
Elements of Programming

1.2 Built-in Types of Data

WHEN PROGRAMMING IN JAVA, YOU MUST always be aware of the type of data that your
program is processing. The programs in SECTION 1.1 process strings of characters,
many of the programs in this section process numbers, and we consider numer-
ous other types later in the book. Under-
standing the distinctions among them is
so important that we formally define the
idea: a data type is a set of values and a set
of operations defined on those values. You
are familiar with various types of num-
bers, such as integers and real numbers,
and with operations defined on them,
such as addition and multiplication. In mathematics, we are accustomed to think-
ing of sets of numbers as being infinite; in computer programs we have to work
with a finite number of possibilities. Each operation that we perform is well-de-
fined only for the finite set of values in an associated data type.

There are eight primitive types of data in Java, mostly for different kinds of
numbers. Of the eight primitive types, we most often use these: int for integers;
double for real numbers; and boolean for true-false values. There are other types
of data available in Java libraries: for example, the programs in SECTION 1.1 use the
type String for strings of characters. Java treats the String type differently from
other types because its usage for input and output is essential. Accordingly, it shares
some characteristics of the primitive types: for example, some of its operations are
built in to the Java language. For clarity, we refer to primitive types and String
collectively as built-in types. For the time being, we concentrate on programs that
are based on computing with built-in types. Later, you will learn about Java library
data types and building your own data types. Indeed, programming in Java is often
centered on building data types, as you shall see in CHAPTER 3.

After defining basic terms, we consider several sample programs and code
fragments that illustrate the use of different types of data. These code fragments
do not do much real computing, but you will soon see similar code in longer pro-
grams. Understanding data types (values and operations on them) is an essential
step in beginning to program. It sets the stage for us to begin working with more
intricate programs in the next section. Every program that you write will use code
like the tiny fragments shown in this section.

1.2.1 String concatenation example . . . 20
1.2.2 Integer multiplication and division 22
1.2.3 Quadratic formula 24
1.2.4 Leap year 27
1.2.5 Casting to get a random integer . . 33

Programs in this section

!"#$%&'(')!"*+,,,:- ./01/23,,,0425,67

151.2 Built-in Types of Data

type set of values common operators sample literal values

int integers + - * / % 99 -12 2147483647

double floating-point numbers + - * / 3.14 -2.5 6.022e23

boolean boolean values && || ! true false

char characters 'A' '1' '%' '\n'

String sequences of characters + "AB" Hello" "2.5"

Basic built-in data types

Definitions To talk about data types, we need to introduce some terminology.
To do so, we start with the following code fragment:

int a, b, c;
a = 1234;
b = 99;
c = a + b;

The first line is a declaration that declares the names of three variables to be the
identifiers a, b, and c and their type to be int. The next three lines are assignment
statements that change the values of the variables, using the literals 1234 and 99,
and the expression a + b, with the end result that c has the value 1333.

Identifiers. We use identifiers to name variables (and many other things) in Java.
An identifier is a sequence of letters, digits, _, and $, the first of which is not a digit.
The sequences of characters abc, Ab$, abc123, and a_b are all legal Java identifiers,
but Ab*, 1abc, and a+b are not. Identifiers are case-sensitive, so Ab, ab, and AB are all
different names. You cannot use certain reserved words—such as public, static,
int, double, and so forth—to name variables.

Literals. A literal is a source-code representation of a data-type value. We use
strings of digits like 1234 or 99 to define int literal values, and add a decimal point
as in 3.14159 or 2.71828 to define double literal values. To specify a boolean val-
ue, we use the keywords true or false, and to specify a String, we use a sequence
of characters enclosed in quotes, such as "Hello, World". We will consider other
kinds of literals as we consider each data type in more detail.

Variables. A variable is a name that we use to refer to a data-type value. We use
variables to keep track of changing values as a computation unfolds. For example,

!"#$%&'(')!"*+,,,:5 ./01/23,,,0425,67

16 Elements of Programming

we use the variable n in many programs to count things. We create a variable in a
declaration that specifies its type and gives it a name. We compute with it by using
the name in an expression that uses operations defined for its type. Each variable
always stores one of the permissible data-type values.

Declaration statements. A declaration statement associates a variable name with
a type at compile time. Java requires us to use declarations to specify the names
and types of variables. By doing so, we are being explicit about any computation
that we are specifying. Java is said to be a strongly-typed language, because the Java
compiler can check for consistency at compile time (for example, it does not permit
us to add a String to a double). This situation is precisely analogous to making
sure that quantities have the proper units in a sci-
entific application (for example, it does not make
sense to add a quantity measured in inches to an-
other measured in pounds). Declarations can ap-
pear anywhere before a variable is first used—most
often, we put them at the point of first use.

Assignment statements. An assignment statement
associates a data-type value with a variable. When
we write c = a + b in Java, we are not expressing
mathematical equality, but are instead expressing an action: set the value of the
variable c to be the value of a plus the value of b. It is true that c is mathematically
equal to a + b immediately after the assignment statement has been executed, but
the point of the statement is to change the value of c (if necessary). The left-hand
side of an assignment statement must be a single variable; the right-hand side can
be an arbitrary expression that produces values of the type. For example, we can say
discriminant = b*b - 4*a*c in Java, but we cannot say a + b = b + a or 1 = a.
In short, the meaning of = is decidedly not the same as in mathematical equations. For
example, a = b is certainly not the same as b = a, and while the value of c is the
value of a plus the value of b after c = a + b has been executed, that may cease to
be the case if subsequent statements change the values of any of the variables.

Initialization. In a simple declaration, the initial value of the variable is unde-
fined. For economy, we can combine a declaration with an assignment statement to
provide an initial value for the variable.

declaration statement

Using a primitive data type

literalvariable name int a, b;
a = 1234 ;
b = 99;
int c = a + b;

combined declaration
and assignment statement

assignment
statement

!"#$%&'(')!"*+,,,:8 ./01/23,,,0425,67

171.2 Built-in Types of Data

Tracing changes in variable values. As a final check on your understanding of
the purpose of assignment statements, convince yourself that the following code
exchanges the values of a and b (assume that a and b are int variables):

int t = a;
a = b;
b = t;

To do so, use a time-honored method of examining pro-
gram behavior: study a table of the variable values after
each statement (such a table is known as a trace).

Expressions. An expression is a literal, a variable, or a
sequence of operations on literals and/or variables that
produces a value. For primitive types, expressions look just like mathematical for-
mulas, which are based on familiar symbols or operators that specify data-type
operations to be performed on one or more operands. Each operand can be any
expression. Most of the operators that we use are binary operators that take exactly
two operands, such as x + 1 or y / 2. An expression that is enclosed in parentheses
is another expression with the same value. For example, we can write 4 * (x - 3) or

4*x - 12 on the right-hand side of an assignment statement
and the compiler will understand what we mean.

Precedence. Such expressions are shorthand for specifying a
sequence of computations: in what order should they be per-
formed? Java has natural and well-defined precedence rules
(see the booksite) that fully specify this order. For arithmetic
operations, multiplication and division are performed before

addition and subtraction, so that a-b*c and a-(b*c) represent the same sequence
of operations. When arithmetic operators have the same precedence, the order is
determined by left-associativity, so that a-b-c and (a-b)-c represent the same se-
quence of operations. You can use parentheses to override the rules, so you should
not need to worry about the details of precedence for most of the programs that
you write. (Some of the programs that you read might depend subtly on prece-
dence rules, but we avoid such programs in this book.)

Converting strings to primitive values for command-line arguments. Java
provides the library methods that we need to convert the strings that we type as

Your first trace

int a, b;
a = 1234;
b = 99;
int t = a;
a = b;
b = t;

a
undefined

1234
1234
1234
99
99

b
undefined

undefined

99
99
99
1234

t

1234
1234
1234

Anatomy of an expression

operator

 4 * (x - 3)

operands
(and expressions)

!"#$%&'(')!"*+,,,:1 ./01/23,,,0425,67

18 Elements of Programming

command-line arguments into numeric values for primitive types. We use the
Java library methods Integer.parseInt() and Double.parseDouble() for
this purpose. For example, typing Integer.parseInt("123") in program text
yields the literal value 123 (typing 123 has the same effect) and the code Integer.
parseInt(args[0]) produces the same result as the literal value typed as a string
on the command line. You will see several examples of this usage in the programs
in this section.

Converting primitive type values to strings for output. As mentioned at the be-
ginning of this section, the Java built-in String type obeys special rules. One of
these special rules is that you can easily convert any type of data to a String: when-
ever we use the + operator with a String as one of its operands, Java automatically
converts the other to a String, producing as a result the String formed from the
characters of the first operand followed by the characters of the second operand.
For example, the result of these two code fragments

String a = "1234"; String a = "1234";
String b = "99"; int b = 99;
String c = a + b; String c = a + b;

are both the same: they assign to c the value "123499". We use this automatic
conversion liberally to form String values for System.out.print() and System.
out.println() for output. For example, we can write statements like this one:

System.out.println(a + " + " + b + " = " + c);

If a, b, and c are int variables with the values 1234, 99, and 1333, respectively, then
this statement prints out the string 1234 + 99 = 1333.

WITH THESE MECHANISMS, OUR VIEW OF each Java program as a black box that takes
string arguments and produces string results is still valid, but we can now interpret
those strings as numbers and use them as the basis for meaningful computation.
Next, we consider these details for the basic built-in types that you will use most
often (strings, integers, floating-point numbers, and true–false values), along with
sample code illustrating their use. To understand how to use a data type, you need
to know not just its defined set of values, but also which operations you can per-
form, the language mechanism for invoking the operations, and the conventions
for specifying literal values.

!"#$%&'(')!"*+,,,:9 ./01/23,,,0425,67

191.2 Built-in Types of Data

Characters and Strings A char is an alphanumeric character or symbol, like
the ones that you type. There are 216 different possible character values, but we
usually restrict attention to the ones that represent letters,
numbers, symbols, and whitespace characters such as tab
and newline. Literals for char are characters enclosed in
single quotes; for example, 'a' represents the letter a. For
tab, newline, backslash, single quote and double quote, we
use the special escape sequences '\t', '\n', '\\', '\'',
and '\"', respectively. The characters are encoded as
16-bit integers using an encoding scheme known as Uni-
code, and there are escape sequences for specifying special
characters not found on your keyboard (see the booksite).
We usually do not perform any operations directly on characters other than assign-
ing values to variables.

A String is a sequence of characters. A literal String is a sequence of charac-
ters within double quotes, such as "Hello, World". The String data type is not a
primitive type, but Java sometimes treats it like one. For example, the concatenation
operator (+) that we just considered is built in to the language as a binary operator
in the same way as familiar operations on numbers.

The concatenation operation (along with the ability to declare String vari-
ables and to use them in expressions and assignment statements) is sufficiently
powerful to allow us to attack some nontrivial computing tasks. As an example,

Ruler (PROGRAM 1.2.1) computes a table of
values of the ruler function that describes
the relative lengths of the marks on a ruler.
One noteworthy feature of this computa-
tion is that it illustrates how easy is is to craft
short programs that produce huge amounts
of output. If you extend this program in the
obvious way to print five lines, six lines, sev-
en lines, and so forth, you will see that each
time you add just two statements to this

program, you increase the size of its output by precisely one more than a factor of
two. Specifically, if the program prints n lines, the nth line contains 2n!1 numbers.
For example, if you were to add statements in this way so that the program prints
30 lines, it would attempt to print more than 1 billion numbers.

values sequences of characters

typical
literals

"Hello," "1 " " * "

operation concatenate

operator +

Java’s built-in String data type

expression value

"Hi, " + "Bob" "Hi, Bob"

"1" + " 2 " + "1" "1 2 1"

"1234" + " + " + "99" "1234 + 99"

"1234" + "99" "123499"

Typical String expressions

!"#$%&'(')!"*+,,,:3 ./01/23,,,0425,67

20 Elements of Programming

% javac Ruler.java
% java Ruler
1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

As just discussed, our most frequent use (by far) of the concatenation operation is
to put together results of computation for output with System.out.print() and
System.out.println(). For example, we could simplify UseArgument (PROGRAM
1.1.2) by replacing its three statements with this single statement:

System.out.println("Hi, " + args[0] + ". How are you?");

We have considered the String type first precisely because we need it for output
(and command-line input) in programs that process other types of data.

Program 1.2.1 String concatenation example

public class Ruler
{
 public static void main(String[] args)
 {
 String ruler1 = "1";
 String ruler2 = ruler1 + " 2 " + ruler1;
 String ruler3 = ruler2 + " 3 " + ruler2;
 String ruler4 = ruler3 + " 4 " + ruler3;
 System.out.println(ruler1);
 System.out.println(ruler2);
 System.out.println(ruler3);
 System.out.println(ruler4);
 }
}

This program prints the relative lengths of the subdivisions on a ruler. The nth line of output
is the relative lengths of the marks on a ruler subdivided in intervals of 1/2 n of an inch. For
example, the fourth line of output gives the relative lengths of the marks that indicate intervals
of one-sixteenth of an inch on a ruler.

The ruler function for n = 4

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

!"#$%&'(')!"*+,,,02 ./01/23,,,0425,67

211.2 Built-in Types of Data

Integers An int is an integer (natural number) between –2147483648 (!2 31)
and 2147483647 (2 31!1). These bounds derive from the fact that integers are rep-
resented in binary with 32 binary digits: there are 232 possible values. (The term
binary digit is omnipresent in computer science, and we nearly always use the ab-
breviation bit : a bit is either 0 or 1.) The range of possible int values is asymmetric
because zero is included with the positive values. See the booksite for more details
about number representation, but in the present context it suffices to know that
an int is one of the finite set of values in the range
just given. Sequences of the characters 0 through 9,
possibly with a plus or minus sign at the beginning
(that, when interpreted as decimal numbers, fall
within the defined range), are integer literal values.
We use ints frequently because they naturally arise
when implementing programs.

Standard arithmetic operators for addition/
subtraction (+ and -), multiplication (*), division
(/), and remainder (%) for the int data type are
built in to Java. These operators take two int op-
erands and produce an int result, with one signifi-
cant exception—division or remainder by zero is
not allowed. These operations are defined just as in
grade school (keeping in mind that all results must
be integers): given two int values a and b, the value
of a / b is the number of times b goes into a with
the fractional part discarded, and the value of a % b is the remainder that you get
when you divide a by b. For example, the value of 17 / 3 is 5, and the value of 17 % 3
is 2. The int results that we get from arithmetic operations are just what we expect,
except that if the result is too large to fit into int’s 32-bit representation, then it
will be truncated in a well-defined manner. This situation is known as overflow. In

values integers between !2 31 and "2 31!1

typical literals 1234 99 -99 0 1000000

operations add subtract multiply divide remainder

operators + - * / %

Java’s built-in int data type

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 3 1 no fractional part

5 % 3 2 remainder

1 / 0 run-time error

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style

3 - (5 - 2) 0 unambiguous

Typical int expressions

!"#$%&'(')!"*+,,,0: ./01/23,,,0425,67

22 Elements of Programming

% javac IntOps.java
% java IntOps 1234 99
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46
1234 = 12 * 99 + 46

Program 1.2.2 Integer multiplication and division

public class IntOps
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int p = a * b;
 int q = a / b;
 int r = a % b;
 System.out.println(a + " * " + b + " = " + p);
 System.out.println(a + " / " + b + " = " + q);
 System.out.println(a + " % " + b + " = " + r);
 System.out.println(a + " = " + q + " * " + b + " + " + r);
 }
}

Arithmetic for integers is built in to Java. Most of this code is devoted to the task of getting the
values in and out; the actual arithmetic is in the simple statements in the middle of the program
that assign values to p, q, and r.

general, we have to take care that such a result is not misinterpreted by our code.
For the moment, we will be computing with small numbers, so you do not have to
worry about these boundary conditions.

 PROGRAM 1.2.2 illustrates basic operations for manipulating integers, such as
the use of expressions involving arithmetic operators. It also demonstrates the use
of Integer.parseInt() to convert String values on the command line to int
values, as well as the use of automatic type conversion to convert int values to
String values for output.

!"#$%&'(')!"*+,,,00 ./01/23,,,0425,67

231.2 Built-in Types of Data

Three other built-in types are different representations of integers in Java.
The long, short, and byte types are the same as int except that they use 64, 16,
and 8 bits respectively, so the range of allowed values is accordingly different. Pro-
grammers use long when working with huge integers, and the other types to save
space. You can find a table with the maximum and minimum values for each type
on the booksite, or you can figure them out for yourself from the numbers of bits.

Floating-point numbers The double type is for representing floating-point
numbers, for use in scientific and commercial applications. The internal represen-
tation is like scientific notation, so that we can compute with numbers in a huge
range. We use floating-point numbers to repre-
sent real numbers, but they are decidedly not the
same as real numbers! There are infinitely many
real numbers, but we can only represent a finite
number of floating-points in any digital com-
puter representation. Floating-point numbers
do approximate real numbers sufficiently well
that we can use them in applications, but we of-
ten need to cope with the fact that we cannot
always do exact computations.

We can use a sequence of digits with a
decimal point to type floating-point numbers.
For example, 3.14159 represents a six-digit ap-
proximation to #. Alternatively, we can use a notation like scientific notation: the
literal 6.022e23 represents the number 6.022 $ 1023. As with integers, you can use
these conventions to write floating-point literals in your programs or to provide
floating-point numbers as string parameters on the command line.

The arithmetic operators +, -, *, and / are defined for double. Beyond the
built-in operators, the Java Math library defines the square root, trigonometric

values real numbers (specified by IEEE 754 standard)

typical literals 3.14159 6.022e23 -3.0 2.0 1.4142135623730951

operations add subtract multiply divide

operators + - * /

Java’s built-in double data type

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23 / 2.0 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

1.0 / 0.0 Infinity

Math.sqrt(2.0) 1.4142135623730951

Math.sqrt(-1.0) NaN

Typical double expressions

!"#$%&'(')!"*+,,,0. ./01/23,,,0425,67

24 Elements of Programming

functions, logarithm/exponential functions, and other common functions for
floating-point numbers. To use one of these values in an expression, we write the
name of the function followed by its argument in parentheses. For example, you
can use the code Math.sqrt(2.0) when you want to use the square root of 2 in an
expression. We discuss in more detail the mechanism behind this arrangement in
SECTION 2.1 and more details about the Math library at the end of this section.

When working with floating point numbers, one of the first things that
you will encounter is the issue of precision: 5.0/2.0 is 2.5 but 5.0/3.0 is
1.6666666666666667. In SECTION 1.5, you will learn Java’s mechanism for control-

% javac Quadratic.java
% java Quadratic -3.0 2.0
2.0
1.0

% java Quadratic -1.0 -1.0
1.618033988749895
-0.6180339887498949

% java Quadratic 1.0 1.0
NaN
NaN

Program 1.2.3 Quadratic formula

public class Quadratic
{
 public static void main(String[] args)
 {
 double b = Double.parseDouble(args[0]);
 double c = Double.parseDouble(args[1]);
 double discriminant = b*b - 4.0*c;
 double d = Math.sqrt(discriminant);
 System.out.println((-b + d) / 2.0);
 System.out.println((-b - d) / 2.0);
 }
}

This program prints out the roots of the polynomial x2 + bx + c, using the quadratic formula.
For example, the roots of x2 - 3x + 2 are 1 and 2 since we can factor the equation as (x - 1)
(x - 2); the roots of x2 - x - 1 are % and 1 - %, where % is the golden ratio, and the roots of x2 +
x + 1 are not real numbers.

!"#$%&'(')!"*+,,,0- ./01/23,,,0425,67

251.2 Built-in Types of Data

ling the number of significant digits that you see in output. Until then, we will work
with the Java default output format.

The result of a calculation can be one of the special values Infinity (if the
number is too large to be represented) or NaN (if the result of the calculation is
undefined). Though there are myriad details to consider when calculations involve
these values, you can use double in a natural way and begin to write Java programs
instead of using a calculator for all kinds of calculations. For example, PROGRAM
1.2.3 shows the use of double values in computing the roots of a quadratic equa-
tion using the quadratic formula. Several of the exercises at the end of this section
further illustrate this point.

As with long, short, and byte for integers, there is another representation
for real numbers called float. Programmers sometimes use float to save space
when precision is a secondary consideration. The double type is useful for about
15 significant digits; the float type is good for only about 7 digits. We do not use
float in this book.

Booleans The boolean type has just two values: true
and false. These are the two possible boolean literals. Ev-
ery boolean variable has one of these two values, and every
boolean operation has operands and a result that takes on
just one of these two values. This simplicity is deceiving—
boolean values lie at the foundation of computer science.

The most important operations defined for booleans are and (&&), or (||),
and not (!), which have familiar definitions:

a && b is true if both operands are true, and false if either is false.
a || b is false if both operands are false, and true if either is true.
!a is true if a is false, and false if a is true.

Despite the intuitive nature of these definitions, it is worthwhile to fully specify
each possibility for each operation in tables known as truth tables. The not function

values true or false

literals true false

operations and or not

operators && || !

Java’s built-in boolean data type

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Truth-table definitions of boolean operations

!"#$%&'(')!"*+,,,05 ./01/23,,,0425,67

26 Elements of Programming

has only one operand: its value for each of the two possible values of the operand is
specified in the second column. The and and or functions each have two operands:
there are four different possibilities for operand input values, and the values of the
functions for each possibility are specified in the right two columns.

We can use these operators with parentheses to develop arbitrarily complex
expressions, each of which specifies a well-defined boolean function. Often the
same function appears in different guises. For example, the expressions (a && b)
and !(!a || !b) are equivalent.

The study of manipulating expressions of this kind is known as Boolean logic.
This field of mathematics is fundamental to computing: it plays an essential role
in the design and operation of computer hardware itself, and it is also a starting
point for the theoretical foundations of computation. In the present context, we are
interested in boolean expressions because we use them to control the behavior of
our programs. Typically, a particular condition of interest is specified as a boolean
expression and a piece of program code is written to execute one set of statements
if the expression is true and a different set of statements if the expression is false.
The mechanics of doing so are the topic of SECTION 1.3.

Comparisons Some mixed-type operators take operands of one type and pro-
duce a result of another type. The most important operators of this kind are the
comparison operators ==, !=, <, <=, >, and >=, which all are defined for each primi-
tive numeric type and produce a boolean result. Since operations are defined only

a b a && b !a !b !a || !b !(!a || !b)

false false false true true true false

false true false true false true false

true false false false true true false

true true true false false false true

Truth-table proof that a && b and !(!a || !b) are identical

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

beginning of a century? (year % 100) == 0

legal month? (month >= 1) && (month <= 12)

Typical comparison expressions

!"#$%&'(')!"*+,,,08 ./01/23,,,0425,67

271.2 Built-in Types of Data

% javac LeapYear.java
% java LeapYear 2004
true
% java LeapYear 1900
false
% java LeapYear 2000
true

Program 1.2.4 Leap year

public class LeapYear
{
 public static void main(String[] args)
 {
 int year = Integer.parseInt(args[0]);
 boolean isLeapYear;
 isLeapYear = (year % 4 == 0);
 isLeapYear = isLeapYear && (year % 100 != 0);
 isLeapYear = isLeapYear || (year % 400 == 0);
 System.out.println(isLeapYear);
 }
}

This program tests whether an integer corresponds to a leap year in the Gregorian calendar. A
year is a leap year if it is divisible by 4 (2004), unless it is divisible by 100 in which case it is not
(1900), unless it is divisible by 400 in which case it is (2000).

with respect to data types, each of these symbols stands for many operations, one
for each data type. It is required that both operands be of the same type. The result
is always boolean.

Even without going into the details of number representation, it is clear that
the operations for the various types are really quite different: for example, it is one
thing to compare two ints to check that (2 <= 2) is true but quite another to
compare two doubles to check whether (2.0 <= 0.002e3) is true or false. Still,
these operations are well-defined and useful to write code that tests for conditions
such as (b*b - 4.0*a*c) >= 0.0, which is frequently needed, as you will see.

!"#$%&'(')!"*+,,,01 ./01/23,,,0425,67

28 Elements of Programming

The comparison operations have lower precedence than arithmetic operators
and higher precedence than boolean operators, so you do not need the parentheses
in an expression like (b*b - 4.0*a*c) >= 0.0, and you could write an expression
like month >= 1 && month <= 12 without parentheses to test whether the value of
the int variable month is between 1 and 12. (It is better style to use the parentheses,

however.)
Comparison operations, together

with boolean logic, provide the basis for
decision-making in Java programs. PRO-
GRAM 1.2.4 is an example of their use,
and you can find other examples in the
exercises at the end of this section. More
importantly, in SECTION 1.3 we will see
the role that boolean expressions play in
more sophisticated programs.

Library methods and APIs As we have seen, many programming tasks in-
volve using Java library methods in addition to the built-in operations on data-type
values. The number of available library methods is vast. As you learn to program,
you will learn to use more and more library methods, but it is best at the beginning
to restrict your attention to a relatively small set of methods. In this chapter, you
have already used some of Java’s methods for printing, for converting data from
one type to another, and for computing mathematical functions (the Java Math li-
brary). In later chapters, you will learn not just how to use other methods, but how
to create and use your own methods.

For convenience, we will consistently summarize the library methods that you
need to know how to use in tables like this one:

public class System.out

void print(String s) print s

void println(String s) print s, followed by a newline

void println() print a newline

Note: Any type of data can be used (and will be automatically converted to String).

Excerpts from Java’s library for standard output

op meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 2 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 > 13

>= greater than or equal 3 >= 2 2 >= 3

Comparisons with int operands and a boolean result

!"#$%&'(')!"*+,,,09 ./01/23,,,0425,67

291.2 Built-in Types of Data

Such a table is known as an application programming interface (API). It provides
the information that you need to write an application program that uses the meth-
ods. Here is an API for the most commonly used methods in Java’s Math library:

public class Math

double abs(double a) absolute value of a

double max(double a, double b) maximum of a and b

double min(double a, double b) minimum of a and b

Note 1: abs(), max(), and min() are defined also for int, long, and float.

double sin(double theta) sine function

double cos(double theta) cosine function

double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

double exp(double a) exponential (e a)

double log(double a) natural log (loge a, or ln a)

double pow(double a, double b) raise a to the bth power (ab)

long round(double a) round to the nearest integer

double random() random number in [0, 1)

double sqrt(double a) square root of a

double E value of e (constant)

double PI value of # (constant)

See booksite for other available functions.

Excerpts from Java’s mathematics library

With the exception of random(), these methods implement mathematical func-
tions—they use their arguments to compute a value of a specified type. Each meth-
od is described by a line in the API that specifies the information you need to know
in order to use the method. The code in the tables is not the code that you type to
use the method; it is known as the method’s signature. The signature specifies the
type of the arguments, the method name, and the type of the value that the method
computes (the return value). When your program is executed, we say that it calls the
system library code for the method, which returns the value for use in your code.

!"#$%&'(')!"*+,,,03 ./01/23,,,0425,67

30 Elements of Programming

Note that random() does not implement a mathematical
function because it does not take an argument. On the other
hand, System.out.print() and System.out.println()
do not implement mathematical functions because they do
not return values and therefore do not have a return type.
(This condition is specified in the signature by the keyword
void.)

In your code, you can use a library method by typ-
ing its name followed by arguments of the specified type,
enclosed in parentheses and separated by commas. You can

use this code in the same way as you use variables and literals in expressions. When
you do so, you can expect that method to
compute a value of the appropriate type, as
documented in the left column of the API.
For example, you can write expressions like
Math.sin(x) * Math.cos(y) and so on.
Method arguments may also be expressions,
as in Math.sqrt(b*b - 4.0*a*c).

The Math library also defines the precise constant values PI (for #) and E (for
e), so that you can use those names to refer to those constants in your programs.
For example, the value of Math.sin(Math.PI/2) is 1.0 and the value of Math.
log(Math.E) is 1.0 (because Math.sin() takes its argument in radians and Math.
log() implements the natural logarithm function).

To be complete, we also include here the following API for Java’s conversion
methods, which we use for command-line arguments:

int Integer.parseInt(String s) convert s to an int value
double Double.parseDouble(String s) convert s to a double value

long Long.parseLong(String s) convert s to a long value

Java library methods for converting strings to primitive types

You do not need to use methods like these to convert from int, double, and long
values to String values for output, because Java automatically converts any val-
ue used as an argument to System.out.print() or System.out.println() to
String for output.

argument

Using a library method

double d = Math.sqrt(b*b - 4.0*a*c);

library name method name

return type

public class Math
 . . .

 double sqrt(double a)

 . . .

Anatomy of a method signature

method namesignature

library name

argument typereturn type

!"#$%&'(')!"*+,,,.2 ./01/23,,,0425,67

311.2 Built-in Types of Data

These APIs are typical of the online documentation that is the standard in
modern programming. There is extensive online documentation of the Java APIs
that is used by professional programmers, and it is available to you (if you are in-
terested) directly from the Java website or through our booksite. You do not need
to go to the online documentation to understand the code in this book or to write
similar code, because we present and explain in the text all of the library methods
that we use in APIs like these and summarize them in the endpapers. More impor-
tant, in CHAPTERS 2 AND 3 you will learn in this book how to develop your own APIs
and to implement functions for your own use.

Type conversion One of the primary rules of modern programming is that you
should always be aware of the type of data that your program is processing. Only
by knowing the type can you know precisely which set of values each variable can
have, which literals you can use, and which operations you can perform. Typical
programming tasks involve processing multiple types of data, so we often need to
convert data from one type to another. There are several ways to do so in Java.

Explicit type conversion. You can use a method that takes an argument of one
type (the value to be converted) and produces a result of another type. We have
already used the Integer.parseInt() and Double.parseDouble() library meth-
ods to convert String values to int and double values, respectively. Many other
methods are available for conversion among other types. For example, the library
method Math.round() takes a double argument and returns a long result: the
nearest integer to the argument. Thus, for example, Math.round(3.14159) and
Math.round(2.71828) are both of type long and have the same value (3).

Explicit cast. Java has some built-in type conversion conventions for primitive
types that you can take advantage of when you are aware that you might lose infor-

expression library type value

Integer.parseInt("123") Integer int 123

Math.sqrt(5.0*5.0 - 4.0*4.0) Math double 3.0

Math.random() Math double random in [0, 1)

Math.round(3.14159) Math long 3

Typical expressions that use Java library methods

!"#$%&'(')!"*+,,,.: ./01/23,,,0425,67

32 Elements of Programming

mation. You have to make your intention to do so explicit by using a device called a
cast. You cast an expression from one primitive type to another by prepending the
desired type name within parentheses. For example, the expression (int) 2.71828
is a cast from double to int that produces an int with value 2. The conversion
methods defined for casts throw away information in a reasonable way (for a full
list, see the booksite). For example, casting a floating-point number to an integer
discards the fractional part by rounding towards zero. If you want a different result,
such as rounding to the nearest integer, you must use the explicit conversion meth-
od Math.round(), as just discussed (but you then need to use an explicit cast to
int, since that method returns a long). RandomInt (PROGRAM 1.2.5) is an example
that uses a cast for a practical computation.

Automatic promotion for numbers. You can use data of any primitive numeric
type where a value whose type has a larger range of values is expected, because Java
automatically converts to the type with the larger range. This kind of conversion is
called promotion. For example, we
used numbers all of type double
in PROGRAM 1.2.3, so there is no
conversion. If we had chosen to
make b and c of type int (using
Integer.parseInt() to convert
the command-line arguments),
automatic promotion would be
used to evaluate the expression
b*b - 4.0*c. First, c is promot-
ed to double to multiply by the
double literal 4.0, with a double
result. Then, the int value b*b is
promoted to double for the sub-
traction, leaving a double result.
Or, we might have written b*b -
4*c. In that case, the expression b*b - 4*c would be evaluated as an int and then
the result promoted to double, because that is what Math.sqrt() expects. Promo-
tion is appropriate because your intent is clear and it can be done with no loss of in-
formation. On the other hand, a conversion that might involve loss of information
(for example, assigning a double to an int) leads to a compile-time error.

expression expression
type

expression
value

"1234" + 99 String "123499"

Integer.parseInt("123") int 123

(int) 2.71828 int 2

Math.round(2.71828) long 3

(int) Math.round(2.71828) int 3

(int) Math.round(3.14159) int 3

11 * 0.3 double 3.3

(int) 11 * 0.3 double 3.3

11 * (int) 0.3 int 0

(int) (11 * 0.3) int 3

Typical type conversions

!"#$%&'(')!"*+,,,.0 ./01/23,,,0425,67

331.2 Built-in Types of Data

Casting has higher precedence than arithmetic operations—any cast is applied to
the value that immediately follows it. For example, if we write int n = (int) 11
* 0.3, the cast is no help: the literal 11 is already an integer, so the cast (int) has
no effect. In this example, the compiler produces a possible loss of precision
error message because there would be a loss of precision in converting the resulting
value (3.3) to an int for assignment to n. The error is helpful because the intended
computation for this code is likely (int) (11 * 0.3), which has the value 3, not
3.3.

% javac RandomInt.java

% java RandomInt 1000
548

% java RandomInt 1000
141

% java RandomInt 1000000
135032

Program 1.2.5 Casting to get a random integer

public class RandomInt
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 double r = Math.random(); // uniform between 0 and 1
 int n = (int) (r * N); // uniform between 0 and N-1
 System.out.println(n);
 }
}

This program uses the Java method Math.random() to generate a random number r in the
interval [0, 1), then multiplies r by the command-line argument N to get a random number
greater than or equal to 0 and less than N, then uses a cast to truncate the result to be an integer
n between 0 and N-1.

!"#$%&'(')!"*+,,,.. ./01/23,,,0425,67

34 Elements of Programming

BEGINNING PROGRAMMERS TEND TO FIND TYPE conversion to be an annoyance, but expe-
rienced programmers know that paying careful attention to data types is a key to
success in programming. It is well worth your while to take the time to understand
what type conversion is all about. After you have written just a few programs, you
will understand that these rules help you to make your intentions explicit and to
avoid subtle bugs in your programs.

Summary A data type is a set of values and a set of operations on those values.
Java has eight primitive data types: boolean, char, byte, short, int, long, float,
and double. In Java code, we use operators and expressions like those in familiar
mathematical expressions to invoke the operations associated with each type. The
boolean type is for computing with the logical values true and false; the char
type is the set of character values that we type; and the other six are numeric types,
for computing with numbers. In this book, we most often use boolean, int, and
double; we do not use short or float. Another data type that we use frequently,
String, is not primitive, but Java has some built-in facilities for Strings that are
like those for primitive types.

When programming in Java, we have to be aware that every operation is de-
fined only in the context of its data type (so we may need type conversions) and
that all types can have only a finite number of values (so we may need to live with
imprecise results).

The boolean type and its operations— &&, ||, and ! —are the basis for logi-
cal decision-making in Java programs, when used in conjunction with the mixed-
type comparison operators ==, !=, <, >, <=, and >=. Specifically, we use boolean
expressions to control Java’s conditional (if) and loop (for and while) constructs,
which we will study in detail in the next section.

The numeric types and Java’s libraries give us the ability to use Java as an ex-
tensive mathematical calculator. We write arithmetic expressions using the built-in
operators +, -, *, /, and % along with Java methods from the Math library. Although
the programs in this section are quite rudimentary by the standards of what we will
be able to do after the next section, this class of programs is quite useful in its own
right. You will use primitive types and basic mathematical functions extensively
in Java programming, so the effort that you spend now understanding them will
certainly be worthwhile.

!"#$%&'(')!"*+,,,.- ./01/23,,,0425,67

351.2 Built-in Types of Data

Q&A

Q. What happens if I forget to declare a variable?

A. The compiler complains, as shown below for a program IntOpsBad, which is
the same as PROGRAM 1.2.2 except that the int variable p is omitted from the decla-
ration statement.

% javac IntOpsBad.java
IntOpsBad.java:7: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
p = a * b;
 ^
IntOpsBad.java:10: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
System.out.println(a + " * " + b + " = " + p);
 ^
2 errors

The compiler says that there are two errors, but there is really just one: the declara-
tion of p is missing. If you forget to declare a variable that you use often, you will
get quite a few error messages. A good strategy is to correct the first error and check
that correction before addressing later ones.

Q. What happens if I forget to initialize a variable?

A. The compiler checks for this condition and will give you a variable might
not have been initialized error message if you try to use the variable in an
expression.

Q. Is there a difference between = and == ?

A. Yes, they are quite different! The first is an assignment operator that changes
the value of a variable, and the second is a comparison operator that produces a
boolean result. Your ability to understand this answer is a sure test of whether you
understood the material in this section. Think about how you might explain the
difference to a friend.

!"#$%&'(')!"*+,,,.5 ./01/23,,,0425,67

36 Elements of Programming

Q. Why do int values sometime become negative when they get large?

A. If you have not experienced this phenomenon, see EXERCISE 1.2.10. The problem
has to do with the way integers are represented in the computer. You can learn the
details on the booksite. In the meantime, a safe strategy is using the int type when
you know the values to be less than ten digits and the long type when you think the
values might get to be ten digits or more.

Q. It seems wrong that Java should just let ints overflow and give bad values.
Shouldn’t Java automatically check for overflow?

A. Yes, this issue is a contentious one among programmers. The short answer for
now is that the lack of such checking is one reason such types are called primitive
data types. A little knowledge can go a long way in avoiding such problems. Again,
it is fine to use the int type for small numbers, but when values run into the bil-
lions, you cannot.

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of
integer overflow.

Q. It is annoying to see all those digits when printing a float or a double. Can we
get System.out.println() to print out just two or three digits after the decimal
point?

A. That sort of task involves a closer look at the method used to convert from
double to String. The Java library function System.out.printf() is one way
to do the job, and it is similar to the basic printing method in the C programming
language and many modern languages, as discussed in SECTION 1.5. Until then, we
will live with the extra digits (which is not all bad, since doing so helps us to get
used to the different primitive types of numbers).

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_IN-

FINITY and Double.NEGATIVE_INFINITY.

!"#$%&'(')!"*+,,,.8 ./01/23,,,0425,67

371.2 Built-in Types of Data

Q. What is the value of Math.round(6.022e23)?

A. You should get in the habit of typing in a tiny Java program to answer such
questions yourself (and trying to understand why your program produces the re-
sult that it does).

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the
requisite type conversion automatically. For example, if x is an int with the value
3, then the expression (x < 3.1) is true—Java converts x to double (because 3.1
is a double literal) before performing the comparison.

Q. Are expressions like 1/0 and 1.0/0.0 legal in Java?

A. No and yes. The first generates a run-time exception for division by zero (which
stops your program because the value is undefined); the second is legal and has the
value Infinity.

Q. Are there functions in Java’s Math library for other trigonometric functions, like
cosecant, secant, and cotangent?

A. No, because you could use Math.sin(), Math.cos(), and Math.tan() to com-
pute them. Choosing which functions to include in an API is a tradeoff between the
convenience of having every function that you need and the annoyance of having
to find one of the few that you need in a long list. No choice will satisfy all users,
and the Java designers have many users to satisfy. Note that there are plenty of re-
dundancies even in the APIs that we have listed. For example, you could use Math.
sin(x)/Math.cos(x) instead of Math.tan(x).

Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types.

Q. How about == and != ?

A. Yes, but the result may not be what you expect, because of the meanings these
operators have for non-primitive types. For example, there is a distinction between

!"#$%&'(')!"*+,,,.1 ./01/23,,,0425,67

38 Elements of Programming

a String and its value. The expression "abc" == "ab" + x is false when x is a
String with value "c" because the two operands are stored in different places in
memory (even though they have the same value). This distinction is essential, as
you will learn when we discuss it in more detail in SECTION 3.1.

Q. What is the result of division and remainder for negative integers?

A. The quotient a / b rounds toward 0; the remainder a % b is defined such that
(a / b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both
-4, but -14 % 3 is -2 and 14 % -3 is 2.

Q. Will (a < b < c) test whether three numbers are in order?

A. No, that will not compile. You need to say (a < b && b < c).

Q. Fifteen digits for floating-point numbers certainly seems enough to me. Do I
really need to worry much about precision?

A. Yes, because you are used to mathematics based on real numbers with infinite
precision, whereas the computer always deals with approximations. For example,
(0.1 + 0.1 == 0.2) is true but (0.1 + 0.1 + 0.1 == 0.3) is false! Pitfalls like this
are not at all unusual in scientific computing. Novice programmers should avoid
comparing two floating-point numbers for equality.

Q. Why do we say (a && b) and not (a & b)?

A. Java also has a & operator that we do not use in this book but which you may

encounter if you pursue advanced programming courses.

Q. Why is the value of 10^6 not 1000000 but 12?

A. The ^ operator is not an exponentiation operator, which you must have been
thinking. Instead, it is an operator like & that we do not use in this book. You want
the literal 1e6. You could also use Math.pow(10, 6) but doing so is wasteful if you
are raising 10 to a known power.

!"#$%&'(')!"*+,,,.9 ./01/23,,,0425,67

391.2 Built-in Types of Data

Exercises

1.2.1 Suppose that a and b are int values. What does the following sequence of
statements do?

int t = a; b = t; a = b;

1.2.2 Write a program that uses Math.sin() and Math.cos() to check that the
value of cos2 & + sin2 & is approximately 1 for any & entered as a command-line argu-
ment. Just print the value. Why are the values not always exactly 1?

1.2.3 Suppose that a and b are int values. Show that the expression

(!(a && b) && (a || b)) || ((a && b) || !(a || b))

is equivalent to true.

1.2.4 Suppose that a and b are int values. Simplify the following expression:
(!(a < b) && !(a > b)).

1.2.5 The exclusive or operator ^ for boolean operands is defined to be true if
they are different, false if they are the same. Give a truth table for this function.

1.2.6 Why does 10/3 give 3 and not 3.333333333?

Solution. Since both 10 and 3 are integer literals, Java sees no need for type conver-
sion and uses integer division. You should write 10.0/3.0 if you mean the numbers
to be double literals. If you write 10/3.0 or 10.0/3, Java does implicit conversion
to get the same result.

1.2.7 What do each of the following print?
a. System.out.println(2 + "bc");

b. System.out.println(2 + 3 + "bc");

c. System.out.println((2+3) + "bc");

d. System.out.println("bc" + (2+3));

e. System.out.println("bc" + 2 + 3);

Explain each outcome.

!"#$%&'(')!"*+,,,.3 ./01/23,,,0425,67

40 Elements of Programming

1.2.8 Explain how to use PROGRAM 1.2.3 to find the square root of a number.

1.2.9 What do each of the following print?
a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.2.10 Suppose that a variable a is declared as int a = 2147483647 (or equiva-
lently, Integer.MAX_VALUE). What do each of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(2-a);

d. System.out.println(-2-a);

e. System.out.println(2*a);

f. System.out.println(4*a);

Explain each outcome.

1.2.11 Suppose that a variable a is declared as double a = 3.14159. What do each
of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(8/(int) a);

d. System.out.println(8/a);

e. System.out.println((int) (8/a));

Explain each outcome.

1.2.12 Describe what happens if you write sqrt instead of Math.sqrt in PROGRAM
1.2.3.

1.2.13 What is the value of (Math.sqrt(2) * Math.sqrt(2) == 2) ?

!"#$%&'(')!"*+,,,-2 ./01/23,,,0425,67

411.2 Built-in Types of Data

1.2.14 Write a program that takes two positive integers as command-line argu-
ments and prints true if either evenly divides the other.

1.2.15 Write a program that takes three positive integers as command-line argu-
ments and prints true if any one of them is greater than or equal to the sum of the
other two and false otherwise. (Note : This computation tests whether the three
numbers could be the lengths of the sides of some triangle.)

1.2.16 A physics student gets unexpected results when using the code

 F = G * mass1 * mass2 / r * r;

to compute values according to the formula F = Gm1m2 ' r 2. Explain the problem
and correct the code.

1.2.17 Give the value of a after the execution of each of the following sequences:

int a = 1; boolean a = true; int a = 2;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;

1.2.18 Suppose that x and y are double values that represent the Cartesian coor-
dinates of a point (x, y) in the plane. Give an expression whose value is the distance
of the point from the origin.

1.2.19 Write a program that takes two int values a and b from the command line
and prints a random integer between a and b.

1.2.20 Write a program that prints the sum of two random integers between 1 and
6 (such as you might get when rolling dice).

1.2.21 Write a program that takes a double value t from the command line and
prints the value of sin(2t) " sin(3t).

1.2.22 Write a program that takes three double values x0, v0, and t from the com-
mand line and prints the value of x0 " v0t " g t 2 ' 2, where g is the constant 9.78033.
(Note : This value the displacement in meters after t seconds when an object is
thrown straight up from initial position x0 at velocity v0 meters per second.)

1.2.23 Write a program that takes two int values m and d from the command line
and prints true if day d of month m is between 3/20 and 6/20, false otherwise.

!"#$%&'(')!"*+,,,-: ./01/23,,,0425,67

42 Elements of Programming

Creative Exercises

1.2.24 Loan payments. Write a program that calculates the monthly payments
you would have to make over a given number of years to pay off a loan at a given
interest rate compounded continuously, taking the number of years t, the principal
P, and the annual interest rate r as command-line arguments. The desired value is
given by the formula Pe rt. Use Math.exp().

1.2.25 Wind chill. Given the temperature t (in Fahrenheit) and the wind speed v
(in miles per hour), the National Weather Service defines the effective temperature
(the wind chill) to be:

w = 35.74 " 0.6215 t " (0.4275 t ! 35.75) v 0.16

Write a program that takes two double command-line arguments t and v and
prints out the wind chill. Use Math.pow(a, b) to compute ab. Note : The formula is
not valid if t is larger than 50 in absolute value or if v is larger than 120 or less than
3 (you may assume that the values you get are in that range).

1.2.26 Polar coordinates. Write a program that converts from Car-
tesian to polar coordinates. Your program should take two real num-
bers x and y on the command line and print the polar coordinates r
and &. Use the Java method Math.atan2(y, x) which computes the
arctangent value of y/x that is in the range from !# to #.

1.2.27 Gaussian random numbers. One way to generate a random
number taken from the Gaussian distribution is to use the Box-Muller formula

w = sin(2 # v) (!2 ln u)1/2

where u and v are real numbers between 0 and 1 generated by the Math.random()
method. Write a program StdGaussian that prints out a standard Gaussian ran-
dom variable.

1.2.28 Order check. Write a program that takes three double values x, y, and z
as command-line arguments and prints true if the values are strictly ascending or
descending (x < y < z or x > y > z), and false otherwise.

1.2.29 Day of the week. Write a program that takes a date as input and prints the
day of the week that date falls on. Your program should take three command line

x

yr

Polar coordinates

!"#$%&'(')!"*+,,,-0 ./01/23,,,0425,67

431.2 Built-in Types of Data

parameters: m (month), d (day), and y (year). For m, use 1 for January, 2 for Febru-
ary, and so forth. For output, print 0 for Sunday, 1 for Monday, 2 for Tuesday, and
so forth. Use the following formulas, for the Gregorian calendar:

y0 = y ! (14 ! m) / 12
x = y0 " y0 /4 ! y0 /100 " y0 /400
m0 = m " 12 $ ((14 ! m) / 12) ! 2
d0 = (d " x " (31$m0)/12) % 7

Example: On what day of the week was February 14, 2000?

y0 = 2000 ! 1 = 1999
x = 1999 " 1999/4 ! 1999/100 " 1999/400 = 2483
m0 = 2 " 12$1 ! 2 = 12
d0 = (14 " 2483 " (31$12) / 12) % 7 = 2500 % 7 = 1

Answer : Monday.

1.2.30 Uniform random numbers. Write a program that prints five uniform ran-
dom values between 0 and 1, their average value, and their minimum and maxi-
mum value. Use Math.random(), Math.min(), and Math.max().

1.2.31 Mercator projection. The Mercator projection is a conformal (angle preserv-
ing) projection that maps latitude (and longitude) to rectangular coordinates
(x, y). It is widely used—for example, in nautical charts and in the maps that you
print from the web. The projection is defined by the equations x *) !)0 and
y * 1/2 ln ((1 " sin () ' (1 ! sin ()), where)0 is the longitude of the point in the
center of the map. Write a program that takes)0 and the latitude and longitude of
a point from the command line and prints its projection.

1.2.32 Color conversion. Several different formats are used to represent color. For
example, the primary format for LCD displays, digital cameras, and web pages,
known as the RGB format, specifies the level of red (R), green (G), and blue (B)
on an integer scale from 0 to 255. The primary format for publishing books and
magazines, known as the CMYK format, specifies the level of cyan (C), magenta
(M), yellow (Y), and black (K) on a real scale from 0.0 to 1.0. Write a program RG-
BtoCMYK that converts RGB to CMYK. Take three integers—r, g, and b—from the

!"#$%&'(')!"*+,,,-. ./01/23,,,0425,67

44 Elements of Programming

command line and print the equivalent CMYK values. If the RGB values are all 0,
then the CMY values are all 0 and the K value is 1; otherwise, use these formulas:

w * max (r / 255, g / 255, b / 255)
 c * (w ! (r / 255)) ' w
m * (w ! (g / 255)) ' w
 y * (w ! (b / 255)) ' w
 k * 1 ! w

1.2.33 Great circle. Write a program GreatCircle that takes four command-line
arguments—x1, y1, x2, and y2—(the latitude and longitude, in degrees, of two
points on the earth) and prints out the great-circle distance between them. The
great-circle distance (in nautical miles) is given by the equation:

d = 60 arccos(sin(x1) sin(x2) " cos(x1) cos(x2) cos(y1 ! y2))

Note that this equation uses degrees, whereas Java’s trigonometric functions use
radians. Use Math.toRadians() and Math.toDegrees() to convert between the
two. Use your program to compute the great-circle distance between Paris (48.87°
N and !2.33° W) and San Francisco (37.8° N and 122.4° W).

1.2.34 Three-sort. Write a program that takes three int values from the command
line and prints them in ascending order. Use Math.min() and Math.max().

1.2.35 Dragon curves. Write a program to print
the instructions for drawing the dragon curves of
order 0 through 5. The instructions are strings of
F, L, and R characters, where F means “draw line
while moving 1 unit forward,” L means “turn left,”
and R means “turn right.” A dragon curve of order
N is formed when you fold a strip of paper in half N
times, then unfold to right angles. The key to solving
this problem is to note that a curve of order N is a
curve of order N!1 followed by an L followed by a
curve of order N!1 traversed in reverse order, and
then to figure out a similar description for the reverse curve .

F

Dragon curves of order 0, 1, 2, and 3

FLF

FLFLFRF

FLFLFRFLFLFRFRF

!"#$%&'(')!"*+,,,-- ./01/23,,,0425,67

451.2 Built-in Types of Data

!"#$%&'(')!"*+,,,-5 ./01/23,,,0425,67

