
Elements of Programming

1.4 Arrays

IN THIS SECTION, WE CONSIDER A fundamental programming construct known as the 
array. The primary purpose of an array is to facilitate storing and manipulating 
large quantities of data. Arrays play an essential role in many data processing tasks. 
They also correspond to vectors and matrices, which are widely used in science and 
in scientific programming. We will con-
sider basic properties of array processing 
in Java, with many examples illustrating 
why they are useful. 

An array stores a sequence of values 
that are all of the same type. Processing 
such a set of values is very common. We 
might have exam scores, stock prices, nucleotides in a DNA strand, or characters in 
a book. Each of these examples involve a large number of values that are all of the 
same type. 

We want not only to store values but also directly access each in-
dividual value. The method that we use to refer to individual values in 
an array is numbering and then indexing them. If we have N values, we 
think of them as being numbered from 0 to N!1. Then, we can unam-
biguously specify one of them by referring to the ith value for any value 
of i from 0 to N!1. To refer to the ith value in an array a, we use the 
notation a[i], pronounced a sub i. This Java construct is known as a 
one-dimensional array.

The one-dimensional array is our first example in this book of a 
data structure (a method for organizing data). We also consider in this 
section a more complicated data structure known as a two-dimensional 
array. Data structures play an essential role in modern programming—
CHAPTER 4 is largely devoted to the topic.

Typically, when we have a large amount of data to process, we first put all of 
the data into one or more arrays. Then we use array indexing to refer to individual 
values and to process the data. We consider such applications when we discuss data 
input in SECTION 1.5 and in the case study that is the subject of SECTION 1.6. In this 
section, we expose the basic properties of arrays by considering examples where 
our programs first populate arrays with computed values from experimental stud-
ies and then process them.
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871.4  Arrays

Arrays in Java Making an array in a Java program involves three distinct steps:
Declare the array name and type.
Create the array.
Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain. 
To create it, you need to specify its size (the number of values). For example, the 
following code makes an array of N numbers of type double, all initialized to 0.0:

double[] a; 
a = new double[N]; 
for (int i = 0; i < N; i++) 
   a[i] = 0.0;   

The first statement is the array declaration. It is just like a declaration of a variable 
of the corresponding primitive type except for the square brackets following the 
type name, which specify that we are declaring an array. The second statement cre-
ates the array. This action is unnecessary for variables of a primitive type (so we 
have not seen a similar action before), but it is needed for all other types of data in 
Java (see SECTION 3.1). In the code in this book, we normally keep the array length in 
an integer variable N, but any integer-valued expression will do. The for statement 
initializes the N array values. We refer to each value by putting its index in brackets 
after the array name. This code sets all of the array entries to the value 0.0.

When you begin to write code that uses an array, you must be sure that your 
code declares, creates, and initializes it. Omitting one of these steps is a common 
programming mistake. For economy in code, we often take advantage of Java’s de-
fault array initialization convention and combine all three steps into a single state-
ment. For example, the following statement is equivalent to the code above:

double[] a = new double[N];

The code to the left of the equal sign constitutes the declaration; the code to the 
right constitutes the creation. The for loop is unnecessary in this case because the 
default initial value of variables of type double in a Java array is 0.0, but it would 
be required if a nonzero value were desired. The default initial value is zero for all 
numbers and false for type boolean. For String and other non-primitive types, 
the default is the value null, which you will learn about in CHAPTER 3.

After declaring and creating an array, you can refer to any individual value 
anywhere you would use a variable name in a program by enclosing an integer in-
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88 Elements of Programming

dex in braces after the array name. We refer to the ith item with the code a[i]. The 
explicit initialization code shown earlier is an example of such a use. The obvious 
advantage of using arrays is to avoid explicitly naming each variable individually. 
Using an array index is virtually the same as appending the index to the array name: 
for example, if we wanted to process eight variables of type double, we could de-
clare each of them individually with the declaration

double a0, a1, a2, a3, a4, a5, a6, a7;

and then refer to them as a0, a1 and so forth instead of declaring them with dou-
ble[] a = new double[8] and referring to them as a[0], a[1], and so forth. But 
naming dozens of individual variables in this way would be cumbersome and nam-
ing millions is untenable. 

As an example of code that uses arrays, consider using arrays to represent vec-
tors. We consider vectors in detail in SECTION 3.3; for the moment, think of a vector 
as a sequence of real numbers. The dot product of two vectors (of the same length) 
is the sum of the products of their corresponding components. The dot product 
of two vectors that are represented as one-dimensional arrays x[] and y[] that are 
each of length 3 is the expression x[0]*y[0] + x[1]*y[1] + x[2]*y[2]. If we 
represent the two vectors as one-dimensional arrays x[] and y[] that are each of 
length N and of type double, the dot product is 
easy to compute:

double sum = 0.0; 
for (int i = 0; i < N; i++) 
   sum += x[i]*y[i]; 

The simplicity of coding such computations 
makes the use of arrays the natural choice for all 
kinds of applications. (Note that when we use the 
notation x[], we are referring to the whole array, 
as opposed to x[i], which is a reference to the ith 
entry.) 

The accompanying table has many examples of array-processing code, and we 
will consider even more examples later in the book, because arrays play a central 
role in processing data in many applications. Before considering more sophisticat-
ed examples, we describe a number of important characteristics of programming 
with arrays.

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

Trace of dot product computation
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891.4  Arrays

Zero-based indexing. We always refer to the first element of an array as a[0], the 
second as a[1], and so forth. It might seem more natural to you to refer to the first 
element as a[1], the second value as a[2], and so forth, but starting the index-
ing with 0 has some advantages and has emerged as the convention used in most 
modern programming languages. Misunderstanding this convention often leads to 
off-by one-errors that are notoriously difficult to avoid and debug, so be careful!

Array length. Once we create an array, its size is fixed. The reason that we need to 
explicitly create arrays at runtime is that the Java compiler cannot know how much 
space to reserve for the array at compile time (as it can for primitive-type values). 
Our convention is to keep the size of the array in a variable N whose value can be 
set at runtime (usually it is the value of a command-line argument). Java’s stan-
dard mechanism is to allow a program to refer to the length of an array a[] with 
the code a.length; we normally use N to create the array, or set the value of N to 
a.length. Note that the last element of an array is always a[a.length-1].

create an array
with random values

double[] a = new double[N];
for (int i = 0; i < N; i++)
   a[i] = Math.random(); 

print the array values,
one per line

for (int i = 0; i < N; i++)
   System.out.println(a[i]); 

find the maximum of
the array values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
   if (a[i] > max) max = a[i]; 

compute the average of
 the array values

double sum = 0.0;
for (int i = 0; i < N; i++)
   sum += a[i];  
double average = sum / N; 

copy to another array
double[] b = new double[N];
for (int i = 0; i < N; i++)
   b[i] = a[i]; 

reverse the elements
within an array

for (int i = 0; i < N/2; i++)
{
   double temp = b[i];
   b[i] = b[N-1-i];
   b[N-i-1] = temp;
}

Typical array-processing code (for arrays of N double values)
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90 Elements of Programming

Memory representation. Arrays are fundamental data structures in that they 
have a direct correspondence with memory systems on virtually all computers. 
The elements of an array are stored consecutively in memory, so that it is easy 
to quickly access any array value. Indeed, we can view memory itself as a giant 

array. On modern computers, memory is implemented in hardware as 
a sequence of indexed memory locations that each can be quickly ac-
cessed with an appropriate index. When referring to computer memory, 
we normally refer to a location’s index as its address. It is convenient to 
think of the name of the array—say, a—as storing the memory address 
of the first element of the array a[0]. For the purposes of illustration, 
suppose that the computer’s memory is organized as 1,000 values, with 
addresses from 000 to 999. (This simplified model ignores the fact that 
array elements can occupy differing amounts of memory depending on 
their type, but you can ignore such details for the moment.) Now, sup-
pose that an array of eight elements is stored in memory locations 523 
through 530. In such a situation, Java would store the memory address 
(index) of the first array value somewhere else in memory, along with 
the array length. We refer to the address as a pointer and think of it as 
pointing to the referenced memory location. When we specify a[i], the 
compiler generates code that accesses the desired value by adding the 
index i to the memory address of the array a[]. For example, the Java 
code a[4] would generate machine code that finds the value at memory 
location 523 + 4 = 527. Accessing element i of an array is an efficient 
operation because it simply requires adding two integers and then refer-
encing memory—just two elementary operations. Extending the model 
to handle different-sized array elements just involves multiplying the 
index by the element size before adding to the array address.

Memory allocation. When you use new to create an array, Java reserves 
space in memory for it. This process is called memory allocation. The 
same process is required for all variables that you use in a program. We 
call attention to it now because it is your responsibility to use new to al-

locate memory for an array before accessing any of its elements. If you fail to adhere 
to this rule, you will get a compile-time uninitialized variable error. Java automati-
cally initializes all of the values in an array when it is created. You should remember 
that the time required to create an array is proportional to its length.

523    a[0]
524    a[1]

123     523
124       8

000        

a

a.length 

525    a[2]
526    a[3]
527    a[4]
528    a[5]
529    a[6]
530    a[7]

999        

Memory representation
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911.4  Arrays

Bounds checking. As already indicated, you must be careful when programming 
with arrays. It is your responsibility to use legal indices when accessing an array 
element. If you have created an array of size N and use an index whose value is less 
than 0 or greater than N-1, your program will terminate with an ArrayIndex-
OutOfBounds run-time exception. (In many programming languages, such buffer 
overflow conditions are not checked by the system. Such unchecked errors can and 
do lead to debugging nightmares, but it is also not uncommon for such an error to 
go unnoticed and remain in a finished program. You might be surprised to know 
that such a mistake can be exploited by a hacker to take control of a system, even 
your personal computer, to spread viruses, steal personal information, or wreak 
other malicious havoc.) The error messages provided by Java may seem annoying 
to you at first, but they are small price to pay to have a more secure program. 

Setting array values at compile time. When we have a small number of literal 
values that we want to keep in array, we can declare and initialize it by listing the 
values between curly braces, separated by commas. For example, we might use the 
following code in a program that processes playing cards.

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" }; 
 
String[] rank = 
{ 
   "2", "3", "4", "5", "6", "7", "8", "9", "10", 
   "Jack", "Queen", "King", "Ace" 
};

After creating the two arrays, we can use them to print out a random card name, 
such as Queen of Clubs, as follows:

int i = (int) (Math.random() * rank.length); 
int j = (int) (Math.random() * suit.length); 
System.out.println(rank[i] + " of " + suit[j]);

This code uses the idiom introduced in SECTION 1.2 to generate random indices and 
then uses the indices to pick strings out of the arrays. Whenever the values of all 
array entries are known at compile time (and the size of the array is not too large) 
it makes sense to use this method of initializing the array—just put all the values in 
braces on the right hand side of an assignment in the array declaration. Doing so 
implies array creation, so the new keyword is not needed.

!"#$%&'(')!"*+,,,3: ./01/23,,,0425,67



92 Elements of Programming

Setting array values at runtime. A more typical situation is when we wish to 
compute the values to be stored in an array. In this case, we can use array names 
with indices in the same way we use variable names on the left side of assignment 
statements. For example, we might use the following code to initialize an array of 
size 52 that represents a deck of playing cards, using the two arrays just defined:

String[] deck = new String[suit.length * rank.length]; 
for (int i = 0; i < suit.length; i++) 
   for (int j = 0; j < rank.length; j++) 
      deck[rank.length*i + j] = rank[i] + " of " + suit[j];

After this code has been executed, if you were to print out the contents of deck in 
order from deck[0] through deck[51] using System.out.println(), you would 
get the sequence

2 of Clubs 
2 of Diamonds 
2 of Hearts 
2 of Spades 
3 of Clubs 
3 of Diamonds 
... 
Ace of Hearts 
Ace of Spades

Exchange. Frequently, we wish to exchange two values in an array. Continuing our 
example with playing cards, the following code exchanges the cards at position i 
and j using the same idiom that we traced as our first example of the use of assign-
ment statements in SECTION 1.2:

String t = deck[i]; 
deck[i] = deck[j]; 
deck[j] = t;

When we use this code, we are assured that we are perhaps changing the order of 
the values in the array but not the set of values in the array. When i and j are equal, 
the array is unchanged. When i and j are not equal, the values a[i] and a[j] are 
found in different places in the array. For example, if we were to use this code with 
i equal to 1 and j equal to 4 in the deck array of the previous example, it would 
leave 3 of Clubs in deck[1] and 2 of Diamonds in deck[4].
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Shuffle. The following code shuffles our deck of cards:

int N = deck.length; 
for (int i = 0; i < N; i++) 
{ 
   int r = i + (int) (Math.random() * (N-i)); 
   String t = deck[i]; 
   deck[i] = deck[r]; 
   deck[r] = t; 
}

Proceeding from left to right, we pick a random card from deck[i] through 
deck[N-1] (each card equally likely) and exchange it with deck[i]. This code is 
more sophisticated than it might seem: First, we ensure that the cards in the deck 
after the shuffle are the same as the cards in the deck before the shuffle by using 
the exchange idiom. Second, we ensure that the shuffle is random by choosing uni-
formly from the cards not yet chosen.

Sampling without replacement. In many situations, we want to draw a random 
sample from a set such that each member of the set appears at most once in the 
sample. Drawing numbered ping-pong balls from a basket for a lottery is an ex-
ample of this kind of sample, as is dealing a hand from a deck of cards. Sample 
(PROGRAM 1.4.1) illustrates how to sample, using the basic operation underlying 
shuffling. It takes command-line arguments M and N and creates a permutation of 
size N (a rearrangement of the integers from 0 to N-1) whose first M entries com-

i r
perm

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

0 9 9  1  2  3  4  5  6  7  8  0 10 11 12 13 14 15

1 5 9  5  2  3  4  1  6  7  8  0 10 11 12 13 14 15

2 13 9  5 13  3  4  1  6  7  8  0 10 11 12  2 14 15

3 5 9  5 13  1  4  3  6  7  8  0 10 11 12  2 14 15

4 11 9  5 13  1 11  3  6  7  8  0 10  4 12  2 14 15

5 8 9  5 13  1 11  8  6  7  3  0 10  4 12  2 14 15

9  5 13  1 11  8  6  7  3  0 10  4 12  2 14 15

Trace of java Sample 6 16
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94 Elements of Programming

% java Sample 6 16 
9 5 13 1 11 8  
 
% java Sample 10 1000 
656 488 298 534 811 97 813 156 424 109 
 
% java Sample 20 20 
6 12 9 8 13 19 0 2 4 5 18 1 14 16 17 3 7 11 10 15

Program 1.4.1 Sampling without replacement

public class Sample
{ 
   public static void main(String[] args) 
   {  // Print a random sample of M integers
      // from 0 ... N-1 (no duplicates).
      int M = Integer.parseInt(args[0]); 
      int N = Integer.parseInt(args[1]); 
      int[] perm = new int[N];

      // Initialize perm[].
      for (int j = 0; j < N; j++) 
          perm[j] = j;

      // Take sample.
      for (int i = 0; i < M; i++) 
      {  // Exchange perm[i] with a random element to its right.
         int r = i + (int) (Math.random() * (N-i)); 
         int t = perm[r]; 
         perm[r] = perm[i]; 
         perm[i] = t; 
      }

      // Print sample.
      for (int i = 0; i < M; i++) 
         System.out.print(perm[i] + " ");  
      System.out.println(); 
   } 
}

This program takes two command-line arguments M and N and produces a sample of M of the 
integers from 0 to N-1. This process is useful, not just in state and local lotteries, but in scien-
tific applications of all sorts. If the first argument is equal to the second, the result is a random 
permutation of the integers from 0 to N-1. If the first argument is greater than the second, the 
program will terminate with an ArrayOutOfBounds exception. 

M sample size
N range

perm[] permutation of 0 to N-1
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951.4  Arrays

prise a random sample. The accompanying trace of the contents of the perm[] 
array at the end of each iteration of the main loop (for a run where the values of M 
and N are 6 and 16, respectively) illustrates the process.

If the values of r are chosen such that each value in the given range is equally 
likely, then perm[0] through perm[M-1] are a random sample at the end of the 
process (even though some elements might move multiple times) because each 
element in the sample is chosen by taking each item not yet sampled, with equal 
probability for each choice. One important reason to explicitly compute the per-
mutation is that we can use it to print out a random sample of any array by using 
the elements of the permutation as indices into the array. Doing so is often an at-
tractive alternative to actually rearranging the array because it may need to be in 
order for some other reason (for instance, a company might wish to draw a random 
sample from a list of customers that is kept in alphabetical order). To see how this 
trick works, suppose that we wish to draw a random poker hand from our deck[] 
array, constructed as just described. We use the code in Sample with N = 52 and M 
= 5 and replace perm[i] with deck[perm[i]] in the System.out.print() state-
ment (and change it to println()), resulting in output such as the following:

3 of Clubs 
Jack of Hearts 
6 of Spades 
Ace of Clubs 
10 of Diamonds

Sampling like this is widely used as the basis for statistical studies in polling, scien-
tific research, and many other applications, whenever we want to draw conclusions 
about a large population by analyzing a small random sample.

Precomputed values. One simple application of arrays is to save values that you 
have computed, for later use. As an example, suppose that you are writing a pro-
gram that performs calculations using small values of the harmonic numbers (see 
PROGRAM 1.3.5). An efficient approach is to save the values in an array, as follows:

double[] H = new double[N]; 
for (int i = 1; i < N; i++) 
   H[i] = H[i-1] + 1.0/i; 

Then you can just use the code H[i] to refer to any of the values. Precomputing val-
ues in this way is an example of a space-time tradeoff: by investing in space (to save 
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96 Elements of Programming

the values) we save time (since we do not need to recompute them). This method 
is not effective if we need values for huge N, but it is very effective if we need values 
for small N many different times.

Simplifying repetitive code. As an example of another simple application of ar-
rays, consider the following code fragment, which prints out the name of a month 
given its number (1 for January, 2 for February, and so forth):

if      (m ==  1) System.out.println("Jan"); 
else if (m ==  2) System.out.println("Feb"); 
else if (m ==  3) System.out.println("Mar"); 
else if (m ==  4) System.out.println("Apr"); 
else if (m ==  5) System.out.println("May"); 
else if (m ==  6) System.out.println("Jun"); 
else if (m ==  7) System.out.println("Jul"); 
else if (m ==  8) System.out.println("Aug"); 
else if (m ==  9) System.out.println("Sep"); 
else if (m == 10) System.out.println("Oct"); 
else if (m == 11) System.out.println("Nov"); 
else if (m == 12) System.out.println("Dec");

We could also use a switch statement, but a much more compact alternative is to 
use a String array consisting of the names of each month:

String[] months = 
{ 
   "", "Jan", "Feb", "Mar", "Apr", "May", "Jun", 
       "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 
}; 
System.out.println(months[m]);

This technique would be especially useful if you needed to access the name of a 
month by its number in several different places in your program. Note that we in-
tentionally waste one slot in the array (element 0) to make months[1] correspond 
to January, as required. 

Assignments and equality tests. Suppose that you have created the two arrays a[] 
and b[]. What does it mean to assign one to the other with the code a = b; ? Simi-
larly, what does it mean to test whether the two arrays are equal with the code (a 
== b)? The answers to these questions may not be what you first assume, but if you 
think about the array memory representation, you will see that Java’s interpretation 
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of these operations makes sense: An assignment makes the names a and b refer to 
the same array. The alternative would be to have an implied loop that assigns each 
value in b to the corresponding value in a. Similarly, an equality test checks whether 
the two names refer to the same array. The alternative would be to have an implied 
loop that tests whether each value in one array is equal to the corresponding value 
in the other array. In both cases, the implementation in Java is very simple: it just 
performs the standard operation as if the array name were a variable whose value 
is the memory address of the array. Note that there are many other operations 
that you might want to perform on arrays: for example, it would be nice in some 
applications to say a = a + b and have it mean “add the corresponding element 
in b[] to each element in a[],” but that statement is not legal in Java. Instead, we 
write an explicit loop to perform all the additions. We will consider in detail Java’s 
mechanism for satisfying such higher-level programming needs in SECTION 3.2. In 
typical applications, we use this mechanism, so we rarely need to use Java’s assign-
ments and equality tests with arrays.

WITH THESE BASIC DEFINITIONS AND EXAMPLES out of the way, we can now consider two 
applications that both address interesting classical problems and illustrate the fun-
damental importance of arrays in efficient computation. In both cases, the idea of 
using data to index into an array plays a central role and enables a computation that 
would not otherwise be feasible.

Coupon collector Suppose that you have a shuffled deck of cards and 
you turn them face up, one by one. How many cards do you need to turn 
up before you have seen one of each suit? How many cards do you need to 
turn up before seeing one of each value? These are examples of the famous 
coupon collector problem. In general, suppose that a trading card company 
issues trading cards with N different possible cards: how many do you have 
to collect before you have all N possibilities, assuming that each possibility is equal-
ly likely for each card that you collect?

Coupon collecting is no toy problem. For example, it is very often the case that 
scientists want to know whether a sequence that arises in nature has the same char-
acteristics as a random sequence. If so, that fact might be of interest; if not, further 
investigation may be warranted to look for patterns that might be of importance. 
For example, such tests are used by scientists to decide which parts of genomes 
are worth studying. One effective test for whether a sequence is truly random is 

Coupon collection 

! " ! # # ! " $
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% java CouponCollector 1000 
6583 
% java CouponCollector 1000 
6477 
% java CouponCollector 1000000 
12782673

Program 1.4.2 Coupon collector simulation

public class CouponCollector
{ 
   public static void main(String[] args) 
   {  // Generate random values in (0..N] until finding each one.
      int N = Integer.parseInt(args[0]); 
      boolean[] found = new boolean[N]; 
      int cardcnt = 0, valcnt = 0; 
      while (valcnt < N) 
      {  // Generate another value.
         int val = (int) (Math.random() * N); 
         cardcnt++; 
         if (!found[val]) 
         {   
            valcnt++; 
            found[val] = true; 
         } 
      }  // N different values found.
      System.out.println(cardcnt); 
   } 
}

This program simulates coupon collection by taking a command-line argument N and generat-
ing random numbers between 0 and N-1 until getting every possible value.

N range
cardcnt values generated

valcnt different values found

found[] table of found values

the coupon collector test : compare the number of elements that need to be exam-
ined before all values are found against the corresponding number for a uniformly 
random sequence. CouponCollector (PROGRAM 1.4.2) is an example program that 
simulates this process and illustrates the utility of arrays. It takes the value of N from 
the command line and generates a sequence of random integer values between 0 
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and N!1 using the code (int) (Math.random() * N) (see PROGRAM 1.2.5). Each 
value represents a card: for each card, we want to know if we have seen that value 
before. To maintain that knowledge, we use an array found[], which uses the card 
value as an index: found[i] is true if we have seen 
a card with value i and false if we have not. When 
we get a new card that is represented by the integer 
val, we check whether we have seen its value before 
simply by accessing found[val]. The computation 
consists of keeping count of the number of distinct 
values seen and the number of cards generated and 
printing the latter when the former gets to N. 

As usual, the best way to understand a program 
is to consider a trace of the values of its variables for 
a typical run. It is easy to add code to CouponCol-
lector that produces a trace that gives the values 
of the variables at the end of the while loop for a 
typical run. In the accompanying figure, we use F 
for the value false and T for the value true to make 
the trace easier to follow. Tracing programs that use 
large arrays can be a challenge: when you have an 
array of size N in your program, it represents N vari-
ables, so you have to list them all. Tracing programs 
that use Math.random() also can be a challenge because you get a different trace 
every time you run the program. Accordingly, we check relationships among vari-
ables carefully. Here, note that valcnt always is equal to the number of true values 
in found[].

 Without arrays, we could not contemplate simulating the coupon collector 
process for huge N; with arrays it is easy to do so. We will see many examples of 
such processes throughout the book. 

Sieve of Eratosthenes Prime numbers play an important role in mathematics 
and computation, including cryptography. A prime number is an integer greater 
than one whose only positive divisors are one and itself. The prime counting func-
tion #(N) is the number of primes less than or equal to N. For example, #(25) = 9 
since the first nine primes are 2, 3, 5, 7, 11, 13, 17, 19, and 23. This function plays a 
central role in number theory.

val
found

valcnt cardcnt
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

Trace for a typical run of 
 java CouponCollector 6
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Program 1.4.3 Sieve of Eratosthenes

public class PrimeSieve
{ 
   public static void main(String[] args) 
   {  // Print the number of primes <= N.
      int N = Integer.parseInt(args[0]); 
      boolean[] isPrime = new boolean[N+1]; 
      for (int i = 2; i <= N; i++) 
         isPrime[i] = true;

      for (int i = 2; i <= N/i; i++) 
      {  if (isPrime[i]) 
         {  // Mark multiples of i as nonprime.
            for (int j = i; j <= N/i; j++) 
               isPrime[i * j] = false;  
         } 
      }

      // Count the primes.
      int primes = 0; 
      for (int i = 2; i <= N; i++) 
         if (isPrime[i]) primes++;  
      System.out.println(primes); 
   } 
}

This program takes a command-line argument N and computes the number of primes less than 
or equal to N. To do so, it computes an array of boolean values with isPrime[i] set to true if 
i is prime, and to false otherwise. First, it sets to true all array elements in order to indicate 
that no numbers are initially known to be nonprime. Then it sets to false array elements cor-
responding to indices that are known to be nonprime (multiples of known primes). If a[i] is 
still true after all multiples of smaller primes have been set to false, then we know i to be 
prime. The termination test in the second for loop is i <= N/i instead of the naive i <= N be-
cause any number with no factor less than N/i has no factor greater than N/i, so we do not have 
to look for such factors. This improvement makes it possible to run the program for large N.

N argument
isPrime[i] is i prime?

primes prime counter

% java PrimeSieve 25 
9 
% java PrimeSieve 100 
25 
% java PrimeSieve 1000000000 
50847534
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One approach to counting primes is to use a program like Factors (PROGRAM 
1.3.9). Specifically, we could modify the code in Factors to set a boolean value to 
be true if a given number is prime and false otherwise (instead of printing out 
factors), then enclose that code in a loop that increments a counter for each prime 
number. This approach is effective for small N, but becomes too slow as N grows.

PrimeSieve (PROGRAM 1.4.3) takes a command-line integer N and computes 
the prime count using a technique known as the Sieve of Eratosthenes. The program 
uses a boolean array isPrime[] to record which integers are prime. The goal is 
to set isPrime[i] to true if i is prime, and to false otherwise. The sieve works 
as follows: Initially, set all array elements to true, indicating that no factors of any 
integer have yet been found. Then, repeat the following steps as long as i <= N/i:

Find the next smallest i for which no factors have been found.
Leave isPrime[i] as true since i has no smaller factors.
Set the isPrime[] entries for all multiples of i to be false.

When the nested for loop ends, we have set the isPrime[] entries for all nonprimes 
to be false and have left the isPrime[] entries for all primes as true. With one 
more pass through the array, we can count the number of primes less than or equal 
to N. As usual, it is easy to add code to print a trace. For programs such as Prime-
Sieve, you have to be a bit careful—it contains a nested for-if-for, so you have 
to pay attention to the braces in order to put the print code in the correct place. 
Note that we stop when i > N/i, just as we did for Factors.

With PrimeSieve, we can compute #(N) for large N, limited primarily by 
the maximum array size allowed by Java. This is another example of a space-time 
tradeoff. Programs like PrimeSieve play an important role in helping mathemati-
cians to develop the theory of numbers, which has many important applications.

i isPrime

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T T T T T T T T T T T T T T T T T T T T T T T T

2 T T F T F T F T F T F T F T F T F T F T F T F T

3 T T F T F T F F F T F T F F F T F T F F F T F T

5 T T F T F T F F F T F T F F F T F T F F F T F F

T T F T F T F F F T F T F F F T F T F F F T F F

Trace of java PrimeSieve 25 
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Two-dimensional arrays In many applications, a convenient way to store in-
formation is to use a table of numbers organized in a rectangular table and refer 
to rows and columns in the table. For example, a teacher might need to maintain 
a table with a row corresponding to each student and a column corresponding to 
each assignment, a scientist might need to maintain a table of experimental data 
with rows corresponding to experiments and columns corre-
sponding to various outcomes, or a programmer might want 
to prepare an image for display by setting a table of pixels to 
various grayscale values or colors.

The mathematical abstraction corresponding to such 
tables is a matrix; the corresponding Java construct is a two-
dimensional array. You are likely to have already encountered 
many applications of matrices and two-dimensional arrays, 
and you will certainly encounter many others in science, in 
engineering, and in computing applications, as we will dem-
onstrate with examples throughout this book. As with vectors 
and one-dimensional arrays, many of the most important ap-
plications involve processing large amounts of data, and we 
defer considering those applications until we consider input 
and output, in SECTION 1.5.

Extending Java array constructs to handle two-dimen-
sional arrays is straightforward. To refer to the element in row i and column j of 
a two-dimensional array a[][], we use the notation a[i][j]; to declare a two-di-
mensional array, we add another pair of brackets; and to create the array, we specify 
the number of rows followed by the number of columns after the type name (both 
within brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension 
is the number of rows and the second is the number of columns. As with one-
dimensional arrays, Java initializes all entries in arrays of numbers to zero and in 
arrays of boolean values to false.

Initialization. Default initialization of two-dimensional arrays is useful because 
it masks more code than for one-dimensional arrays. The following code is equiva-
lent to the single-line create-and-initialize idiom that we just considered:

Anatomy of a
two-dimensional array

99  85  98  
98  57  78 
92  77  76  
94  32  11  
99  34  22  
90  46  54  
76  59  88  
92  66  89  
97  71  24  
89  29  38  

row 1

column 2

a[1][2]
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double[][] a; 
a = new double[M][N]; 
for (int i = 0; i < M; i++) 
{  // Initialize the ith row.
   for (int j = 0; j < N; j++) 
      a[i][j] = 0.0; 
}

This code is superfluous when initializing to zero, but the nested for loops are 
needed to initialize to some other value(s). As you will see, this code is a model for 
the code that we use to access or modify each element of a two-dimensional array.

Output. We use nested for loops for many array-processing operations. For ex-
ample, to print an M-by-N array in the familiar tabular format, we would use the 
following code

for (int i = 0; i < M; i++) 
{  // Print the ith row.
   for (int j = 0; j < N; j++) 
      System.out.print(a[i][j] + " "); 
   System.out.println(); 
}

regardless of the array elements’ type. If desired, we 
could add code to embellish the output with row and 
column numbers (see EXERCISE 1.4.6), but Java pro-
grammers typically tabulate arrays with row numbers 
running top to bottom from 0 and column number 
running left to right from 0. Generally, we also do so 
and do not bother to use labels.

Memory representation. Java represents a two-di-
mensional array as an array of arrays. A matrix with 
M rows and N columns is actually an array of length 
M, each entry of which is an array of length N. In a 
two-dimensional Java array a[][], we can use the code 
a[i] to refer to the ith row (which is a one-dimen-
sional array), but we have no corresponding way to 
refer to a column.

a[][]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0]

a[7][0]

a[6][1]

a[7][1]

a[6][2]

a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[5]
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Setting values at compile time. The Java method for initial-
izing an array of values at compile time follows immediately 
from the representation. A two-dimensional array is an array 
of rows, each row initialized as a one-dimensional array. To 
initialize a two-dimensional array, we enclose in braces a list 
of terms to initialize the rows, separated by commas. Each 
term in the list is itself a list: the values for the array elements 
in the row, enclosed in braces and separated by commas.

Spreadsheets. One familiar use of arrays is a spreadsheet for 
maintaining a table of numbers. For example, a teacher with 
M students and N test grades for each student might main-
tain an (M +1)-by-(N +1) array, reserving the last column for 
each student’s average grade and the last row for the average 
test grades. Even though we typically do such computations 
within specialized applications, it is worthwhile to study the 
underlying code as an introduction to array processing. To compute the average 
grade for each student (average values for each row), sum the entries for each row 
and divide by N. The row-by-row order in which this code processes the matrix 

Typical spreadsheet calculations

99  85  98  94 
98  57  78  77 
92  77  76  81 
94  32  11  45 
99  34  22  51 
90  46  54  63 
76  59  88  74 
92  66  89  82 
97  71  24  64 
89  29  38  52 
92  55  57

row
averages

in column N
N = 3

M = 10

column
averages
in row M

92+77+76
3

85+57+...+29
10

for (int i = 0; i < M; i++)
{  // Compute average for row i
   double sum = 0.0;
   for (int j = 0; j < N; j++)
      sum += a[i][j];
   a[i][N] = (int) Math.round(sum/N);
}

for (int j = 0; j < N; j++)
{  // Compute average for column j
   double sum = 0.0;
   for (int i = 0; i < M; i++)
      sum += a[i][j]; 
   a[M][j] = (int) Math.round(sum/M);
}

Compute row averages

Compute column averages

Compile-time initialization
of a two-dimensional array

int[][] a =
{
   { 99, 85, 98,  0 },
   { 98, 57, 78,  0 },
   { 92, 77, 76,  0 },
   { 94, 32, 11,  0 },
   { 99, 34, 22,  0 },
   { 90, 46, 54,  0 },
   { 76, 59, 88,  0 },
   { 92, 66, 89,  0 },
   { 97, 71, 24,  0 },
   { 89, 29, 38,  0 },
   {  0,  0,  0,  0 }
};
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entries is known as row-major order. Similarly, to compute the average test grade 
(average values for each column), sum the entries for each column and divide by 
M. The column-by-column order in which this code processes the matrix entries is 
known as column-major order. 

Matrix operations. Typical applications in science and 
engineering involve representing matrices as two-di-
mensional arrays and then implementing various math-
ematical operations with matrix operands. Again, even 
though such processing is often done within specialized 
applications, it is worthwhile for you to understand the 
underlying computation. For example, we can add two 
N-by-N matrices as follows:

    double[][] c = new double[N][N]; 
    for (int i = 0; i < N; i++) 
       for (int j = 0; j < N; j++) 
          c[i][j] = a[i][j] + b[i][j]; 

Similarly, we can multiply two matrices. You may have 
learned matrix multiplication, but if you do not recall or 

are not familiar with it, the Java code below for square matrices is es-
sentially the same as the mathematical definition. Each entry c[i][j] 
in the product of a[] and b[] is computed by taking the dot product 
of row i of a[] with column j of b[]. 

double[][] c = new double[N][N]; 
for (int i = 0; i < N; i++) 
{ 
   for (int j = 0; j < N; j++) 
   { 
      // Compute dot product of row i and column j.
      for (int k = 0; k < N; k++) 
         c[i][j] += a[i][k]*b[k][j]; 
   } 
}

The definition extends to matrices that are not necessarily square (see 
EXERCISE 1.4.17). Matrix multiplication

.70 .20 .10  

.30 .60 .10  

.50 .10 .40  

.59 .32 .41

.31 .36 .25

.45 .31 .42

row 1

c[1][2] =  .3 *.5
         + .6 *.1
         + .1 *.4
        = .25

a[][]

c[][]

.80 .30 .50 

.10 .40 .10 

.10 .30 .40 

column 2
b[][]

Matrix addition

.70 .20 .10  

.30 .60 .10  

.50 .10 .40  

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

c[1][2]

a[][]

c[][]

.80 .30 .50 

.10 .40 .10 

.10 .30 .40 

b[][] b[1][2]

a[1][2]
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Special cases of matrix multiplication. Two special cases of matrix multiplication 
are important. These special cases occur when one of the dimensions of one of the 
matrices is 1, so it may be viewed as a vector. We have matrix-vector multiplication, 
where we multiply an M-by-N matrix by a column vector (an N-by-1 matrix) to get 

an M-by-1 column vector result (each entry 
in the result is the dot product of the corre-
sponding row in the matrix with the oper-
and vector). The second case is vector-matrix 
multiplication, where we multiply a row vector 
(a 1-by-M matrix) by an M-by-N matrix to 
get a 1-by-N  row vector result (each entry in 
the result is the dot product of the operand 
vector with the corresponding column in the 
matrix). These operations provide a succinct 
way to express numerous matrix calculations. 
For example, the row-average computation 
for such a spreadsheet with M rows and N 
columns is equivalent to a matrix-vector 
multiplication where the column vector has 
M entries all equal to 1/M. Similarly, the col-
umn-average computation in such a spread-
sheet is equivalent to a vector-matrix multi-
plication where the row vector has N entries 
all equal to 1/N. We return to vector-matrix 
multiplication in the context of an important 
application at the end of this chapter.

Ragged arrays. There is actually no require-
ment that all rows in a two-dimensional array 
have the same length—an array with rows of 
nonuniform length is known as a ragged array 
(see EXERCISE 1.4.32 for an example applica-
tion). The possibility of ragged arrays creates 
the need for more care in crafting array-pro-
cessing code. For example, this code prints 
the contents of a ragged array:Matrix-vector and vector-matrix multiplication

99  85  98
98  57  78
92  77  76
94  32  11
99  34  22
90  46  54 
76  59  88 
92  66  89
97  71  24 
89  29  38 

94 
77 
81 
45 
51 
63 
74 
82 
64 
52 

row
averages

column
averages

for (int i = 0; i < M; i++)
{  // Dot product of row i and x[].
   for (int j = 0; j < N; j++)
      b[i] += a[i][j]*x[j]; 
}

for (int j = 0; j < N; j++)
{  // Dot product of y[] and column j.
   for (int i = 0; i < M; i++)
      c[j] += y[i]*a[i][j]; 
}

Matrix-vector multiplication  a[][]*x[] = b[]

Vector-matrix multiplication  y[]*a[][] = c[]

.33

.33

.33

a[][]

99  85  98
98  57  78
92  77  76
94  32  11
99  34  22
90  46  54 
76  59  88 
92  66  89
97  71  24 
89  29  38 

a[][]

y[]

x[]

b[]

c[] [92  55  57]

[ .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 ]
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for (int i = 0; i < a.length; i++) 
{ 
   for (int j = 0; j < a[i].length; j++) 
      System.out.print(a[i][j] + " "); 
   System.out.println(); 
}

This code tests your understanding of Java arrays, so you should take the time to 
study it. In this book, we normally use square or rectangular arrays, whose dimen-
sion is given by a variable M or N. Code that uses a[i].length in this way is a clear 
signal to you that an array is ragged.

Multidimensional arrays. The same notation extends to allow us to write code 
using arrays that have any number of dimensions. For instance, we can declare and 
initialize a three-dimensional array with the code

double[][][] a = new double[N][N][N];

and then refer to an entry with code like a[i][j][k], and so forth.

TWO-DIMENSIONAL ARRAYS PROVIDE A NATURAL REPRESENTATION for matrices, which are 
omnipresent in science, mathematics, and engineering. They also provide a natural 
way to organize large amounts of data, a key factor in spreadsheets and many other 
computing applications. Through Cartesian coordinates, two- and three-dimen-
sional arrays also provide the basis for a models of the physical world. We consider 
their use in all three arenas throughout this book. 

Example: self-avoiding random walks Suppose that you leave 
your dog in the middle of a large city whose streets form a familiar grid 
pattern. We assume that there are N north-south streets and N east-west 
streets all regularly spaced and fully intersecting in a pattern known as a 
lattice. Trying to escape the city, the dog makes a random choice of which 
way to go at each intersection, but knows by scent to avoid visiting any 
place previously visited. But it is possible for the dog to get stuck in a 
dead end where there is no choice but to revisit some intersection. What 
is the chance that this will happen? This amusing problem is a simple 
example of a famous model known as the self-avoiding random walk, 
which has important scientific applications in the study of polymers and 
in statistical mechanics, among many others. For example, you can see Self-avoiding walks

dead end

escape
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that this process models a chain of material growing a bit at a time, until no growth 
is possible. To better understand such processes, scientists seek to understand the 
properties of self-avoiding walks.

The dog’s escape probability is certainly dependent on the size of the city. In 
a tiny 5-by-5 city, it is easy to convince yourself that the dog is certain to escape. 
But what are the chances of escape when the city is large? We are also interested in 
other parameters. For example, how long is the dog’s path, on the average? How 
often does the dog come within one block of a previous position other than the 
one just left, on the average? How often does the dog come within one block of 
escaping? These sorts of properties are important in the various applications just 
mentioned.

SelfAvoidingWalk (PROGRAM 1.4.4) is a simulation of this situation that uses 
a two-dimensional boolean array, where each entry represents an intersection. The 
value true indicates that the dog has visited the intersection; false indicates that 
the dog has not visited the intersection. The path starts in the center and takes ran-
dom steps to places not yet visited until getting stuck or escaping at a boundary. For 
simplicity, the code is written so that if a random choice is made to go to a spot that 
has already been visited, it takes no action, trusting that some subsequent random 
choice will find a new place (which is assured because the code explicitly tests for a 
dead end and leaves the loop in that case).

Note that the code depends on Java initializing all of the array entries to false 
for each experiment. It also exhibits an important programming technique where 
we code the loop exit test in the while statement as a guard against an illegal state-
ment in the body of the loop. In this case, the while loop continuation test serves 
as a guard against an out-of-bounds array access within the loop. This corresponds 
to checking whether the dog has escaped. Within the loop, a successful dead-end 
test results in a break out of the loop.

As you can see from the sample runs, the unfortunate truth is that your dog 
is nearly certain to get trapped in a dead end in a large city. If you are interested in 
learning more about self-avoiding walks, you can find several suggestions in the ex-
ercises. For example, the dog is virtually certain to escape in the three-dimensional 
version of the problem. While this is an intuitive result that is confirmed by our 
tests, the development of a mathematical model that explains the behavior of self-
avoiding walks is a famous open problem: despite extensive research, no one knows 
a succinct mathematical expression for the escape probability, the average length of 
the path, or any other important parameter.
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% java SelfAvoidingWalk 5 100 
0% dead ends 
% java SelfAvoidingWalk 20 100 
36% dead ends 
% java SelfAvoidingWalk 40 100  
80% dead ends 
% java SelfAvoidingWalk 80 100 
98% dead ends 
% java SelfAvoidingWalk 160 100  
100% dead ends

Program 1.4.4 Self-avoiding random walks

public class SelfAvoidingWalk
{ 
   public static void main(String[] args)

   {  // Do T random self-avoiding walks
      //   in an N-by-N lattice
      int N = Integer.parseInt(args[0]); 
      int T = Integer.parseInt(args[1]); 
      int deadEnds = 0; 
      for (int t = 0; t < T; t++) 
      { 
         boolean[][] a = new boolean[N][N]; 
         int x = N/2, y = N/2; 
         while (x > 0 && x < N-1 && y > 0 && y < N-1) 
         {  // Check for dead end and make a random move.
            a[x][y] = true; 
            if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1]) 
            {  deadEnds++; break;  } 
            double r = Math.random(); 
            if      (r < 0.25) { if (!a[x+1][y]) x++; } 
            else if (r < 0.50) { if (!a[x-1][y]) x--; } 
            else if (r < 0.75) { if (!a[x][y+1]) y++; } 
            else if (r < 1.00) { if (!a[x][y-1]) y--; } 
         } 
      } 
      System.out.println(100*deadEnds/T + "% dead ends"); 
   } 
}

This program takes command-line arguments N and T and computes T self-avoiding walks in 
an N-by-N lattice. For each walk, it creates a boolean array, starts the walk in the center, and 
continues until either a dead end or a boundary is reached. The result of the computation is the 
percentage of dead ends. As usual, increasing the number of experiments increases the precision 
of the results.

N lattice size
T number of trials

deadEnds trials resulting in a dead end

a[][] intersections visited

x, y current position

r random number in (0, 1)

% java SelfAvoidingWalk 5 1000 
0% dead ends 
% java SelfAvoidingWalk 20 1000 
32% dead ends 
% java SelfAvoidingWalk 40 1000  
70% dead ends 
% java SelfAvoidingWalk 80 1000 
95% dead ends 
% java SelfAvoidingWalk 160 1000  
100% dead ends
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Self-avoiding random walks in a 21-by-21 grid
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Summary Arrays are the fourth basic element (after assignments, conditionals, 
and loops) found in virtually every programming language, completing our cover-
age of basic Java constructs. As you have seen with the sample programs that we 
have presented, you can write programs that can solve all sorts of problems using 
just these constructs.

Arrays are prominent in many of the programs that we consider, and the basic 
operations that we have discussed here will serve you well in addressing many pro-
gramming tasks. When you are not using arrays explicitly (and you are sure to be 
doing so frequently), you will be using them implicitly, because all computers have 
a memory that is conceptually equivalent to an indexed array.

The fundamental ingredient that arrays add to our programs is a potentially 
huge increase in the size of a program’s state. The state of a program can be defined 
as the information you need to know to understand what a program is doing. In a 
program without arrays, if you know the values of the variables and which state-
ment is the next to be executed, you can normally determine what the program 
will do next. When we trace a program, we are essentially tracking its state. When 
a program uses arrays, however, there can be too huge a number of values (each of 
which might be changed in each statement) for us to effectively track them all. This 
difference makes writing programs with arrays more of a challenge than writing 
programs without them.

Arrays directly represent vectors and matrices, so they are of direct use in 
computations associated with many basic problems in science and engineering. Ar-
rays also provide a succinct notation for manipulating a potentially huge amount 
of data in a uniform way, so they play a critical role in any application that involves 
processing large amounts of data, as you will see throughout this book.
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Q&A

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s 
the difference?

A. In Java, both are legal and equivalent. The former is how arrays are declared in 
C. The latter is the preferred style in Java since the type of the variable int[] more 
clearly indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the 
address of an array element would be computed by adding the index to the address 
of the beginning of an array. Starting indices at 1 would entail either a waste of 
space at the beginning of the array or a waste of time to subtract the 1.

Q. What happens if I use a negative number to index an array?

A. The same thing as when you use an index that is too big. Whenever a program 
attempts to index an array with an index that is not between zero and the array 
length minus one, Java will issue an ArrayIndexOutOfBoundsException and ter-
minate the program.

Q. What happens when I compare two arrays with (a == b)?

A. The expression evaluates to true only if a[] and b[] refer to the same array, not 
if they have the same sequence of elements. Unfortunately, this is rarely what you 
want.

Q. If a[] is an array, why does System.out.println(a) print out a hexadecimal 
integer, like @f62373 , instead of the elements of the array?

A. Good question. It is printing out the memory address of the array, which, un-
fortunately, is rarely what you want.

Q. What other pitfalls should I watch out for when using arrays?

A. It is very important to remember that Java always initializes arrays when you 
create them, so that creating an array takes time proportional to the size of the array. 
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Exercises

1.4.1 Write a program that declares and initializes an array a[] of size 1000 and 
accesses a[1000]. Does your program compile? What happens when you run it?

1.4.2 Describe and explain what happens when you try to compile a program 
with the following statement:

int N = 1000; 
int[] a = new int[N*N*N*N];

1.4.3 Given two vectors of length N that are represented with one-dimensional 
arrays, write a code fragment that computes the Euclidean distance between them 
(the square root of the sums of the squares of the differences between correspond-
ing entries).

1.4.4 Write a code fragment that reverses the order of a one-dimensional array 
a[] of String values. Do not create another array to hold the result. Hint : Use the 
code in the text for exchanging two elements.

1.4.5 What is wrong with the following code fragment?

int[] a; 
for (int i = 0; i < 10; i++) 
   a[i] = i * i; 

Solution. It does not allocate memory for a[] with new. This code results in a 
variable a might not have been initialized compile-time error.

1.4.6 Write a code fragment that prints the contents of a two-dimensional bool-
ean array, using * to represent true and a space to represent false. Include row and 
column numbers.

1.4.7 What does the following code fragment print?

int[] a = new int[10]; 
for (int i = 0; i < 10; i++) 
   a[i] = 9 - i;  
for (int i = 0; i < 10; i++) 
   a[i] = a[a[i]];  
for (int i = 0; i < 10; i++) 
   System.out.println(a[i]); 
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1.4.8 What values does the following code put in the array a[]?

int N = 10; 
int[] a = new int[N]; 
a[0] = 1; 
a[1] = 1; 
for (int i = 2; i < N; i++) 
   a[i] = a[i-1] + a[i-2]; 

1.4.9 What does the following code fragment print?

int[] a = { 1, 2, 3 }; 
int[] b = { 1, 2, 3 }; 
System.out.println(a == b);

1.4.10 Write a program Deal that takes an command-line argument N and prints 
N poker hands (five cards each) from a shuffled deck, separated by blank lines.

1.4.11 Write code fragments to create a two-dimensional array b[][] that is a 
copy of an existing two-dimensional array a[][], under each of the following as-
sumptions: 

a. a[][] is square

b. a[][] is rectangular

c. a[][] may be ragged
Your solution to b should work for a, and your solution to c should work for both 
b and a, but your code should get progressively more complicated.

1.4.12 Write a code fragment to print the transposition (rows and columns 
changed) of a square two-dimensional array. For the example spreadsheet array in 
the text, you code would print the following:

99  98  92  94  99  90  76  92  97  89 
85  57  77  32  34  46  59  66  71  29 
98  78  76  11  22  54  88  89  24  38

1.4.13 Write a code fragment to transpose a square two-dimensional array in place 
without creating a second array.
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1.4.14 Write a program that takes an integer N from the command line and cre-
ates an N-by-N boolean array a[][] such that a[i][j] is true if i and j are rela-
tively prime (have no common factors), and false otherwise. Use your solution to 
EXERCISE 1.4.6 to print the array. Hint: Use sieving.

1.4.15 Write a program that computes the product of two square matrices of 
boolean values, using the or operation instead of + and the and operation instead 
of *.

1.4.16 Modify the spreadsheet code fragment in the text to compute a weighted 
average of the rows, where the weights of each test score are in a one-dimensional 
array weights[]. For example, to assign the last of the three tests in our example to 
be twice the weight of the others, you would use 

double[] weights = { .25, .25, .50 };

Note that the weights should sum to 1.

1.4.17 Write a code fragment to multiply two rectangular matrices that are not 
necessarily square. Note: For the dot product to be well-defined, the number of col-
umns in the first matrix must be equal to the number of rows in the second matrix. 
Print an error message if the dimensions do not satisfy this condition.

1.4.18 Modify SelfAvoidingWalk (PROGRAM 1.4.4) to calculate and print the av-
erage length of the paths as well as the dead-end probability. Keep separate the 
average lengths of escape paths and dead-end paths.

1.4.19 Modify SelfAvoidingWalk to calculate and print the average area of the 
smallest axis-oriented rectangle that encloses the path. Keep separate statistics for 
escape paths and dead-end paths.
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Creative Exercises

1.4.20 Dice simulation. The following code computes the exact probability distri-
bution for the sum of two dice:

double[] dist = new double[13]; 
for (int i = 1; i <= 6; i++) 
   for (int j = 1; j <= 6; j++) 
      dist[i+j] += 1.0; 
  
for (int k = 1; k <= 12; k++) 
   dist[k] /= 36.0; 

The value dist[k] is the probability that the dice sum to k. Run experiments to 
validate this calculation simulating N dice throws, keeping track of the frequencies 
of occurrence of each value when you compute the sum of two random integers 
between 1 and 6. How large does N have to be before your empirical results match 
the exact results to three decimal places?

1.4.21 Longest plateau. Given an array of integers, find the length and location of 
the longest contiguous sequence of equal values where the values of the elements 
just before and just after this sequence are smaller.

1.4.22 Empirical shuffle check. Run computational experiments to check that our 
shuffling code works as advertised. Write a program ShuffleTest that takes com-
mand-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row 
i gives the number of times i wound up in position j for all j. All entries in the 
array should be close to N/M.

1.4.23 Bad shuffling. Suppose that you choose a random integer between 0 and 
N-1 in our shuffling code instead of one between i and N-1. Show that the resulting 
order is not equally likely to be one of the N! possibilities. Run the test of the previ-
ous exercise for this version.

1.4.24 Music shuffling. You set your music player to shuffle mode. It plays each of 
the N songs before repeating any. Write a program to estimate the likelihood that 
you will not hear any sequential pair of songs (that is, song 3 does not follow song 
2, song 10 does not follow song 9, and so on).
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1.4.24 Minima in permutations. Write a program that takes an integer N from 
the command line, generates a random permutation, prints the permutation, and 
prints the number of left-to-right minima in the permutation (the number of times 
an element is the smallest seen so far). Then write a program that takes integers M 
and N from the command line, generates M random permutations of size N, and 
prints the average number of left-to-right minima in the permutations generated. 
Extra credit : Formulate a hypothesis about the number of left-to-right minima in 
a permutation of size N, as a function of N.

1.4.25 Inverse permutation. Write a program that reads in a permutation of the 
integers 0 to N-1 from N command-line arguments and prints the inverse permu-
tation. (If the permutation is in an array a[], its inverse is the array b[] such that 
a[b[i]] = b[a[i]] = i.) Be sure to check that the input is a valid permutation.

1.4.26 Hadamard matrix. The N-by-N Hadamard matrix H(N) is a boolean ma-
trix with the remarkable property that any two rows differ in exactly N/2 entries. 
(This property makes it useful for designing error-correcting codes.) H(1) is a 
1-by-1 matrix with the single entry true, and for N>1, H(2N) is obtained by align-
ing four copies of H(N) in a large square, and then inverting all of the entries in the 
lower right N-by-N copy, as shown in the following examples (with T representing 
true and F representing false, as usual).

H(1) H(2) H(4)
T T T T T T T

T F T F T F

T T F F

T F F T

Write a program that takes one command-line argument N and prints H(N). As-
sume that N is a power of 2.

1.4.27 Rumors. Alice is throwing a party with N other guests, including Bob. Bob 
starts a rumor about Alice by telling it to one of the other guests. A person hearing 
this rumor for the first time will immediately tell it to one other guest, chosen at 
random from all the people at the party except Alice and the person from whom 
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they heard it. If a person (including Bob) hears the rumor for a second time, he or 
she will not propagate it further. Write a program to estimate the probability that 
everyone at the party (except Alice) will hear the rumor before it stops propagating. 
Also calculate an estimate of the expected number of people to hear the rumor.

1.4.28 Find a duplicate. Given an array of N elements with each element between 
1 and N, write an algorithm to determine whether there are any duplicates. You do 
not need to preserve the contents of the given array, but do not use an extra array.

1.4.29 Counting primes. Compare PrimeSieve with the method that we used to 
demonstrate the break statement, at the end of SECTION 1.3. This is a classic example 
of a time-space tradeoff: PrimeSieve is fast, but requires a boolean array of size 
N; the other approach uses only two integer variables, but is substantially slower. 
Estimate the magnitude of this difference by finding the value of N for which this 
second approach can complete the computation in about the same time as java 
PrimeSeive 1000000. 

1.4.30 Minesweeper. Write a program that takes 3 command-line arguments M, 
N, and p and produces an M-by-N boolean array where each entry is occupied with 
probability p. In the minesweeper game, occupied cells represent bombs and empty 
cells represent safe cells. Print out the array using an asterisk for bombs and a period 
for safe cells. Then, replace each safe square with the number of neighboring bombs 
(above, below, left, right, or diagonal) and print out the solution.

* * . . .       * * 1 0 0 
. . . . .       3 3 2 0 0 
. * . . .       1 * 1 0 0

Try to write your code so that you have as few special cases as possible to deal with, 
by using an (M"2)-by-(N"2) boolean array.

1.4.31 Self-avoiding walk length. Suppose that there is no limit on the size of the 
grid. Run experiments to estimate the average walk length.

1.4.32 Three-dimensional self-avoiding walks. Run experiments to verify that the 
dead-end probability is 0 for a three-dimensional self-avoiding walk and to com-
pute the average walk length for various values of N.
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1.4.33 Random walkers. Suppose that N random walkers, starting in the center 
of an N-by-N grid, move one step at a time, choosing to go left, right, up, or down 
with equal probability at each step. Write a program to help formulate and test a 
hypothesis about the number of steps taken before all cells are touched.

1.4.34 Bridge hands. In the game of bridge, four players are dealt hands of 13 
cards each. An important statistic is the distribution of the number of cards in each 
suit in a hand. Which is the most likely, 5-3-3-2, 4-4-3-2, or 4-3-3-3?

1.4.35 Birthday problem. Suppose that people enter an empty room until a pair 
of people share a birthday. On average, how many people will have to enter before 
there is a match? Run experiments to estimate the value of this quantity. Assume 
birthdays to be uniform random integers between 0 and 364. 

1.4.36 Coupon collector. Run experiments to validate the classical mathematical 
result that the expected number of coupons needed to collect N values is about 
NHN. For example, if you are observing the cards carefully at the blackjack table 
(and the dealer has enough decks randomly shuffled together), you will wait until 
about 235 cards are dealt, on average, before seeing every card value.

1.4.37 Binomial coefficients. Write a program that builds and prints a two-dimen-
sional ragged array a such that a[N][k] contains the probability that you get exactly 
k heads when you toss a coin N times. Take a command-line argument to specify the 
maximum value of N. These numbers are known as the binomial distribution: if you 
multiply each entry in row i by 2 N, you get the binomial coefficients (the coefficients 
of x k in (x+1)N) arranged in Pascal’s triangle. To compute them, start with a[N][0] 
= 0 for all N and a[1][1] = 1, then compute values in successive rows, left to right, 
with a[N][k] = (a[N-1][k] + a[N-1][k-1])/2.

Pascal’s triangle binomial distribution
1 1

1 1 1/2  1/2

1 2 1 1/4  1/2  1/4

1 3 3 1 1/8  3/8  3/8  1/8

1 4 6 4 1 1/16 1/4  3/8  1/4  1/16
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