showing timing is often unnecessary for melody lines already understood by ear or by reference to
music notation, but is very simple, if needed. Instead of representing timing, as music notation does, by different durations of notes and rests within a bar, it's represented by a line of downbeat markers ($\boldsymbol{\wedge}$) under the melody line, as illustrated next. Common downbeat patterns are 2 beats per bar, 3 beats per bar (here) and 4 beats per bar. Showing downbeat markers identifies rhythm independently of anything else, which means using a different rhythm requires only ignoring or changing the downbeat markers (or avoiding using them in the first place).

Timing choices for notes between identified downbeats and upbeats are left open - the only constraint is squeezing them in. The guide to doing this is knowing a melody by ear, or by eye from music notation. The choice between a rest and an extended note for a downbeat marker between melody notes is left open.

Getting a grasp of a piece from arrangements on the grand staff spread over many pages of sheet music can be helped by translating the piece into one PKP melody line and one PKP harmony line shown on less than a page. Pieces in fake books with a melody line on a staff and a line of chord symbols above the staff are condensed into less than a page to begin with, so the translation can be annotated on the page, but writing it out separately provides an uncluttered, interval-based "dual view."

EXAMPLE: ONE CLASSICAL MODE FOR EVERYTHING

The familiar piece Happy Birthday provides an example of the use of one classical mode (Ionian) for everything. The relevance of this example goes beyond this particular piece or classical modes in general because the same concepts and notations apply across the board. The skeleton melody line identified by was seen earlier. The harmony line is identified by . It could follow from annotating anchors of building blocks next to chord symbols above the staff, but can also be developed independently of the written music.

Happy Birthday in //I (original in 1 flat for tonic F)

A First Pass at Harmony

This harmony for this melody line is developed in steps (a)-(d). The grey boxes in (d) represent voicing intervals smaller than building blocks, shrunk from the building blocks in (c) in a manner to be explained.

The steps are best understood by reference to the following picture, which shows the (d) result for the harmonized melody notes only. The melody line is in an inverted home octave, and the harmony, worked out independently of the melody line, is in a home octave a fifth below it.

This Lego-like picture shows the details worked out at the keyboard in a strikingly graphic way. Such details are easily worked out on paper for any piece, if desired, by marking symbols on a graph
paper grid; the fancy Lego-like look is only for explanation. The steps are as follows:
(a) The repetition of the single tritone I identifies the same mode (Ionian) as the melody. This example doesn't start from chords, but the logic of the tritone placement can be understood without reference to them. Harmony fifos come later and so need only be identified by placeholder symbols (+). The tritones identify resolution in the mode and so are placed just before ends of melody phrases that resolve to the tonic, or at the ends of melody phrases that don't resolve, anticipating future resolution. The tritones establish a flow pattern - very simple here but not this simple in general - that, with the known mode, constrains the choice of fifos.
(b) Fill in anchor-line fifos of the identified mode by eye and ear, ignoring the chord symbols. The ability to build fifo chords from the bottom up without reference to chord symbols is a general, powerful feature of PKP that dramatically simplifies understanding and voicing chord progressions. The anchor-line fifos are morphed from the tritone in a way that determines either $/ / I$ or altl, and the former is the only choice that fits this melody line. Choosing fifos that morph directly from the tritone restricts the $\mathbf{+}$, I sequences to I-I, and the I, + sequences to $\boldsymbol{I}-\mathbf{M}$ or $\mathbf{I}-\mathbf{M}$. Choosing sequence $\mathbf{I -}-\mathbb{M}$ decides $\mathbb{M}-\mathbf{M}-\mathbf{I}$ for the placeholder sequence $\boldsymbol{+} \boldsymbol{+} \boldsymbol{+}$ in the middle. These decisions about anchor-line fifos determine the usual written chords shown on the right because completion of the chords is direct and simple. Consonant substitutions for these fifos are also possible, yielding voicings of substitute chords, examples of which will emerge as we go along.
(c) Play anchor-centered octave stacks for the harmony. The octaves stacks here are within the home octave and the melody notes they harmonize are within an inversion of the home octave a fifth up, so there's no overlap.
(d) Shrink the bottom half of the octave stacks towards the anchor line to provide a bass line one or two scale steps below the anchor line. The fifo-box symbols for octave completion become neutral box symbols (\square) that leave the fifo size to context, which is fine because only a major or minor third fits the scales, and the choice is visibly determined by context (\square could be replaced by (4) or (3) to indicate sizes of 4 or 3 half tones, instead of leaving them to context). The missing notes that complete the overlapped fifos, identified by dashes, are visibly obvious (the pitch center of the mode and the note a whole tone above it).

Transitions in anchor-line harmony within the home octave are generally slides (e.g., M-I), morphs (e.g., I-I), or wobbly slides that combine the two (e.g., I-M). A slide moves a building block to a different keyboard position while holding its size. A morph changes its size while holding one end fixed. A wobbly slide changes both position and size in one step. This unusual term represents the hand movements exactly - slide the hand while moving the fingers ("wobbling" them) for the size change. The wobbly slide I-M may be understood as a contraction of I-M-M (a tritone slides down a half tone to go outside the mode and then morphs into a fourth in the mode).

Chord symbols on the right are interpreted results, not starting points. This shows one possible chord interpretation among many for the same core harmony.

A Second Pass: Constant-Shape Harmony

Both constant-scale-shape harmony and constant-keyboard shape harmony appear in written music and in jazz improvisation. "Constant shape" means the set of inter-note intervals (measured
differently) is the same for each chord: for constant-scale-shape harmony, inter-note intervals are measured in scale steps; for constant-keyboard-shape harmony, intervals are measured in half tones. The first-pass harmony for this example is tweaked next to provide an example of constant-scaleshape harmony in which all inter-note intervals of all chords are two scale steps (the intervals of basic seventh chords going up from roots). This kind of harmony is not restricted to all inter-note intervals being the same number of scale steps, but this is sufficient to give a sense of the general case. Assume the same (a)-(c) steps as earlier with the (c) steps tweaked by inverting selected building blocks or voicing them differently. The voicing intervals (\square) are understood here to be all two scale steps.

Here's how this looks on the keyboard. The anchor line is the same as before except with selected anchors transposed up an octave by inversions. This is harmony is spread over the octave-and-a-fifth interval below the melody line. The result is chords exactly as determined by the chord symbols, namely sequences of 2 -scale-step intervals going up from the roots.

The grey-box prefixes or suffixes (\square) that identify voicing intervals in the anchor line leave sizes to context. If sizes must be specified precisely, this is easily done by replacing the grey boxes with outlined numbers representing their size in half tones (e.g., the final sequence $\square \mathbf{I -} \boldsymbol{I}-\mathbf{M}$ becomes ${ }^{(3)} \mathbf{I -}$ (4)-(4)M). However, this tends to be redundant when the sizes measured in scale steps are obvious from context, as here.

This succession of keyboard shapes is conceptually simple but the big jumps require considerable pianistic skill. The jumps are "wobbly slides" because the whole hand must be lifted and moved while wiggling the fingers to fit the different keyboard sizes (minor or major thirds) of two scale steps at different points in the scale. The PKP contribution is providing a notation that enables such voicings to be written down in a simple way, independently of note symbols, chord symbols, or degree numbers in chord scales. Practicing is required to play the jumpy shapes but understanding them is provided by the notation, independently of practicing.

Looking ahead, constant-keyboard-shape harmony is different in kind. It may be ornamental or from a single multi-tritone mode, and is almost always chromatic. Examples will appear as we go.

A Third Pass: Voice-Leading Harmony

Voice-leading harmony is different in kind again because it puts the harmony as close to the melody line as possible. Assume the same (a)-(b) steps as earlier with the (c) step tweaked by inverting selected building blocks.

The adjusted result in (d) is the overlapped melody and harmony shown next. The same anchor line is transposed up, with building blocks going down or up from it determined by the melody line. This has the jumpy character of the previous pass but is easier to deal with because the melody line cues the inversions and the shapes. The octave shapes in phrase 3 fit the chords shown but the chords are completed in the flow rather than in place.

Different Kinds of Chords

A digression is appropriate here to explore chord types. This can be skipped without loss of continuity, and returned to later when needed. The important takeaway from this is the way the chords are determined by building blocks. The chords illustrated by the above examples are 4 -note shapes formed of pairs of overlapped building blocks, shapes that are either 4-note seventh and sixth chords or inversions of them. All possible inversions of a shape formed of a combination of building blocks are the same chord, harmonically. Inversions in PKP are indicated by underlining anchor symbols, thus preserving the visibility of the constituent building blocks.

Symbolic chord progressions of music notation can be complex for a number of reasons. One is some inversions are given different chord symbols and some are not. For example, the inversion I6/VI (the suffix indicates an inversion going up from a note identified by a root symbol) is VIm 7 ; the inversion IIm7/IV is IVM6; but the inversion V7/II is not normally given a separate chord symbol because it doesn't have the shape of a basic seventh or sixth chord (however, it may be given an altered chord symbol). See Appendix C for more examples of inversions assigned different chord symbols.

A second reason is the common addition of a chord type to the mix that's not a combination of building blocks, namely triad chords (3 notes). This increases complexity by increasing the number of chord symbols to parse. Triad chords are building blocks split into pairs of thirds (major or minor). They're unlike chords formed of combinations of building blocks in that inversions are not of the same form as the original (an inversion of a split building block is not a split building block, but a building block with an external voicing note). The different forms of inversions add to the complexity.

A third reason is "banging square pegs into round holes" - altering chord symbols originating in classical modes to fit non-classical modes that are different in kind.

Before describing a notation for triad chords, it will be helpful to notice that seventh and sixth chords are combinations of triad chords that share two notes: IM7 is a combination of a major triad with root I and a minor triad with root III; IIm7 is a combination of a minor triad with root II and a major triad with root IV; V7 is a combination of a major triad with root \mathbf{V} and a diminished triad with root IV. (Turning this around, a seventh or sixth chord may be implied by a sequence of triad chords).

The PKP notation for triad chords illustrated next continues the practice of preserving the visibility of building blocks. The notation is an anchor symbol with a superscript indicating the type of split of the building block. Asymmetric splits of fifths are symbolized by superscript " \triangle " indicating the larger interval is on the bottom, or superscript " ∇ " indicating the larger interval is on top. Symmetric splits of tritones are symbolized by superscript " \bullet ". Fourths enter the triad picture only via inversions, which may also be interpreted as 3-note voicings of seventh or sixth chords.

Looking ahead, it's often useful to represent inversions of major or minor triads by their outer intervals (not diminished triads because this would hide the structurally important tritones). For example, the outer interval of the inversion of the III \boldsymbol{m} minor triad is a fourth with a minor third on top: an augmented fifth (examples are provided by the classical pieces Traumerai in Chapter 3 and Afternoon of a Faun in Chapter 4).

ONE CLASSICAL MODE WITH CHROMATIC ORNAMENTATION

This example develops strongly chromatic ornamental harmony from scratch for the opening melody phrase of the well known piece Over the Rainbow. This illustrates that written harmony may be just harmony, without any other purpose than to sound good. It need not originate in the melody scale and may not have any intended meaning as a harmony scale. The first eight bars of this piece are sufficient for the purpose, which are so well known that there's no need for a source reference. The melody line is straight Ionian, trending downwards in zig-zags over an octave range to home tonic Eb.

The following collapses this line into a skeleton melody line and adds a tritone anchor line consisting of the alphabet in reverse order starting on L and wrapping around: L-I-M-R-O-P-L-I. This line is an example of constant-keyboard-shape harmony: the same keyboard shape (a tritone) moves to different positions in the chromatic scale.

The tritones provide a framework for adding core fifos and some other variations.

The double tritones provide elegant symmetric relationships between successive shapes (e.g., PM\mathbf{O} shrinks the outer notes of the double tritone inwards a half tone; and $\mathbf{O} \mathbf{- O l} \mathbf{- M}$ moves a fifth aligned with the bottom note of Ol to a fifth aligned with the top note).

Here follows the new harmony with the original melody. Play the single building blocks as octave shapes that go with the flow. The harmony could but isn't intended to imply parallel mode changes, or the tonic changes that are the other side of the same coin.

GLIMMERINGS OF "ARCHITECTURE"

In a famous session of PBS's Piano Jazz, Bill Evans, in conversation with Marian Macpartland, said words to the effect that he advocated taking a piece apart to understand its architecture before putting it back together in an improvisation. I thought this was a great concept but wondered how "architecture" could be conceptualized.

A start is identifying different domains of chromaticism. "Chromaticism" means departures from a written key signature, which means, for classical modes, departures from a single classical mode. The domains are basic classical (chromaticism is absent, or ornamental as in the previous example), chromatic classical (chromaticism is introduced via parallel classical modes or associated tonic changes) and non-classical (uses a non-classical mode hierarchy introduced in the next chapter).

Parallel mode changes of any kind may be construed as tonic changes because any parallel mode has relative modes that imply different tonics for the same notes. We may say that "parallel mode changes and tonic changes are "two sides of the same coin." This is easy to say but can be very complex in music notation. It is much less complex in PKP but getting too involved with abstract definitions can obscure the simplicity, which is best illustrated by a few examples from the chromatic classical domain.

Chromatic Classical Domain

Example: One of the most fundamental same-tonic mode changes in music is the parallel IonianAeolian change $/ / \mathbf{I}-/ / \mathbf{O}$ shown next, in which only 3 notes move down a half tone (highlighted). The potential complexity of this in music notation for key signatures of opposite kinds (flat vs. sharp) for the two parallel modes was illustrated by footnote 1 in the opening chapter.

This change may also be construed as a same-mode Ionian-Ionian tonic change up a minor third. The same-mode tonic change would be notated as $/ / /-/ / 0 @ p 3$. The new parallel mode supplies the scale for its relative Ionian mode, which goes up from the pointed-to tonic and wraps around. This avoids doing a complete shift to a new Ionian mode relative to a different home tonic.

[^2]Example: The melody of Happy Birthday might be transposed up a half tone on a repeat to give a sense of lift, as illustrated below for a one-flat key signature for home tonic F. Seeing past the accidentals to the $x \mathbf{x . x . x x . x . x . x ~ s e q u e n c e ~ r e v e a l s ~ t h e ~ m o d e ~ a s ~ I o n i a n ~} \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x x} \mathbf{x} \mathbf{x} \mathbf{x} . \mathbf{x} \mathbf{x}$ transposed up a half tone.

Example: The original mode in a different key signature requires accidentals for the actual notes relative to the key signature but the same sequence $\mathbf{x . x . x x . x . x . x x ~ i s ~ i m m e d i a t e l y ~ r e c o g n i z a b l e ~ i n ~}$ mode table.

"RHYTHM CHANGES"

The Gershwin piece I Got Rhythm (The Standards Real Book, Sher Music (2000), p191) is the origin of widely copied chord changes called "Rhythm Changes" by jazz musicians. These changes essentially define the chromatic classical domain. The changes move through parallel modes of the home tonic. Dealing with these changes can be challenging in music notation, depending on the key signatures involved. In the following skeleton summary, parallel mode changes occur at points marked " Γ."

I Got Rhythm in //I with visits to altA, altP and //L (original in 2 flats for tonic Bb)

The tritone changes in bars 1-8 are purely ornamental because the melody line stays in the Ionian mode of the home tonic. The melody line in bar 10 goes to chromatic note $\mathbf{p 5}$ that's visibly and audibly not a passing note, identifying a mode change determined by the \mathbf{O} tritone. The mode is not $/ / \mathbf{O}$ because this is a minor mode and the melody line in bars $10-11$ is major: the mode can only be alto (same tritone, all non-tritone notes different). The same goes for tritone \mathbf{P} in bars 12-13: the mode can only be altP. The mode in bars $14-15$ is $/ / \mathrm{L}$ and bar 16 returns to $/ / I$. These are very simple mode changes: in bars 10-16, one note changes from one mode to the next, supplied by the tritone. The only big change (4 notes) is $/ / I$-altO in bars 8-10.

The parallel mode changes are shown next (altered notes highlighted). The other side of the coin of parallel mode changes is Ionian tonic changes shown on the right (up a major sixth and then down by fifths). The parallel modes provide the notes. The notation on the right is of the form Ionian@6 and not $/ / \mathbf{0 6}$, for example, because the latter would identify the relative mode of $/ / I$ starting on note $\mathbf{6}$. The new Ionian mode is actaully $/ / \mathbf{0} @ 6$ (the Ionian@6 form could be written as "//Iי@6 where the quotes indicate that "//l" is for a different tonic).

			$\begin{gathered} \mathbf{p 2} \\ \mathbf{P} \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathbf{2} \\ & \mathbf{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { p3 } \\ & \text { R } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{3} \\ & \mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Eb } \\ 4 \end{array}$	$\begin{gathered} \text { p5 } \\ \text { L } \\ \hline \end{gathered}$	F 5	$\begin{aligned} & \text { p6 } \\ & \mathbf{x} \\ & \hline \end{aligned}$	G	p7		-written key
bar 1-8	/II	x	.	x		x	x	-		-	x		x	Ionian@1
bars 9-10	alto		x	x	.	x	-	x		x	x	.	x	Ionian@6
bars 11-12	altP		x	x		x		x	x			-	x	Ionian@2
bars 13-14	//L			x		x	.	x	x		x			Ionian@5
bar 15-16	I/I	x		x	.	x	x	-	x	-	x	-	x	Ionian@1

Here follows a look at bars 4-7. The grey box prefixes and suffixes on the left indicate voicing
intervals of unspecified size less than a fourth that are left to context. This notation could be shown in the anchor line. The boxes do two useful things, namely identify the need for a voicing interval, and indicate its side. Dashes identify the roots of the chords shown on the right.

The harmonic sequence for bars 9-16 where the mode changes occur is shown next.

The VIIm7 chord in bar 9 includes note p5, of the alt- $\mathbf{0}$ mode. After that, the only notes that go outside the Ionian home tonic mode are one note from each of the three non-Ionian tritones, which is no different from the first eight bars. The parallel modes provide more differences than this, which could be reflected in the harmony or in improvised melody lines.

CHAPTER 3: A HIERARCHY OF MODES

This is the "other half of architecture." The many different approaches to chromaticism may be organized into the following hierarchy of modes determined by words from the alphabet. The reason for presenting classical modes before presenting this hierarchy is they provide the alphabet, which provides a link to music notation, thus grounding this unconventional view in something familiar to anyone who studies the piano. This hierarchy is comprehensive enough to cover all the modes and beyond in scale dictionaries such as The Source What's more it goes beyond scale dictionaries by covering the modes for all possible key signatures and tonics, by construction on the keyboard from mode signatures. The hierarchy is comprehensive but not exhaustive; there's room for identifying more modes, if anyone sees the need.

The hierarchy provides the framework for developing and understanding chromaticism in a systematic way, bottom up, starting from simple pentatonic modes. Classical modes (e.g., minor Aeolian and major Ionian) are defined independently of this hierarchy because they're the scales of key signatures, but in this view of them, they're enrichments of pentatonic modes. Simple blues is an enrichment of a different kind. Classical modes and simple blues are at different levels because they're different in kind. Modes higher up in the two sides of the hierarchy are mashups of modes lower down, identified by words with more letters. Steps from pentatonic modes to basic blues and from pentatonic modes to classical modes yield scales that are different in kind, and the steps from there to family modes widens the difference. The family modes are similar in kind. Enriched classical modes (e.g., melodic minor, harmonic minor, harmonic major) are sub-modes of these that provide a bridge between the two sides of the hierarchy. These modes share with classical modes the properties of seven notes and no adjacent half tones; they differ from them by one note altered by a half tone that introduces a second tritone.

At the top of the hierarchy are atonal modes compatible with multiple tonics (e.g., diminished, whole tone) that can often be understood as parents of modes lower down (or as departures that go outside these modes).

PENTATONIC MODES

Pentatonic modes with five notes and no half tones or tritones are the foundation of "folk" music in cultures worldwide, so called because anyone with a musical ear can sing or harmonize tunes from them. They're sub-modes of classical modes that omit their tritones and half tones, but the idea here is see classical modes as enrichments of pentatonic modes. Simple blues modes are enrichments of a different kind.

The scale frame provides three notes, one more note results from specifying major or minor
tonality, and a final note follows from splitting a remaining major third into whole tones (the only way of splitting it that doesn't introduce half tones). This yields scales with inter-note intervals of whole tones and minor thirds. The latter are made to stand out to the eye by joining their notes by horizontal lines that say "no notes here." The signature for these modes is, exceptionally, a single fifo anchor. It establishes the tonality in the lower fifth of the scale frame and adds a characteristic note in the upper fourth.

The most visible instances of pentatonic modes on the piano are the clusters of 5 black piano keys (the major mode starts on the bottom black key of the 3-tritone cluster, and the relative minor mode on the next black key down). A lot of fun can be had and insight gained by experimenting with these black-key modes. They lead directly to simple, 6-note blues modes that are taught to beginners as "the" blues modes.

BLUES FAMILY

This development comes before moving up from classical modes on the left side of the hierarchy because it's simpler. I once heard a jazz musician say in an interview that learning the blues before learning music notation paved the way for understanding everything that music notation later threw at him. I thought this sounded right. Starting with pentatonic modes gives deep insight into the difference between classical modes and blues modes, which otherwise can seem somewhat arbitrary. This view of blues seems to be unconventional because no one I talked to and nothing I read explained things this way. It's a useful view because it gives the blues a coherence that's obscured by music notation, and highlights the difference in kind between the two sides of the hierarchy.

Blues modes based on pentatonic modes are shown in (a) and (b) below.

In (a), a mashup of the parallel pentatonic modes yields an 8 -note blues mode I/RM that's very different from classical modes (8 notes, 2 tritones, 3 adjacent half tones). In (b), 6 -note blues modes taught to beginners as "the" blues modes are 1-note extensions of the the parallel pentatonic modes. These are parallel modes with a shared interval sequence offset by a minor third. A mashup of these modes yields a 9-note blues family mode IIRM.L that's even more different from classical modes (9 notes, 3 tritones, 5 adjacent half tones). This is a family mode because all the other modes are submodes. This family mode is not my invention, only this representation of it is. I first learned of it in
conventional terms in a blues piano workshop at the then Jazz School in Berkeley.
These views of blues have an elegant simplicity. The family mode captures characteristic features of blues that distinguish it from the scales of key signatures, namely mixed minor-major tonality, adjacent half tones, more scale notes and the addition of three "bent" notes of the master major classical mode (Ionian), namely flatted 3rd, 5th and 7th. It's possible to extend this into a 10 -note mode by including the I tritone, but this not only gets too close for comfort to the chromatic scale, but also loses something distinctive about the 9 -note blues, namely a whole tone gap below the upper tonic. It seems more helpful to view the I tritone as ornamental relative to the blues.

Observe in passing that the 8 -note I/RM mode is also a mashup of the Dorian and Mixolydian classical modes, making key signatures for these modes relative the home tonic good choices for blues pieces. This does not suggest thinking of blues as a mashup of classical modes because /IRM.L is not a mashup of Dorian, Mixolydian and Lydian modes.

Suites of enriched parallel classical modes called "melodic" and "harmonic" that are sub-modes of the master family mode will be covered later.

EXAMPLE: BACKWATER BLUES

This is a simple, 3-chord, 12-bar blues, which I learned in the blues piano workshop mentioned earlier, as representative of "probably half the blues pieces played by pop and jazz musicians." The home tonic of the source is F. It's a simple piece but exploring it plumbs musical depths. The simple melody line establishes the home tonic by resolving to it in several places. Commas at the ends of phrases only identify the last note of the phrase, leaving open whether it's sustained or not. Timing is left open. Swing-feel $4 / 4$ time would be appropriate and could be notated by an extra downbeat line. The harmony is all tritone-based, which is not uncommon in blues.

Backwater Blues in //RM.L (original 1 flat for tonic F)

The first bar illustrates a feature of many blues pieces that helps in establishing both the fact of a blues and identifying the home tonic, namely opposite tonality of melody (minor) and harmony (major). As shown next, this bar implies, all by itself, the shared blues scale I/RM. The melody in bar 10 adds tritone \mathbf{L}, rounding out the shared mode to I/RM.L. The actual melody scale in all but bar 10 is pentatonic minor, and in bar 10 is the 6 -note blues extension of it identified by $/ / \mathbf{R L}$, but all of the melody and harmony originates in the family scale.

major harmony in bar 1 minor melody in bar 1	
implied shared blues scale	+ $\mathrm{x} \times \mathrm{x}$. x . x x

All the tritones appearing in the piece are summarized next.

The lone tritone I in the harmony in bar 10 is not in the family mode. The tritone is a
"turnaround" marker that identifies the beginning of the last four bars of a 12-bar blues. Blues tritone L would seem to be a natural turnaround marker but is substituted by Ifor reasons explained under the heading "Blues Chords." Harmony based on un-inverted and inverted tritone cores is shown next. It's easy to see how these simple voicing lines follow from altering tritone-based octave shapes. Grey box prefixes and suffixes could be used to suggest these shapes in anchor lines. The simple voicing lines are sufficient because the tritones provide sufficient harmonic variety. The omitted roots of the identified chords are are marked by dashes.

Blues Chord Progressions

Simple 3-chord blues pieces such as this often use dominant-7 chords I7, IV7 and V7 containing tritones \mathbf{M}, \mathbf{R} and \mathbf{I}, the last of which is not actually in the family scale represented by the mode signature //RM.L. The V7 chord containing tritone I is such a familiar feature of music that it tends to be borrowed for blues to round out a trio of chords of the same kind (the \mathbf{V} chord containing tritone \mathbf{L} is different in kind, namely VM7\#4). This is so common that many musicians understand basic blues to be defined by this chord trio. Defining blues by chord symbols is unhelpful because blues pieces in general use chords of too many different kinds for chord content to be a useful characterizing feature. Tritone content is more helpful and the //RM.L signature is particularly helpful because it captures fundamental features of the blues in a compact and intuitive way.

The following table digs deep, to reveal underlying simplicity of chromatic blues chord progressions that are forbiddingly complex even though they use only basic seventh chords. This is a representation of a table of chord progressions for tonic F handed out in the blues piano workshop mentioned earlier. The table vividly illustrates the simplicity of developing voicings of notationally complex chord progressions from very simple information. Tritone chords are represented by their anchors and fifo anchors are represented by placeholder plus signs, leaving fifos to be faired in from
context. The highlighted anchor lines are representative of the two parts of the table: the anchor line of Backwater Blues in the top part (using segments from different lines); and a representative anchor line of a bebop blues progression in the bottom part.

									turnaround										
1		\| M	\| M	\| M	\|	R	\| R	\| M	\| M		II	\| I	\| M	\| M					
2	\| M	\| M	\| M	\| M	\|	R	\| R	\| M	\| M		II I	\| R	\| M	I					
3	\| M	\| R	\| M	\| M	\|	R	\| R	\| M	\| M		\|	L	\| I	\| M	1 I				
4	\| M	\| R	\| M	\| M	\|	R	\| R	\| M	\| P		\|	L	\| I	\| M	\| I				
5	\| M	\| R	\| M	\| M	\|	R	\| R	\| M	\| P		\|	+	\| I	\| M		1 I			
6	\| M	\| R	\| M	\| M	\|	R	10	\| M	\| ${ }^{\text {P }}$		\|	L	\| I	\| M	$1+$	I			
7	\| M	\| R	\| M	1+ M	M \|	R	10	\| M	\| +	P	\|	+	\| I	$1+\mathrm{P}$	P \| +	I			
8	\| M	\| R	\| M	1 + M	\|	R	10	\| +	\| P		\|	+	1 I	$1+\mathrm{P}$	P \| +	I			
9	\| M	\| R	\| M	\\| + M	M \|	R	I + R	\| M	R \| 0	P	\|	+	\| I	\| +	P \| +	I I			
	0 \| +	\| +	\| +	L \\| ${ }^{\text {- }}$	M \|	R	\| R	\| +	\| +	L	\|	+	I \\| +	I \\| + P	P \| +	P			
	1 \| +	1+	$1+$	+ \\| +	M \|	+	$1+$	1 +	\| +		\|	+	\| I	$1+$	+ \| +	P			
	2 \| +	\| +	\| +	+ \| + M	M \|	+	+ \| +	\| +	\| +		\|	+	\| I	\| +	+ \| +				
	3 \| +	\| +	\| +	+ \| + M	M \|	+	$1+0$	\| +	\| +	L	\|	+	\| +	1 \| +	P \| +	P			
	4 \| +	\| +	\| +	L ${ }^{+}$+	M \|	+	$1+0$	\|+	\| +	L \|		\|		\| I	$1+$	P \| +	I		
	5 \| +	1+	\|+	L +	M \|	+	I + R	\|+	\| +	L		1	R \\| + P	P \| +	11				
	6 \| +	$1+$	$1+$	1+ N	M \|	+	$1+0$	$1+$	$1+$	L		$1+$	$11+$	P \| +	1 I				
	7 \| +	1+	\| +	+ \\| + +	+ \|	+	+ \| + R	\| +	\| +	P	\|	+	\|+	+ \| +	+ \| +				

Here follows the development of the highlighted bebop blues line:

			F major (for reference)
1	M	. -	F\#m7
	M	. M	B7
2	M	-	Fm7
	0	. . $0 .-. .$.	A7
3	P	-••-. .	Dm7
	$\underline{\underline{L}}$	G7
4	I	-••••••-...	Cm7
	M	- . . M	F7
5	M	-••••-......	вbм7
6	R	\cdot	Bbm 7
	0	. . $0 . .$. . . .	Eb7
7	0	AbM7
8	P	-••-...	Abm7
	\underline{L} $1 .-$. . .	Db7
9	I	- - • • • • •	GbM7
10	I	- • •	Gm7
	I	. . I . -	C7
11	A	-	Am7
	P	. P. -	D7
12	I	. -	Gm7
	I	. I . - .	C7

Fifos are faired in between tritones in a visibly obvious way. Dashes indicate positions of assigned roots that yield conventional root-3rd-7th voicings of the seventh chords on the right. Notes and chords for tonic F are shown for concreteness.

The notational complexity of this chord progression follows from the use of tritone substitute chords (same tritone, all non-tritone notes different) that determine different parallel modes for the same tritone in different places in the progression. Different parallel modes mean different implied key sigatures. The tritones of all possible dominant seventh chords and their tritone substitutes for any home tonic are easily determined from a table of the following form. The chord roots are the \mathbf{x} entries in the table. All possible chords are listed on the right for home tonic F, with strikethroughs identifying unused chords. This chord progression is doubly chromatic because each pair of tritone substitute chords determines two different implied key signatures, for a total here of eight different key signatures, which is complex by any measure. This table is good for any progression of dominant seventh chords from any home tonic by replacing the top line by the scale frame for that tonic.

Complex as such bebop blues chord progressions are, the chords themselves are plain seventh chords, which is not representative of blues in general. In fact, the bebop progressions don't sound like blues by themselves: they rely on a melody line to provide a blues sound. To give a blues sound to the harmony, the non-tritone harmony notes should stick to the blues family mode of the home tonic or a sub-mode of it, which isn't the case here. I have always wondered why some jazz pieces described as "blues" don't sound like blues to my ears; this offers an explanation.

Blues Chords

Blues modes are different in kind from the classical modes that determine the symbols for seventh chords (different numbers of notes, adjacent half tones, multiple tritones). Blue chords that are basic chords altered to fit a blues mode are often notationally complex ("banging square pegs into round holes"). A sampling of such chords is provided next. The chord symbols on the right are intended only to illustrate this complexity: knowing them is not required to read on. The takeaway here is that the combinations of building blocks are the chords.

The grey box prefixes and suffixes (\square) in the anchor line on the left are ambiguous in isolation but tend to be unambiguous in context, suggesting specific add-on fifos. Specifying the full add-on fifos tends to over-specify chords because the internal notes of the tritones are often implied by context. An amazing amount of chord complexity can be introduced by holding the tritone and changing the add-on fifo (or vice-versa).

MAJOR AND MINOR FAMILIES

Classical modes, already explained, follow from enriching the pentatonic modes by splitting their minor third intervals in different ways. The minor and major families follow from a mashup of modes $/ / \mathbf{O}$ and $/ / I$ that's analogous to the mashup of minor and major pentatonic modes on the blues side of the hierarchy. As shown below, the mashup yields a 10 -note minor-major mode identified by the mode signature //ORMI that sometimes appears as a melody mode in strongly chromatic pieces (e.g., Lush Life covered in Chapter 4), but is mainly a parent of 9-note minor and major family modes that differ by one note in the lower fifth of the scale frame (grey shading). The 9 -note modes follow from omitting tritone anchor \mathbf{R} or \mathbf{M} while leaving its upper note untouched (marked $\boldsymbol{+}$). The plus suffix on the mode signatures indicates filling in the top fourth by inclusion of this note. The modes shown all have visibly simple asymmetric forms. These modes are close to the chromatic scale but are unambiguously tonal because of asymmetry provided by the whole-tone gaps.

Here follows a summary of important sub-modes and variations of them. This makes logical sense of modes that can seem very ad hoc in conventional terms. The 8 -note harmonic minor-major mode is a mashup of its harmonic minor and harmonic major sub-modes. It's particularly useful as a master mode because of its simple, regular form that contrasts with the irregular forms of its sub-modes.

	@ P ORMILS		
\|/OR.I		8-note minor (bebop melodic minor)	
//R.I	x - x x - x . x . x - x x	7-note variation (melodic minor)	
//O.MI		8-note major (bebop melodic major?)	
//O.MI	X - $\mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x}$	8-note variation (bebop major)	
//O.M		7-note variation (melodic major?)	
//Oxx\|		8-note harmonic minor-major	
/\|Ox.		$\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x}$ - - x	7-note harmonic minor
\|/O.x		$\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x}$ - x x	7-note harmonic major

Suites of enriched classical modes that are parallel modes of the melodic minor, and of the harmonic minor and major, are explained following the next examples.

EXAMPLE: TRAUMERAI

The example is Schumann's beautiful Traumerai (Classical Fake Book, 2nd Edition, Hal Leonard (2013). The home tonic of the source is F. As shown below, the melody is straight $/ / I$ with a mashup of it and $/ / \mathrm{M}$ in $[\mathrm{b}]-[\mathrm{c}]$ that adds one note in a few places ($\mathbf{p 7 \text {). The } 8 \text { -note mashup could be identified }}$ as //MI (no other mode in this document has this signature) but it seems simpler to think of the melody plus harmony of all sections as governed by the major family mode $/ / \mathbf{O} . \mathbf{M I I}^{+}$, with tritones \mathbf{P} and \mathbf{L} providing ornamental harmonic transitions. The melody line resolves to relative tonics 2-6-2-5-1 of this mode that are also relative tonics of the $/ / I$ mode, but thinking in terms of the more general mode helps in remembering melody and harmony resolutions.

Rhythm is $4 / 4$ with most chords on downbeats. The exceptions are diminished seventh chords (double tritones) on upbeats that provide ornamental transitions to following chords on downbeats. The written harmony looks misleadingly simple but is actually complex in aggregate due to a mix of different chord types in different inversions, on a jumpy bass line formed of chord roots and bass notes of inversions. This interpretation replaces the jumpy bass line by a smoothly flowing anchor line that represents both building blocks and outer intervals of compound shapes (augmented fifths or major sixths) going up or down from it. This interpretation makes its own decisions about chord inversions. The thin harmony captures the essential sound of the piece effectively, and implies thicker harmony that's easily filled in from context (most of the missing notes are the pitch center or the home tonic). The ups and downs of the harmony roughly follow those of the melody line, but by smaller intervals. Anyone can play the melody line or the thin harmony, independently of each other. The main challenge is remembering how the two go together in the latter half of each section, where the resolution patterns to different relative tonics are different.

Traumerai in //O.MI+ (original in 1 flat for major tonic \mathbf{F})

Here follows an explanation of the notated harmony.

EXAMPLE: SUMMERTIME

I learned this version of this well known minor piece by Gershwin some years ago in a piano comping course given by Susan Muscarella at the then Jazz School in Berkeley (now the Jazz Institute). The home tonic of the source is D and the key signature is one flat, identifying Aeolian mode $/ / \mathbf{0}$, but the piece departs significantly from this mode. In the following summary, the anchor line is from a chord progression that will be presented later as a result. The only reference I have for this version of the piece is my course notes. Like Backwater Blues, it's a simple piece, the exploring of which plumbs musical depths.

The 6 -note melody line is pentatonic minor with one added note ($\mathbf{2}$ in bar 8) that's in most minor scales. The harmony is strongly chromatic but is more than ornamental because, with the exception of bars 5-6, the tritone harmony self identifies a succession of sub-modes of the minor family mode with signature //OR.I+ (recall that the plus superscript means fill in the top fourth).

Summertime in //OR.I+ (original in 1 flat for minor tonic D)

The modes are summarized next. The arrows at the right indicate some possibilities for inter-mode segues that are exploited in the above anchor line.

The skeleton melody line and the anchor line shown above are sufficient to play the melody with 3note octave shapes for the harmony. The result has depth because of the three notes, and variety because of the tritones.

Adjusting the harmony to provide more shape variety is easy, as illustrated next for bars $1-8$ plus the resolution bar 16. The numeric suffixes or prefixes on anchor symbols indicate offsets of voicing notes above or below the core, measured in half tones. These could be added to the above anchor symbols to indicate desired voicings. These shapes voice the chords on the right, if not always in place
then in the flow (omitted chord roots are identified by dashes). All the voicings except for the II chord are rootless, demonstrating once again that chord roots are not inherently fundamental to the sound of a chord progression.

The suffixes for on anchors show that fit the scales. For example, the opening tritone with a fourth on top (often called "all fourths" because a tritone is an augmented fourth) has a size of $6+5=11$ half tones, a half tone less than an octave. This makes finding the shape on the keyboard easy - find the treble note a half tone below the bass note an octave up, and complete the shape by adding an internal note a tritone above the bass note. All-fourths shapes generally imply complex chord symbols because this is not a basic chord shape from a classical mode.

$\underline{\text { bar }}$	core	1 p 22 p 334 p 55 p 66 p 771 p 2 l p3	a voicing of
2	R	R • - . . x • • • x	IV-13
3	$1 \square$	I . - . . . x • - . x	V-7\#5
4	R	R • - . . x • • • x	IV-13
5	M	M x . -	I-7\#9 ornamental
6	R	$R \cdot \cdot \cdot \cdot \cdot x \cdot \cdot-\cdot x$	I-m6(9)
7	0	$0 \cdot$ • • - ${ }^{\text {x }}$	II-m7b5
8	01	0. . I . - x . . x .	V-7b9
16	\$	x • • . \$. . . x . . -	I-m triad resolution

As summarized next, there's a strong contrast between the simplicity of these shapes and the complexity of the corresponding chord symbols. The adjustment of basic chord symbols to fit scales, or places in scales, they don't quite fit is like "banging square pegs into round holes" - the results tend to be messy.

root of $\boldsymbol{I}-\boldsymbol{m} \mathbf{6}(9)$, " 5 " of $\boldsymbol{I V} \mathbf{- 1 3}$, " 7 " of $\boldsymbol{I I}-\boldsymbol{m} 7$ root of $\operatorname{II}-\boldsymbol{m} 7 \boldsymbol{b} 5$, " 9 " of $\boldsymbol{I}-\boldsymbol{m} \mathbf{6}(9)$, " 13 " of $\boldsymbol{I V}$-13 " 7 " of $\boldsymbol{I V}-7$, "\#5" of \boldsymbol{V}, "\#9" of $\boldsymbol{I}-7 \# 9$ "b5" of $\boldsymbol{I I}$, "b9" of \boldsymbol{V} - $\mathbf{7 b} \boldsymbol{b}$ "b5" of $\boldsymbol{I V}$-7b5 (not in the above but could be)

chromatic scale notes
1
2
p3
p6
7

SUITES OF ENRICHED PARALLEL CLASSICAL MODES

The major, minor and blues family modes provide suites of enriched parallel classical modes as sub-modes. The enrichments add a second tritone to a classical mode, while preserving the properties of classical modes of seven notes and no adjacent half tones. These are parallel modes of master melodic minor and harmonic minor modes but, as with straight classical modes, have different tonalities and so are best referred to as "melodic" and "harmonic" modes, leaving tonality to be understood from mode signatures. This is a deep and complex topic in music notation that tritone symmetries make simple. (See the book Modalogy and Appendix D for more on the complexity. The large number and wide variety of exotic names by which these modes are conventionally known has to seen to be believed. The scales are effectively impossible to keep straight in the mind in these terms.)

The following picture sets the stage. Think of the alphabet as a circular loop in which transitions off one end wrap around to the other end (harmonically equivalent to going up into the next octave). Classical modes step around the circle without going across it. The melodic and harmonic modes do the same, except they gather a second tritone at each step from across the circle. The order of the double tritones in the mode signatures implies inversions when the second tritone goes off the end of the alphabet, so there's no need to identify the inversions by underlining.

Melodic Modes. A simple way of understanding these modes is as 9-note mashups of parallel classical modes with tritones a whole tone apart, reduced to 7 notes by eliminating adjacent half tones. The defining symmetric shape of the master I/RI mode follows from the mashup of the defining symmetric shapes of the //R and $/ / \mathbf{I}$ modes shown next. The altRI mode follows logically. This pair accounts for two of 12 possible modes. As with classical modes, the symmetric pairs include the tonics, so there's no need to think up about them up front. The new thing is twice the number of modes containing \mathbf{L}, which automatically include the tonic, causing the distribution of modes among the two different kinds of mode signatures to be different.

Here follows a summary of the twelve modes, with ones containing the home tonic identified by check marks. The master tonics a tritone apart are identified by \mathbf{o}. The symmetric shapes provide six notes leaving only one note to be added to complete the scale by whole tones. Some shapes extend into the next octave to bring forward the pattern to the eye, but the projecting parts wrap around to the beginning to put the scale within the home octave

The construction process shows that each of these modes is the classical mode of one of the tritones with the replacement of one scale note by a note of the second tritone (the other note is already in the scale).

Here follows an example of the $/ / \mathrm{ML}$ mode as a sub-mode of the blues.

Parallel Harmonic Modes

The harmonic modes are different in kind because only 3 of the double tritones have different notes. The alphabet-as-a-circle figure makes clear that the last 3 double tritones of the harmonic modes are inversions of the first 3. Instead of 2 possible tonics a tritone apart, there are 4 possible tonics a minor third apart for each of the harmonic minor and harmonic major modes. The upshot is 12 possible tonics for each master mode of which 7 include the home tonic, for a total of 24 modes, of which 14 are parallel modes. Untangling the possibilities in these terms gets complicated. There's a simpler approach inspired by the simplicity of the symmetric shapes of the classical and melodic modes. The 8-
note mashup of the parallel harmonic modes covers all the possible modes. Each of these modes is easily reduced by context into one of the parallel modes on the left by omitting one of the notes in the full minor third.

Here follows a summary of the construction of the twelve modes from the symmetric shapes, with ones containing the home tonic identified by check marks. The shapes ending on the upper tonic or projecting into the next octave are only to help the eye see the repeated pattern - they wrap around to the beginning of the home octave. The check marks identify modes containing the home tonic. The master tonics shown as 0 are not in the symmetric shapes and so have to be added but this is easy because the additions are determined for the top mode of each set of 4 modes by the following master tonic sequence highlighted in yellow: 5-1-4, from which everything else follows.

Here follows an example of the I/RL+ mode as a sub-mode of the blues, with the removal of one out-of-context note from the full minor third.

OTHER MASHUPS

Mashups have proven to be useful way of generating new scales. Are there more of them that might be useful? Let's see. Here follows an example of a mashup of classical modes a half tone apart that produces an 8 -note blues scale /IRM seen before. This scale has not, to my knowledge, been formally developed into a suite of parallel modes in music notation but it could be. This is a minor-major mode but an all major mode such as $/ / \mathbf{M I}$ could be useful for pieces that switch back and fourth between //M and $/ I I$. Further explorations will be left to examples.

@PORMILSxxxx@

seen before as a blues mashup of parallel pentatonic modes

EXAMPLE: LAURA

My source for the summary shown next is The Jazz Book, John Brimell, CPP/Belwin, 1989, p24. The home tonic of the source is C. The source book is sub-titled Today's Easy Adult Piano but this piece is "easy" only in the sense that the key signature is empty, the density of notes on the page is low, and playing it without thinking about the changes is easy. The not-so-easy part is getting a handle on the changes, due to the presence of adjacent half tones in often-sparse melody lines, and to seemingly irregular relationships between the melody lines and the richly chromatic harmony. In the following summary, fifos are omitted at points marked + because understanding the changes requires only the tritones, and the fifos are easily added from context determined by the tritones.

Laura in //I with visits to parallel modes (original in C)

repeat (a)-(b) and then go to (e)-(f)

```
(e)
```



``` \(+\) \(\square\)
(e)
」. 4 5|-, 34 p6 \(7 \mid 21\) 2|-, 7 1|
(f)
```


An interpretation in terms of classical modes: The melody lines are from successive classical modes that go from major in (a)-(b) to minor in (c) to major in (d)-(f). Ornamental notes (highlighted) "bleed" between the classical modes. The pentatonic major mode of (d) is a sub-mode of the resolution Ionian mode of (e)-(f). The successive classical modes are determined by single tritones going down by whole tones through (a)-(b)-(c) and then up a minor third to (e)-(f). This may be interpreted as Ionian
tonics going down by whole tones through (a)-(b)-(c) and then down a minor third to (e)-(f), except this is not very helpful because the modes are daisy-chained together instead of resolving. It's much simpler to think of this in terms of parallel mode changes.

An interpretation in terms of parallel harmonic-minor-major modes: I find the local irregularity of (a)-(b)-(c) unsatisfying. The piece sounds like each melody phrase is from a fully defined parallel mode of its own. Out of curiosity, I looked for an interpretation in terms of nonclassical modes and found the following one in terms of parallel modes of the harmonic-minor-major mode determined by double tritones in the harmony. There's an elegant regularity about this that fits the elegant regularity of the melody phrases to the ear.
1 p2 2 p3 34 p5 5 p6 6 p7 71 @ P ORM I L
-••••• $\mathrm{x} \times \mathrm{x} \times \mathrm{x}$.
x. x - x o . $x \times x$ minor

(a) melody notes
//RL+
(b) melody notes
//PM ${ }^{+}$
(c) melody notes
altiO+
//0
(d)-(e)-(f) as before

ATONAL MODES

The focus of PKP is tonal music but atonal scales summarized next are included because shared letters of their defining words make them visible structural parents of scales lower down in the hierarchy; and also because they may be used ornamentally in tonal music. Atonal scales have no minor, major or minor-major tonality by themselves but representing them by words that place them in the context of the home tonic gives them tonality relative to it. The last mode is unusual in having no tritones but being determined by tritones (it's morphed from the tritones of O.M.L.

Atonal modes have a symmetry that makes them compatible with multiple tonics (the shape going up from different tonics is the same). Whole tone scales have circular symmetry and diminished scales have mirror symmetry. Representing them by alphabet words selects the home tonic as a reference. Breaking their symmetry creates related home-tonic scales.

word	type name	@ P OR M I L \$ @	related to
ORMI	-	x x x x-m x x x-	//ORMI, //OR.I, //O.MI
P.R.I	whole tone	x . x . x . x . x . x	//RI
O.M.L	"	x . X . X . X . X . X . X	//OM
P.RM.L	diminished		//RM.L
PO.MI	"	$\mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x}$	//O.MI
OR.IL	"	$\mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x} \cdot \mathrm{x} \mathrm{x}$	//OR.I
PMI	augmented	x x - - x x- x - x - x	//O.M.L

"PUSHING THE ENVELOPE" OF THE CHROMATIC CLASSICAL DOMAIN

Coltrane's famous jazz classic Giant Steps pushes the chromatic classical domain beyond limits that are easily understandable in terms solely of this domain. The difficulty is mostly but not entirely because of the "clothes" of music notation. Stripped of these clothes, the core harmony is a sequence of tritone-fifo morphs of the kind seen so far for parallel classical modes. The new thing is a melody line that's from no classical mode.

A chart from The Real Book, 6th Edition, Hal-Leonard. is shown next to set the stage, annotated to show the classical modes visited (for simplicity, some fifos determined by context are identified only by placeholder plus signs). This is superficially similar to "Rhythm Changes" at the end of the previous chapter in having a main classical mode (//M here) and several alt modes of a single home tonic ($\mathrm{F} \#$ here); these modes originate in Ionian modes of different tonics (G, B and Eb here). The things that "push the envelope" are the large musical distance between the Ionian modes (they differ by 4 notes and alternate between implied key signatures of 1 sharp, 4 sharps and 3 flats); the rapidity of the mode changes (sometimes one every bar); the irregular placement of the changes (in the middle of bars or at bar lines); a home tonic F\# that's none of the Ionian tonics; and a melody scale of this tonic pieced together from fragments of the three Ionian modes that's different in kind from any classical mode.

The Ionian modes of tonics G, B and Eb rotate into modes with the same tritone on the keyboard but different anchors relative to home tonic $\mathrm{F} \#$. The anchor of the Ionian tritone of tonic G relative to tonic $\mathrm{F} \#$ is \mathbf{L}, of tonic B is \mathbf{M}, and of tonic Eb is \mathbf{O}. The corresponding home-tonic modes are alt L (Locrian), I/M (Mixolydian) and altO (no name). The only obvious evidence of these modes in the chart is harmony tritones morphing into fifos (long dashes in the harmony line). These morphs create the notes of the melody line as shown next. The three tritones form an atonal whole-tone scale, each tritone of which morphs into one of the fifos. The three fifos form a different kind of atonal scale called "augmented" because the 5th note (the pitch center) is raised a half tone. The tonal melody scale is created by adding two mode notes as "passing notes" that break the atonal symmetry.

Here follows a summary of the piece in shorthand notation that captures this new view of it. This is easy to read, play and remember. The parallel modes are not a direct part of this picture. The organization into phrases on the same line, delimited by commas, makes it easy to get a sense of the flow.

「melody //PMI ${ }^{+}$

The melody sequences of bars 1-7 are easy to understand as follows. The interval sequence of bars $1-3$ and 5-7 is the same, shifted down a major third.

The melody line resolves to the home tonic in bars 7 and 13. Bars $14-16$ set up for a repeat. It's amazing that this famously difficult piece can be represented in such simple terms. The simplicity encourages experimentation that's closed to all but experts by the written piece. The OML whole tone scale and the melody modes $/ / \mathrm{M}$ and altL provide starting points for blues variations, for example.

Here follows a Lego-like view of the core harmony (grey shapes complete the fifo picture). This simple harmony fits the written chords shown on the right. Dashes in the building-block view indicate omitted roots. The only appearances here of the melody "passing notes" p3 and $\mathbf{7}$ are as roots of two minor seventh chords that are optional in the chord progression.

		F\# G\# A\# B C\# D\#E F\# 1 p2 2 p3 34 p 5 5 p6 6 p7 71 $\mathrm{x} \times \mathrm{x}$. $\mathrm{x} \mathrm{x}-\mathrm{x} \mathrm{x}$. + x		< _melody scale	
	$\underline{\text { bar }}$				
1	M		$\mathrm{M}-. . . \mathrm{x}$.	IVM7	(follows from bar 16)
	L		. . L - . . . x	pVI7	
2	I		- x	pIIM 7	
	0		. . $0 .-$. . x . . .	III7	
3	P		P x -	VIM7	
4	+		-•-......	bIIIm 7	
	L		x . - . .	pVI7	
5	$\underline{1}$		x - . . I . .	pIIM7	
	0		. . $0 .-$. . x .	III7	
6	P		. P x -	VIM7	
	M	x .	. . M .	17	
7	M	x M -	IVM7	
8	+	 -	VIIm 7	
	0		. . 0 - . . x .	III7	
9	P		P x -	VIM7	
10	+		-•-.........	bIIIm 7	
	L	 L x	pVI7	
11	I		. I x	pIIM7	
12	+		-••	Vm7	
	M		M x	17	
13	M		- . . . ${ }^{\text {x }}$	IVM7	
14	+		- -	VIIm 7	
	0		. . . - . . x	III7	
15	P		. P. x -	VIM7	
16	+		-••••••-..	Vm7	
	M		- x . -	17	(goes to bar 1)

OBSERVATIONS ACROSS A RANGE OF EXAMPLES

There are no 5-letter mode signatures because the implied scales would be too close to the chromatic scale to be usefully distinguished from it. The zone within the mode hierarchy ranging from 4 -letter words down to 2 -letter words that identify parallel modes is complex in music notation. Scales must be understood as enumerated notes relative to one of more than twelve possible different key signatures. The role of classical modes as the defining scales of key signatures makes music from scales that differ markedly from them misleadingly complex. The hierarchy makes this zone simple by pushing note symbols and interval inversions down to a lower conceptual level.

Parallel classical modes bring chromaticism into the domain of classical modes in a very simple way: one alphabet step (up or down) in the alphabet brings in a new tritone that alters one scale note; two steps alters two scale notes; three steps alters three scale notes; and so on. In each step, one altered note is provided by the tritone (the other tritone note is in both modes). The new modes are chromatic relative to the key signature of the original mode. Pentatonic modes contain no tritones but they're subscales of classical modes and so are bundled in with them.

The chromaticism of such changes is identified in music notation by accidentals in melody lines and chromatic chords in harmony, without any explicit indication of its origin, which may be classical modes, non-classical modes, a mix of the two, or ornamentation that has no scale implications. Explicit key-signature changes indicate the origin is in classical modes, provided there are no accidentals in the melody and no chords that go outside the key signatures, but much strongly chromatic music is written with a single key signature. Even the simplest classical mode changes can be complex in music notation.

Most interesting music is chromatic to some degree. One way of introducing chromaticism is by moving between successive classical modes. The idea is to establish a mode via a melody line, a core harmonic sequence, or both, before going on to the next mode. For example, the $/ / \mathrm{I} / / / \mathrm{M}$ mode sequence is established harmonically by the core anchor line I-I-M-I-M-M. Harmonic resolution in the first mode occurs before going on to the next mode.

The melody lines of the example pieces in this chapter are all short and simple enough to be easy to read in chromatic scale notation. This so even for the difficult Giant Steps because its its melody line is short and simple in PKP. The smorgasbord of difficult pieces in the next chapter introduces more elaborate melody lines that are less easy to read in the unfamiliar chromatic scale notation. Keep in mind that the point of PKP is simplifying the representation of melody plus harmony, not necessarily of melody alone. The melody notation is simpler across the board than music notation but learning to read it still requires effort. The most important thing is avoiding interpreting it relative to the home tonic of a previously played piece that's still in the mind.

CHAPTER 4: A SMORGASBORD OF ADVANCED EXAMPLES

This chapter explores a smorgasbord of example pieces that I found difficult to understand when I first encountered them in music notation because of strong departures from classical modes, often combined with difficult or multiple written key signatures. The idea of a smorgasbord is to offer something for everyone. Any one of these pieces rewards deep study and, when the study is in these terms, what's learned is portable between different pieces with different tonics and key signatures.

A takeaway from this chapter is confirmation that tritones are structurally fundamental to music understood in interval terms, and that a DNA-like alphabet is sufficient to cover any tonic scale or chord progression that may be played on the piano, independently of the key signature(s) in which a piece may be written. This is different in kind from "the score is sacred" view of many classical musicians.

I have heard it said, and believe it to be true, that composition is frozen improvisation. Therefore it, like improvisation, requires a sense of architecture. I suggest that exactly such a sense of architecture is revealed by the examples in this chapter. The fact such a sense can be extracted from such a wide variety of pieces without any information other than that provided by the piece itself suggests that it was put there by a composer or arranger, based on an intuitive understanding that's no doubt different in kind from PKP, but that can be represented simply by PKP.

The examples are intended to be understood by playing them, not just looking at pages, and so should be approached in front of a piano on which they can be tried. Start with the melody line and the tritone core to establish basic flow. Play the tritone core as octave shapes first. Then play the actual shapes shown, including interpolated fifo shapes. Then try variations.

The examples explore a wide variety of home tonics, modes and key signatures:

Goodbye Pork Pie Hat
When Sunny Gets Blue
Prelude to an Afternoon of a Faun
Round Midnight
Straight No Chaser
Blue Monk
Body and Soul
Every Time We Say Goodbye
All of Me
No Greater Love
All the Things You Are
Chelsea Bridge
Lush Life
The Peacocks (the only one in annotated music notation)

GOODBYE PORKPIE HAT

This blues in Eb, the chord progression of which is footnoted on the opening page of the first chapter, is a poster child for chromatic music that's difficult in music notation for all but experts. My source for it is the Mingus Fakebook, Hal Leonard (1991). Trying to learn this piece from this source was one of the stimuli that sent me down the path to PKP. The key signatur e of 3 flats and the home tonic of Eb jointly identify the Ionian mode $/ / \mathbf{I}$ as the reference mode for the accidentals that determine blues notes. This is an example of the often misleading nature of key signatures. A 5-flats or 6-flats key signature indicating Dorian or Aeolian modes of Eb would be closer to the I/RM.L blues that governs the piece for this tonic.

The simple melody line is mostly in the 6-note minor blues sub-scale. Bars 6-7 are a variation that goes "outside" the blues. In bar 7, the 1.p2 notation means the first note is "crushed" into the second note on the same beat. The melody is played in swing-feel $4 / 4$ time.

Keep in mind here and later that this notation is only to illustrate the concepts independently of the obscuring clothes of music notation, and that, most of the time, all that's required is chromatic scale symbols annotated on the staff and augmented anchor lines annotated above the staff next to chord symbols. That said, this is a useful way of capturing the essence of tricky passages, to say nothing of it being valid for any home tonic, not just the written one.

Goodbve Porkpie Hat in //RM.L blues with variations (original in $\mathbf{3}$ flats for tonic Eb)

Three styles of harmony are illustrated: in bars $1-5$, the outer notes stay fixed (determined by the double tritone MLI) while one inner note moves; in the variation in bars 6-7, the tritone shapes are "all fourths," providing an easy-to-play sequence that gives a bluesy sound to this departure from the blues; in bars 8-12, the single-tritone chords are all octave shapes, on the principle that there's so much harmonic variety in the tritone sequence that the tritone-based shapes don't have to provide it.

The Lego-like structure of this harmony is shown next, along with the written chords. Many of the alterations in the chord symbols on the right are provided by context. For example, \#9 of the I7\#9
chord in bar 1 is melody note p3. The free use of tritone substitute chords (e.g., I7/pV7, II7/pVI7, pIIM7\#11/VM7\#11) makes for a complex written chord progression. These chords have all non-tritone notes different (including roots a tritone apart) but the same harmonic function; in other words, they combine different fifos with the same tritone. The pII roots of the major seventh chords are byproducts of tritone substitutions, not indicators of visits to a mode containing this note. Several repetitions of the non-tritone shape $\quad \|$ voice a variety of chords, the nuances of which can be left to context. A more accurate voicing of the sus chords would be provided by the shape $\square \$$, a whole tone up from $\square \|$, but the two shapes are mutually consonant and the the difference is relatively unimportant to the ear in this context; the $\quad 1$ shape fits the flow better.

The bass line provided by the chord roots is missing but could easily be added back underneath if desired. That said, this harmony evokes the haunting, rich sound of the piece in a very satisfying way: small note changes in a smoothly flowing keyboard pattern make big sound changes.

WHEN SUNNY GETS BLUE

My source for this piece is sheet music by Jack Segal and Marvin Fisher from Hal-Leonard (1956), publication number HL00351105. The home tonic is G and the key signature is one flat, identifying Dorian of G as the reference classical mode. The melody line is a //RM.L blues, with a 4-bar section in the bridge [c] that goes to the nearby $/ / L$ mode. The harmony shown here is a modification of the written harmony, which I found to have a confusingly irregular flow. This harmony flows smoothly to my eye and ear. Ornamental tritones in [a] (not in the blues scale) are shown in a darker shade of red.

When Sunny Gets Blue in I/RM.L blues with a Lydian variation (original in 1 flat for tonic G)

repeat [a] followed by this ending, repeated twice

Here's what this harmony looks like on the keyboard, in Lego-like terms.

PRELUDE TO AN AFTERNOON OF A FAUN

I was motivated to investigate this hauntingly beautiful Debussy piece by things said about its creative violation of music convention in the article Beauty in the Void, Alex Ross, The New Yorker, Oct. 29, 2018. The violations were explained in the article in terms of unusual sequences of different keys. I wondered if there might be a way of understanding it in terms of non-classical modes. My source for the written music is the Classical Fake Book, 2nd Edition, Hal Leonard (2013), page 222. The piece looks innocently (and misleadingly) simple there - a melody line with a few accidentals and some mostly simple chord symbols above it for mostly triad chords. The problem with seeing it as it actually is it includes elements of both C\# minor (4 sharps, the written key) and Db major (5 flats, same piano key). The melody is visibly a variation of I/RM.L blues. The written harmony is mostly compatible with the blues scale but some of it is not evocative of the blues.

Here follows a summary with harmony that is more evocative of the blues, particularly in $[\mathrm{b}]$ and [d], including the final bar of [c] that leads into [d]. The up arrow prefix means go up an extra octave. The written time signature of $9 / 8$ divides each bar into 3 groups of 3 eighth notes, but playing it in $4 / 4$ time sounds very close to the original timing and leads naturally to a swing-feel blues. The " $\mathbf{+}$ " entries in [c] are some slightly tricky chord sequences that are best skipped initially (or perhaps replaced). The original chords are coming up.

Prelude to an Afternoon of a Faun in //RM.L with variations (original in 4 sharps for tonic C\#)

The Emperor Has No Clothes v12/8/19 - p56 - ©copyright R.J.A. Buhr

Between melody and harmony, all the notes of the chromatic scale are used. Getting a handle on the piece is helped by identifying some notes as passing notes relative to known modes. The melody is visibly in the IIDM.L blues mode with a couple of ornamental passing notes ($\mathbf{p 6}$ and 7). The final section is in its pentatonic minor sub-mode with one of these passing notes. The parent diminished mode IIP.RM.L may be understood as contributing note p2 to the harmony. This is not to suggest Debussy had these modes in mind, only that having them in mind provides helpful context for understanding the piece.

Harmony

A Lego-like summary of the building-block harmony is shown next.

ROUND MIDNIGHT

The source for this evocative piece in Eb minor by Monk are The Ultimate Jazz Fakebook, Hal Leonard, 1988, p. 322 for the main body of the piece (shown first) and Standards Real Book, Sher Music, 2000, p. 369 for an optional introduction (next page). The following summary is easy to play without a downbeat line if you've ever heard the tune.

Round Midnight in Minor //OR.I+ (original in 5 flats for tonic Eb)

The melody scale is the minor family scale with passing notes, as follows. Much of the harmony is from this scale, with a few ornamental elements that fit the flow (e.g., L-I, I-M).

$$
\begin{aligned}
& \mathrm{Eb} \quad \mathrm{~F} \quad \mathrm{~Gb} \quad \mathrm{Ab} \quad \mathrm{Bb} \mathrm{~B} \quad \mathrm{C} \quad \mathrm{Db} \quad \mathrm{D} \text { Eb } \\
& 1 \text { p2 } 2 \text { p3 } 3 \text { 4 p5 } 5 \text { p6 } 6 \text { p7 } 71 \\
& \text { @ PORMILSXXXX @ } \\
& \text { //OR.I+ @ . } \mathrm{x} x \text {. } \mathrm{x} \text {. } \$ \mathrm{x} \mathrm{x}+\mathrm{x} \text { @ } \\
& \text { ornamental } \\
& +\quad+\quad+
\end{aligned}
$$

Here follows an optional, 8-bar introduction (or conclusion) that's visibly based on whole-tone intervals and tritones in a highly structured way. Each 2-bar segment repeats the previous one a whole tone down. The harmony tritones are in the reverse alphabet order LIMROP. The final 2-bar segment is a rhythmic pattern with no specific melody notes. The up arrows say go up an octave.

STRAIGHT NO CHASER

Walking bass lines provide an alternative to chordal harmony in many kinds of music, for interest and variety. They are easy to represent in the melody-line notation, easily portable in this form between different pieces with the same or different home tonics, easy to create knowing mode scales of the tonics, and easy to play. These things are illustrated by the following use of a walking bass line from Monk's Straight No Chaser (coming up) for Backwater Blues in Chapter 2. The interleaving of this bass line and the melody line of Straight No Chaser is a bit tricky, so this introduces the bass line in a simpler way, besides making Backwater Blues more fun to play. The bass line is identified as harmony by an anchor symbol on the left, but is shown under the melody line where it's actually played, because showing it above would be confusing (it's not confusing for anchor lines shown above the staff because they're not represented in note symbols). There are some transient dissonances between this melody and harmony that could be avoided by some syncopation of the melody, but such dissonances are often a feature of the blues.

Backwater Blues with the Walking Bass Line of Straight No Chaser

Walking bass lines are easily created (or understood) using a mode table, as illustrated next. Bassline notes p2 and p6 and $\mathbf{7}$ ornamental passing notes. To be concrete, the corresponding notes of music notation are shown on top for tonic F blues.

Here follows the melody line of Straight No Chaser with home tonic F using this walking bass line (the original in the Monk fakebook has home tonic Bb but I learned it in F). The transition to Bb is easy, simply replace the F Dorian scale in table below by the corresponding Bb scale. In either case, the key signature identifies the Dorian melody mode $/ / \mathbf{R}$ of the home tonic which is altered to $/ / \mathbf{R M}$ by an accidental. This is not the full blues scale because $\mathbf{p 5}$ is missing.

Straight No Chaser with the Same Walking Bass Line

The melody line is in the //RM sub-mode of the blues family mode with two obvious passing notes (each appears only once). Recall that the mode is a mashup of parallel pentatonic modes).

The intricate interleaving of the two lines makes the whole sound like more than the sum of the parts, and requires considerable practice to get right, and also considerable effort to write down correctly. The benefit of this effort is portability of concepts and of keyboard patterns to other pieces.

BLUE MONK

This piece is so chromatic that it seems as if several different home tonics might fit. Only one fits, namely Bb of the written 2-flats key signature, established by the first notes of a double melody line consisting of two lines offset by thirds (major or minor). This choice of tonic makes clear that the appearance of all notes of the chromatic scale is a byproduct of three passing notes.

As shown next, the double melody line formed of main line with a secondary line a third (major or minor) down from it. The thirds are determined by a simple rule: switch between a major and a minor third when one note in either line moves by a whole tone. This is to avoid the "outside" notes p2 or p6 or $\mathbf{7}$ wherever possible; the rule is broken only when "outside" notes are unavoidable (thus they become passing notes). The positions of the resulting major thirds are marked below by over lines. For concreteness, the secondary line is shown as a sequence of lighter note symbols, but it's simpler to think of it as determined by construction from the rule. The opening sequence of a major third and three minor thirds establishes the melody scale.

Blue Monk in //RM.L (original in in 2 flats for tonic Bb)

$\begin{array}{llllllllllllllllll}\text { H. } & 5 & 6 & p 7 & 7 & 1 & p 7 & 6 & p 6 & 5 & 6 & p 7 & 7 & 1 & 2 & p 3 & 3\end{array}$

Construction of melody thirds from the rule is illustrated next for bars 1-4 (\mathbf{x} marks blues-scale notes, o marks "outside" passing notes, grey shading highlights major thirds)

The sequence starts with a major third to avoid "outside" note p2. It continues with a minor third for the same reason. And so on. The few appearances of an outside note (0) are unavoidable in order not to disrupt the flow. The result is a smoothly flowing sequence of thirds that's easy to play and sounds good. This simplicity is obscured in the written music by the clutter of sharps, flats and naturals on different staff lines and spaces required to represent the notes relative to the written key signature.

BODY AND SOUL

This piece is strongly chromatic in a way that's particularly complex in music notation, namely multiple key signatures of different kinds (sharp vs. flat). My source for the written music is The Ultimate Jazz Fakebook, Hal-Leonard (1988), p67. Three successive sections have three different key signatures: A 5 flats (Db-Ionian); B 2 sharps (D-Ionian); C 1 flat (D-Aeolian, but actually Dorian due to a natural in the written melody line). Ionian and Dorian of tonic D are nearby parallel modes (only 2 notes different). Ionian of Db is a distant from these (5 notes different from B). The obvious home tonic is $D b$ because A starts and ends the piece. The large distance between A and B is more than compensated by the simplicity of every note of B being a half tone up from every note of A.

Body and Soul in 3 parts (original in 5 flats for tonic Db, 2 sharps and 1 flat for tonic D)

The melody scales are classical modes. The strongly chromatic harmony is not, but is consistent with the melody. When I first encountered this piece, I struggled with trying to understand how this harmony implied the melody scales and finally realized it doesn't.

EVERY TIME WE SAY GOODBYE

This Cole Porter piece is hauntingly lovely, with major-minor changes that go well with the words about love and loss. The home tonic is Eb and the key signature is 3 flats, identifying the Ionian mode. The melody line sequence 5-4-3-2-1-7-1 at the end confirms this as the resolution mode. Otherwise, much of the of the melody line is in the major family mode $/ / \mathbf{O} . \mathbf{M I}{ }^{+}$. This and much of the harmony are strongly chromatic.

Although the main tonality is major, minor (or minor-ish) segments appear in both melody and harmony. Section (d) is solidly minor. The words in section (f) include the famous phrase "how strange the change from major to minor." The change may be interpreted as between family modes $/ / \mathbf{O} . \mathbf{M I}^{+}$ (grey highlighting) and $/ / \mathbf{O R} . \mathbf{I}^{+}$. The melody makes no explicit change of tonality here but could. The sound of a fourth going down a half tone in the harmony conveys the change to the ear.

Every Time We Say Goodbye in //O.MI+ with visits to //OR.I+ (original 3 flats for tonic Eb)

(e) repeat (a)-(b)

The major to minor bars of (f) are shown next. The harmony lead-in to these bars is RL-OI down a half tone. The family modes follow from filling in OI differently. The chords shown are from these modes.

1 p2 2 p3 34 p5 5 p6 6 p7 71

@ ORMI. $\mathrm{O}_{\mathrm{S}} \mathrm{X}+\mathrm{x} \mathrm{x}$ @

ALL OF ME

I learned this version of All of $\mathrm{Me}^{(3)}$ (along with No Greater Love coming up) in Susan Muscarella's piano comping course some years ago at the then Jazz School in Berkeley (now the Jazz Institute). The objective was learning about 4-note "open" voicings of extended and altered seventh chords often used to accompany soloists. The home tonic is C and the key signature empty, nominally identifying the Ionian mode, but the melody line uses all but two notes of the chromatic scale and the harmony uses all of them. Open voicings of the harmony chords rearrange the notes and sometimes omit the roots. The standard way of explaining such voicings is by rearranged degree numbers of chord scales, in which the same notes from adjacent chords have different degree numbers relative to different roots, which are sometimes omitted. Such representations are indirect relative to the keyboard, difficult to comprehend as a whole or remember, and too cumbersome to annotate routinely on the written music. This complexity goes away when the shapes are understood in terms of building blocks.

The following summary shows the melody line with 3 -note shapes to voice all chords (except double tritones). The double bar lines delimit 4-bar phrases. The melody line is from the mode //O.MI', with two appearances of minor note p3 as ornamental passing notes. Harmony tritones \mathbf{P} and \mathbf{L} are ornamental substitutes for \mathbf{O} and \mathbf{I}. The 3-note shapes are incomplete versions (top notes omitted size) the 4 -note open voicings shown on the next two pages. Grey boxes for voicing intervals of of uncommitted size (\square) are replaced by circled numbers (4), (3) and (2) that commit to sizes of 4, 3 or 2 half tones. Many of the voicings sound interesting; some are easy-to-play "all fourths" shapes (counting tritones as augmented fourths). Play octave shapes based on the anchors to begin with (except for double tritones) and then shrink them into the shapes shown. The latter are easy to expand into the 4 note open voicings by adding one obvious note. Rhythm is implied swing-feel 4/4 time.

All of Me in //O.MI+ (original in C)

repeat first 8 bars

Open Voicings

Four-note "open" voicings of the written chords are shown next. The XIY notation identifies nonoverlapping building blocks \mathbf{X} on the bottom and \mathbf{Y} on top. The shapes are voicings of the chords shown on the right. The chord symbols are all satisfied serially in the flow. The four notes are difficult to play with the left hand, but easy-to-play 3-note voicings of the same chords follow from playing the core shown in the foregoing skeleton summary with a note added on top (in other words by knocking
off the top note below); the top notes are easily added by the right hand under the melody line, if desired.

Chords on roots I, II and V are from the Ionian mode. The other chords (highlighted in yellow) provide visibly simple segues between the Ionian voicings, when seen in building-block terms.

Bars 1-8
$\begin{array}{llllllllllllllllllllllllll}1 & \mathrm{p} 2 & 2 & \mathrm{p} 3 & 3 & 4 & \mathrm{p} 5 & 5 & \mathrm{p} 6 & 6 & \mathrm{p} 7 & 7 & 1 & \mathrm{p} 2 & 2 & \mathrm{p} 3 & 3 & 4 & \mathrm{p} 5 & 5 & \mathrm{p} 6 & 6 & \mathrm{p} 7 & 7 & 1\end{array}$
A.MI' ${ }^{\text {@ }}$ - $0-M I-S x+x _x @-0-M I-S x+x _x @$

Bars 9-16

$\begin{array}{lllllllllllllllllllllll}1 & p 2 & 2 & p 3 & 3 & 4 & p 5 & 5 & p 6 & 6 & p 7 & 7 & 1 & p 2 & 2 & p 3 & 3 & 4 & p 5 & 5 & p 6 & 6 & p 7 \\ 7\end{array}$

III-7

II-9sus
II-9
II-m9
V-9
V-7b9b13

Bar 17-24 - repeat bars 1-8

Bars 25-32

Understanding how the shapes satisfy the chord symbols requires knowing the relationship between the numeric suffixes of the chord symbols and the chromatic scale. I explain this only to make clear that the shapes satisfy the written chords, not to suggest figuring the shapes out this way. In bars 3-4, chord suffix " 9 " is chromatic scale note $\mathbf{p 5}$ and chord suffix "b5" is chromatic scale note $\mathbf{p 7}$. The 3note voicings in bars 3-4 don't include p5 but it's included in bar 5, thus satisfying the bar-4 chord in the flow. The bar-4 shape jumps up a minor third in bar 5, with a wiggle that puts a fourth on top instead of a major third. The wiggle provides degree " 13 " of the chord. It also provides degree " 9 " of the bar- 4 chord, thus satisfying two chord symbols at one stroke.

NO GREATER LOVE

I learned this piece in the same piano comping course as All of Me. It uses the same major family mode but is interestingly different.

No Greater Love in //O.MI+ (original in 2 flats for tonic $\mathbf{B b}$)

J 712

Here's the same thing with a walking bass line provided in class (blue text).

```
\int}71
J|176 3,|5 p541|3, |- 37 p7|7, |-6 3 p3|2, |-712|
```



```
J| 3 p672|1, |p6724|3, | 3 p672|176 3|2,- |-712|
    7 4 3 p6 6 p6 6 p7 7 4 3 p7 6 3 6 p7 7 4 4 3 p6 6 p6 6p3 2 2 % p7 5 7 2 7
J. I— repeat bars 9-11\longrightarrow I _ I I
```

Here follows a development of the bass line for bars 1-4. The line outlines a building block and then transitions to the next one via an internal or external note. The only passing notes outside the major family scale are p2 and p3 at the ends of bars.

ALL THE THINGS YOU ARE

I learned this beautiful piece early in my musical adventure, and found it easy to learn because the keyboard sequences are simple, but difficult to understand in music notation. The source is The Ultimate Jazz Fakebook, Wong, Hal Leonard (1988). The home tonic is Ab and the key signature is four flats, identifying the starting and ending melody modes as Ionian. In the following interpretation, the piece visits successive parallel and alt classical modes. The determining tritones of these modes in (a)-(b)-(c)-(d) are I-R-L-M. The implied Ionian tonics are $\mathbf{1 - 3 - 5 - 7}$ but this isn't helpful because the passages don't all resolve to them, but transition to the next passage via shared notes. Better to think in terms of the home-tonic modes because they provide everything needed to play the changes.

The skeleton melody line and associated core harmony of this interpretation are shown next for bars $1-26$, where all the changes occur.

All The Things You Are in I/I, visits multiple parallel modes (original in 4 flats for tonic $\mathbf{A b}$)

(c) $/ / L$

The following overview picture is helpful in getting a handle on the piece as a whole (this shows the alphabet as the original PADMIL, so AD must be understood as OR).

Here follows a summary of the modes of this interpretation ("notes" in the left column means actual melody notes). The sometimes-sparse melody lines are open to different interpretations but this interpretation provides a useful handle on the piece.

The (d)-(e)-(f) harmony transition shown next is "interesting." My piano teacher at the time suggested I just memorize it. And so I did, but I kept worrying away at understanding it in more fundamental terms. This shows that it transitions at the end by sharing notes between modes, resulting in an unusual sequence of chord symbols.

CHELSEA BRIDGE

My source for this hauntingly beautiful Strayhorn piece is The Ultimate Jazz Fakebook, Wong, Hal Leonard (1988). There are two written key signatures but only one home tonic on the piano, the black key immediately above middle C . The piece moves from Ionian major of this tonic (Db major, 5 flats) to Aeolian minor of the same tonic (C\# minor, 4 sharps), and then back to Ionian major. This is complex to begin with and the complexity is multiplied by staying with the 4 sharps key signature to return to Ionian major. Between these parallel classical modes of the same tonic are chromatic passages that multiply the notational complexity once more. The result is a confusing muddle of many more than twelve note symbols relative to the two written key signatures, with tricky timing in some places. The piece is musically sophisticated by any measure, but the notational complexity is out of proportion to the sophistication.

I first learned this piece by rote with great difficulty from the written music, but thought that anything that sounds this good must have simple musical logic behind it. Tritones identify scales; fifos implied by them are mostly omitted. Digging this kind of thing out of written music is a struggle, but doing it sharpens the ability to think in terms of keyboard intervals instead of the notes of key signatures. It may look complex at first glance, but it's valid for any home tonic, and shines a light on commonly used patterns, which are obscured in music notation by showing the same piano key in different places by sharps or flats or naturals in spaces or lines of a musical staff.

Chelsea Bridge in $/ / \mathrm{I}, / / 0$ \& transition modes (original in 5 flats $\& 4$ sharps for tonics $\mathrm{Db} \& \mathrm{C}$)

(a)
J. $1-6712345 \mid \ldots l / 1$
(b)
^ ^ ^ ^

〈
... play aug. fifths

M.L

5 p6 l- 능
(c)
$\stackrel{ \pm}{J}$

$\begin{array}{ll}1 \\ 1 & \\ \wedge \text { ^^^ }\end{array}$
(1). 4

J

A

(e)

ת
P
| p2-p3 4| 5-p6 p3 p2 7 | p7 p2 ——, 7 p7
I

(f) J.

... segue

\wedge

(a) 1

... sets up for a repeat
... //I

Here are the melody modes and transitions between them. The main sequence is $/ / \mathbf{I}-/ / \mathbf{0}-/ / \mathbf{I}$. The inbetween modes and segues are related to them in simple ways. The changes are musically interesting but easy to understand and play as shown here, once you "get it." I can imagine that virtuoso pianists are able to read the written music and understand these changes instinctively in whatever terms they use to conceptualize music, but this leaves everyone else stuck with learning the piece laboriously by rote, without any real understanding. Knowing the changes below enables even inexpert pianists to approach the piece with understanding.

LUSH LIFE

This beautiful Strayhorn piece is melodically and harmonically rich, and challenging to play from the written music because there are often two or more chords per bar, many of them chromatic relative to the written key signature of five flats (major tonic Db). The piece is so chromatic that there is more than one way of understanding it. It can be seen as daisy-chained, short segments of successive parallel classical modes, but this quickly bogs down in complexity. The view of it here is in terms of two nonclassical parallel modes of the home tonic for both melody and harmony: one is the 10 -note //ORMI minor-major mode in [A] and [C]; the other is the tonic-less I/IP mode (Ionian\#l) in [B].

Lush Life in //ORMI \& //IP with variations (original in 5 flats for tonic Db)

These modes lead naturally to short, easy-to-remember segments in classical and other modes that follow from the flow. For example, alt-IP morphs into //I halfway through [B] by altering one note.

From time to time, the harmony of the different sections substitutes \mathbf{P} and \mathbf{L} for \mathbf{O} and \mathbf{I}, but thinking of these as ornamental relative to the //ORMI keeps things conceptually simple.

Harmony fifos are mostly omitted for simplicity, except for characteristic sequences of them in [A] and the ending bars of [C].

The double tritones $\mathbf{P M}, \mathbf{O I}$ and $\mathbf{R L}$ that appear in many places in the harmony are diminished seventh chords, commonly used ornamentally in any context in which they sound good. The double tritones have circular symmetry (all intervals are minor thirds), so only three of them with different notes exist. They can be played as four notes but they can also be voiced with three notes (a tritone with a minor third on top, or the opposite) or even with two notes (outer notes a major sixth apart), when the context implies the other note(s). A sequence of two or three of them, often used as an ornamental transition between modes, can be played as as sequence of major sixths anchored by any three of six tritone anchors (e.g., P-O-R going up and L-I-M going down, to name just two possibilities - others require inversions of individual tritones).

The chromatic melody-line run in the final two bars is a signature of the piece.

THE PEACOCKS

This hauntingly beautiful piece by Jimmy Rowles wraps up the chapter with an example in annotated music notation (in handwritten annotations, circling tritone anchors, or their chords of origin, or both is helpful). This is a Sibelius score created from a borrowed fake book to which I no longer have a reference. The annotations use the original PADMIL alphabet, requiring AD to be understood as OR. The piece sounds so "right" as written that jazz improvisations rarely stray far from it. The home tonic is determined to be F by the final notes of bars 9 and 17 . In bars $1-9$, the combination of the 5 flats key signature, the home tonic and the lack of accidentals in the melody line identifies the melody scale as Phrygian of the home tonic (mode signature $/ / \mathbf{P}$). The melody line in bar 8 runs up through all the notes of this scale starting a fourth up (fifth down) from the tonic. The contrasting harmony is chromatic. The over-lines in bars 2 and 4 indicate held treble notes.

The Emperor Has No Clothes v12/8/19 - p79 - ©copyright R.J.A. Buhr

The ups and downs of the melody line are directly visible in the notes on a staff but the drawback is this commits to a particular tonic and key signature, and gives little direct sense of context.

The core harmony in opening bars is visibly from the //ORMI scale (which is minor-major relative to the home tonic).

The melody of the second section consists mainly of individually simple sequences from the full chromatic scale that are prompted by the harmony. These are better remembered in terms of simple patterns shown by \mathbf{x} entries in a mode table than from note sequences of any kind.

The two groups of four sixteenth notes in bars 11-15 follow a repeated pattern of down a minor third, down a half tone, and up a minor third (net down a half tone).

The eighth note triplets of bar 16-17 follow a repeated pattern of down a minor seventh and up a half tone, (net down a major sixth).

CHAPTER 5: OBSERVATIONS \& CONCLUSIONS

Music notation is here to stay and must be lived with, but this this doesn't preclude alternate views of piano music from a different perspective. I looked for an alternate view of harmony and found one based on intervals.

The central role of tritones in PKP tends to seem inappropriate to people savvy in music notation, for several reasons. In general, it goes against received musical wisdom. More specifically, tritones cannot even be written down in music notation until a key signature is established, so imagining them as identifiers of scales is difficult. Anything involving multiple tritones is complex in music notation because it implicitly brings in other key signatures - the more tritones, the more complexity. The very concept of fifos is unconventional and even more so is the concept that they can be treated as morphed tritones, understood from context. The payoff is insight into deep structure that is difficult to see in music notation. Appreciating these things requires stepping outside the box of music notation, at least momentarily.

Thinking in notes and thinking in intervals is different in kind. Many experts who have learned the hard way to think in notes apparently find thinking in intervals too alien to contemplate. Comments from them have run the gamut from "obviously wrong" to "wrong headed" to "naively simplistic" to "overwhelmingly complex." One expert said, dismissively, I had "found a tritone hammer and saw everything as a nail." The book Modalogy, devotes 50 or so complex pages to parallel modes without ever mentioning the possibility that tritones might simplify things.

Because I started out seeing intervals and notes as dual views of the same thing, I came to find it natural to switch back and forth. I have made my best effort in this document to convey the simplicity of this. I believe, based on my personal experience as an adult beginner, that any beginner could easily learn to think this way.

I know from personal experience that PKP helps with learning and remembering new pieces, knowing while playing where to go next from where you are (and how you got there), recovering from getting lost, experimenting with harmonic and melodic variations, and improvising. It turns the conventional relationship between practicing and understanding on its head: instead of practicing being required to develop understanding, understanding guides practicing.

The jumpy chord root lines in many of the examples demonstrate that referring chords to constantly moving roots creates misleading complexity. This complexity is both conceptual (the underlying, smoothly flowing core harmony is obscured) and actual (playing the jumpy harmony is technically difficult because all the fingers must be lifted and moved by large intervals). It's easier to learn the core harmony and introduce the jumps later, if desired, via inversions, which are always easy on the keyboard, given an anchor line.

GENERAL BENEFITS

PKP annotations above the staff tell you many things. Combined with context provided by the melody line, they tell you where to go next from where you are and how you got there. They tell you what notes will sound right or not right at any point by identifying tonic scales in play in a very immediate way. They tell you about transitions between major and minor tonality and between different tonics. The provide a basis for enrichment and improvisation.

Scale, modes and chords are seen as part of a continuum expressed in the same terms. This seems to me to be a very powerful benefit, compared to seeing everything beyond classical modes as special cases identified by accidentals (which includes chromatic chords with suffixes that imply
accidentals). The representations of scales and chords in terms of tritone clusters are unfamiliar to expert pianists but the interval stacks that they imply on the keyboard are completely familiar.

With PKP, playing music is guided by note-based symbology on the music page (one dual view) plus PKP annotations above the staff (the other dual view) that suggest core harmony and make changing tonic scales and tonics directly visible to the eye in terms of changing alphabet words.

A simple mode hierarchy covers much ground. The mode signatures provide a novel, highlevel, conceptual view of tonic scales that's easier to hold in the mind's eye than the very much larger number of spelled out tonic scales in music notation. The modes cover $12 \times 39=468$ scales of 12 different tonics in music notation (more than is covered by scale dictionaries such as The Source). Words of 1-4 letters from the 6-letter alphabet identify, by tritone content, modes with 7 or more notes, 1-4 tritones, and no intervals larger than a minor third. The count of 39 modes includes 11 single modes covered by single words and $4 \times 7=28$ parallel modes covered by transpositions of 1-2 letter master words. A selected home tonic anchors all of this to the keyboard.

The words are analogous to the words of biological DNA in the sense that they identify deep structure without spelling out the details. Words of biological DNA are "expressed" as proteins, the building blocks of life. PORMIL words are "expressed" as building blocks of scales and harmony. Biological DNA is "extracted" from biological samples and interpreted by sophisticated machines called "sequencers." PORMIL scales and building blocks are "extracted" and "sequenced" from musical lines by sophisticated machines called human eyes. Biological DNA is "inherited" from parents. PORMIL words are "inherited" from general knowledge about them encoded in the hierarchy.

Symmetry breaking in the scale hierarchy and symmetry breaking in core harmony are two sides of the same coin. In the hierarchy, it yields scales with fewer tritones. In harmony, it releases the tension of dissonance to produce consonance. Seeing the simplicity of this requires forming mental images of it relative to the schematic tonic octave that are independent of specific assignments of the octave to the keyboard.

Understanding harmony is possible independently of practicing. Keyboard symmetries centering around tritones enable high-level representations of harmony that are simple in their own terms and deep in harmonic meaning in any terms.

Music is freed from its key-signature straightjacket. Harmony scales are understood at a glance from alphabet words aggregated by eye, instead of having to be figured out or remembered from key signatures, accidentals and chromatic chord symbols. Tonic changes are no more difficult than any other changes.

Anchor lines that define harmonic cores replace chord root lines as the fundamental musical lines of harmony. Chord roots are visibly secondary elements in the flow of the music because inversions move them into the body of the chord, where they become no more than another chord note that may be omitted if implied by context.

Sight reading anchor lines provides deep context. Anchor lines tell you where to go next from where you are and how you got there. They tell you what notes will sound right or not by identifying tonic scales in play. They tell you about transitions between major and minor tonality and between different tonics.

Multiple explicit or implicit key signatures become a non-issue. This is true whether the key signatures imply tonic changes or only scale changes for the same tonic. Tonic changes amount to no more than moving (conceptually) a tonic pointer within the home octave and reinterpreting the alphabet
letters relative to it, without changing any notation.
Chord symbols become a non-issue. Chord complexities that result from banging square pegs (chord symbols) into round holes (places in scales where they don't quite fit) are misleading. Chords described by chord symbols are, on the keyboard, almost universally composed of combinations of PKP's two kinds of building blocks, of which only tritones are always core. A melody line plus an anchor line above the staff imply a voicing of an unidentified chord progression. Specific chords are identified by assigning roots.

Relating the notation to the keyboard is simple. Different home octaves look very different on the keyboard because of different mixes of black and white piano keys, but the difference is manageable for two reasons: mapping the notation to the keyboard boils down to assigning a 6-letter alphabet to 6 adjacent piano keys; and the C octave provides a mental reminder of the meaning.

Learning blues prepares you for anything music notation can throw at you. Blues is an example of "folk music" that evolved independently of music notation and therefore tends to be regarded as naive when measured against its depth and complexity. This condescending view is unwarranted. Blues is harmonically sophisticated in a highly organized way that makes it, to my mind, a better starting point than classical modes of key signatures for understanding many forms of music.

Sharps and flats are not needed. Building blocks are the same number of half tones no matter how they are notated. This enables PKP to dispense with sharps and flats without any loss of musical accuracy. Expert pianists tend to think they are still needed to identify context because they have learned to use them for that, but note positions relative to tonics are sufficient.

The simple flow of harmony in harmonic cores, in which building blocks slide or morph into other building blocks, is universal. Nothing constrains harmony to be played this way but the flow is so natural and easy to play that much is to be gained by learning pieces this way and then transitioning to other playing styles if desired.

Tritone-intensive harmonic cores of much music provide so much harmonic variety that voicing them requires only adding depth. Depth is easily added by doubling the treble line of the harmonic core an octave down, or the bass line an octave up, and then making adjustments to move points on the line closer to the core, if desired.

No more piano wizardry is required to have fun playing music than the ability to sight-read melody lines in music notation. Anyone with eyes to see intervals on the keyboard can play harmonic cores from anchor lines annotated above the staff, and remember them.

The simple way harmony is represented provides great freedom in choosing how to play it. Playing styles may range between the extremes of smoothly flowing harmony within the octave of the home tonic of piece to jumpy harmony in which all harmony notes go up from a chord root line. Improvisation follows naturally and is fun, even if not expertly done.

The simplification provided by the alphabet is different in kind from simplifying chord symbols. Any sophistication in the harmony is in the tonic scales of origin of the chords.

Mode signatures provide an above-the-staff markup notation for the concept of "modal jazz" which is otherwise a concept without a notation.

PKP annotations above the staff are not always necessary. With experience, straightforward chord progressions may be sight-read in PKP terms.

SOME REFERENCES

1. Barta, The Source: The Dictionary of Contemporary and Traditional Scales, Hal Leonard (1995), for helping me to be sure I was not missing important scales.
2. Mehegan, Jazz Improvisation 1: Tonal and Rhythmic Principles, Watson-Guptil (1984), for Roman-numeral chord notation, and for teaching me (unintentionally) that it is not a solution for complex chromatic chord progressions, but a problem if pushed beyond its basic function of specifying chord root lines.
3. Eskelin, Lies My Music Teacher Told Me, Stage Three Publishing (1994) for insight into the nature of scales and musical "perfection," and for encouraging me to think outside the box.
4. Dmitri Tymoczko, A Geometry of Music (2011) for stimulating discussions of how to think about music from different angles.
5. Mark Levine, The Jazz Theory Book, Sher Music Co. (1995) for providing examples of well known jazz scales and harmonic forms in conventional notation, against which to verify PKP coverage.
6. George Russell, The Lydian Chromatic Concept of Tonal Organization, http:// www.georgerussell.com/lc.html, for making me aware that PKP covers the concept, because nothing is changed by replacing the Ionian mode by the Lydian mode as the default reference major mode for any piece of music.
7. Edward Frenkel, Love and Math: The Heart of Hidden Reality, Perseus (2013) (on Kindle), for many insights into the usefulness of symmetry.
8. Jeff Brent with Schell Barkley, Modalogy - Scales, Modes \& Chords: the Primordial Building Blocks of Music, Hal Leonard (2011), for the most comprehensive treatment I have found of this subject. The result is painstakingly accurate but overwhelmingly complex because it sticks to representations based on sharps and flats that follow from the misalignment of pitches of notes of overlapping octaves.
9. Ross W. Duffin, How Equal Temperament Tuning Ruined Harmony (and Why You Should Care), W.W. Norton (2007), for an understanding of the piano's deviation from musical perfection.
10. Stephon Alexandar, The Jazz of Physics: The Secret Link Between Music and The Structure of the Universe, Basic Books (2016). This amazing book resonates strongly with my own ideas. The author is a jazz musician and physicist who speaks of doing physics as informing the playing of jazz and playing jazz as informing the doing of physics. Both require rising above formalisms to form conceptual representations, with symmetries highlighted as particularly important.

ACKNOWLEDGMENTS

I did not take this musical journey alone. I received comments and help from many people while the ideas were germinating and consolidating.

Music theorist Paul Steinbeck encouraged me to continue writing at a time when I was becoming discouraged. Jazz pianist, teacher and composer Taylor Eigsti has been an inspiration to me. Although I have never been a piano student of his, I have learned much from him in sporadic discussions in person and by email. I am deeply grateful for his willingness to take time away from a busy schedule to engage in these discussions. A short series of piano lessons from SF jazz pianist Michael Parsons helped me to see more clearly the relationship between my ideas and standard jazz-piano practice.

Thanks to SMT (Society for Music Theory) members Charise Hastings, Peter Shultz and Neil Newton for insightful email comments and encouragement following announcements of my website on an SMT mailing list. Thanks to music professor Robert Rawlins for email encouragement, and for helpful examples and comments. Aaron Blumenfeld and Susan Muscarella gave helpful courses at the Jazz School in Berkeley (now the Jazz Institute) that provided many examples to chew on (including, from Susan Muscarella's course, some interesting variations on Summertime in D minor that helped me understand ornamental scales). Amateur pianist and Jazz School Board Chair Susan Brand, and concert pianist and music entrepeneur Robert Taub, provided early encouragement.

My piano teacher in San Francisco for several years, Ken Fishler, provided inspiration and how-to information on chord voicings, while patiently tolerating and responding to my question-everything approach. My first piano teacher in Ottawa, Canada, Sally Robinson, started me off right as an adult beginner by helping me to learn favorite harmonically sophisticated pieces by following her fingers on the keyboard without understanding anything about what I was doing except that it sounded right being able to play these pieces, even if clumsily and by rote, enabled understanding to seep in gradually. I think that without this particular way of starting out - fingers on the keyboard first, written music later - I would not have started thinking about keyboard harmony in the way I did. It forced to my attention the large gap between simplicity on the keyboard and complexity of the full notation that represents it.

I wore out the patience of many music professionals by bombarding them with unsolicited email requests for comments on my ideas. I would like to thank four in particular, who politely responded to numerous emails in spite of being uncomfortable with my ideas: Harry Likas, Dmitri Tymoczko, Jeff Brent and Daniel Glover. Their criticisms helped me change my explanations without changing my mind.

Thanks to friends Marva Black, Mike Budde, Peter Marchant and Selinda Spugies for various comments on this project along the way.

My wife Sheila's accurate musical ear helps me know what does and does not sound good on the piano, in addition to making my life generally interesting. My grandsons Joshua and Ethan Feiber provided encouragement and comments; Joshua set up the website www.pianotheoryman.com as birthday gift; Ethan, who learned very young to play the piano impressively well by ear, has experimented with the notation and found it helpful for approaching written music.

SOME COMMENTS FROM READERS

The following comments provide a kind of history of the development of PKP: the dates on the left identify when the commenters read different drafts of this material; the material has evolved considerably since then. The unconventionality of putting tritones on center stage has tended to get in the way of expert musicians accepting the ideas at all, let alone seeing them as simple, which has not been helped by the fact that it took me a long time to find the simple way of explaining the ideas that appears in this document. I continue to think the ideas are important for learning the piano in a less restrictive manner than is conventional but have not yet been able to find an audience. At the very least, the more recent comments show that the PKP method is more than just a fantasy of an overenthusiastic amateur.
(2016) Taylor Eigsti more recently than below. "... a fascinating and in-depth look at various ways that keyboard shapes can lead to a whole new way to look at notation and the piano."
(2011) Paul Steinbeck. Assistant Professor of Music Theory; Washington University, St. Louis
"The hook ... , at least in my opinion, is that it's possible to attain a deep understanding of chords (and their constituent intervals) without recourse to Western notation. This has direct consequences for physical patterning, fingerings, etc. Essentially, your method combines the utility of a play-by-ear approach with the depth of a mathematically-informed theory of music."
(2009) Robert Rawlins. University Music Department Chair (Rowan University); jazz musician; teacher; author of several books on jazz
"I became aware of Raymond Buhr's novel method for analyzing and voicing chromatic chord progressions in 2008 through a draft of a paper he wrote on the subject. I have kept up to date on developments of the method and we have had many email exchanges discussing issues of interpretation and application. I am a member of his intended target audience-a jazz musician who is not a pianist who needs to work out harmonic patterns on the piano from time to time. I am also a music teacher who has actually tried out aspects of his method on students. I can vouch from personal experience for his method's helpfulness in dealing with complex chromatic chord progressions."

(2009) Susan Brand. Board Chair, The Jazz School in Berkeley; amateur pianist

"When Raymond Buhr consulted me about his theory of chromatic chord progressions, I was immediately struck by his ability to analyze and attempt to simplify this complex subject. Mr. Buhr brings a unique perspective and a great deal of enthusiasm, depth of understanding and originality of viewpoint to the subject. Over the years I have watched the continuous work that he has put into editing and rethinking his work. He has had ongoing consultations with many knowledgeable musicians/ teachers/editors and all have contributed to the development of the method described in this book. His ideas offer a way of understanding musical theory that will add greatly to the field and will be extremely helpful to musicians and music educators."

[^3]
APPENDIX A: UNCONVENTIONAL ELEMENTS

TERMINOLOGY \& NOTATION

- anchor: identifies a building block by the position of its bottom end relative to the home tonic
- anchor set: set of tritone and fifo anchors that define a scale by construction
- anchor line: anchor sequence written above the staff
- alphabet: PORMIL identifies anchors by the first letters of the names of classical modes (internal letters in the case of \mathbf{O} and \mathbf{R})
- building block: tritones or fifos (fifths or fourths) anchored at alphabet positions (size distinctions determined by color coding anchors: red for tritones, blue for fifths, green for fourths).
- chord shapes:
- anchor centered-octave shapes are "starter" chords, optionally id'd by anchor prefix or suffix
- shapes formed of combinations of building blocks represent chords with 4 or more notes
- triads are split building blocks identified by anchor superscripts $\mathbf{\nabla}$ (minor), $\mathbf{\Delta}$ (major), \bullet (dim)
- chord roots are add-ons that determine chord symbols
- chromatic scale of the home octave: 1-p2-2-p3-3-4-p5-5-p6-6-p7-7-1
- context: provided by mode signatures for melody and harmony plus flow of both
- core: set of octave shapes morphed asymmetrically by a half tone from a tritone shape
- family: a set of sub-scales of a family scale defined by a single mode signature
- fifo: fifth or fourth that are opposite inversions (add up to an octave)
- flow: formed by morphs and slides of building blocks
- frame: defined by the tonic @ and pitch center $\mathbf{\$}$ of a tonic octave
- mode signature: word identifying a tritone cluster that implies a scale
- pattern: organized arrangement of intervals on the keyboard or over time
- pitch center: note identified by a fifth/fourth octave split, symbolized by $\mathbf{\$}$
- morph: change in the size of a building block by a half tone at one or both ends
- outside: not in a given tonic scale, as distinct from "chromatic" meaning not in a key-signature scale
- shape: combination of building blocks
- slide: size-preserving movement of a building block
- wobbly slide: combined morph and slide
- phlat: prefix \mathbf{p} identifying chromatic-scale notes in the whole tone gaps of the major scale of a tonic
- tonic pointer: suffix of form @t attached to an anchor symbol to indicate a secondary tonic
- word: set of alphabet letters with optional dots indicating skipped letters

APPENDIX B: ABOUT SCALES

KEY-SIGNATURE SCALES

The following summary of the standard interpretation of the major and natural minor tonic scales of key signatures (Ionian and Aeolian modes) is a helpful reference. It shows the sharped notes of sharp scales in red and the flatted notes of flat scales in blue. Although there are only five black piano keys, scales with six flats or sharps exist because of the scale-spelling rule that the same letter note cannot appear on both sides of a half-tone interval. For example, note B is $\mathrm{C} b$ in a 6 -flats scale.

Major (Ionian) and relative minor (Aeolian) scales are shown on the same line because they have the same key signature. Parallel minor scales (diagonal lines) have the same tonic, which does not necessarily mean the same note symbol because the same piano key may be represented by different note symbols (e.g., the parallel $\mathrm{D} b$ major and C\# sharp minor scales, which have the same black-key tonic on the piano, have different note symbols for it).

Avoiding multiple written key signatures by using accidentals to identify implicit key changes replaces one kind of complexity by another because accidentals have many more uses than this (e.g., ornamental passing notes, or identifying scales that originate in no key signature). Sorting out the possibilities requires considerable head-scratching at a very low conceptual level.

Key-signature-based music notation has stood the test of time and is here to stay because of the huge legacy of music written in it. But the piano has also stood the test of time without needing adjustable piano keys to play the nominally slightly different pitches identified for each piano key by music notation.

CROSS REFERENCES

Cross-referencing music notation and PKP notation requires the following table. This is the simplest case. More generally, naturals may enter the note-symbol picture to cancel sharps or flats of key signatures, and white piano keys may be represented by sharps or flats ($\mathrm{B}=\mathrm{Cb}, \mathrm{C}=\mathrm{B} \#, \mathrm{~F}=\mathrm{E} \#, \mathrm{E}=\mathrm{Fb}$) to satisfy the scale-spelling rule that the same letter note must not appear twice. Experts develop rules of
thumb about sharps and flats as indicators of what's going on, and see PKP as discarding these clues not so, the clues are present in PKP in a different way.

1	p2	2	p3	3	4	p5					
@	P	0	R	M	I	L	\$	x	x	x	x
C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B
C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C
D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db
D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D
E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb
F	F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E
F\#/Gb	G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E	F
G	G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb
G\#/Ab	A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G
A	A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab
A\#/Bb	B	C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A
B	C	C\#/Db	D	D\#/Eb	E	F	F\#/Gb	G	G\#/Ab	A	A\#/Bb

SOLFEGE SCALES

The singer's solfege scale do-re-mi-fa-so-la-ti-do represents the pitch sequence of the standard major scale (Ionian mode) for any starting tonic do. All the intervals are whole tones except for half tones mi-fa and ti-do. This translates into 1-2-3-4-5-6-7-1 from the chromatic scale relative to major tonic do as 1. The solfege minor scale la-ti-do-re-mi-fa-so-la represents the pitch sequence of the standard minor scale (Aeolian mode) for any starting tonic la. This translates into 1-2-p3-4-5-p6-p7-1 from the chromatic scale relative to minor tonic la as 1. The problem for our purpose is solfege scales are for classical modes and attempts to extend them are clumsy and complex (see Wikipedia).

SCALES AS INTERVAL SEOUENCES

Scales generally have only three sizes of inter-note intervals, namely half tones (h), whole tones $\mathbf{(2 h})$ and minor thirds ($\mathbf{3 h}$). Sometime I represent $\mathbf{2 h}$ by W and $\mathbf{3 h}$ by \mathbf{W}^{+}. Sometimes I just use the numbers. For example, the 6 -note minor blues scale could be written variously as:

1-p3-4-p5-5-p7-1	chromatic scale
$3 \mathrm{~h}-2 \mathrm{~h}-\mathrm{h}-\mathrm{h}-3 \mathrm{~h}-2 \mathrm{~h}$	
$\mathrm{~W}^{+} \mathrm{WhhW}+\mathrm{W}$	
321132	half tones understood

"Figured bass notation" (Appendix C) is different in kind. It represents chords going up from bass notes by number sequences in which the numbers count scale steps between successive notes, which requires knowing the scales in advance by other means.

APPENDIX C: ABOUT CHORDS

Chords identified by chord symbols with four or more notes boil down to combinations of the two kinds of building blocks. Here follow some examples. Two fifos (fifths or fourths) form major-7, minor-7 or major-6 chords. One fifo and one tritone form dominant-7, half-diminished-7 (a.k.a. minor-7-b5) or minor-6 chords. Three fifos or two fifos and a tritone form 9th, 11th and 13th extensions of these chords. When tonic scales depart from key signatures, the same kinds of building blocks are available from the scales but now more than one tritone is available. For example, two tritones form diminished-7 or dominant-7-b 5 chords. Two tritones and one fifo (that may share a note with a tritone) form variations of other chord types such as dominant-7 b 9. Omitting inner notes of combinations may yield different intervals, or thinned voicings of chords. For example, an augmented fifth (8 half tones) is combination of two tritones a whole tone apart with their inner notes omitted; and a 3-note voicing of a 4-note seventh chord is composed of the outer notes plus the most important inner note.

ANCHOR LETTERS FROM TRITONE CHORDS

The following table of tritone chords summarizes the simplest examples of chords with tritones in different positions.

offset of tritone bass note above root R	suffixes on root symbol R										
	7	7\#9(13)	$\begin{aligned} & \hline 9 \quad 13 \\ & \left(\begin{array}{l} \text { or } \# 5 \end{array}\right) \end{aligned}$	7 b 9	$\begin{gathered} 7 b 5 \\ \text { (or \#4 or \#11) } \end{gathered}$	$\begin{gathered} \hline \operatorname{dim} 7 \\ (\text { or } 07) \end{gathered}$	m7 b 5	m6	M7(11)	b9	$\begin{aligned} & \mathbf{M} 7 \# 11 \\ & \text { (or b } 5 \end{aligned}$
fourth									x		
major third	\mathbf{x}	X	x	\mathbf{x}	X						
minor third		X				x		X			
whole tone			X								
half tone				x						X	
0					x	x	x				x

Only chord variations that alter tritone content are included. For example, R7, R9, R7\#9, R13 and R 9 (13) are all variations of R 7 with the same tritone content and so are all represented in the table by R7 (variations are left to context). Diminished seventh chords (Rdim7) have no counterpart in classical modes. Sus chords are not shown because they have no tritones. They are typically V-7\#3 chords. A Vsus-V-I progression is a substitute for a II-V-I progression in which one note is altered between the first two steps.

Inverting the tritone of a chord into the home octave (if it isn't already there) determines its PKP anchor. For example, The tritone of a V-7 chord is partially outside the home octave but its inversion is within it. The bass note of its inversion is a fourth above the home tonic which makes its anchor \mathbf{I}.

Double tritones are the normal upper limit for tritone content of chords encountered above the staff in fake books, lead sheets and sheet music. $=$

FIGURED BASS NOTATION; EXTENDED CHORDS

Figured bass notation provides a simple representation of chords from scales with 7 notes and no adjacent half tones. It represents chords by stacks of numbers going up from a bass note, in which each number is a count of the scale steps to the next note up. The stacks are annotated on a staff as literal stacks of numbers (vertical lists). I write them here as horizontal lists separated by plus signs. For classical modes, a major or minor third is always two scale steps and whole tone is always one scale step (e.g., a seventh chord is $\mathbf{2 + 2 + 2}$ and a sixth chord is $\mathbf{2 + 2 + 1}$).

Figured bass notation can be helpful for understanding extended chords of classical modes that follow from splitting chord steps of size 2 into $\mathbf{1 + 1}$ sequences and then moving the added note up an octave. The $\mathbf{+ 4}$ on top of two of the extended chords on the right is a consequence of avoiding $\mathbf{1 + 1 + 1}$ sequences in the in-place forms. The corresponding chord symbols have degree-number suffixes 6,9 , 11 or 13 added to basic symbols to identify the extensions.

chord type	(2) = split	in place	extended
seventh	2+2+2	2+2+2	-
ninth	(2) $+2+2$	1+1+2+2	2+2+2+2
eleventh (seventh+11th)	2+(2)+2	2+1+1+2	2+2+2+2+4
thirteenth (ninth+13th)	(2) $+2+(2)$	1+1+2+1+1	$2+2+2+2+2+4$

DOUBLE TRITONES

The number and variety of chords formed of or voiced by double tritones is startling. The chord symbols are all over the map but the double tritones have only three basic keyboard shapes exemplified by RM, M.L and R..L from the blues family mode, namely two tritones offset by a half tone, a whole tone or a minor third. Let's symbolize these shapes by $\mathbf{X X}, \mathbf{X} . \mathbf{X}$ and $\mathbf{X} . . \mathbf{X}$, where the $\mathbf{X s}$ represent alphabet letters and the dots represent skipped letters. The same shapes appear for different mixes of tritones on both sides of the mode hierarchy. Double tritones with whole tone and half tone separations are progressively more dissonant than single tritones when their notes are sounded together. Double tritones with minor third separations have a "sweet" sound that's somewhere between dissonance and consonance.

The basic shapes are simple but finding any particular inversion of one on the keyboard can be difficult if you try to do it by finding the individual inversions and combining them." Two things make it difficult: one is different mixes of black and white keys in different home octaves; the other is different outer and inner intervals for different inversions. Better to work inwards from the outer intervals, as shown next.

The Emperor Has No Clothes v12/8/19 - p91 - ©copyright R.J.A. Buhr

Find the bass note, establish the treble note, then move inwards from both ends by the offset interval. Either all inversions have same shape or all inversions have only two shapes.

MISLEADINGLY COMPLEX CHORD SYMBOLS FROM CLASSICAL MODES

This illustrates, for the Ionian mode, that a startling variety of chords are voiced by simple shapes formed of a tritone combined with different fifos (some are rootless, all are in the mode).

```
1 p2 2 p3 3 4 p5 5 p6 6 p7 7 1
@ P O R M M I L $ X x x x x @ 
• • . . . x • . . . . x . V V7, IIm7(13), IM9(11)
• • x • . . . x • . . . .
\bullet • • • • X • • • • • X • 
. . . . . x . . . . . x . V7(11), IIm7(13)
x • • - \ X . . . . . .
. . . . . x . . . . . x . V13(11), IM7b5
• • . . . x . . . . . x . VIIm7b5, IVM6b5, IIm6
```


CHORDS FROM NON-CLASSICAL MODES.

This illustrates that non-classical modes provide many new chords.

	$\begin{array}{lllllllllllll} 1 & \text { p2 } & 2 & \text { p3 } & 3 & 4 & p 5 & 5 & p 6 & 6 & \text { p7 } & 7 & 1 \\ @ & P & 0 & R & M & I & L & \$ & x & x & x & x & @ \\ \hline \end{array}$	
minor family	@ . x x . x . \$ $\mathrm{x} \times \mathrm{x} \mathrm{x} \times \mathrm{x}$ @	
OR	OR • • - . x x	IV7\#9(13), VII7\#9(13)
R.I	R . I . . . x - x	IV7b5, VII7b5
O..I	O . . I . . x . . x	IIdim 7, IV $\operatorname{dim} 7$, pVIdim 7, VIIdim 7 rootless $7 b 9$ rel. to roots a $1 / 2$ tone down
(3) \mathbf{R}^{+}	x . . R x	ImM7, pIIIM ${ }^{+}$
(4)\$	x • - ©	Im (minor triad @ ${ }^{\text {v }}$, spread out)
major family	@ . x . x x . \$ x x x x @	
MI	M I • • - . x x	pII7\#9(13), V7\#9(13)
O.M	O . M . . . x - x	III7b5, pVII7b5
O..I	O . . I . . x . . x	as above
(3)\$	x . . \$. . . ©	I (major triad)
blues family	@ . $\mathrm{x} \times \mathrm{x} \mathrm{x} \times \mathrm{x}$. x x . @	
RM	R M • • - x x	I7\#9(13), pV\#9(13)
M.L		I7b5, pV7b5
R..L	- R . . L . . x . . x	analogous to $0 . .1$

The strongly dissonant chords formed of two tritones offset by half tone would tend to be voiced in
context as a stacked tritone and fourth with no internal half tones. This shape has a rich sound with a dissonant edge. The weakly dissonant chords formed of two tritones offset by a whole tone can be played with all notes in any inversion. The chords formed of two tritones offset by a minor third have a circular symmetry (same shape in all inversions) that produces a unique sound I have come think of as "sweet."

CHORDS DIRECTLY FROM TRITONES ON THE KEYBOARD

Tritone chords may be identified directly on the keyboard as indicated by the following selection of examples. Context would determine which one fits.

TRITONE SUBSTITUTE CHORDS

The tritones of all possible dominant seventh chords and their tritone substitutes for any home tonic are easily determined from a table of the following form, the top line of which is the actual scale frame of the home tonic on the keyboard ($\mathbf{E b} \mathbf{- B b}-\mathbf{E b}$ provides an example). The chord roots are the \mathbf{x} entries in the table. All possible chords are listed on the right for the home tonic.

APPENDIX D: ABOUT ENRICHED CLASSICAL MODES

The enriched classical modes identified as "melodic" and "harmonic" presented in the book Modalogy are summarized next, except with notes in numeric-chromatic-scale notation, instead of in the RN (Roman Numeral) notation with sharps, flats and naturals used in the book. Corresponding PKP mode signatures are shown on the left.

The purpose is twofold. One is to verify the correctness of the PKP view of these modes. The other is to highlight the complexity that results from using sharps, flats and naturals. For example, the tritone anchored by \mathbf{R} that is a component of many of the minor modes is understood as $\mathbf{p 3 - 6}$ in the symbolic chromatic scale, and that's it. Inversions in different places in harmony are left to context. In Modalogy, tritone anchor p3 is b III or \# II and tritone anchor $\mathbf{6}$ is VI or bVII, and that's only the anchors.

The alphabet soup of names and the intricate details of the scales makes them very difficult to distinguish functionally, or to remember as enumerated scales. Seeing the possibility that tritones might be fundamental scale-defining objects for these modes is effectively impossible in the terms used in Modalogy. This impossibility is demonstrated by a discussion of defining and non-defining notes of the many and various modes that never mentions tritones.

PKP's way of knowing the modes by 2-letter mode signatures from a 6-letter alphabet is simple and unambiguous. It enables seeing the modes as emerging from family context instead of as independent entities that give no hint of where they might be used. It simplifies the harmonic modes by making the master mode harmonic minor-major, thus reducing $2 \times 7=14$ parallel modes to 8 parallel modes. An 8note minor-major mode is easily reduced to a 7 -note harmonic minor or major mode to fit context.

APPENDIX E: ABOUT SYMMETRY \& SYMMETRY-BREAKING

The elements of PKP are summarized here in a way that provides a link between the concept of symmetry breaking in these pages and in the book The Jazz of Physics. This kind of thing is fascinating to anyone with a mathematical bent but possibly not to anyone else. (This uses the original version of the alphabet, namely PADMIL, before I replaced AD with OR to avoid confusion with letter notes.)

The circle of fifths shown below left presents the basic elements of tonic scales and chord progressions from them in one simple picture. The points going counterclockwise around the circle are 12 notes a fifth apart (7 half tones) across 7 keyboard octaves (12 fifths $\times 7$ half tones $=7$ octaves $\times 12$ half tones). The circle is manifestly a wheel with tritone spokes. The notes of the major scale are the numbered points around the half circle delimited by the highlighted tritone spoke (6 half tones).

The circle visibly establishes two kinds of Lego ${ }^{\text {TM }}$-like building blocks as fundamental elements of music, namely fifths or fourths referred to jointly as fifos for simplicity, and tritones. The circle as labeled identifies fifths going up the keyboard through 7 octaves or fourths going down the keyboard through 5 octaves. For the major scale, it identifies a basic chord root line going down by five fifths ($31 / 2$ octaves) or five fourths ($21 / 2$ octaves) to the tonic (equivalent to progressively zig-zagging down a fifth and up a fourth within one octave).

The pictorial geometry of the circle of fifths and the musical geometry of its interpretation are different in a way that is counterintuitive (different numbers of octaves going around the circle for fifths and fourths, very different musical sizes of lines of almost the same pictorial length that cut across the circle). This becomes confusing for more general chord progressions of this and other scales.

The circle of half tones rearranges the spokes of the circle to put the labeled points around it in scale order. Around the circle remains an octave and across any spoke remains a tritone. The half tones across the circle now go around it and the fifos around the circle now go across it.

The end points of all the spokes of either circle visibly identify all the points around it, suggesting a notation that labels spokes (building blocks) instead of points (notes). This simple observation is the twist that leads to PKP's unique combination of simplicity and depth. The spoke labels, called anchors, directly identify tritones but also identify fifos. In the chromatic scale that unwinds from the circle, each anchor letter identifies a tritone and two fifos morphed from it. The letters identify relative
positions of the anchors in the chromatic scale. Tritone anchors are unambiguous independently of context and fifo anchors are ambiguous but the ambiguity is generally resolved by context. No anchors are needed in the top pitch half of the octave because inversions cover them.

The letters of the PADMIL alphabet mark the relative positions of the anchors of the single tritones of classical modes, but this is only to provide a correspondence between PKP notation and music notation. It does not bind the letters to the classical modes, or to tritones.

SYMMETRY BREAKING IN THE CIRCLE OF FIFTHS

According to The Jazz of Physics, symmetry-breaking is a deep feature of how both music and the universe work. Here's a view of breaking the symmetry of a diminished scale to yield a major scale that corresponds to an example on page 66 of the book (in the book, the dotted square and its transformation are not shown and no mention is made of tritones).

The symmetry-breaking is shown next in progressive steps that morph tritones into fifos.

[^0]: ${ }^{1}$ An example of misleading complexity is provided by one of the simplest and most distinctive changes in music to the ear, namely a change from major to minor tonality of the same tonic. The example is for the tonic provided by the black piano key immediately above C, variously known as $\mathrm{C} \#$ or Db . The change is from 5 -flats of Db major to 4 -sharps of $\mathrm{C} \#$ minor (Appendix B provides a summary of key-signature scales). The change naturalizes 5 notes and then sharps 4 notes - 9 symbol changes to move 3 notes down a half tone! The different symbols for the major tonic Db and the minor tonic $\mathrm{C} \#$ seem, misleadingly, to imply slightly different pitches for the home tonic. What they actually imply is slightly different pitches for the notes C and D when used as references for sharps or flats. These different pitches don't exist on the piano.

[^1]: 2 The following chord progression for the haunting Eb blues Goodbye Porkpie Hat written by Mingus as a tribute to Lester Young is a "poster child" for chord symnbol complexity. The progression is Eb7\#9-B9(13)-EM9-A7\#11-D $b 9$ sus-B9(13)-Db7sus-Eb7$\mathrm{A} b \mathrm{~m} 11-\mathrm{B} 7(13)-\mathrm{Fm} 7 b 5-\mathrm{B} b 7 \# 5 \# 9-\mathrm{C} 13 \# 11-\mathrm{F} 7(13)-\mathrm{B} 7-\mathrm{EM} 7-\mathrm{A} 7(13)-\mathrm{A} b 7-\mathrm{B} b 7-\mathrm{D} b 7-\mathrm{E} b 7 \# 9-\mathrm{B} 7-\mathrm{EM} 7 \# 11-\mathrm{A} 7 \# 11$ (Appendix C provides a summary of chord symbols). There are 24 chords, an average of 2 per bar for 12 bars, only 5 of which (highlighted in blue) don't contain tritones. Chapter 4 presents this piece as an example.

[^2]: \uparrow Ionian tonic up a minor third

[^3]: (2008) Taylor Eigsti. Jazz pianist, composer, teacher, former Artist in Residence at The Jazz School in Berkeley
 "Through the brilliant lens of an engineer, Raymond Buhr has laid out an analysis of harmony that is a unique and complex look at the right-brain from the left-brain's perspective."

