
Elements of Programming

1.1 Your First Program

IN THIS SECTION, OUR PLAN IS to lead you into the world of Java programming by tak-
ing you through the basic steps required to get a simple program running. The Java
system is a collection of applications, not unlike many of the other applications
that you are accustomed to using (such
as your word processor, email program,
and internet browser). As with any ap-
plication, you need to be sure that Java
is properly installed on your computer. It
comes preloaded on many computers, or
you can download it easily. You also need a text editor and a terminal application.
Your first task is to find the instructions for installing such a Java programming
environment on your computer by visiting

http://www.cs.princeton.edu/IntroProgramming

We refer to this site as the booksite. It contains an extensive amount of supplemen-
tary information about the material in this book for your reference and use. You
will find it useful to have your browser open to this site while programming.

Programming in Java To introduce you to developing Java programs, we
break the process down into three steps. To program in Java, you need to:

Create a program by typing it into a file named, say, MyCode.java.
Compile it by typing javac MyCode.java in a terminal window.
Run (or execute) it by typing java MyCode in the terminal window.

In the first step, you start with a blank screen and end with a sequence of typed
characters on the screen, just as when you write an email message or a paper. Pro-
grammers use the term code to refer to program text and the term coding to refer
to the act of creating and editing the code. In the second step, you use a system ap-
plication that compiles your program (translates it into a form more suitable for the
computer) and puts the result in a file named MyCode.class. In the third step, you
transfer control of the computer from the system to your program (which returns
control back to the system when finished). Many systems have several different
ways to create, compile, and execute programs. We choose the sequence described
here because it is the simplest to describe and use for simple programs.

1.1.1 Hello, World 6
1.1.2 Using a command-line argument . . 8

Programs in this section

!"#$%&'(')!"*+,,,- ./01/23,,,0425,67

51.1 Your First Program

Creating a program. A Java program is nothing more than a sequence of charac-
ters, like a paragraph or a poem, stored in a file with a .java extension. To create
one, therefore, you need only define that sequence of characters, in the same way
as you do for email or any other computer application. You can use any text editor
for this task, or you can use one of the more sophisticated program development
environments described on the booksite. Such environments are overkill for the
sorts of programs we consider in this book, but they are not difficult to use, have
many useful features, and are widely used by professionals.

Compiling a program. At first, it might seem that Java is designed to be best un-
derstood by the computer. To the contrary, the language is designed to be best un-
derstood by the programmer (that’s you). The computer’s language is far more
primitive than Java. A compiler is an application that translates a program from the
Java language to a language more suitable for executing on the computer. The com-
piler takes a file with a .java extension as input (your program) and produces a
file with the same name but with a .class extension (the computer-language ver-
sion). To use your Java compiler, type in a terminal window the javac command
followed by the file name of the program you want to compile.

Executing a program. Once you compile the program, you can run it. This is the
exciting part, where your program takes control of your computer (within the con-
straints of what the Java system allows). It is perhaps more accurate to say that your
computer follows your instructions. It is even more accurate to say that a part of
the Java system known as the Java Virtual Machine (the JVM, for short) directs your
computer to follow your instructions. To use the JVM to execute your program,
type the java command followed by the program name in a terminal window.

your program
(a text file)

computer-language
version of your program

type javac HelloWorld.java
to compile your program

use any text editor to
create your program

type java HelloWorld
to execute your program

output

Developing a Java program

editor compiler JVMHelloWorld.java HelloWorld.class "Hello, World"

!"#$%&'(')!"*+,,,5 ./01/23,,,0425,67

6 Elements of Programming

% javac HelloWorld.java
% java HelloWorld
Hello, World

PROGRAM 1.1.1 IS AN EXAMPLE OF a complete Java program. Its name is HelloWorld,
which means that its code resides in a file named HelloWorld.java (by convention
in Java). The program’s sole action is to print a message back to the terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: PROGRAM 1.1.1 consists of a single
class named HelloWorld that has a single method named main(). This method uses
two other methods named System.out.print() and System.out.println() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until SECTION 2.1, where we learn about
classes that define multiple methods, all of our classes will have this same structure.
For the time being, you can think of “class” as meaning “program.”

The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

Program 1.1.1 Hello, World

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). The result in this case is that the
program prints a message in the terminal window (the third line).

!"#$%&'(')!"*+,,,8 ./01/23,,,0425,67

71.1 Your First Program

name and a sequence of statements for its main() method.” In the next two sec-
tions, you will learn many different kinds of statements that you can use to make
programs. For the moment, we will just use statements for printing to the terminal
like the ones in HelloWorld.

When you type java followed by a
class name in your terminal application, the
system calls the main() method that you
defined in that class, and executes its state-
ments in order, one by one. Thus, typing
java HelloWorld causes the system to call
on the main() method in PROGRAM 1.1.1 and
execute its two statements. The first state-
ment calls on System.out.print() to print
in the terminal window the message be-
tween the quotation marks, and the second
statement calls on System.out.println()
to terminate the line.

Since the 1970s, it has been a tradition that a beginning programmer’s first
program should print "Hello, World". So, you should type the code in PROGRAM
1.1.1 into a file, compile it, and execute it. By doing so, you will be following in the
footsteps of countless others who have learned how to program. Also, you will be
checking that you have a usable editor and terminal application. At first, accom-
plishing the task of printing something out in a terminal window might not seem
very interesting; upon reflection, however, you will see that one of the most basic
functions that we need from a program is its ability to tell us what it is doing.

For the time being, all our program code will be just like PROGRAM 1.1.1, ex-
cept with a different sequence of statements in main(). Thus, you do not need to
start with a blank page to write a program. Instead, you can

Copy HelloWorld.java into a new file having a new program name of
your choice, followed by .java.
Replace HelloWorld on the first line with the new program name.
Replace the System.out.print() and System.out.println() statements
with a different sequence of statements (each ending with a semicolon).

Your program is characterized by its sequence of statements and its name. Each
Java program must reside in a file whose name matches the one after the word
class on the first line, and it also must have a .java extension.

main() method

body

name

statements

Anatomy of a program

 text file named HelloWorld.java

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

!"#$%&'(')!"*+,,,1 ./01/23,,,0425,67

8 Elements of Programming

% javac UseArgument.java
% java UseArgument Alice
Hi, Alice. How are you?
% java UseArgument Bob
Hi, Bob. How are you?

Errors. It is easy to blur the distinction among editing, compiling, and executing
programs. You should keep them separate in your mind when you are learning to
program, to better understand the effects of the errors that inevitably arise. You
can find several examples of errors in the Q&A at the end of this section. You can
fix or avoid most errors by carefully examining the program as you create it, the
same way you fix spelling and grammatical errors when you compose an email
message. Some errors, known as compile-time errors, are caught when you compile
the program, because they prevent the compiler from doing the translation. Other
errors, known as run-time errors, do not show up until you execute the program.
In general, errors in programs, also commonly known as bugs, are the bane of a
programmer’s existence: the error messages can be confusing or misleading, and
the source of the error can be very hard to find. One of the first skills that you will
learn is to identify errors; you will also learn to be sufficiently careful when coding,
to avoid making many of them in the first place.

Program 1.1.2 Using a command-line argument

public class UseArgument
{
 public static void main(String[] args)
 {
 System.out.print("Hi, ");
 System.out.print(args[0]);
 System.out.println(". How are you?");
 }
}

This program shows the way in which we can control the actions of our programs: by providing
an argument on the command line. Doing so allows us to tailor the behavior of our programs.

!"#$%&'(')!"*+,,,9 ./01/23,,,0425,67

91.1 Your First Program

Input and Output Typically, we want to provide input to our programs: data
that they can process to produce a result. The simplest way to provide input data is
illustrated in UseArgument (PROGRAM 1.1.2). Whenever UseArgument is executed,
it reads the command-line argument that you type after the program name and
prints it back out to the terminal as part of the message. The result of executing
this program depends on what we type after the program name. After compiling
the program once, we can run it for different command-line arguments and get
different printed results. We will discuss in more detail the mechanism that we use
to pass arguments to our programs later, in SECTION 2.1. In the meantime, you can
use args[0] within your program’s body to represent the string that you type on
the command line when it is executed, just as in UseArgu-
ment.

Again, accomplishing the task of getting a program
to write back out what we type in to it may not seem in-
teresting at first, but upon reflection you will realize that
another basic function of a program is its ability to re-
spond to basic information from the user to control what
the program does. The simple model that UseArgument
represents will suffice to allow us to consider Java’s basic
programming mechanism and to address all sorts of inter-
esting computational problems.

Stepping back, we can see that UseArgument does neither more nor less than
implement a function that maps a string of characters (the argument) into another
string of characters (the message printed back to the terminal). When using it, we
might think of our Java program as a black box that converts our input string to
some output string. This model is attractive because it is not only simple but also
sufficiently general to allow completion, in principle, of any computational task.
For example, the Java compiler itself is nothing more than a program that takes
one string of characters as input (a .java file) and produces another string of
characters as output (the corresponding .class file). Later, we will be able to write
programs that accomplish a variety of interesting tasks (though we stop short of
programs as complicated as a compiler). For the moment, we live with various lim-
itations on the size and type of the input and output to our programs; in SECTION
1.5, we will see how to incorporate more sophisticated mechanisms for program
input and output. In particular, we can work with arbitrarily long input and output
strings and other types of data such as sound and pictures.

input stringAlice

Hi, Alice. How are you?

black box

output string

A bird’s-eye view of a Java program

!"#$%&'(')!"*+,,,3 ./01/23,,,0425,67

10 Elements of Programming

Q&A

Q. Why Java?

A. The programs that we are writing are very similar to their counterparts in sev-
eral other languages, so our choice of language is not crucial. We use Java because
it is widely available, embraces a full set of modern abstractions, and has a variety
of automatic checks for mistakes in programs, so it is suitable for learning to pro-
gram. There is no perfect language, and you certainly will be programming in other
languages in the future.

Q. Do I really have to type in the programs in the book to try them out? I believe
that you ran them and that they produce the indicated output.

A. Everyone should type in and run HelloWorld. Your understanding will be
greatly magnified if you also run UseArgument, try it on various inputs, and modify
it to test different ideas of your own. To save some typing, you can find all of the
code in this book (and much more) on the booksite. This site also has information
about installing and running Java on your computer, answers to selected exercises,
web links, and other extra information that you may find useful or interesting.

Q. What is the meaning of the words public, static and void?

A. These keywords specify certain properties of main() that you will learn about
later in the book. For the moment, we just include these keywords in the code (be-
cause they are required) but do not refer to them in the text.

Q. What is the meaning of the //, /*, and */ character sequences in the code?

A. They denote comments, which are ignored by the compiler. A comment is either
text in between /* and */ or at the end of a line after //. As with most online code,
the code on the booksite is liberally annotated with comments that explain what it
does; we use fewer comments in code in this book because the accompanying text
and figures provide the explanation.

Q. What are Java’s rules regarding tabs, spaces, and newline characters?

A. Such characters are known as whitespace characters. Java compilers consider
all whitespace in program text to be equivalent. For example, we could write Hel-

!"#$%&'(')!"*+,,,:2 ./01/23,,,0425,67

111.1 Your First Program

loWorld as follows:

public class HelloWorld { public static void main (String []
args) { System.out.print("Hello, World") ; System.out.
println() ;} }

But we do normally adhere to spacing and indenting conventions when we write
Java programs, just as we always indent paragraphs and lines consistently when we
write prose or poetry.

Q. What are the rules regarding quotation marks?

A. Material inside quotation marks is an exception to the rule defined in the pre-
vious question: things within quotes are taken literally so that you can precisely
specify what gets printed. If you put any number of successive spaces within the
quotes, you get that number of spaces in the output. If you accidentally omit a
quotation mark, the compiler may get very confused, because it needs that mark to
distinguish between characters in the string and other parts of the program.

Q. What happens when you omit a brace or misspell one of the words, like public
or static or void or main?

A. It depends upon precisely what you do. Such errors are called syntax errors and
are usually caught by the compiler. For example, if you make a program Bad that is
exactly the same as HelloWorld except that you omit the line containing the first
left brace (and change the program name from HelloWorld to Bad), you get the
following helpful message:

% javac Bad.java
Bad.java:2: '{' expected
 public static void main(String[] args)
 ^
1 error

From this message, you might correctly surmise that you need to insert a left brace.
But the compiler may not be able to tell you exactly what mistake you made, so the
error message may be hard to understand. For example, if you omit the second left
brace instead of the first one, you get the following messages:

!"#$%&'(')!"*+,,,:: ./01/23,,,0425,67

12 Elements of Programming

% javac Bad.java
Bad.java:4: ';' expected
 System.out.print("Hello, World");
 ^
Bad.java:7: 'class' or 'interface' expected
}
^
Bad.java:8: 'class' or 'interface' expected
^
3 errors

One way to get used to such messages is to intentionally introduce mistakes into a
simple program and then see what happens. Whatever the error message says, you
should treat the compiler as a friend, for it is just trying to tell you that something
is wrong with your program.

Q. Can a program use more than one command-line argument?

A. Yes, you can use many arguments, though we normally use just a few. Note that
the count starts at 0, so you refer to the first argument as args[0], the second one
as args[1], the third one as args[2], and so forth.

Q. What Java methods are available for me to use?

A. There are literally thousands of them. We introduce them to you in a deliberate

fashion (starting in the next section) to avoid overwhelming you with choices.

Q. When I ran UseArgument, I got a strange error message. What’s the problem?

A. Most likely, you forgot to include a command-line argument:

% java UseArgument
Hi, Exception in thread “main”
java.lang.ArrayIndexOutOfBoundsException: 0
 at UseArgument.main(UseArgument.java:6)

The JVM is complaining that you ran the program but did not type an argument as
promised. You will learn more details about array indices in SECTION 1.4. Remember
this error message: you are likely to see it again. Even experienced programmers
forget to type arguments on occasion.

!"#$%&'(')!"*+,,,:0 ./01/23,,,0425,67

131.1 Your First Program

Exercises

1.1.1 Write a program that prints the Hello, World message 10 times.

1.1.2 Describe what happens if you omit the following in HelloWorld.java:
a. public
b. static
c. void
d. args

1.1.3 Describe what happens if you misspell (by, say, omitting the second letter)
the following in HelloWorld.java:

a. public
b. static
c. void
d. args

1.1.4 Describe what happens if you try to execute UseArgument with each of the
following command lines:

a. java UseArgument java
b. java UseArgument @!&^%
c. java UseArgument 1234
d. java UseArgument.java Bob
e. java UseArgument Alice Bob

1.1.5 Modify UseArgument.java to make a program UseThree.java that takes
three names and prints out a proper sentence with the names in the reverse of the
order given, so that, for example, java UseThree Alice Bob Carol gives Hi
Carol, Bob, and Alice.

!"#$%&'(')!"*+,,,:. ./01/23,,,0425,67

