Angle Measure classwork

• **Degree**: $\frac{1}{360}$ of a turn around a circle

- Ray: part of a line
 - o It has one endpoint and extends indefinitely in one direction.
 - o Rays are named stating the endpoint first then any other point on the ray.

Please name 2 different rays: \overrightarrow{EF} & \overrightarrow{FC}

• Opposite rays: two rays extending from a common point on a line

- - o Vertex the common point of the rays of an angle
 - o Sides the ______ forming an angle

Angles:

An angle separates a plane into three distinct parts

- Interior
- Exterior
- The angle itself

Naming angles

• Use a single <u>letter</u> or <u>Number</u>

• Triplet of ______ (center letter is the vertex) if there is any possible ambiguity regarding angle to which you refer.

yConcept Classify Angles		
right angle	acute angle	obtuse angle
This symbol means a 90° angle.	B	C
$m\angle A = 90$	<i>m</i> ∠ <i>B</i> < 90	$180 > m \angle C > 90$

Ex #2: Use the figure to answer the following.

- a) Name all the angles that have W as a vertex.
- b) Name the sides of $\angle 1$. \overrightarrow{WX} , \overrightarrow{WZ} 1, Z, 3
- c) Write another name for $\angle WYZ$.
- d) Name a pair of opposite rays.

WX & WV

- Congruent angles: angles that have the same measure.
 - Arcs on the figure indicate which angles are congruent.
 - If $m \angle ABC = m \angle DEF$, then it is said that $\angle ABC \cong \angle DEF$
- Angle bisector: a ray that divides an angle into 2 conquent 2's is called an angle bisector.

Ex #3: In the figure, \overrightarrow{YX} and \overrightarrow{YZ} are opposite rays.

YU bisects ∠ZYW

YT bisects ∠XYW.

If $m\angle 1 = 5x + 10$ and $m\angle 2 = 8x - 23$, find $m\angle 2$.

$$5x+10=8x-23$$

 $-5x+23=5x+23$
 $33=3x$
 $x=11$

$$m \le 2 = 8 \times -23$$

= $8(11) - 23$
= $88 - 23$
= 65

If $m \angle WYZ = 82$ and $m \angle ZYU = 4r + 25$, find r. b)

$$4r+25=41$$
 $-25-25$
 $4r=16$
 $r=4$

If $\angle ZYW$ is a right angle and $m\angle ZYU = 13a - 7$, find a.

not drawn to scale, but that will happen

$$139-7=45$$

 $+7$ $+7$
 $13a=52$
 $0=4$