
Tests	Driving	Towards	SRP:	An	ExampleTests	Driving	Towards	SRP:	An	Example

Today	I	ran	into	a	simple	example	of	how	easily	one	can	violate	the	Single	Responsibility	Principle
and	how	I	can	use	tests	to	detect	the	violation.	As	with	all	tiny	examples,	it	seems	ridiculous	on
the	surface	to	consider	it	risky.	Even	so,	I	think	you	can	imagine	that	your	legacy	code	consists	of
several	thousand	instances	of	code	that	looks	as	harmless	as	this.

I’m	working	on	a	version	of	my	Point	of	Sale	training	example,	which	implements	a	kind	of	cash
register	that	eventually	takes	on	additional	features,	like	managing	inventory	and	generating	sales
reports.	In	order	to	integrate	with	my	barcode	scanner,	CueCat,	I	need	to	write	code	that	parses
lines	from	 stdin ,	then	tokenizes	these	lines	and	fires	the	event	 onBarcode 	for	each	token,
which	is	a	single	line	of	text	trimmed	of	whitespace.

At	first,	I	build	a	little	cluster	of	objects	that	turns	a	 Reader 	into	 onBarcode 	events,	but	then	I
isolate	the	reading	behavior,	leaving	behind	a	smaller	cluster	of	objects.	This	new	cluster	turns	a	
Stream 	of	lines	into	 onBarcode 	events,	but	then	I	find	that	the	tests	tangle	up	removing
whitespace	with	firing	the	events,	so	I	isolate	the	lexing	behavior,	leaving	behind	an	even	smaller
cluster	of	objects.	This	new	new	cluster	turns	a	 Stream 	of	tokens	(trimmed	text)	into	 onBarcode
events,	and	that	seems	quite	reasonable.	The	tests	almost	seem	too	simple.

package	ca.jbrains.pos.test;

import	io.vavr.collection.Stream;
import	org.junit.Test;
import	org.mockito.Mockito;

public	class	InterpretTextCommandsAsBarcodesTest	{
				private	final	BarcodeScannedListener	barcodeScannedListener	=	
Mockito.mock(BarcodeScannedListener.class);

				@Test
				public	void	oneBarcode()	throws	Exception	{
								interpretCommands(barcodeScannedListener,	Stream.of("::barcode::"));

								Mockito.verify(barcodeScannedListener).onBarcode("::barcode::");
								//	REFACTOR	I	think	this	becomes	"verify	at	most	n	commands	(of	any	kind,	
let	alone	'barcode')".
								Mockito.verify(barcodeScannedListener,	
Mockito.atMost(1)).onBarcode(Mockito.anyString());
				}

				@Test

https://en.wikipedia.org/wiki/CueCat

				public	void	noBarcodes()	throws	Exception	{
								interpretCommands(barcodeScannedListener,	Stream.empty());

								Mockito.verify(barcodeScannedListener,	
Mockito.never()).onBarcode(Mockito.any());
				}

				@Test
				public	void	threeBarcodes()	throws	Exception	{
								interpretCommands(barcodeScannedListener,	Stream.of(
																"::barcode	1::",	"::barcode	2::",	"::barcode	3::"));

								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	1::");
								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	2::");
								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	3::");
								Mockito.verify(barcodeScannedListener,	
Mockito.atMost(3)).onBarcode(Mockito.anyString());
				}

				//	CONTRACT
				//	assume	that	all	commands	are	"valid"	for	whatever	meaning	of	"valid"	
matters	to	you.
				private	void	interpretCommands(BarcodeScannedListener	barcodeScannedListener,	
Stream<String>	commands)	{
								commands.forEach(barcodeScannedListener::onBarcode);
				}
}

Here	I	do	“TDD	as	if	you	meant	it”,	using	the	technique	where	I	test-drive	the	production	code	as
a	fully-explicit	function.	This	function	isn’t	pure,	but	it	can	at	least	be	 static .	I	don’t	care	(yet)
about	how	to	partially	apply	the	function	to	turn	it	into	an	object.	I	can	figure	that	out	later.	I
describe	this	approach	in	“Injecting	Dependencies,	Partially	Applying	Functions,	and	It	Really
Doesn’t	Matter”.

The	test	seems	pretty	simple:	given	a	stream	of	commands,	fire	them	all	as	 onBarcode 	events,
because	the	system	doesn’t	have	any	other	events	yet.	I	can	already	imagine	adding	new
commands	for	checking	out,	printing	a	receipt,	generating	a	sales	report,	pausing	a	purchase,
and	resuming	one.	(The	first	time	I	saw	this,	it	amazed	me:	while	checking	the	price	of	an	item	I
wanted	to	buy,	the	cashier	paused	my	purchase	by	printing	a	ticket	with	a	barcode	on	it,	then	she
checked	out	the	next	two	shoppers.	When	her	co-worker	gave	her	the	price	of	my	item,	she
scanned	the	ticket	and	resumed	my	purchase.	Neat!)	I	digress.	Although	the	test	seems	pretty
simple,	I	find	something	not	to	like	about	this	test:	it	tangles	two	bits	of	behavior	together,
namely	interpreting	an	individual	command	and	applying	that	interpreter	to	a	 Stream 	of
commands.

https://blog.thecodewhisperer.com/permalink/injecting-dependencies

How	Reuse	HappensHow	Reuse	Happens

I	routinely	see	programmers	extract	a	reusable	component	65%	of	the	way.	By	this,	I	mean	that
they	strip	away	most	of	a	potentially-reusable	piece	of	code,	but	then	leave	it	tangled	with	one	or
two	other	bits	of	behavior	only	because	this	is	the	one	way	that	they	happen	to	want	to	use	that
potentially-reusable	behavior	right	now,	here,	so	far.	This	leads	inexorably	towards	legacy	code:	I
can	only	run	this	code	in	that	context,	and	eventually	that	context	grows	into	a	horrible	gelatinous
blob	full	of	network	connections,	file	systems,	and	configuration	settings.	You	can’t	run	the	tests?
Weird.	It	works	on	my	machine.

You	can	usually	avoid	this	mess	by	going	one	or	two	steps	farther!	Pick	a	relatively	small	function
and	look	to	see	whether	it	combines	some	purely	abstract,	generic,	reusable	behavior	with	some
more	concrete,	specific,	context-	or	domain-specific	behavior.	If	you	practise	looking	for	it,	then
eventually	you’ll	start	finding	it,	even	in	ridiculously	harmless-looking	examples	like	the	one	in
this	article.	Once	you	find	it,	then	you	can	pull	the	reusable	bit	away	from	the	rest,	leaving	both
parts	considerably	easier	to	test.	You	might	even	decide	that	you	trust	the	reusable	bit	so	much
that	you	don’t	need	to	test	it!	(Gasp!)

What’s	Really	Happening	Here?What’s	Really	Happening	Here?

In	this	example,	 interpretCommands() 	does	two	things:

1.	 It	interprets	a	command	as	a	barcode.
2.	 It	 map s	this	interpretation	over	a	 Stream 	of	commands.	(Strictly	speaking,	since

interpreting	a	command	returns	nothing,	we	use	 forEach 	instead	of	 map ,	but	for	our
purposes	here,	the	distinction	matters	not	a	whit.)

Wait.	The	first	of	these	talks	about	domain	concepts	(barcode),	while	the	second	of	these	talks
only	about	generic	concepts	(map / forEach ,	 Stream 	and	command).	Surely	we	can	isolate	the
generic	parts	and	leave	behind	something	simpler	to	test.	Indeed	we	can!	In	fact,	we	leave	behind
something	so	simple	that	we	don’t	even	need	to	test	it	yet!	Every	command	is	a	barcode—at	least
for	now.

Even	better,	we	also	leave	behind	something	so	trustworthy	that	we	understand	so	well,	that	we
don’t	need	to	test	it	at	all!	I	know	how	 forEach 	works	and	I	trust	Vavr	to	have	implemented
correctly.	If	I	didn’t,	then	I	could	write	learning	tests	for	it.

Where	Do	I	Compose	These	Functions?Where	Do	I	Compose	These	Functions?

The	next	level	up	the	call	stack	will	handle	it.	(I	visualize	the	call	stack	top-down,	so	the	entry
point	sits	at	the	top.)

https://vavr.io/
file://blog.thecodewhisperer.com/permalink/when-to-write-learning-tests

Where	Will	You	Test	That	You	Interpret	All	The	Commands?Where	Will	You	Test	That	You	Interpret	All	The	Commands?

I	won’t.	I	don’t	need	to	test	it.	It’ll	Just	Work .

Really?Really?

Really.	I	presume	that	my	customer	will	play	around	with	the	system	and	check	that	it	works,	but
I	won’t	feel	any	anxiety	about	it.	I	know	that	It’ll	Just	Work .	Of	course,	if	something	happened
to	prove	me	wrong,	then	I’d	go	to	the	box,	two	minutes	by	myself,	and	I’d	feel	shame.	I	would
end	up	writing	an	integrated	test	or	two	for	the	offending	area,	then	figure	out	how	to	redesign
that	part	of	the	system	so	that	I	couldn’t	get	it	wrong.	In	the	meantime,	I	have	more	than	enough
confidence	about	this	particular	part	of	the	system.

Refactoring	The	DesignRefactoring	The	Design

According	to	the	documentation	for	 forEach() ,	it	accepts	a	 Consumer ,	which	has	the	contract
of	taking	a	single	object	and	returning	nothing.	The	method	 onBarcode() 	fulfils	that	contract
trivially	by	having	the	right	“shape”:	it	takes	a	 String 	and	returns	nothing.	The	contract	for	
Consumer 	has	no	semantics,	beyond	the	universal	(and	annoying)	“don’t	throw	an	exception”.

I	can	isolate	the	generic	behavior	by	extracting	a	parameter	for	
barcodeScannedListener::onBarcode .	(If	you	don’t	speak	Java,	that’s	how	they	refer	to	the
function	so	that	one	can	pass	that	function	as	a	parameter.	It	magically	acts	as	a	 Consumer 	of	
String 	objects.)	This	leaves	me	with	pretty	silly-looking	tests.

package	ca.jbrains.pos.test;

import	io.vavr.collection.Stream;
import	org.junit.Test;
import	org.mockito.Mockito;

import	java.util.function.Consumer;

public	class	InterpretTextCommandsAsBarcodesTest	{
				private	final	BarcodeScannedListener	barcodeScannedListener	=	
Mockito.mock(BarcodeScannedListener.class);

				@Test
				public	void	oneBarcode()	throws	Exception	{
								interpretCommands(Stream.of("::barcode::"),	
barcodeScannedListener::onBarcode);

								Mockito.verify(barcodeScannedListener).onBarcode("::barcode::");

SM

SM

https://www.imdb.com/title/tt0076723

								//	REFACTOR	I	think	this	becomes	"verify	at	most	n	commands	(of	any	kind,	
let	alone	'barcode')".
								Mockito.verify(barcodeScannedListener,	
Mockito.atMost(1)).onBarcode(Mockito.anyString());
				}

				@Test
				public	void	noBarcodes()	throws	Exception	{
								interpretCommands(Stream.empty(),	barcodeScannedListener::onBarcode);

								Mockito.verify(barcodeScannedListener,	
Mockito.never()).onBarcode(Mockito.any());
				}

				@Test
				public	void	threeBarcodes()	throws	Exception	{
								interpretCommands(Stream.of(
																"::barcode	1::",	"::barcode	2::",	"::barcode	3::"),
																barcodeScannedListener::onBarcode);

								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	1::");
								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	2::");
								Mockito.verify(barcodeScannedListener).onBarcode("::barcode	3::");
								Mockito.verify(barcodeScannedListener,	
Mockito.atMost(3)).onBarcode(Mockito.anyString());
				}

				//	CONTRACT
				//	assume	that	all	commands	are	"valid"	for	whatever	meaning	of	"valid"	
matters	to	you.
				private	void	interpretCommands(Stream<String>	commands,	Consumer<String>	
interpretCommand)	{
								commands.forEach(interpretCommand);
				}
}

Here	I	can’t	tell	who’s	testing	whom:	does	 interpretCommands() 	test	 onBarcode() 	or	does	
onBarcode() 	test	 interpretCommands() ?	Either	way,	it	seems	like	an	awful	lot	of	work	just	to
verify	that	 forEach() 	applies	a	 Consumer 	to	every	item	in	a	 Stream .	If	I	wanted	to	check	that,
then	I	could	check	it	without	any	reference	to	barcodes.	And	that	would	make	this	test	entirely
domain-neutral,	which	would	make	it	very	clear	that	we	can	reuse	this	behavior	anywhere.

I	don’t	need	to	check	 forEach() .	I	trust	it.	That	leaves	 onBarcode() .	Wait,	no.	That	leaves	
onBarcode() 	as	the	production	implementation	of	 interpretCommand() .	We	have	a	command
interpreter	coming	to	life	in	this	design,	so	I	decide	to	extract	it	now.

package	ca.jbrains.pos.test;

import	io.vavr.collection.Stream;
import	org.junit.Test;
import	org.mockito.Mockito;

public	class	InterpretTextCommandsWithCommandInterpreterTest	{
				private	final	InterpretCommand	interpretCommand	=	
Mockito.mock(InterpretCommand.class);

				@Test
				public	void	oneCommand()	throws	Exception	{
								interpretCommandsWith(Stream.of("::command::"),	interpretCommand);

								Mockito.verify(interpretCommand).interpretCommand("::command::");
								//	REFACTOR	I	think	this	becomes	"verify	at	most	n	commands	(of	any	kind,	
let	alone	'command')".
								Mockito.verify(interpretCommand,	
Mockito.atMost(1)).interpretCommand(Mockito.anyString());
				}

				@Test
				public	void	noCommands()	throws	Exception	{
								interpretCommandsWith(Stream.empty(),	interpretCommand);

								Mockito.verify(interpretCommand,	
Mockito.never()).interpretCommand(Mockito.any());
				}

				@Test
				public	void	threeCommands()	throws	Exception	{
								interpretCommandsWith(Stream.of(
																"::command	1::",	"::command	2::",	"::command	3::"),
																interpretCommand);

								Mockito.verify(interpretCommand).interpretCommand("::command	1::");
								Mockito.verify(interpretCommand).interpretCommand("::command	2::");
								Mockito.verify(interpretCommand).interpretCommand("::command	3::");
								Mockito.verify(interpretCommand,	
Mockito.atMost(3)).interpretCommand(Mockito.anyString());
				}

				//	CONTRACT
				//	assume	that	all	commands	are	"valid"	for	whatever	meaning	of	"valid"	

matters	to	you.
				private	void	interpretCommandsWith(Stream<String>	commands,	InterpretCommand	
interpretCommand)	{
								commands.forEach(interpretCommand::interpretCommand);
				}
}

I	just	don’t	see	the	point	in	these	tests,	so	I	delete	them.

You	can	imagine	the	simple	implementation	of	the	new	interface	 InterpretCommand .

package	ca.jbrains.pos.test;

public	class	InterpretPointOfSaleCommand	implements	InterpretCommand	{
				private	BarcodeScannedListener	barcodeScannedListener;

				public	InterpretPointOfSaleCommand(BarcodeScannedListener	
barcodeScannedListener)	{
								this.barcodeScannedListener	=	barcodeScannedListener;
				}

				@Override
				public	void	interpretCommand(String	command)	{
								barcodeScannedListener.onBarcode(command);
				}
}

Eventually,	this	will	become	a	dispatcher,	a	kind	of	routing	table,	firing	an	event	for	each
command	to	whoever	wants	to	listen.	For	now,	it	fires	one	kind	of	event	to	one,	mandatory
listener.	Good	enough	for	now.

One	responsibility.	Dead	simple.

When	it	becomes	a	routing	table,	I	can	apply	this	entire	microtechnique	again,	extracting	a
generic	routing	table,	putting	abstractions	in	code	and	details	in	metadata,	and	leaving	behind	a
collection	of	routing	rules.	Each	rule	is	a	function	that	turns	a	regular	expression	into	firing	an
event.	Or	maybe	just	an	event.	I	don’t	know	yet.	I’ll	figure	that	out	when	I	get	there.

Putting	It	TogetherPutting	It	Together

Since	you	might	be	wondering,	I	put	the	pieces	of	this	little	system	together	as	follows.

package	ca.jbrains.pos;

import	ca.jbrains.java.ReaderBasedTextSource;

https://blog.thecodewhisperer.com/permalink/consequences-of-dependency-inversion-principle#abstraction-in-code-details-in-metadata

import	ca.jbrains.pos.test.*;
import	ca.jbrains.pos.test.FindPriceInMemoryCatalogTest.InMemoryCatalog;

import	java.io.InputStreamReader;
import	java.util.HashMap;

public	class	PointOfSaleTerminal	{
				public	static	void	main(String[]	args)	{
								CommandLexer	commandLexer	=	new	RemovingWhitespaceCommandLexer();

								InterpretCommand	interpretCommand	=	new	InterpretPointOfSaleCommand(
																new	SellOneItemController(
																								new	InMemoryCatalog(
																																new	HashMap<String,	Price>()	{{
																																				put("12345",	Price.euroCents(495));
																																				put("23456",	Price.euroCents(750));
																																}}
),
																								new	PrintStreamDisplay(System.out)
)
);

								new	ReaderBasedTextSource(new	InputStreamReader(System.in))
																.parseIntoLines()
																.flatMap(commandLexer::tokenize)
																.forEach(interpretCommand::interpretCommand);
				}
}

Once	I	have	the	pieces	in	place,	I	simply	wire	them	all	together	and	It	Just	Works .

ReferencesReferences

J.	B.	Rainsberger,	“Injecting	Dependencies,	Partially	Applying	Functions,	and	It	Really	Doesn’t
Matter”.	Take	advantage	of	the	equivalence	between	constructors	and	partially-applied	functions
to	simplify	your	tests,	and	maybe	also	to	simplify	your	design.

J.	B.	Rainsberger,	“How	Reuse	Happens”.	Reuse	happens	when	we	decide	to	make	it	happen.

J.	B.	Rainsberger,	“Stop.	Write	a	Learning	Test.”.	An	example	of	when	I	write	learning	tests	for
other	people’s	code.

J.	B.	Rainsberger,	“Demystifying	the	Dependency	Inversion	Principle”.	An	overview	of	various
ways	you	can	think	of	and	use	this	fundamental	design	principle.

SM

https://blog.thecodewhisperer.com/permalink/injecting-dependencies
https://blog.thecodewhisperer.com/permalink/how-reuse-happens
https://blog.thecodewhisperer.com/permalink/when-to-write-learning-tests
https://blog.thecodewhisperer.com/permalink/consequences-of-dependency-inversion-principle

