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Initial Remarks

[

Continuous optimization in applied math B. Stoufflet
Central role also in Statistics

I will talk about optimization algorithms that are good learning
algorithms - that generalize well

Illustrate with concrete example: training Deep Neural Networks
Contrast classical gradient-based methods and with the stochastic
gradient method

For decades nonlinear optimization research focused on descent
methods (line search or trust region). How else can one obtain
(deterministic) convergence guarantees?

In large-scale machine learning applications, it is best to require only
descent in expectation



Initial remarks

Algorithms whose iterates are random
variables and that are allowed
to wonder around

1500 2000

Perform a more effective exploration of the data

Markov process has shown to be particularly effective: there 1s

randomness at each iteration, but independent of previous decisions

3. Such behavior allows the optimization algorithm to produce solutions
(prediction functions) that generalize well

4. Different from simulated annealing/genetic methods
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Deep neural networks
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* Have produced quite a stir since 2011
 How? It is still not well understood,

* Zhang, Bengio, Hardt, Recht, Vinyals (2017)
* A highly nonlinear and non-convex predictor
* Input: images, acoustic frames, text

* OQOutput: 1image classification, speech recognition, translation



Example: Speech recognition

Observe features X in acoustic frames
Predict word or sentence “FREE SPEECH”

Original Speech Sample

WOdHHPYWEY
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Capacity of Deep neural networks
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Can be viewed as a function with great expressive capacity: can reproduce
large classes of functions

Piecewise polynomial in w of degree 7 in 10 million variables
Or can be seen as a composition of logistic regression units
When training the DNN: Many minimizers, degenerate due to overcapacity



Our Observations Apply to Dominant Architectures

Feed forward

Convolutional Neural Network

Recurrent Neural
P -

Network

v

®—>—®

(—
@—>—®
®—>—®



Next

e  Illustrate how 2 optimization algorithms that give equally good
solutions on the training problem produce solutions with different
generalization properties

* Discuss the notable properties of the stochastic gradient method and
how it dominates the classical gradient method

* Bottleneck: parallelism

* Search for new optimization algorithms suited for machine learning
e  Sub-sampled Newton methods

10



Some pictures

Training deep neural networks with:

- stochastic gradient method
- gradient based method (L-BFGS), batch method
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Sharp and wide minima Keskar et al. (2016)
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Accuracy: correct classification Keskar et al. (2016)
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Another example Keskar et al. (2016)
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B a4
What 1s going on?

Gradient method “‘over-fits”
We need to back-up:

Define setting of supervised training
Describe of optimization methods and their properties
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Supervised Learning

Given a sizable training set of size 7, each example i consists of

x, : feature information y, : correct label
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Supervised Learning

Given a sizable training set of size n,; each example i consists of
x, : feature information y, : correct label

Define prediction function / that depends on unknown parameter w,
h(iw;x)=w'x or h(w;x)=nonlinear
that makes good predictions on unseen data (x,y)
y=h(w;x) with y=y
Choose a loss function ¢(y,y) and solve optimization problem

min,, F(w)= %z": L(h(w;x;),y;)
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LLoss Functions

Logistic regression: log(1+exp(—y(w’ x))
For multi-class classification, C= set of classes N

| & exp(wyT_xl.) j
Fw)y=——> 1o .
o) NZ’ gZeXP(W,TX,-) 1

jeC
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Training error vs Testing Error --- Learning Algorithms

(x,y) €Z denotes all input-output pairs with distribution P(x,y)
Define f(w,x;,y;)=(h(w;X;),y;)

Expected Risk:  F(w) = jf(w;x,y)dP(x,y)

1 n
Empirical Risk: R(w) = —Z Jw;x,,y,)
n- -

1 n
R(w) = " E f,(w) Finite Sum Problem
i=1

f;=f(w;x;,y,) denotes the loss associated with the i-th data point
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Optimization Problem A. Kingsbury
7 hidden layers W
2000 units per layer
9000 label classes —h’( |

6—44 million total parameters W

Layer L,

3.6-360 million examples

1 n

Therefore the problem: min,, F(w)= —2 l(h(w;x,),y,)
n -

Is a formidable optimization problem.

Training time ~ 2 days to 1 week
.. and deserves the respect of the CSE audience

20



.. 4@
Stochastic Gradient Method

For empirical risk minimization:

1 n
R,(w)=—2 f;(w)

W, =w,—o . Vf,(w,) i € {l,...,n} choose at random

* Very cheap, noisy iteration; gradient w.r.t. just 1 data point
* Not a gradient descent method

 Stochastic process dependent on the choice of I
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Batch Optimization Methods SAA

w,.,=w,—0,VR (w,) gradient method

a n
Win1= Wi — ﬁzv‘fz"(wk)
i=1

* More expensive, accurate step
* (Can choose among a wide range of optimization algorithms
* Opportunities for parallelism

Why has SG emerged as the preeminent method?

Computational trade-offs between stochastic and batch methods

Ability to generalize: minimize F

22



[
Efficiency
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Intuition

SG employs information more efficiently than batch methods

Argument 1:
Suppose data consists of 10 copies of a set S
Iteration of batch method 10 times more expensive
SG performs same computations
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B a4
Example by Bertsekas R (w)= lzn: f(w)
n ._

AN

Region of confusion

Note that this is a geographical argument

Analysis: given w, what is the expected decrease in the
objective function R as we choose one of the quadratics

randomly?
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Computational complexity

Total work to obtain R,(w,)< R, (W )+e¢

Batch gradient method: ndk log(l/e€)

Stochastic gradient method: dvk’ /e

Think of e=107

n: # of training points
d: # of variables

K : condition number

Srebro et al.  Bottou et al.
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A fundamental inequality

B, [R,(W ) —R,WII= —a, I VR, (W) "3 + 0513 &, | Vfik (w,) I

Initially, gradient decrease dominates; then variance in gradient hinders
progress

To ensure convergence: &, — 0 in SG method to control noise
Variance reduction methods directly control the noise given in the last
term

The variant when o, = & is constant has also been thorough studied

and yields convergence to a neighborhood of the solution at linear rate

Bottou, Curtis, Nocedal (2016) prepared for SIAM Review .



Learning algorithm

Let us look more closely at the training of deep
Neural networks

It has been known for a long time that batch methods
are inferior
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e Accuracy i1s lost with increase in batch size
 ADAM optimizer: 256 (small batch) v/s 10% (large batch)

Testing Accuracy: R
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Training and Testing Accuracy

SB: small batch

LB: large batch

Training Accuracy Testing Accuracy

Network Name | SB LB SB LB

Fy 99.66% + 0.05% | 99.92% £ 0.01% | 98.03% £ 0.07% | 97.81% + 0.07%
Fy 99.99% 4+ 0.03% | 98.35% +2.08% | 64.02% +0.2% | 59.45% + 1.05%
C 99.89% + 0.02% | 99.66% +0.2% | 80.04% + 0.12% | 77.26% + 0.42%
Co 99.99% + 0.04% | 99.99 £ 0.01% 89.24% + 0.12% | 87.26% £ 0.07%
Cs 99.56% =+ 0.44% | 99.88% + 0.30% | 49.58% + 0.39% | 46.45% + 0.43%
Cy 99.10% 4+ 1.23% | 99.57% + 1.84% | 63.08% +0.5% | 57.81% +0.17%

No Problems in Training!
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Network configuarions

Table 1: Network Configurations

Name | Network Type Architecture | Data set
Fi Fully Connected Section B.1 | MNIST (LeCun et al., 1998a)
F Fully Connected Section B.2 | TIMIT (Garofolo et al., 1993)

C1 (Shallow) Convolutional | Section B.3 | CIFAR-10 (Krizhevsky & Hinton, 2009)
Cy (Deep) Convolutional Section B.4 | CIFAR-10

Cs (Shallow) Convolutional | Section B.3 | CIFAR-100 (Krizhevsky & Hinton, 2009)
Cy (Deep) Convolutional Section B.4 | CIFAR-100
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Sharp and flat minima Keskar et al. (2016)
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SG: mini-batch of size 256 ~ Batch: 10% of training set
ADAM optimizer
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Sharp minima

Issue!

Small batch solution large batch solution
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B a4
Testing accuracy and sharpness  Keskar (2016)
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Sharpness Metric

. . . . k . sk
Given a minimizer w and a box B of width € centered at w |,

we define the sharpness of w™ as

S +w)=f(w)
1+ f(w)

max

weB

SB

e=10"%

LB

€E=09"

SB

10~
LB

F [ 1232083
1.30 £ 0.02
2858 + 3.13
) | 8.68+1.3
| 29.85 £5.08
1| 12,83+ 3.84

Box B

205.14 £ 69.52
310.64 £ 38.46
707.23 £ 43.04
925.32 £ 38.29
258.75 £ 8.96
421.84 £ 36.97

0.61£0.27
0.90 £0.05
7.08 £0.88
2.07 £0.86
8.56 £0.99
407+£0.87

4290 +£17.14
93.15 £ 6.81
227.31£23.23
175.31 £ 18.28
105.11 £13.22
109.35 £ 16.57
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Robust Optimization View

mmin o(z) = ” gﬁi}é e flz + Az)
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Hot starts

1B

oo
(%2

= 10 P I ! I I
8 8§ 80 |t R e L A AL R S A
5 60F 5 V : : : :
‘N 95k VIR L RVI— - RAR———— Av——
< 50 < ' : ; : :
o o J0H LA ((—— §eusunnnnnannnaa
5 40 £ || — °B E E E
7@ 65 i R SRR SRPRPRRRRRRRRR
g 8 &1 — Piggyback LB | 5 ,
60 | | | |
10°
2
@ @ e
g ¢ 10
& &
3 g 10°
f f

Epoch of SB Training Epoch of SB Training

38



Can one understand reasons for convergence to sharp minima?
What is the relative frequency of flat and sharp minima?

Is there anything inherent to the architecture of the network that causes this
behavior?

Can one steer the training method away from sharp minima?

Is a robust formulation feasible?
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B a4
Drawback of SG method: distributed computing

SG is notoriously hard to parallelize
* Because it updates the parameters w with high frequency
* Because it slows down with delayed updates.

SG still works with relaxed synchronization
* Because this 1s just a little bit more noise.

Communication overhead give room for new opportunities

« There 1s ample time to compute things while communication takes
place.

* Opportunity for optimization algorithms with higher per-iteration costs
=> SG may not be the best algorithm for distributed training.

40



Beyond the stochastic gradient method

Let’s consider an algorithm that is more general

41



I 4 a @
Subsampled Newton Methods R (w)= lzn: f(w)
n-i

Choose S < {1,...,n}, X e{l,...,n} uniformly and independently

VF,(w)p=-VF,(w,) w,, =w,+0o,p

Sub-sampled gradient and Hessian

1 0) 1 2
VE, (w,) =EZVﬁ(wk) V2F,(w,) =EZV f.(w,)

Focus on true objective: expected risk F

The stochastic nature of the objective creates opportunities:
Coordinate Hessian sample .S and gradient sample X for optimal complexity

42



Active research area

e  Friedlander and Schmidt (2011)

 Byrd, Chin, Neveitt, N. (2011)

Erdogdu and Montanari (2015)

* Roosta-Khorasani and Mahoney (2016)
 Agarwal, Bullins and Hazan (2016)

* Pilanci and Wainwright (2015)

*  Pasupathy, Glynn, Ghosh, Hashemi (2015)
 Xu, Yang, Roosta-Khorasani, Re’, Mahoney (2016)
 Byrd, Bollapragada, N. (2016)
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Linear convergence Focus on Expected Risk F

V2FSk wIp=—-VF, (W) w,, =w, +ap

The following result is well known for strongly convex objective:

Theorem: Under standard assumptions. If
a)oa=u/L
b) IS, | = constant
c) 1 X, 1=n° n>1 (geometric growth)
Then, E[ll w, —w" l[] — O at a linear rate and

work complexity matches that of stochastic gradient method

Byrd, Chin, N. Wu, 2012

1= smallest eigenvalue of any subsampled Hessian

L = largest eigenvalue of Hessian of F

44



Local superlinear convergence

We can show the linear-quadratic result

ollw,—w %

_I_
JININYR UJ1 X, |

EMw,., —w IN<C lIw,—w I+

To obtain superlinear convergence:
D IS, |—> o0

1) | X, | must increase faster than geometrically
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Formal superlinear convergence

Theorem: under the conditions just stated, there i1s a neighborhood
of w™ such that for the sub-sampled Newton method with ¢, =1

E[llw, —w" Il — 0 superlinearly
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Inexact Methods- what iterative solver to use?

VE,(w)p=-VF(w,) we, =w,+o,p

1. Inexact method
* Conjugate gradient
* Stochastic gradient

2. Both require only Hessian-vector products

Newton-CG chooses a fixed sample S, applies CG to

1
q,(p)= F(Wk)+VF(Wk)Tp"'EpTVzFS(Wk)p

47



Newton-SGI (stochastic gradient iteration)

If we apply the standard gradient method to
1
q,(p)=Fw,)+VF(w, ) p+ EpTsz(Wk )D
we obtain the iteration

i+1

p=p.—Vq.(p,) =U-V’F(w,))p,—VFWw,)

Consider instead the semi-stochastic gradient iteration:

Change sample

1.Choose and index j at random; Hessian at each

2.p ==V F,(w))p, —VF(w,) inner iteration

This method is implicit in Agarwal, Bullins, Hazan 2016
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[
Comparing Newton-CG and Newton-GD

Number of Hessian-vector products to achieve

3k 1 3k
Iw.,, —w ||S5||wk—w | (*)

(( <)’ K, log(k,))log(d )) Newton-SGI

( K™Y K™ log (k™ ) Newton-CG  |[<{Z

Agarwal, Bullins and Hazan (2016) and Xu, Yang, Re, Roosta-Khorasani,
Mahoney (2016) Byrd, Bollapragada, N, (2016)

Decrease (*) obtained at each step with probability 1-p
Our results give convergence of the whole sequence in expectation

Complexity bounds are very pessimistic, particularly for CG 49
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Final Remarks

The search for effective optimization algorithms for machine learning is
ongoing

In spite of the total dominance of the SG method at present on very large
scale applications

SG does not parallelize well
SG 1s a first order method affected by ill conditioning
SG too noisy when high accuracy is desired

A method that is noisy at the start and gradually becomes more accurate

seems attractive
Generalization properties are vital
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