This chapter has 57 questions. Scroll down to see and select individual questions or narrow the list using the checkboxes below.	Select 0 questions at random and keep in order V
Multiple Choice Questions - (45)	Topic: Heat engines - (13)
Fill In The Blank Questions - (12)	Topic: Perpetual motion and energy frauds - (5)
Odd Numbered - (29)	Topic: Refrigerators, heat pumps, and entropy - (16)
Even Numbered - (28)	Topic: The second law of thermodynamics - (18)
Accessibility: Keyboard Navigation - (44)	Topic: Thermal power plants and energy resources - (6)
Difficulty: Easy - (43)	Type: Conceptual - (50)
Difficulty: Hard - (1)	Type: Definition - (15)
Difficulty: Medium - (12)	Type: Graphical - (1)
Gradable: automatic - (57)	L Type: Numerical - (6)
1. The second law of thermodynamic However, we see all around us ob or water that freezes. The decreas	ects that become more ordered—for example, the development of a biological organism in entropy, or randomness, in such cases does not violate the second law because
\bigcirc energy must be remov	ed.
\bigcirc energy must be added	
\rightarrow \bigcirc there is always a grea	er increase in entropy somewhere else.
Select 🖸 🔿 water and living thing	s do not have entropy.
Multiple Choice Question MC The second law of thermodynam 2. Why couldn't you use an electric motor? \rightarrow \bigcirc No energy converter if \bigcirc Yes, you can do this! \bigcirc Motors require AC ar Select Multiple Choice Question MC Why couldn't you use an electric 3. Shown below are 4 figures that re of heat flow. T _H is the high-tempor to/from T _C , and W is work. Which	Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual notor to turn an electrical generator that in turn provides the electrical energy for the 3 100% efficient. d generators produce DC. Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Perpetual motion and energy frauds Type: Conceptual present the heat flow in a heat engine. The thickness of the arrows represents the amount rature reservoir, T _C is the low-temperature reservoir, Q _H is heat to/from T _H , Q _C is heat in figure best represents a real heat engine?
Select T_H T_G T_C Q_C T_C	$\begin{array}{c} Q_{H} \\ \hline T_{H} \\ \hline Q_{H} \\ \hline \\ W \\ \hline \\ C \\ \hline \\ T_{C} \\ \hline \\ Q_{C} \\ \hline \\ $

Difficulty: Medium Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual Type: Graphical

Select

Multiple Choice Question

MC Shown below are 4 figures that represent the...

4. Energy added to a cyclical heat engine

 \bigcirc is completely converted to external work.

 \rightarrow \bigcirc is converted to work and to waste heat.

 \bigcirc is used to generate work that is greater than the added energy.

 \bigcirc is converted to increased internal energy in the engine plus external work.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Topic: Refrigerators, heat pumps, and entropy Type: Conceptual

Multiple Choice Question MC Energy added to a cyclical heat engine

Select $\overline{\mathbb{Z}}$ 5. The primary function of any heat engine is to

 $\bigcirc\,$ create a large amount of energy from a small amount of heat.

 \bigcirc create heat.

 \rightarrow \bigcirc convert heat into work.

MC The primary function of any heat engine is t...

6. The work performed by a heat engine

 \bigcirc destroy energy and replace it with work.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Conceptual Type: Definition

Select a

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: Heat engines Type: Conceptual

Accessibility: Keyboard Navigation

Difficulty: Easy Gradable: automatic Topic: Heat engines

Type: Conceptual

Multiple Choice Question

Multiple Choice Question

MC The work performed by a heat engine

7. The change in internal energy during one complete cycle of a heat engine

 \bigcirc equals the heat energy exhausted from the engine.

 \bigcirc equals the change in the internal energy of the engine.

 \bigcirc equals the heat energy entering the engine.

 \rightarrow \bigcirc equals the net heat flow into the engine.

- \rightarrow \bigcirc equals zero.
 - \bigcirc equals the net heat flow into the engine.
 - \bigcirc equals the heat energy exhausted from the engine.
 - \bigcirc equals the heat energy entering the engine.

Multiple Choice Question MC The change in internal energy during one com...

- 8. One important feature of the Carnot cycle is that it
 - maximizes the entropy of a heat engine operating between two temperatures.
 - \bigcirc specifies the operating temperatures of any heat engine.
 - \bigcirc converts all of the heat flowing into an engine to work.
 - \rightarrow \bigcirc predicts the maximum efficiency of a heat engine operating between two temperatures.

Select

Select

Select

Multiple Choice Question

MC One important feature of the Carnot cycle is ...

- 9. The efficiency of an engine can be defined as the
 - \rightarrow \bigcirc ratio of work done to energy input.
 - \bigcirc total amount of work performed.
 - \bigcirc ratio of work done to energy exhausted.
 - \bigcirc ratio of heat exhausted to heat intake.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual Type: Definition

> Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Conceptual Type: Definition

Multiple Choice Question MC The efficiency of an engine can be defined a...

10. If a Carnot heat engine is run in reverse, it becomes

 \bigcirc a heat engine with the smallest possible efficiency.

 \bigcirc an engine that has a negative efficiency.

 \rightarrow \bigcirc a refrigerator.

 \bigcirc nothing. It can't be run in reverse because to do so would violate the second law of thermodynamics.

Select

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual Type: Definition

Multiple Choice Question MC If a Carnot heat engine is run in reverse, i...

Select 🔂 11. A correct statement of the Second Law of Thermodynamics is

 \bigcirc the random motion of gas molecules will be decreased if energy is added to a gas.

 \bigcirc there is no process that can make heat flow from a cold object to a hot object.

 \bigcirc no heat engine can have an efficiency greater than 30%.

 \rightarrow \bigcirc heat will not flow spontaneously from a cold object to a hot object.

Page 3 of 9

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual Type: Definition

Multiple Choice Question

MC A correct statement of the Second Law of The ...

- 12. The amount of disorder in a system is called
 - \bigcirc density.
 - \rightarrow \bigcirc entropy.
 - \bigcirc temperature on the Kelvin scale.
 - \bigcirc pressure.

Select

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual Type: Definition

Multiple Choice Question MC The amount of disorder in a system is called

13. The overall direction of change in the universe is toward

- \bigcirc a state of increased mass in the universe.
- \bigcirc increased energy content of the universe.
- \bigcirc a state of increased organization.
- \rightarrow \bigcirc a state of greater disorder.

Select

Multiple Choice Question

MC The overall direction of change in the unive...

- 14. An ideal heat engine is operating between high and low temperature reservoirs. Suppose that now the low temperature reservoir has its temperature lowered, but no other changes are made. This temperature change affects the engine efficiency in the following way:
 - \bigcirc the efficiency decreases.
 - \bigcirc the efficiency is unchanged.
 - \rightarrow \bigcirc the efficiency increases.

 \bigcirc there is now no way to calculate the efficiency.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Conceptual

Accessibility: Keyboard Navigation

Topic: Refrigerators, heat pumps, and entropy

Difficulty: Easy Gradable: automatic

Type: Conceptual

Type: Definition

Multiple Choice Question

MC An ideal heat engine is operating between hi.

15. Some power plants extract energy from the warm ocean currents. A major disadvantage to these power plants is that

- \rightarrow \bigcirc the efficiency is quite low.
 - \bigcirc there is no low temperature reservoir.
 - \bigcirc the amount of heat released to the environment is unacceptable.
 - \bigcirc the cost of warm ocean water is quite high.

Multiple Choice Question MC Some power plants extract energy from the wa... 16. In one cycle of any heat engine Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Thermal power plants and energy resources Type: Conceptual

 \bigcirc the net heat flow is zero.

 \rightarrow \bigcirc the internal energy of the engine does not change.

 \bigcirc more heat flows from the engine than enters the engine.

 \bigcirc the net work done is larger than the heat exhausted.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Conceptual

Multiple Choice Question MC In one cycle of any heat engine

- Select 🔂 17. A Carnot engine is
 - \bigcirc equivalent to the gasoline internal combustion engine.
 - \bigcirc currently in production for the new generation of imported cars.
 - \rightarrow \bigcirc a theoretical engine having the highest possible efficiency for the temperatures involved.
 - \bigcirc one that would violate the second law of thermodynamics.

Select

Select

	Multiple Choice Question MC A Carnot engine is	Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics
		Type: Conceptual
	18 A Carnot engine	Type: Definition
	\bigcirc consists of only isothermal processes.	
	consists of only processes which do not involve heat flow.	
	\bigcirc consists of constant temperature and constant volume processes.	
	\rightarrow \bigcirc absorbs heat at a single high temperature and rejects heat at a single	gle low temperature.
Salact	\bigcirc consists of zero heat flow and constant pressure processes.	
Jelect		
		Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic
		Topic: The second law of thermodynamics
	Multiple Choice Question	Type: Conceptual
	19 A Carnot engine operating between reservoirs at 500°C and 300°C would have	rype. Definition
	$\bigcirc 0.11.$	ve an enterency of approximately
	$\rightarrow \bigcirc 0.30.$	\frown
	○ 0.50.	
	○ 0.67.	
Select	O 0.74.	
		Accessibility: Keyboard Navigation
		Difficulty: Easy Gradable: automatic
	Multiple Choice Question	Topic: The second law of thermodynamics
	MC A Carnot engine operating between reservoirs	Type: Numerical
	20. A heat engine having an efficiency of 0.20 takes in 2000 J of energy from the	e hot reservoir in one cycle. In the same time,
	$\bigcirc 0 J$	
	$\rightarrow \bigcirc 400 \text{ J}$	
	○ 1000 J	
	○ 120 J	
Select	○ 33,333 J	
		Assessibility Kayboard Navigation
		Difficulty: Easy
		Gradable: automatic
	Multiple Choice Question	Topic: Heat engines
	21 A heat engine takes in 500 L of energy from the hot reservoir in one cycle wh	ile performing 100 L of work. The amount of
	heat transferred to the cold reservoir in the same time is	the performing 100 y of work. The amount of
	○ 500 J.	
	\rightarrow \bigcirc 400 J.	
Select	○ 300 J.	
	○ 200 J.	
	○ zero.	
		Accessibility. Keyboard Navigation
		Difficulty: Easy

Multiple Choice Question

MC A heat engine takes in 500 J of energy from ...

Topic: Heat engines Type: Numerical

Gradable: automatic

- 22. A heat pump is capable of delivering more energy to the home than goes into the operation of the pump itself, when conditions are favorable. Which of the following statements is correct?
 - $\rightarrow \bigcirc$ A heat pump transfers some energy from the outdoors.
 - \bigcirc A heat pump violates the second law of thermodynamics.
 - \bigcirc A heat pump violates the first law of thermodynamics.
 - A heat pump, like the Carnot engine, is a theoretical device that is not useful in practice.
 - \bigcirc A heat pump is more efficient when the outside temperature is colder.

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual

Multiple Choice Question MC A heat pump is capable of delivering more en...

Select

 \rightarrow \bigcirc consistent with Clausius's statement of the second law.

 \bigcirc possible if entropy of the contents of the refrigerator increases.

 \bigcirc impossible unless the refrigerator uses a Carnot cycle.

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual

Multiple Choice Question

MC A refrigerator transfers heat from a colder ...

24. Entropy is

Select Q

- \bigcirc another term for heat.
- \bigcirc a quantity that is conserved in any thermal process.
- \rightarrow \bigcirc a quantity that increases as the disorder of a system increases.
 - \bigcirc something that never locally decreases in any process.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Multiple Choice Question Type: Conceptual MC Entropy is Type: Definition 25. An inventor has created a heat engine that extracts energy from geothermal hotspots and geysers like Old Faithful at Yellowstone National Park. She claims to turn all of the geothermal energy into work. Such a device is \bigcirc a violation of the first law of thermodynamics. ○ consistent with Clausius's statement of the second law of thermodynamics. \bigcirc only possible for a Carnot cycle. Select \rightarrow \bigcirc a violation of Kelvin's statement of the second law of thermodynamics. Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: Perpetual motion and energy frauds Multiple Choice Question MC An inventor has created a heat engine that e... Type: Conceptual 26. A heat engine that would take in 1000 J of heat from a reservoir at 500 K and exhaust 500 J to a reservoir at 300 K, converting the other 500 J of heat to work, is \bigcirc thermodynamically possible. \bigcirc possible only for a Carnot cycle. \rightarrow \bigcirc not thermodynamically possible. Select

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: Heat engines Type: Numerical

Multiple Choice Question

MC A heat engine that would take in 1000 J of h..

27. Which of these is characteristic of an ideal (Carnot) heat engine?

- \bigcirc It does not create waste heat.
 - \bigcirc It cannot be used to cool a house.
 - \bigcirc It creates more energy than it consumes.
- \rightarrow \bigcirc It causes no increase in entropy.

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

Multiple Choice Question

MC Which of these is characteristic of an ideal...

- 28. If, for an ideal heat engine, Q_H, Q_C, and W are, respectively, the heat absorbed, the heat exhausted, and the work done per cycle, which of these is true?
 - \bigcirc Q_H cannot be more than W.
 - $\rightarrow \bigcirc Q_C$ cannot be more than Q_H .
 - \bigcirc W cannot be more than Q_C.
- \bigcirc Q_H cannot be more than Q_C.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

Multiple Choice Question MC If, for an ideal heat engine, QH, QC, and W...

Select 29. Some people claim that the theory of evolution violates the second law of thermodynamics, since that theory holds that order develops out of disorder, corresponding to a decrease in entropy. This claim

 \rightarrow \bigcirc is incorrect; the second law says only that the total entropy in a closed system increases.

 \bigcirc is correct, thereby disproving the theory evolution.

 \bigcirc if incorrect, would mean that the theory of evolution must be true.

Select

Select

 \bigcirc none of these.

MC Some people claim that the theory of evoluti...

Multiple Choice Question

Multiple Choice Question

Accessibility: Keyboard Navigation

Difficulty: Easy

Gradable: automatic

Topic: Refrigerators, heat pumps, and entropy Type: Conceptual

- 30. Suppose 150 Joules of work is done on a system and that 300 Joules of heat are delivered to the system. Which of these is predicted by the first law of thermodynamics?
 - \rightarrow \bigcirc The internal energy U of the system increases by 450 J, since Q = +300 and W = -150.
 - \bigcirc The internal energy U of the system decreases by 150 J, since Q = -300 and W = +150.
 - \bigcirc The internal energy U of the system increases by 150 J, since Q = +300 and W = +150.
 - \bigcirc The internal energy U of the system does not change.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Numerical

MC Suppose 150 Joules of work is done on a syst...

- 31. Which of these is impossible, by the second law of thermodynamics?
 - \bigcirc Using heat exhausted by a refrigerator to cook a meal.
 - \rightarrow \bigcirc An engine that generates electricity by extracting heat from cold water and dumping waste heat to warmer air.
 - \bigcirc Water evaporating from a lake and then condensing to form clouds.
 - \bigcirc A single match carelessly discarded causes 1500 acres of woodland to burn.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Perpetual motion and energy frauds Type: Conceptual

Multiple Choice Question

MC Which of these is impossible, by the second ...

32. It is impossible to construct an engine that is more than 100% efficient. The physical law covering this case is

- \bigcirc the zeroth law of thermodynamics.
- \rightarrow \bigcirc the first law of thermodynamics.
 - \bigcirc Clausius's statement of the second law of thermodynamics.
 - \bigcirc Kelvin's statement of the second law of thermodynamics.

Select

Select

Select Q

 \bigcirc the third law of thermodynamics.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Perpetual motion and energy frauds Type: Conceptual Type: Definition

Multiple Choice Question

MC It is impossible to construct an engine that...

- 33. The efficiency of a Carnot engine would be increased if
 - \bigcirc the high temperature were lowered by 100°C.
 - \bigcirc the low temperature were raised by 100°C.
 - \bigcirc the high and low temperatures were both raised by 100°C.
 - \rightarrow \bigcirc the high and low temperatures were both lowered by 100°C.

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: The second law of thermodynamics Type: Numerical

Select

Multiple Choice Question MC The efficiency of a Carnot engine would be i...

34. An engine that decreases the total entropy in the universe is

○ a refrigerator.
○ a Carnot engine.
○ a heat pump.
→ ○ impossible.

Select

Multiple Choice Question MC An engine that decreases the total entropy...

- Select 35. A reversible engine is one that
 - \bigcirc does no net work.
 - $\rightarrow \bigcirc$ causes no increase in net entropy.
 - \bigcirc generates no net heat.
 - \bigcirc acts as a refrigerator.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Perpetual motion and energy frauds Type: Conceptual

Page 7 of 9

Multiple Choice Question MC A reversible engine is one that

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

36. What method does not directly use heat for generating electricity?

- Nuclear power plants
- \rightarrow \bigcirc Hydroelectric dams
 - \bigcirc Natural gas

Multiple Choice Question

 \bigcirc Geothermal power

MC What method does not directly use heat for g...

Select Q

Select

Select

Select Q

○ All of these methods use heat to generate electricity.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Thermal power plants and energy resources Type: Conceptual

- 37. Electric heaters can operate at efficiencies very close to 100%. This does not contradict the fact that Carnot engines are the most efficient heat engines because
 - \bigcirc electric heaters have very low temperature exhaust.
 - \bigcirc electric heaters reduce the total entropy of a room.
 - \bigcirc Carnot engines cannot be used to heat things.
 - \rightarrow \bigcirc electric heaters are not heat engines.

Accessibility: Keyboard Navigation Difficulty: Medium Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

Multiple Choice Question

- MC Electric heaters can operate at efficiencies...
- 38. An amount of water forms a single hexagonally symmetric snowflake. Elsewhere the same amount of water is a droplet of liquid water. Which state has higher entropy?
 - \bigcirc Their entropy levels are the same, since they are actually the same amount of H₂O, just different phases.
 - \rightarrow \bigcirc The droplet of liquid water, since it is more unruly and can adopt almost any shape.
 - The solid water, since it has a tight restriction to hexagonal symmetry.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual

MC An amount of water forms a single hexagonall...

- 39. Entropy and temperature measure different properties of a sample of a substance, because temperature gauges average kinetic energy of molecules or atoms, but
 - \bigcirc entropy is the inverse of temperature, due to conservation of momentum.
 - \bigcirc low entropy substances cannot have a temperature.
 - entropy of an isolated system cannot decrease.
 - \rightarrow \bigcirc entropy measures disorderliness or unruliness.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Refrigerators, heat pumps, and entropy Type: Conceptual Type: Definition

Multiple Choice Question

Multiple Choice Question

MC Entropy and temperature measure different pr...

40. It is an advantage for an automobile engine to run at a high temperature because

 \rightarrow \bigcirc its efficiency is higher, since the temperature difference is what dictates efficiency.

○ gasoline only ignites under high temperature conditions.

 \bigcirc a high operating temperature cools off the fuel before ignition.

 \bigcirc it allows the use of lighter engine components made from aluminum.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Heat engines Type: Conceptual

Multiple Choice Question MC It is an advantage for an automobile engine ...

Select 🔂 41. Nuclear power stations have thermal electric generation that

 \bigcirc converts uranium into natural gas, and then ignites the natural gas.

 \bigcirc converts the nucleus of uranium atoms into electrons.

 \rightarrow \bigcirc generates heat first, then steam which drives a spinning turbine connected to a generator.

 \bigcirc are reversible heat engines.

Multiple Choice Question MC Nuclear power stations have thermal electric... Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic

Topic: Thermal power plants and energy resources Type: Conceptual

- 42. Oceanic thermal generation operates from a relatively inexhaustible source of energy in the oceans that have heat energy from
 - \rightarrow \bigcirc the energy in sunlight.
 - \bigcirc subatomic heat.
 - \bigcirc the decay of carbon in the rock formations underlying Earth's oceans.
 - \bigcirc carbon dioxide in the ozone layer.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Thermal power plants and energy resources Type: Conceptual

- Multiple Choice Question MC Oceanic thermal generation operates from a r...
- 43. An example of a reversible process would be
 - \bigcirc firing a bullet from a gun.
 - \bigcirc quickly pouring hot water into colder water.
 - \bigcirc striking a match.
 - \rightarrow \bigcirc slowly pouring hot water into cold while allowing the beakers to achieve ambient temperature levels.
 - \bigcirc None of these.

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

Multiple Choice Question

- MC An example of a reversible process would be
- 44. According to the kinetic theory of gases, the molecules in the air in a particular room must have some kinetic energy which depends on the temperature in the room. In order to extract this energy to do mechanical work I would need for the object receiving this energy to be at a much colder temperature. This is best explained by
 - \bigcirc Conservation of energy.
 - \bigcirc The law of gravity.
 - \rightarrow \bigcirc The Second Law of Thermodynamics.
 - \bigcirc Newton's laws of motion.

Accessibility: Keyboard Navigation Difficulty: Hard Gradable: automatic Topic: The second law of thermodynamics Type: Conceptual

- Multiple Choice Question
- MC According to the kinetic theory of gases, th.
- 45. The actual source of wind energy is
 - \rightarrow \bigcirc solar energy.
 - \bigcirc the daily rotation of the Earth on its axis.
 - \bigcirc the tides.
 - \bigcirc the lunar cycle.

MC The actual source of wind energy is

Select

Select Q

Select

Select

Accessibility: Keyboard Navigation Difficulty: Easy Gradable: automatic Topic: Thermal power plants and energy resources Type: Conceptual 46. A process carried out at constant temperature is known as a(n)process.

Select

Fill-in-the-Blank Question

Multiple Choice Question

isothermal

FB A process carried out at constant temperatur...

Gradable: automatic Topic: The second law of thermodynamics

	47. Heat is extracted from a hot reservoir during a(n) e	expansion in a Carnot cycle.
Select		Difficulty: Easy Gradable: automatic Tonic: The second law of thermodynamics
	Fill-in-the-Blank Question	Type: Conceptual
	FB Heat is extracted from a hot reservoir durin	Type: Definition
	48. In an ideal reversible process such as a Carnot cycle the entropy of the decreases, is unchanged).is unchanged	universe (increases,
Select		Difficulty: Easy
		Gradable: automatic
		Topic: The second law of thermodynamics
	Fill-in-the-Blank Question	Type: Conceptual
	FB In an ideal reversible process such as a Car	Type: Definition
Select	49. A refrigerator that would transfer heat from a cold body to a hotter bod	y without work being done would violate

statement of the second law of thermodynamics.

	Clausius's		
	Fill-in-the-Blank Question FB A refrigerator that would transfer heat fr	Topic: Refrigerat	Difficulty: Easy Gradable: automatic ors, heat pumps, and entropy Type: Conceptual
	optropy	in an parts of the universe mereases of remains et	Jistant.
	entropy		
Select	Fill-in-the-Blank Question FB In any process, the total	Topic: Refrigerat i yo words) running in reverse.	Difficulty: Easy Gradable: automatic ors, heat pumps, and entropy Type: Conceptual Type: Definition
	heat engine		
Select	Fill-in-the-Blank Question FB A refrigerator is actually a (tw 52. When one kilogram of ice at 0°C is conv	Topic: Refrigerat o w verted to the same amount of water at 0°C by adding h	Difficulty: Easy Gradable: automatic ors, heat pumps, and entropy Type: Conceptual eat, the change in entropy is
	(positive, negative, z	ero).	
	positive		
	poolite		
Select			Difficulty: Medium
			Gradable: automatic
	Fill-in-the-Blank Question	Tonic: Refrigerat	ors heat numps and entropy
	FB When one kilogram of ice at 0° C is conv	re	Type: Concentual
	52. If a metricameter door is left on an while the	o	(in anosas
	53. If a reingerator door is left open while the	he refrigerator is on, the temperature of a nouse will	(increase,
	decrease, not change).	-	
	Increase		
Select			
			Difficulty: Easy
	Fill in the Plank Question	Tania: Dafrigarat	Gradable. automatic
	FILI-III-III-DIalik Question	Topic. Kenigerat	Type: Concentual
	TB II a reinigerator door is left open while th		Type. Conceptual
	54. An automobile engine operates between outside environment. If the engine has b or cold) days.	een running for some time, the engine is most efficien	t on (hot
Select			
			Difficulty: Easy
			Gradable: automatic
	Fill-in-the-Blank Question		l'opic: Heat engines
	FB An automobile engine operates between	a high	Type: Conceptual
	55. A Carnot heat engine could have an efficiency	ciency of 100% only if the temperature of the exhaust	were at
	<u>ю к</u>		
Select			Difficulty: Easy
			Gradable: automatic
	Fill-in-the-Blank Question	Topic: The see	cond law of thermodynamics
	FB A Carnot heat engine could have an efficiency	cienc	Type: Conceptual
	56. A heat engine that converts all the heat t natural law?	aken in from a single temperature source to work wou (more than one word).	ld be in violation of what
	second law of thermodynamics		
Select			

Fill-in-the-Blank Question

FB A heat engine that converts all the heat tak...

Topic: The second law of thermodynamics Type: Conceptual

57. A good conductor of electricity is generally a good conductor of heat. True or False?

true

Select

Fill-in-the-Blank Question FB A good conductor of electricity is generally... Difficulty: Easy Gradable: automatic Topic: Thermal power plants and energy resources Type: Conceptual