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Initial Remarks 

1.  Continuous optimization in applied math                       B. Stoufflet 
2.  Central role also in Statistics 
3.  I will talk about optimization algorithms that are good learning 

algorithms  - that generalize well 
4.  Illustrate with concrete example: training Deep Neural Networks 
5.  Contrast classical gradient-based methods and with the stochastic 

gradient method  
6.  For decades nonlinear optimization research focused on descent 

methods (line search or trust region). How else can one obtain 
(deterministic) convergence guarantees? 

7.  In large-scale machine learning applications, it is best to require only 
descent in expectation                                                  
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Initial remarks 

Algorithms whose iterates are random  
variables and that are allowed  
to wonder around 

1.  Perform a more effective exploration of the data 
2.  Markov process has shown to be particularly effective: there is 

randomness at each iteration, but independent of previous decisions 
3.  Such behavior allows the optimization algorithm to produce solutions 

(prediction functions) that generalize well    
4.  Different from simulated annealing/genetic methods      
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Deep neural networks 

w 

•  Have produced quite a stir since 2011 
•  How? It is still not well understood, 
•  Zhang, Bengio, Hardt, Recht, Vinyals (2017) 
•  A highly nonlinear and non-convex predictor 
•  Input: images, acoustic frames, text 
•  Output: image classification, speech recognition, translation 
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Example: Speech recognition 

      

Observe features X  in acoustic frames 
Predict word or sentence  “FREE SPEECH” 
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Can be viewed as a function with great expressive capacity: can reproduce 
large classes of functions 
Piecewise polynomial in w of degree 7 in 10 million variables 
Or can be seen as a composition of logistic regression units 
When training the DNN: Many minimizers, degenerate due to overcapacity 

Capacity of Deep neural networks 

w 
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                            Feed forward 
 
 
Convolutional Neural Network 
 
 
 
 
 
 
Recurrent Neural  
Network 

 Our Observations Apply to Dominant Architectures  
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Next 

•  Illustrate how 2 optimization algorithms that give equally good 
solutions on the training problem produce solutions with different 
generalization  properties 

•  Discuss the notable properties of the stochastic gradient method and 
how it dominates the classical gradient method 

•  Bottleneck: parallelism 

•  Search for new optimization algorithms suited for machine learning 
•  Sub-sampled Newton methods 
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Some pictures 

 
 
 
 
Training deep neural networks with: 
         - stochastic gradient method 
           - gradient based method (L-BFGS), batch method 
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Sharp and wide minima                        Keskar et al. (2016) 

 
       
                           
 
 
 

 
 

Stochastic gradient solution          full gradient methodsolution 

Observing training 
error and testing error 
 along line from SG  
solution to batch solution 
 
Deep convolutional 
neural net CIFAR-10 

SG: mini-batch of size 256       Batch: 10% of training set 
ADAM optimizer 

R 
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Accuracy: correct classification                    Keskar et al. (2016) 

 
       
                           
 
 
 

 
 

SG solution          Batch solution 

R 
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Another example                              Keskar et al. (2016) 

 
       
                           
 
 
 

 
 

SG solution          Batch solution 

R 
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What is going on? 

 
 
Gradient method  “over-fits” 
 
We need to back-up: 
     Define setting of supervised training 
     Describe of optimization methods and their properties 
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Supervised Learning 

 
 
 
 
 

  
Given a sizable training set of size n; each example i consists of 

 

   
 
 

 

  xi :  feature information           yi :  correct label
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Supervised Learning 

 
 
 
 
 

  
Given a sizable training set of size n; each example i consists of 

 
Define prediction function h that depends on unknown parameter w,  
 
 

 

   
 
 

 

  xi :  feature information           yi :  correct label

  h(w;x) = wT x     or    h(w;x) = nonlinear

    y = h(w; x̂)    with   y ≈ ŷ

 that makes good predictions on unseen data   (x̂, ŷ)

 

  Choose a loss function ℓ(y, ŷ) and solve optimization problem

minw  F(w) = 1
n
ℓ(h(w;xi ), yi )

i=1

n

∑
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   Logistic regression:   log(1+ exp(−y(wT x))  

Loss Functions 
            

For multi-class classification, C= set of classes 

F(w) = − 1
N

log
exp(wyj

T xi )

exp
j∈C
∑ (wj

T xi )i=1

N

∑
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   Training error  vs Testing Error  --- Learning Algorithms 

   Define  f (w, xi , yi ) = ℓ(h(w;xi ), yi )

R(w) = 1
n

fi
i=1

n

∑ (w)              Finite Sum Problem

(x, y) ∈Z   denotes all input-output pairs with distribution P(x, y)   

Expected Risk:      F(w) = f (w;x, y)dP(x, y)∫
Empirical Risk:     R(w) = 1

n
f (w;xi , yi )

i=1

n

∑

fi ≡ f (w;xi , yi )    denotes the loss associated with the i-th data point
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Optimization Problem                                           A. Kingsbury        

  7 hidden layers 
  2000 units per layer 
  9000 label classes 

  6–44 million total parameters w 
  3.6–360 million examples 
 

Is a formidable optimization problem.  
Training time ~ 2 days to 1 week 
.. and deserves the respect of the CSE audience  

w 

 
  Therefore the problem:   minw  F(w) = 1

n
ℓ(h(w;xi ), yi )

i=1

n

∑
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Stochastic Gradient Method 

wk+1 = wk −α k∇fi (wk )          i ∈{1,...,n} choose at random

•  Very cheap, noisy iteration; gradient w.r.t. just 1 data point 
•  Not a gradient descent method    

•  Stochastic process dependent on the choice of  i 

For empirical risk minimization:

                   Rn (w) = 1
n

fi (w)
i=1

n

∑            



22 

      

 Batch Optimization Methods                            SAA 

wk+1 = wk −α k∇Rn (wk )  gradient method 

       

Why has SG emerged as the preeminent method? 

wk+1= wk −
α k

n
∇

i=1

n

∑ fi (wk )

•  More expensive, accurate step 
•  Can choose among a wide range of optimization algorithms 
•  Opportunities for parallelism 

Computational trade-offs between stochastic and batch methods 

Ability to generalize: minimize  F   
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Efficiency 

10 epochs 

Fast initial progress 
of SG followed by drastic 
slowdown 
 
Can we explain this? 
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Rn Logistic regression; 
speech data 

Batch L-BFGS 
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Intuition 
 
SG employs information more efficiently than batch methods 
 
Argument 1:  

Suppose data consists of 10 copies of a set S 
Iteration of batch method 10 times more expensive 
SG performs same computations 

 

 
 



w1 −1 w1,* 1
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Example by Bertsekas 

Region of confusion 

Note that this is a geographical argument  

Analysis: given wk  what is the expected decrease in the 
objective function Rn  as we choose one of the quadratics
randomly?

                   Rn (w) = 1
n

fi (w)
i=1

n

∑            
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Computational complexity 

 Total work to obtain Rn (wk ) ≤ Rn (w
*)+ ε

 Think of ε = 10−3

 

Batch gradient method:              ndκ log(1 / ε)
Stochastic gradient method:       dνκ 2 / ε

Srebro et al.      Bottou et al. 

n :    # of training points
d :    # of variables
κ :    condition number
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A fundamental inequality 

To ensure convergence: α k → 0 in SG method to control noise 
                                                   

  
Ek[Rn (wk+1)− Rn (wk )] ≤ −α k‖∇Rn (wk )‖2

2 + α k
2 Ek‖∇fik (wk )‖ 2  

                                                   

Initially, gradient decrease dominates; then variance in gradient hinders 
progress  

Variance reduction methods directly control the noise given in the last 
term 

The variant when α k =α  is constant has also been thorough studied
and yields convergence to a neighborhood of the solution at linear rate 
                                                   

Bottou, Curtis, Nocedal (2016) prepared for SIAM Review 
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Learning algorithm 

 
 
 
 
Let us look more closely at the training of deep 
Neural networks 
 
It has been known for a long time that batch methods 
are inferior 
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•  Accuracy is lost with increase in batch size 
•  ADAM optimizer: 256 (small batch) v/s 10% (large batch) 

Studied 6 
network  
configurations 

Testing Accuracy: R 
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No Problems in Training! 

SB: small batch         LB: large batch 

      

Training and Testing Accuracy 
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Network configuarions 
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Sharp and flat minima                        Keskar et al. (2016) 

 
       
                           
 
 
 

 
 

SG solution          Batch solution 

Observing R along line  
From SG solution to 
batch solution 
Goodfellow et al 
 
Deep convolutional 
Neural net CIFAR-10 

SG: mini-batch of size 256       Batch: 10% of training set 
ADAM optimizer 

R 
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Sharp minima 

Issue! 

Small batch solution         large batch solution 
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Testing accuracy vs batch size 

Sharpness of minimizer 
vs batch size 
 
Sharpness: 
Max R in a small box 
around minimizer 

Testing accuracy and sharpness      Keskar (2016) 
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 Sharpness Metric 

 

Given a minimizer w* and a box B of width ε centered at w*,
we define the sharpness of w*  as

maxw∈B
f (w* +w)− f (w*)

1+ f (w*)

Box  B 
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Robust Optimization View 
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Hot starts 

LB
 



•  Can one understand reasons for convergence to sharp minima? 
•  What is the relative frequency of flat and sharp minima? 
•  Is there anything inherent to the architecture of the network that causes this 

behavior? 

•  Can one steer the training method away from sharp minima? 

•  Is a robust formulation feasible? 

39 
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Drawback of SG method: distributed computing 
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Part II Let’s consider an algorithm that is more general 

Beyond the stochastic gradient method 
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Subsampled Newton Methods 

∇2FS (wk )p = −∇FX (wk ) wk+1 = wk +α k p

Choose S ⊂ {1,...,n}, X ∈{1,...,n} uniformly and independently

∇FX (wk ) =
1
| X |

∇fi
i∈X
∑ (wk ) ∇2FS (wk ) =

1
| S |

∇2 fi
i∈S
∑ (wk )

Sub-sampled gradient and Hessian 

Focus on true objective: expected risk  F 

The stochastic nature of the objective creates opportunities: 
Coordinate Hessian sample S and gradient sample X for optimal complexity 

  Rn (w) = 1
n

fi (w)
i=1

n

∑            
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Active research area 

 
•  Friedlander and Schmidt (2011) 
•  Byrd, Chin, Neveitt, N. (2011) 
•  Erdogdu and Montanari (2015) 
•  Roosta-Khorasani and Mahoney (2016) 
•  Agarwal, Bullins and Hazan (2016) 
•  Pilanci and Wainwright (2015) 
•  Pasupathy, Glynn, Ghosh, Hashemi (2015) 
•  Xu, Yang, Roosta-Khorasani, Re’, Mahoney (2016) 
•  Byrd, Bollapragada, N. (2016) 
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Linear convergence                                Focus on Expected Risk  F 

∇2FSk (wk )p = −∇FXk (wk ) wk+1 = wk +α p

The following result is well known for strongly convex objective:

  

Theorem: Under standard assumptions. If
a) α = µ / L
b) | Sk | = constant
c) | Xk | =η k   η >1 (geometric growth)

Then, E[‖wk −w
*‖]→ 0 at a linear rate and

 work complexity matches that of stochastic gradient method

µ =  smallest eigenvalue of any subsampled Hessian
L  =  largest eigenvalue of Hessian of F

Byrd, Chin, N. Wu, 2012 
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Local superlinear convergence 

We can show the linear-quadratic result

  
Ek[‖wk+1 −w

*‖] ≤C1‖wk −w
*‖2 +σ‖wk −w

*‖
µ | Sk |

+ v
µ | Xk |

To obtain superlinear convergence:
i) | Sk |→∞
ii) | Xk |  must increase faster than geometrically
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Formal superlinear convergence 

  

Theorem: under the conditions just stated, there is a neighborhood 
of w*  such that for the sub-sampled Newton method with α k = 1

E[‖wk −w
*‖] → 0 superlinearly
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Inexact Methods- what iterative solver to use? 

∇2FS (wk )p = −∇FX (wk ) wk+1 = wk +α k p

1.  Inexact method 
•  Conjugate gradient 
•  Stochastic gradient 

2.  Both require only Hessian-vector products 

Newton-CG chooses a fixed sample S,  applies CG to

qk (p) = F(wk )+∇F(wk )
T p + 1

2
pT∇2FS (wk )p
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Newton-SGI  (stochastic gradient iteration) 

qk (p) = F(wk )+∇F(wk )
T p + 1

2
pT∇2F(wk )p

If we apply the standard gradient method to

we obtain the iteration

pk
i+1 = pk

i −∇qk (pk
i ) = (I −∇2F(wk ))pk

i −∇F(wk )

This method is implicit in Agarwal, Bullins, Hazan 2016 
 

1. Choose and index j  at random;
2. pk

i+1 = (I −∇2Fj (wk ))pk
i −∇F(wk )

Consider instead the semi-stochastic gradient iteration: 
Change sample 
Hessian at each  
inner iteration 
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Comparing Newton-CG and Newton-GD 

O (κ̂ l
max )2κ̂ l log(κ̂ l )log(d)( )                Newton-SGI

O (κ̂ l
max )2 κ̂ l

max log(κ̂ l
max )( )                Newton-CG

 

Number of Hessian-vector products to achieve

          ‖wk+1 −w
*‖≤ 1

2
‖wk −w

*‖ (*)

Agarwal, Bullins and Hazan (2016) and Xu, Yang, Re, Roosta-Khorasani, 
Mahoney (2016)  Byrd, Bollapragada, N, (2016) 
Decrease (*) obtained at each step with probability 1-p 
Our results give convergence of the whole sequence in expectation 
Complexity bounds are very pessimistic, particularly for CG 
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Final Remarks 
  

         
Ø  The search for effective optimization algorithms for machine learning is 

ongoing   
Ø  In spite of the total dominance of the SG method at present on very large 

scale applications 

Ø  SG does not parallelize well 
Ø  SG is a first order method affected by ill conditioning 
Ø  SG too noisy when high accuracy is desired 

Ø  A method that is noisy at the start and gradually becomes more accurate 
seems attractive 

Ø  Generalization properties are vital 
 
     
 
 
 
 


