Study Guide and Intervention

Parallel and Perpendicular Lines

Parallel Lines Two nonvertical lines are parallel if they have the same slope. All vertical lines are parallel.

Example Write an equation in slope-intercept form for the line that passes through (-1, 6) and is parallel to the graph of y = 2x + 12.

A line parallel to y = 2x + 12 has the same slope, 2. Replace m with 2 and (x_1, y_1) with (-1, 6) in the point-slope form.

$$y - y_1 = m(x - x_1)$$

Point-slope form

$$y - 6 = 2(x - (-1))$$

$$m = 2$$
; $(x_1, y_1) = (-1, 6)$

$$y - 6 = 2(x + 1)$$

Simplify.

$$y-6=2x+2$$

Distributive Property

$$y=2x+8$$

Slope-intercept form

Therefore, the equation is y = 2x + 8.

Exercises

Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the graph of each equation.

2.

3.

4.
$$(-2, 2), y = 4x - 2$$

5. (6, 4),
$$y = \frac{1}{3}x + 1$$

6.
$$(4, -2), y = -2x + 3$$

7.
$$(-2, 4), y = -3x + 10$$

7.
$$(-2, 4), y = -3x + 10$$
 8. $(-1, 6), 3x + y = 12$ **9.** $(4, -6), x + 2y = 5$

9.
$$(4, -6), x + 2y = 5$$

- 10. Find an equation of the line that has a y-intercept of 2 that is parallel to the graph of the line 4x + 2y = 8.
- 11. Find an equation of the line that has a y-intercept of -1 that is parallel to the graph of the line x - 3y = 6.
- 12. Find an equation of the line that has a y-intercept of -4 that is parallel to the graph of the line y = 6.

Study Guide and Intervention (continued)

Parallel and Perpendicular Lines

Perpendicular Lines Two non-vertical lines are perpendicular if their slopes are negative reciprocals of each other. Vertical and horizontal lines are perpendicular.

Example Write an equation in slope-intercept form for the line that passes through (-4, 2) and is perpendicular to the graph of 2x - 3y = 9.

Find the slope of 2x - 3y = 9.

$$2x - 3y = 9$$
 Original equation
$$-3y = -2x + 9$$
 Subtract 2x from each side.
$$y = \frac{2}{9}x - 3$$
 Divide each side by -3 .

The slope of $y = \frac{2}{3}x - 3$ is $\frac{2}{3}$. So, the slope of the line passing through (-4, 2) that is perpendicular to this line is the negative reciprocal of $\frac{2}{3}$, or $-\frac{3}{2}$. Use the point-slope form to find the equation.

$$y-y_1=m(x-x_1) \qquad \text{Point-slope form}$$

$$y-2=-\frac{3}{2}(x-(-4)) \qquad m=-\frac{3}{2}; \ (x_1,y_1)=(-4,2)$$

$$y-2=-\frac{3}{2}(x+4) \qquad \text{Simplify.}$$

$$y-2=-\frac{3}{2}x-6 \qquad \text{Distributive Property}$$

$$y=-\frac{3}{2}x-4 \qquad \text{Slope-intercept form}$$

Exercises

1. ARCHITECTURE On the architect's plans for a new high school, a wall represented by \overline{MN} has endpoints M(-3, -1) and N(2, 1). A wall represented by \overline{PQ} has endpoints P(4, -4) and Q(-2, 11). Are the walls perpendicular? Explain.

Determine whether the graphs of the following equations are parallel or perpendicular. Explain.

2.
$$2x + y = -7, x - 2y = -4, 4x - y = 5$$

3.
$$y = 3x$$
, $6x - 2y = 7$, $3y = 9x - 1$

Write an equation in slope-intercept form for the line that passes through the given point and is perpendicular to the graph of each equation.

4. (4, 2),
$$y = \frac{1}{2}x + 1$$

5.
$$(2, -3), y = -\frac{2}{3}x + 4$$

$$6. (6, 4), y = 7x + 1$$

7.
$$(-8, -7), y = -x - 8$$

8.
$$(6, -2), y = -3x - 6$$

7.
$$(-8, -7), y = -x - 8$$
 8. $(6, -2), y = -3x - 6$ 9. $(-5, -1), y = \frac{5}{2}x - 3$