
Java Programming AP Edition
U5C14 Searching, Sorting and Program
Analysis

OVERVIEW OF ALGORITHMS

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Algorithm
How to solve a problem?

A systematic process consisting of an ordered sequence of steps,
each step depending on the outcome of the previous one.

Methodology (Problem Solving)

Resource Estimation

Time Complexity

Memory Complexity

Algorithm Study
How Efficiently the algorithm can solve a problem?

Problem Solving
• Sorting

• Approximate Methods (ad hoc solutions)

• Randomized Solutions

• Dynamic Programming

• Linear Programming

• Cryptography

• Fourier Transform

• Computational Geometry

• Graph Theory

Algorithm Efficiency Analysis (Time Complexity)

Big-O Notation

NP-Completeness

Data Structure (Memory Complexity/Time Complexity
Trade-offs)

Binary

B-Tree and other Tree

Stack, Queue, List, Map, Set, Heap, Sparse Matrix

Executing Time
Suppose two algorithms perform the same task such as search (linear search
vs. binary search) and sorting (selection sort vs. insertion sort). Which one is
better? One possible approach to answer this question is to implement these
algorithms in Java and run the programs to get execution time. But there are
two problems for this approach:

• First, there are many tasks running concurrently on a computer. The
execution time of a particular program is dependent on the system load.

• Second, the execution time is dependent on specific input. Consider linear
search and binary search for example. If an element to be searched happens
to be the first in the list, linear search will find the element quicker than
binary search.

Growth Rate
It is very difficult to compare algorithms by measuring their
execution time. To overcome these problems, a theoretical approach
was developed to analyze algorithms independent of computers and
specific input. This approach approximates the effect of a change on
the size of the input. In this way, you can see how fast an algorithm’s
execution time increases as the input size increases, so you can
compare two algorithms by examining their growth rates.

Memory Complexity is Similar to Time
Complexity Except for the Goal Function
T(n): Time complexity function Time requirement when n grows

M(n): Memory complexity function Memory requirement when n grows

Why Study Algorithm?
Remember the recursive versus iterative algorithm for Fibonacci
number?

Poor algorithm leads to time-consuming solution and waste of
memory.

Good algorithm leads to good solution which meets program
latency requirement and does not take too much resource.

Computer Scientist’s job is to find good solution for problems.

