
Elements of Programming

1.4 Arrays

IN THIS SECTION, WE CONSIDER A fundamental programming construct known as the
array. The primary purpose of an array is to facilitate storing and manipulating
large quantities of data. Arrays play an essential role in many data processing tasks.
They also correspond to vectors and matrices, which are widely used in science and
in scientific programming. We will con-
sider basic properties of array processing
in Java, with many examples illustrating
why they are useful.

An array stores a sequence of values
that are all of the same type. Processing
such a set of values is very common. We
might have exam scores, stock prices, nucleotides in a DNA strand, or characters in
a book. Each of these examples involve a large number of values that are all of the
same type.

We want not only to store values but also directly access each in-
dividual value. The method that we use to refer to individual values in
an array is numbering and then indexing them. If we have N values, we
think of them as being numbered from 0 to N!1. Then, we can unam-
biguously specify one of them by referring to the ith value for any value
of i from 0 to N!1. To refer to the ith value in an array a, we use the
notation a[i], pronounced a sub i. This Java construct is known as a
one-dimensional array.

The one-dimensional array is our first example in this book of a
data structure (a method for organizing data). We also consider in this
section a more complicated data structure known as a two-dimensional
array. Data structures play an essential role in modern programming—
CHAPTER 4 is largely devoted to the topic.

Typically, when we have a large amount of data to process, we first put all of
the data into one or more arrays. Then we use array indexing to refer to individual
values and to process the data. We consider such applications when we discuss data
input in SECTION 1.5 and in the case study that is the subject of SECTION 1.6. In this
section, we expose the basic properties of arrays by considering examples where
our programs first populate arrays with computed values from experimental stud-
ies and then process them.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a

An array

1.4.1 Sampling without replacement . . . 94
1.4.2 Coupon collector simulation 98
1.4.3 Sieve of Eratosthenes 100
1.4.4 Self-avoiding random walks 109

Programs in this section

!"#$%&'(')!"*+,,,98 ./01/23,,,0425,67

871.4 Arrays

Arrays in Java Making an array in a Java program involves three distinct steps:
Declare the array name and type.
Create the array.
Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain.
To create it, you need to specify its size (the number of values). For example, the
following code makes an array of N numbers of type double, all initialized to 0.0:

double[] a;
a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = 0.0;

The first statement is the array declaration. It is just like a declaration of a variable
of the corresponding primitive type except for the square brackets following the
type name, which specify that we are declaring an array. The second statement cre-
ates the array. This action is unnecessary for variables of a primitive type (so we
have not seen a similar action before), but it is needed for all other types of data in
Java (see SECTION 3.1). In the code in this book, we normally keep the array length in
an integer variable N, but any integer-valued expression will do. The for statement
initializes the N array values. We refer to each value by putting its index in brackets
after the array name. This code sets all of the array entries to the value 0.0.

When you begin to write code that uses an array, you must be sure that your
code declares, creates, and initializes it. Omitting one of these steps is a common
programming mistake. For economy in code, we often take advantage of Java’s de-
fault array initialization convention and combine all three steps into a single state-
ment. For example, the following statement is equivalent to the code above:

double[] a = new double[N];

The code to the left of the equal sign constitutes the declaration; the code to the
right constitutes the creation. The for loop is unnecessary in this case because the
default initial value of variables of type double in a Java array is 0.0, but it would
be required if a nonzero value were desired. The default initial value is zero for all
numbers and false for type boolean. For String and other non-primitive types,
the default is the value null, which you will learn about in CHAPTER 3.

After declaring and creating an array, you can refer to any individual value
anywhere you would use a variable name in a program by enclosing an integer in-

!"#$%&'(')!"*+,,,91 ./01/23,,,0425,67

88 Elements of Programming

dex in braces after the array name. We refer to the ith item with the code a[i]. The
explicit initialization code shown earlier is an example of such a use. The obvious
advantage of using arrays is to avoid explicitly naming each variable individually.
Using an array index is virtually the same as appending the index to the array name:
for example, if we wanted to process eight variables of type double, we could de-
clare each of them individually with the declaration

double a0, a1, a2, a3, a4, a5, a6, a7;

and then refer to them as a0, a1 and so forth instead of declaring them with dou-
ble[] a = new double[8] and referring to them as a[0], a[1], and so forth. But
naming dozens of individual variables in this way would be cumbersome and nam-
ing millions is untenable.

As an example of code that uses arrays, consider using arrays to represent vec-
tors. We consider vectors in detail in SECTION 3.3; for the moment, think of a vector
as a sequence of real numbers. The dot product of two vectors (of the same length)
is the sum of the products of their corresponding components. The dot product
of two vectors that are represented as one-dimensional arrays x[] and y[] that are
each of length 3 is the expression x[0]*y[0] + x[1]*y[1] + x[2]*y[2]. If we
represent the two vectors as one-dimensional arrays x[] and y[] that are each of
length N and of type double, the dot product is
easy to compute:

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += x[i]*y[i];

The simplicity of coding such computations
makes the use of arrays the natural choice for all
kinds of applications. (Note that when we use the
notation x[], we are referring to the whole array,
as opposed to x[i], which is a reference to the ith
entry.)

The accompanying table has many examples of array-processing code, and we
will consider even more examples later in the book, because arrays play a central
role in processing data in many applications. Before considering more sophisticat-
ed examples, we describe a number of important characteristics of programming
with arrays.

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

Trace of dot product computation

!"#$%&'(')!"*+,,,99 ./01/23,,,0425,67

891.4 Arrays

Zero-based indexing. We always refer to the first element of an array as a[0], the
second as a[1], and so forth. It might seem more natural to you to refer to the first
element as a[1], the second value as a[2], and so forth, but starting the index-
ing with 0 has some advantages and has emerged as the convention used in most
modern programming languages. Misunderstanding this convention often leads to
off-by one-errors that are notoriously difficult to avoid and debug, so be careful!

Array length. Once we create an array, its size is fixed. The reason that we need to
explicitly create arrays at runtime is that the Java compiler cannot know how much
space to reserve for the array at compile time (as it can for primitive-type values).
Our convention is to keep the size of the array in a variable N whose value can be
set at runtime (usually it is the value of a command-line argument). Java’s stan-
dard mechanism is to allow a program to refer to the length of an array a[] with
the code a.length; we normally use N to create the array, or set the value of N to
a.length. Note that the last element of an array is always a[a.length-1].

create an array
with random values

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

print the array values,
one per line

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

find the maximum of
the array values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
 if (a[i] > max) max = a[i];

compute the average of
 the array values

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

copy to another array
double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

reverse the elements
within an array

for (int i = 0; i < N/2; i++)
{
 double temp = b[i];
 b[i] = b[N-1-i];
 b[N-i-1] = temp;
}

Typical array-processing code (for arrays of N double values)

!"#$%&'(')!"*+,,,93 ./01/23,,,0425,67

90 Elements of Programming

Memory representation. Arrays are fundamental data structures in that they
have a direct correspondence with memory systems on virtually all computers.
The elements of an array are stored consecutively in memory, so that it is easy
to quickly access any array value. Indeed, we can view memory itself as a giant

array. On modern computers, memory is implemented in hardware as
a sequence of indexed memory locations that each can be quickly ac-
cessed with an appropriate index. When referring to computer memory,
we normally refer to a location’s index as its address. It is convenient to
think of the name of the array—say, a—as storing the memory address
of the first element of the array a[0]. For the purposes of illustration,
suppose that the computer’s memory is organized as 1,000 values, with
addresses from 000 to 999. (This simplified model ignores the fact that
array elements can occupy differing amounts of memory depending on
their type, but you can ignore such details for the moment.) Now, sup-
pose that an array of eight elements is stored in memory locations 523
through 530. In such a situation, Java would store the memory address
(index) of the first array value somewhere else in memory, along with
the array length. We refer to the address as a pointer and think of it as
pointing to the referenced memory location. When we specify a[i], the
compiler generates code that accesses the desired value by adding the
index i to the memory address of the array a[]. For example, the Java
code a[4] would generate machine code that finds the value at memory
location 523 + 4 = 527. Accessing element i of an array is an efficient
operation because it simply requires adding two integers and then refer-
encing memory—just two elementary operations. Extending the model
to handle different-sized array elements just involves multiplying the
index by the element size before adding to the array address.

Memory allocation. When you use new to create an array, Java reserves
space in memory for it. This process is called memory allocation. The
same process is required for all variables that you use in a program. We
call attention to it now because it is your responsibility to use new to al-

locate memory for an array before accessing any of its elements. If you fail to adhere
to this rule, you will get a compile-time uninitialized variable error. Java automati-
cally initializes all of the values in an array when it is created. You should remember
that the time required to create an array is proportional to its length.

523 a[0]
524 a[1]

123 523
124 8

000

a

a.length

525 a[2]
526 a[3]
527 a[4]
528 a[5]
529 a[6]
530 a[7]

999

Memory representation

!"#$%&'(')!"*+,,,32 ./01/23,,,0425,67

911.4 Arrays

Bounds checking. As already indicated, you must be careful when programming
with arrays. It is your responsibility to use legal indices when accessing an array
element. If you have created an array of size N and use an index whose value is less
than 0 or greater than N-1, your program will terminate with an ArrayIndex-
OutOfBounds run-time exception. (In many programming languages, such buffer
overflow conditions are not checked by the system. Such unchecked errors can and
do lead to debugging nightmares, but it is also not uncommon for such an error to
go unnoticed and remain in a finished program. You might be surprised to know
that such a mistake can be exploited by a hacker to take control of a system, even
your personal computer, to spread viruses, steal personal information, or wreak
other malicious havoc.) The error messages provided by Java may seem annoying
to you at first, but they are small price to pay to have a more secure program.

Setting array values at compile time. When we have a small number of literal
values that we want to keep in array, we can declare and initialize it by listing the
values between curly braces, separated by commas. For example, we might use the
following code in a program that processes playing cards.

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

String[] rank =
{
 "2", "3", "4", "5", "6", "7", "8", "9", "10",
 "Jack", "Queen", "King", "Ace"
};

After creating the two arrays, we can use them to print out a random card name,
such as Queen of Clubs, as follows:

int i = (int) (Math.random() * rank.length);
int j = (int) (Math.random() * suit.length);
System.out.println(rank[i] + " of " + suit[j]);

This code uses the idiom introduced in SECTION 1.2 to generate random indices and
then uses the indices to pick strings out of the arrays. Whenever the values of all
array entries are known at compile time (and the size of the array is not too large)
it makes sense to use this method of initializing the array—just put all the values in
braces on the right hand side of an assignment in the array declaration. Doing so
implies array creation, so the new keyword is not needed.

!"#$%&'(')!"*+,,,3: ./01/23,,,0425,67

92 Elements of Programming

Setting array values at runtime. A more typical situation is when we wish to
compute the values to be stored in an array. In this case, we can use array names
with indices in the same way we use variable names on the left side of assignment
statements. For example, we might use the following code to initialize an array of
size 52 that represents a deck of playing cards, using the two arrays just defined:

String[] deck = new String[suit.length * rank.length];
for (int i = 0; i < suit.length; i++)
 for (int j = 0; j < rank.length; j++)
 deck[rank.length*i + j] = rank[i] + " of " + suit[j];

After this code has been executed, if you were to print out the contents of deck in
order from deck[0] through deck[51] using System.out.println(), you would
get the sequence

2 of Clubs
2 of Diamonds
2 of Hearts
2 of Spades
3 of Clubs
3 of Diamonds
...
Ace of Hearts
Ace of Spades

Exchange. Frequently, we wish to exchange two values in an array. Continuing our
example with playing cards, the following code exchanges the cards at position i
and j using the same idiom that we traced as our first example of the use of assign-
ment statements in SECTION 1.2:

String t = deck[i];
deck[i] = deck[j];
deck[j] = t;

When we use this code, we are assured that we are perhaps changing the order of
the values in the array but not the set of values in the array. When i and j are equal,
the array is unchanged. When i and j are not equal, the values a[i] and a[j] are
found in different places in the array. For example, if we were to use this code with
i equal to 1 and j equal to 4 in the deck array of the previous example, it would
leave 3 of Clubs in deck[1] and 2 of Diamonds in deck[4].

!"#$%&'(')!"*+,,,30 ./01/23,,,0425,67

931.4 Arrays

Shuffle. The following code shuffles our deck of cards:

int N = deck.length;
for (int i = 0; i < N; i++)
{
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[i];
 deck[i] = deck[r];
 deck[r] = t;
}

Proceeding from left to right, we pick a random card from deck[i] through
deck[N-1] (each card equally likely) and exchange it with deck[i]. This code is
more sophisticated than it might seem: First, we ensure that the cards in the deck
after the shuffle are the same as the cards in the deck before the shuffle by using
the exchange idiom. Second, we ensure that the shuffle is random by choosing uni-
formly from the cards not yet chosen.

Sampling without replacement. In many situations, we want to draw a random
sample from a set such that each member of the set appears at most once in the
sample. Drawing numbered ping-pong balls from a basket for a lottery is an ex-
ample of this kind of sample, as is dealing a hand from a deck of cards. Sample
(PROGRAM 1.4.1) illustrates how to sample, using the basic operation underlying
shuffling. It takes command-line arguments M and N and creates a permutation of
size N (a rearrangement of the integers from 0 to N-1) whose first M entries com-

i r
perm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 9 9 1 2 3 4 5 6 7 8 0 10 11 12 13 14 15

1 5 9 5 2 3 4 1 6 7 8 0 10 11 12 13 14 15

2 13 9 5 13 3 4 1 6 7 8 0 10 11 12 2 14 15

3 5 9 5 13 1 4 3 6 7 8 0 10 11 12 2 14 15

4 11 9 5 13 1 11 3 6 7 8 0 10 4 12 2 14 15

5 8 9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

Trace of java Sample 6 16

!"#$%&'(')!"*+,,,3. ./01/23,,,0425,67

94 Elements of Programming

% java Sample 6 16
9 5 13 1 11 8

% java Sample 10 1000
656 488 298 534 811 97 813 156 424 109

% java Sample 20 20
6 12 9 8 13 19 0 2 4 5 18 1 14 16 17 3 7 11 10 15

Program 1.4.1 Sampling without replacement

public class Sample
{
 public static void main(String[] args)
 { // Print a random sample of M integers
 // from 0 ... N-1 (no duplicates).
 int M = Integer.parseInt(args[0]);
 int N = Integer.parseInt(args[1]);
 int[] perm = new int[N];

 // Initialize perm[].
 for (int j = 0; j < N; j++)
 perm[j] = j;

 // Take sample.
 for (int i = 0; i < M; i++)
 { // Exchange perm[i] with a random element to its right.
 int r = i + (int) (Math.random() * (N-i));
 int t = perm[r];
 perm[r] = perm[i];
 perm[i] = t;
 }

 // Print sample.
 for (int i = 0; i < M; i++)
 System.out.print(perm[i] + " ");
 System.out.println();
 }
}

This program takes two command-line arguments M and N and produces a sample of M of the
integers from 0 to N-1. This process is useful, not just in state and local lotteries, but in scien-
tific applications of all sorts. If the first argument is equal to the second, the result is a random
permutation of the integers from 0 to N-1. If the first argument is greater than the second, the
program will terminate with an ArrayOutOfBounds exception.

M sample size
N range

perm[] permutation of 0 to N-1

!"#$%&'(')!"*+,,,3- ./01/23,,,0425,67

951.4 Arrays

prise a random sample. The accompanying trace of the contents of the perm[]
array at the end of each iteration of the main loop (for a run where the values of M
and N are 6 and 16, respectively) illustrates the process.

If the values of r are chosen such that each value in the given range is equally
likely, then perm[0] through perm[M-1] are a random sample at the end of the
process (even though some elements might move multiple times) because each
element in the sample is chosen by taking each item not yet sampled, with equal
probability for each choice. One important reason to explicitly compute the per-
mutation is that we can use it to print out a random sample of any array by using
the elements of the permutation as indices into the array. Doing so is often an at-
tractive alternative to actually rearranging the array because it may need to be in
order for some other reason (for instance, a company might wish to draw a random
sample from a list of customers that is kept in alphabetical order). To see how this
trick works, suppose that we wish to draw a random poker hand from our deck[]
array, constructed as just described. We use the code in Sample with N = 52 and M
= 5 and replace perm[i] with deck[perm[i]] in the System.out.print() state-
ment (and change it to println()), resulting in output such as the following:

3 of Clubs
Jack of Hearts
6 of Spades
Ace of Clubs
10 of Diamonds

Sampling like this is widely used as the basis for statistical studies in polling, scien-
tific research, and many other applications, whenever we want to draw conclusions
about a large population by analyzing a small random sample.

Precomputed values. One simple application of arrays is to save values that you
have computed, for later use. As an example, suppose that you are writing a pro-
gram that performs calculations using small values of the harmonic numbers (see
PROGRAM 1.3.5). An efficient approach is to save the values in an array, as follows:

double[] H = new double[N];
for (int i = 1; i < N; i++)
 H[i] = H[i-1] + 1.0/i;

Then you can just use the code H[i] to refer to any of the values. Precomputing val-
ues in this way is an example of a space-time tradeoff: by investing in space (to save

!"#$%&'(')!"*+,,,35 ./01/23,,,0425,67

96 Elements of Programming

the values) we save time (since we do not need to recompute them). This method
is not effective if we need values for huge N, but it is very effective if we need values
for small N many different times.

Simplifying repetitive code. As an example of another simple application of ar-
rays, consider the following code fragment, which prints out the name of a month
given its number (1 for January, 2 for February, and so forth):

if (m == 1) System.out.println("Jan");
else if (m == 2) System.out.println("Feb");
else if (m == 3) System.out.println("Mar");
else if (m == 4) System.out.println("Apr");
else if (m == 5) System.out.println("May");
else if (m == 6) System.out.println("Jun");
else if (m == 7) System.out.println("Jul");
else if (m == 8) System.out.println("Aug");
else if (m == 9) System.out.println("Sep");
else if (m == 10) System.out.println("Oct");
else if (m == 11) System.out.println("Nov");
else if (m == 12) System.out.println("Dec");

We could also use a switch statement, but a much more compact alternative is to
use a String array consisting of the names of each month:

String[] months =
{
 "", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
System.out.println(months[m]);

This technique would be especially useful if you needed to access the name of a
month by its number in several different places in your program. Note that we in-
tentionally waste one slot in the array (element 0) to make months[1] correspond
to January, as required.

Assignments and equality tests. Suppose that you have created the two arrays a[]
and b[]. What does it mean to assign one to the other with the code a = b; ? Simi-
larly, what does it mean to test whether the two arrays are equal with the code (a
== b)? The answers to these questions may not be what you first assume, but if you
think about the array memory representation, you will see that Java’s interpretation

!"#$%&'(')!"*+,,,38 ./01/23,,,0425,67

971.4 Arrays

of these operations makes sense: An assignment makes the names a and b refer to
the same array. The alternative would be to have an implied loop that assigns each
value in b to the corresponding value in a. Similarly, an equality test checks whether
the two names refer to the same array. The alternative would be to have an implied
loop that tests whether each value in one array is equal to the corresponding value
in the other array. In both cases, the implementation in Java is very simple: it just
performs the standard operation as if the array name were a variable whose value
is the memory address of the array. Note that there are many other operations
that you might want to perform on arrays: for example, it would be nice in some
applications to say a = a + b and have it mean “add the corresponding element
in b[] to each element in a[],” but that statement is not legal in Java. Instead, we
write an explicit loop to perform all the additions. We will consider in detail Java’s
mechanism for satisfying such higher-level programming needs in SECTION 3.2. In
typical applications, we use this mechanism, so we rarely need to use Java’s assign-
ments and equality tests with arrays.

WITH THESE BASIC DEFINITIONS AND EXAMPLES out of the way, we can now consider two
applications that both address interesting classical problems and illustrate the fun-
damental importance of arrays in efficient computation. In both cases, the idea of
using data to index into an array plays a central role and enables a computation that
would not otherwise be feasible.

Coupon collector Suppose that you have a shuffled deck of cards and
you turn them face up, one by one. How many cards do you need to turn
up before you have seen one of each suit? How many cards do you need to
turn up before seeing one of each value? These are examples of the famous
coupon collector problem. In general, suppose that a trading card company
issues trading cards with N different possible cards: how many do you have
to collect before you have all N possibilities, assuming that each possibility is equal-
ly likely for each card that you collect?

Coupon collecting is no toy problem. For example, it is very often the case that
scientists want to know whether a sequence that arises in nature has the same char-
acteristics as a random sequence. If so, that fact might be of interest; if not, further
investigation may be warranted to look for patterns that might be of importance.
For example, such tests are used by scientists to decide which parts of genomes
are worth studying. One effective test for whether a sequence is truly random is

Coupon collection

! " ! # # ! " $

!"#$%&'(')!"*+,,,31 ./01/23,,,0425,67

98 Elements of Programming

% java CouponCollector 1000
6583
% java CouponCollector 1000
6477
% java CouponCollector 1000000
12782673

Program 1.4.2 Coupon collector simulation

public class CouponCollector
{
 public static void main(String[] args)
 { // Generate random values in (0..N] until finding each one.
 int N = Integer.parseInt(args[0]);
 boolean[] found = new boolean[N];
 int cardcnt = 0, valcnt = 0;
 while (valcnt < N)
 { // Generate another value.
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val])
 {
 valcnt++;
 found[val] = true;
 }
 } // N different values found.
 System.out.println(cardcnt);
 }
}

This program simulates coupon collection by taking a command-line argument N and generat-
ing random numbers between 0 and N-1 until getting every possible value.

N range
cardcnt values generated

valcnt different values found

found[] table of found values

the coupon collector test : compare the number of elements that need to be exam-
ined before all values are found against the corresponding number for a uniformly
random sequence. CouponCollector (PROGRAM 1.4.2) is an example program that
simulates this process and illustrates the utility of arrays. It takes the value of N from
the command line and generates a sequence of random integer values between 0

!"#$%&'(')!"*+,,,39 ./01/23,,,0425,67

991.4 Arrays

and N!1 using the code (int) (Math.random() * N) (see PROGRAM 1.2.5). Each
value represents a card: for each card, we want to know if we have seen that value
before. To maintain that knowledge, we use an array found[], which uses the card
value as an index: found[i] is true if we have seen
a card with value i and false if we have not. When
we get a new card that is represented by the integer
val, we check whether we have seen its value before
simply by accessing found[val]. The computation
consists of keeping count of the number of distinct
values seen and the number of cards generated and
printing the latter when the former gets to N.

As usual, the best way to understand a program
is to consider a trace of the values of its variables for
a typical run. It is easy to add code to CouponCol-
lector that produces a trace that gives the values
of the variables at the end of the while loop for a
typical run. In the accompanying figure, we use F
for the value false and T for the value true to make
the trace easier to follow. Tracing programs that use
large arrays can be a challenge: when you have an
array of size N in your program, it represents N vari-
ables, so you have to list them all. Tracing programs
that use Math.random() also can be a challenge because you get a different trace
every time you run the program. Accordingly, we check relationships among vari-
ables carefully. Here, note that valcnt always is equal to the number of true values
in found[].

 Without arrays, we could not contemplate simulating the coupon collector
process for huge N; with arrays it is easy to do so. We will see many examples of
such processes throughout the book.

Sieve of Eratosthenes Prime numbers play an important role in mathematics
and computation, including cryptography. A prime number is an integer greater
than one whose only positive divisors are one and itself. The prime counting func-
tion #(N) is the number of primes less than or equal to N. For example, #(25) = 9
since the first nine primes are 2, 3, 5, 7, 11, 13, 17, 19, and 23. This function plays a
central role in number theory.

val
found

valcnt cardcnt
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

Trace for a typical run of
 java CouponCollector 6

!"#$%&'(')!"*+,,,33 ./01/23,,,0425,67

100 Elements of Programming

Program 1.4.3 Sieve of Eratosthenes

public class PrimeSieve
{
 public static void main(String[] args)
 { // Print the number of primes <= N.
 int N = Integer.parseInt(args[0]);
 boolean[] isPrime = new boolean[N+1];
 for (int i = 2; i <= N; i++)
 isPrime[i] = true;

 for (int i = 2; i <= N/i; i++)
 { if (isPrime[i])
 { // Mark multiples of i as nonprime.
 for (int j = i; j <= N/i; j++)
 isPrime[i * j] = false;
 }
 }

 // Count the primes.
 int primes = 0;
 for (int i = 2; i <= N; i++)
 if (isPrime[i]) primes++;
 System.out.println(primes);
 }
}

This program takes a command-line argument N and computes the number of primes less than
or equal to N. To do so, it computes an array of boolean values with isPrime[i] set to true if
i is prime, and to false otherwise. First, it sets to true all array elements in order to indicate
that no numbers are initially known to be nonprime. Then it sets to false array elements cor-
responding to indices that are known to be nonprime (multiples of known primes). If a[i] is
still true after all multiples of smaller primes have been set to false, then we know i to be
prime. The termination test in the second for loop is i <= N/i instead of the naive i <= N be-
cause any number with no factor less than N/i has no factor greater than N/i, so we do not have
to look for such factors. This improvement makes it possible to run the program for large N.

N argument
isPrime[i] is i prime?

primes prime counter

% java PrimeSieve 25
9
% java PrimeSieve 100
25
% java PrimeSieve 1000000000
50847534

!"#$%&'(')!"*+,,,:22 ./01/23,,,0425,67

1011.4 Arrays

One approach to counting primes is to use a program like Factors (PROGRAM
1.3.9). Specifically, we could modify the code in Factors to set a boolean value to
be true if a given number is prime and false otherwise (instead of printing out
factors), then enclose that code in a loop that increments a counter for each prime
number. This approach is effective for small N, but becomes too slow as N grows.

PrimeSieve (PROGRAM 1.4.3) takes a command-line integer N and computes
the prime count using a technique known as the Sieve of Eratosthenes. The program
uses a boolean array isPrime[] to record which integers are prime. The goal is
to set isPrime[i] to true if i is prime, and to false otherwise. The sieve works
as follows: Initially, set all array elements to true, indicating that no factors of any
integer have yet been found. Then, repeat the following steps as long as i <= N/i:

Find the next smallest i for which no factors have been found.
Leave isPrime[i] as true since i has no smaller factors.
Set the isPrime[] entries for all multiples of i to be false.

When the nested for loop ends, we have set the isPrime[] entries for all nonprimes
to be false and have left the isPrime[] entries for all primes as true. With one
more pass through the array, we can count the number of primes less than or equal
to N. As usual, it is easy to add code to print a trace. For programs such as Prime-
Sieve, you have to be a bit careful—it contains a nested for-if-for, so you have
to pay attention to the braces in order to put the print code in the correct place.
Note that we stop when i > N/i, just as we did for Factors.

With PrimeSieve, we can compute #(N) for large N, limited primarily by
the maximum array size allowed by Java. This is another example of a space-time
tradeoff. Programs like PrimeSieve play an important role in helping mathemati-
cians to develop the theory of numbers, which has many important applications.

i isPrime

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T T

2 T T F T F T F T F T F T F T F T F T F T F T F T

3 T T F T F T F F F T F T F F F T F T F F F T F T

5 T T F T F T F F F T F T F F F T F T F F F T F F

T T F T F T F F F T F T F F F T F T F F F T F F

Trace of java PrimeSieve 25

!"#$%&'(')!"*+,,,:2: ./01/23,,,0425,67

102 Elements of Programming

Two-dimensional arrays In many applications, a convenient way to store in-
formation is to use a table of numbers organized in a rectangular table and refer
to rows and columns in the table. For example, a teacher might need to maintain
a table with a row corresponding to each student and a column corresponding to
each assignment, a scientist might need to maintain a table of experimental data
with rows corresponding to experiments and columns corre-
sponding to various outcomes, or a programmer might want
to prepare an image for display by setting a table of pixels to
various grayscale values or colors.

The mathematical abstraction corresponding to such
tables is a matrix; the corresponding Java construct is a two-
dimensional array. You are likely to have already encountered
many applications of matrices and two-dimensional arrays,
and you will certainly encounter many others in science, in
engineering, and in computing applications, as we will dem-
onstrate with examples throughout this book. As with vectors
and one-dimensional arrays, many of the most important ap-
plications involve processing large amounts of data, and we
defer considering those applications until we consider input
and output, in SECTION 1.5.

Extending Java array constructs to handle two-dimen-
sional arrays is straightforward. To refer to the element in row i and column j of
a two-dimensional array a[][], we use the notation a[i][j]; to declare a two-di-
mensional array, we add another pair of brackets; and to create the array, we specify
the number of rows followed by the number of columns after the type name (both
within brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension
is the number of rows and the second is the number of columns. As with one-
dimensional arrays, Java initializes all entries in arrays of numbers to zero and in
arrays of boolean values to false.

Initialization. Default initialization of two-dimensional arrays is useful because
it masks more code than for one-dimensional arrays. The following code is equiva-
lent to the single-line create-and-initialize idiom that we just considered:

Anatomy of a
two-dimensional array

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

row 1

column 2

a[1][2]

!"#$%&'(')!"*+,,,:20 ./01/23,,,0425,67

1031.4 Arrays

double[][] a;
a = new double[M][N];
for (int i = 0; i < M; i++)
{ // Initialize the ith row.
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;
}

This code is superfluous when initializing to zero, but the nested for loops are
needed to initialize to some other value(s). As you will see, this code is a model for
the code that we use to access or modify each element of a two-dimensional array.

Output. We use nested for loops for many array-processing operations. For ex-
ample, to print an M-by-N array in the familiar tabular format, we would use the
following code

for (int i = 0; i < M; i++)
{ // Print the ith row.
 for (int j = 0; j < N; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

regardless of the array elements’ type. If desired, we
could add code to embellish the output with row and
column numbers (see EXERCISE 1.4.6), but Java pro-
grammers typically tabulate arrays with row numbers
running top to bottom from 0 and column number
running left to right from 0. Generally, we also do so
and do not bother to use labels.

Memory representation. Java represents a two-di-
mensional array as an array of arrays. A matrix with
M rows and N columns is actually an array of length
M, each entry of which is an array of length N. In a
two-dimensional Java array a[][], we can use the code
a[i] to refer to the ith row (which is a one-dimen-
sional array), but we have no corresponding way to
refer to a column.

a[][]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0]

a[7][0]

a[6][1]

a[7][1]

a[6][2]

a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[5]

!"#$%&'(')!"*+,,,:2. ./01/23,,,0425,67

104 Elements of Programming

Setting values at compile time. The Java method for initial-
izing an array of values at compile time follows immediately
from the representation. A two-dimensional array is an array
of rows, each row initialized as a one-dimensional array. To
initialize a two-dimensional array, we enclose in braces a list
of terms to initialize the rows, separated by commas. Each
term in the list is itself a list: the values for the array elements
in the row, enclosed in braces and separated by commas.

Spreadsheets. One familiar use of arrays is a spreadsheet for
maintaining a table of numbers. For example, a teacher with
M students and N test grades for each student might main-
tain an (M +1)-by-(N +1) array, reserving the last column for
each student’s average grade and the last row for the average
test grades. Even though we typically do such computations
within specialized applications, it is worthwhile to study the
underlying code as an introduction to array processing. To compute the average
grade for each student (average values for each row), sum the entries for each row
and divide by N. The row-by-row order in which this code processes the matrix

Typical spreadsheet calculations

99 85 98 94
98 57 78 77
92 77 76 81
94 32 11 45
99 34 22 51
90 46 54 63
76 59 88 74
92 66 89 82
97 71 24 64
89 29 38 52
92 55 57

row
averages

in column N
N = 3

M = 10

column
averages
in row M

92+77+76
3

85+57+...+29
10

for (int i = 0; i < M; i++)
{ // Compute average for row i
 double sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j];
 a[i][N] = (int) Math.round(sum/N);
}

for (int j = 0; j < N; j++)
{ // Compute average for column j
 double sum = 0.0;
 for (int i = 0; i < M; i++)
 sum += a[i][j];
 a[M][j] = (int) Math.round(sum/M);
}

Compute row averages

Compute column averages

Compile-time initialization
of a two-dimensional array

int[][] a =
{
 { 99, 85, 98, 0 },
 { 98, 57, 78, 0 },
 { 92, 77, 76, 0 },
 { 94, 32, 11, 0 },
 { 99, 34, 22, 0 },
 { 90, 46, 54, 0 },
 { 76, 59, 88, 0 },
 { 92, 66, 89, 0 },
 { 97, 71, 24, 0 },
 { 89, 29, 38, 0 },
 { 0, 0, 0, 0 }
};

!"#$%&'(')!"*+,,,:2- ./01/23,,,0425,67

1051.4 Arrays

entries is known as row-major order. Similarly, to compute the average test grade
(average values for each column), sum the entries for each column and divide by
M. The column-by-column order in which this code processes the matrix entries is
known as column-major order.

Matrix operations. Typical applications in science and
engineering involve representing matrices as two-di-
mensional arrays and then implementing various math-
ematical operations with matrix operands. Again, even
though such processing is often done within specialized
applications, it is worthwhile for you to understand the
underlying computation. For example, we can add two
N-by-N matrices as follows:

 double[][] c = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

Similarly, we can multiply two matrices. You may have
learned matrix multiplication, but if you do not recall or

are not familiar with it, the Java code below for square matrices is es-
sentially the same as the mathematical definition. Each entry c[i][j]
in the product of a[] and b[] is computed by taking the dot product
of row i of a[] with column j of b[].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 // Compute dot product of row i and column j.
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

The definition extends to matrices that are not necessarily square (see
EXERCISE 1.4.17). Matrix multiplication

.70 .20 .10

.30 .60 .10

.50 .10 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42

row 1

c[1][2] = .3 *.5
 + .6 *.1
 + .1 *.4
 = .25

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

column 2
b[][]

Matrix addition

.70 .20 .10

.30 .60 .10

.50 .10 .40

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

c[1][2]

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

b[][] b[1][2]

a[1][2]

!"#$%&'(')!"*+,,,:25 ./01/23,,,0425,67

106 Elements of Programming

Special cases of matrix multiplication. Two special cases of matrix multiplication
are important. These special cases occur when one of the dimensions of one of the
matrices is 1, so it may be viewed as a vector. We have matrix-vector multiplication,
where we multiply an M-by-N matrix by a column vector (an N-by-1 matrix) to get

an M-by-1 column vector result (each entry
in the result is the dot product of the corre-
sponding row in the matrix with the oper-
and vector). The second case is vector-matrix
multiplication, where we multiply a row vector
(a 1-by-M matrix) by an M-by-N matrix to
get a 1-by-N row vector result (each entry in
the result is the dot product of the operand
vector with the corresponding column in the
matrix). These operations provide a succinct
way to express numerous matrix calculations.
For example, the row-average computation
for such a spreadsheet with M rows and N
columns is equivalent to a matrix-vector
multiplication where the column vector has
M entries all equal to 1/M. Similarly, the col-
umn-average computation in such a spread-
sheet is equivalent to a vector-matrix multi-
plication where the row vector has N entries
all equal to 1/N. We return to vector-matrix
multiplication in the context of an important
application at the end of this chapter.

Ragged arrays. There is actually no require-
ment that all rows in a two-dimensional array
have the same length—an array with rows of
nonuniform length is known as a ragged array
(see EXERCISE 1.4.32 for an example applica-
tion). The possibility of ragged arrays creates
the need for more care in crafting array-pro-
cessing code. For example, this code prints
the contents of a ragged array:Matrix-vector and vector-matrix multiplication

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

94
77
81
45
51
63
74
82
64
52

row
averages

column
averages

for (int i = 0; i < M; i++)
{ // Dot product of row i and x[].
 for (int j = 0; j < N; j++)
 b[i] += a[i][j]*x[j];
}

for (int j = 0; j < N; j++)
{ // Dot product of y[] and column j.
 for (int i = 0; i < M; i++)
 c[j] += y[i]*a[i][j];
}

Matrix-vector multiplication a[][]*x[] = b[]

Vector-matrix multiplication y[]*a[][] = c[]

.33

.33

.33

a[][]

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

a[][]

y[]

x[]

b[]

c[] [92 55 57]

[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]

!"#$%&'(')!"*+,,,:28 ./01/23,,,0425,67

1071.4 Arrays

for (int i = 0; i < a.length; i++)
{
 for (int j = 0; j < a[i].length; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

This code tests your understanding of Java arrays, so you should take the time to
study it. In this book, we normally use square or rectangular arrays, whose dimen-
sion is given by a variable M or N. Code that uses a[i].length in this way is a clear
signal to you that an array is ragged.

Multidimensional arrays. The same notation extends to allow us to write code
using arrays that have any number of dimensions. For instance, we can declare and
initialize a three-dimensional array with the code

double[][][] a = new double[N][N][N];

and then refer to an entry with code like a[i][j][k], and so forth.

TWO-DIMENSIONAL ARRAYS PROVIDE A NATURAL REPRESENTATION for matrices, which are
omnipresent in science, mathematics, and engineering. They also provide a natural
way to organize large amounts of data, a key factor in spreadsheets and many other
computing applications. Through Cartesian coordinates, two- and three-dimen-
sional arrays also provide the basis for a models of the physical world. We consider
their use in all three arenas throughout this book.

Example: self-avoiding random walks Suppose that you leave
your dog in the middle of a large city whose streets form a familiar grid
pattern. We assume that there are N north-south streets and N east-west
streets all regularly spaced and fully intersecting in a pattern known as a
lattice. Trying to escape the city, the dog makes a random choice of which
way to go at each intersection, but knows by scent to avoid visiting any
place previously visited. But it is possible for the dog to get stuck in a
dead end where there is no choice but to revisit some intersection. What
is the chance that this will happen? This amusing problem is a simple
example of a famous model known as the self-avoiding random walk,
which has important scientific applications in the study of polymers and
in statistical mechanics, among many others. For example, you can see Self-avoiding walks

dead end

escape

!"#$%&'(')!"*+,,,:21 ./01/23,,,0425,67

108 Elements of Programming

that this process models a chain of material growing a bit at a time, until no growth
is possible. To better understand such processes, scientists seek to understand the
properties of self-avoiding walks.

The dog’s escape probability is certainly dependent on the size of the city. In
a tiny 5-by-5 city, it is easy to convince yourself that the dog is certain to escape.
But what are the chances of escape when the city is large? We are also interested in
other parameters. For example, how long is the dog’s path, on the average? How
often does the dog come within one block of a previous position other than the
one just left, on the average? How often does the dog come within one block of
escaping? These sorts of properties are important in the various applications just
mentioned.

SelfAvoidingWalk (PROGRAM 1.4.4) is a simulation of this situation that uses
a two-dimensional boolean array, where each entry represents an intersection. The
value true indicates that the dog has visited the intersection; false indicates that
the dog has not visited the intersection. The path starts in the center and takes ran-
dom steps to places not yet visited until getting stuck or escaping at a boundary. For
simplicity, the code is written so that if a random choice is made to go to a spot that
has already been visited, it takes no action, trusting that some subsequent random
choice will find a new place (which is assured because the code explicitly tests for a
dead end and leaves the loop in that case).

Note that the code depends on Java initializing all of the array entries to false
for each experiment. It also exhibits an important programming technique where
we code the loop exit test in the while statement as a guard against an illegal state-
ment in the body of the loop. In this case, the while loop continuation test serves
as a guard against an out-of-bounds array access within the loop. This corresponds
to checking whether the dog has escaped. Within the loop, a successful dead-end
test results in a break out of the loop.

As you can see from the sample runs, the unfortunate truth is that your dog
is nearly certain to get trapped in a dead end in a large city. If you are interested in
learning more about self-avoiding walks, you can find several suggestions in the ex-
ercises. For example, the dog is virtually certain to escape in the three-dimensional
version of the problem. While this is an intuitive result that is confirmed by our
tests, the development of a mathematical model that explains the behavior of self-
avoiding walks is a famous open problem: despite extensive research, no one knows
a succinct mathematical expression for the escape probability, the average length of
the path, or any other important parameter.

!"#$%&'(')!"*+,,,:29 ./01/23,,,0425,67

1091.4 Arrays

% java SelfAvoidingWalk 5 100
0% dead ends
% java SelfAvoidingWalk 20 100
36% dead ends
% java SelfAvoidingWalk 40 100
80% dead ends
% java SelfAvoidingWalk 80 100
98% dead ends
% java SelfAvoidingWalk 160 100
100% dead ends

Program 1.4.4 Self-avoiding random walks

public class SelfAvoidingWalk
{
 public static void main(String[] args)

 { // Do T random self-avoiding walks
 // in an N-by-N lattice
 int N = Integer.parseInt(args[0]);
 int T = Integer.parseInt(args[1]);
 int deadEnds = 0;
 for (int t = 0; t < T; t++)
 {
 boolean[][] a = new boolean[N][N];
 int x = N/2, y = N/2;
 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 { // Check for dead end and make a random move.
 a[x][y] = true;
 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

This program takes command-line arguments N and T and computes T self-avoiding walks in
an N-by-N lattice. For each walk, it creates a boolean array, starts the walk in the center, and
continues until either a dead end or a boundary is reached. The result of the computation is the
percentage of dead ends. As usual, increasing the number of experiments increases the precision
of the results.

N lattice size
T number of trials

deadEnds trials resulting in a dead end

a[][] intersections visited

x, y current position

r random number in (0, 1)

% java SelfAvoidingWalk 5 1000
0% dead ends
% java SelfAvoidingWalk 20 1000
32% dead ends
% java SelfAvoidingWalk 40 1000
70% dead ends
% java SelfAvoidingWalk 80 1000
95% dead ends
% java SelfAvoidingWalk 160 1000
100% dead ends

!"#$%&'(')!"*+,,,:23 ./01/23,,,0425,67

110 Elements of Programming

Self-avoiding random walks in a 21-by-21 grid

!"#$%&'(')!"*+,,,::2 ./01/23,,,0425,67

1111.4 Arrays

Summary Arrays are the fourth basic element (after assignments, conditionals,
and loops) found in virtually every programming language, completing our cover-
age of basic Java constructs. As you have seen with the sample programs that we
have presented, you can write programs that can solve all sorts of problems using
just these constructs.

Arrays are prominent in many of the programs that we consider, and the basic
operations that we have discussed here will serve you well in addressing many pro-
gramming tasks. When you are not using arrays explicitly (and you are sure to be
doing so frequently), you will be using them implicitly, because all computers have
a memory that is conceptually equivalent to an indexed array.

The fundamental ingredient that arrays add to our programs is a potentially
huge increase in the size of a program’s state. The state of a program can be defined
as the information you need to know to understand what a program is doing. In a
program without arrays, if you know the values of the variables and which state-
ment is the next to be executed, you can normally determine what the program
will do next. When we trace a program, we are essentially tracking its state. When
a program uses arrays, however, there can be too huge a number of values (each of
which might be changed in each statement) for us to effectively track them all. This
difference makes writing programs with arrays more of a challenge than writing
programs without them.

Arrays directly represent vectors and matrices, so they are of direct use in
computations associated with many basic problems in science and engineering. Ar-
rays also provide a succinct notation for manipulating a potentially huge amount
of data in a uniform way, so they play a critical role in any application that involves
processing large amounts of data, as you will see throughout this book.

!"#$%&'(')!"*+,,,::: ./01/23,,,0425,67

112 Elements of Programming

Q&A

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s
the difference?

A. In Java, both are legal and equivalent. The former is how arrays are declared in
C. The latter is the preferred style in Java since the type of the variable int[] more
clearly indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the
address of an array element would be computed by adding the index to the address
of the beginning of an array. Starting indices at 1 would entail either a waste of
space at the beginning of the array or a waste of time to subtract the 1.

Q. What happens if I use a negative number to index an array?

A. The same thing as when you use an index that is too big. Whenever a program
attempts to index an array with an index that is not between zero and the array
length minus one, Java will issue an ArrayIndexOutOfBoundsException and ter-
minate the program.

Q. What happens when I compare two arrays with (a == b)?

A. The expression evaluates to true only if a[] and b[] refer to the same array, not
if they have the same sequence of elements. Unfortunately, this is rarely what you
want.

Q. If a[] is an array, why does System.out.println(a) print out a hexadecimal
integer, like @f62373 , instead of the elements of the array?

A. Good question. It is printing out the memory address of the array, which, un-
fortunately, is rarely what you want.

Q. What other pitfalls should I watch out for when using arrays?

A. It is very important to remember that Java always initializes arrays when you
create them, so that creating an array takes time proportional to the size of the array.

!"#$%&'(')!"*+,,,::0 ./01/23,,,0425,67

1131.4 Arrays

Exercises

1.4.1 Write a program that declares and initializes an array a[] of size 1000 and
accesses a[1000]. Does your program compile? What happens when you run it?

1.4.2 Describe and explain what happens when you try to compile a program
with the following statement:

int N = 1000;
int[] a = new int[N*N*N*N];

1.4.3 Given two vectors of length N that are represented with one-dimensional
arrays, write a code fragment that computes the Euclidean distance between them
(the square root of the sums of the squares of the differences between correspond-
ing entries).

1.4.4 Write a code fragment that reverses the order of a one-dimensional array
a[] of String values. Do not create another array to hold the result. Hint : Use the
code in the text for exchanging two elements.

1.4.5 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution. It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.4.6 Write a code fragment that prints the contents of a two-dimensional bool-
ean array, using * to represent true and a space to represent false. Include row and
column numbers.

1.4.7 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(a[i]);

!"#$%&'(')!"*+,,,::. ./01/23,,,0425,67

114 Elements of Programming

1.4.8 What values does the following code put in the array a[]?

int N = 10;
int[] a = new int[N];
a[0] = 1;
a[1] = 1;
for (int i = 2; i < N; i++)
 a[i] = a[i-1] + a[i-2];

1.4.9 What does the following code fragment print?

int[] a = { 1, 2, 3 };
int[] b = { 1, 2, 3 };
System.out.println(a == b);

1.4.10 Write a program Deal that takes an command-line argument N and prints
N poker hands (five cards each) from a shuffled deck, separated by blank lines.

1.4.11 Write code fragments to create a two-dimensional array b[][] that is a
copy of an existing two-dimensional array a[][], under each of the following as-
sumptions:

a. a[][] is square

b. a[][] is rectangular

c. a[][] may be ragged
Your solution to b should work for a, and your solution to c should work for both
b and a, but your code should get progressively more complicated.

1.4.12 Write a code fragment to print the transposition (rows and columns
changed) of a square two-dimensional array. For the example spreadsheet array in
the text, you code would print the following:

99 98 92 94 99 90 76 92 97 89
85 57 77 32 34 46 59 66 71 29
98 78 76 11 22 54 88 89 24 38

1.4.13 Write a code fragment to transpose a square two-dimensional array in place
without creating a second array.

!"#$%&'(')!"*+,,,::- ./01/23,,,0425,67

1151.4 Arrays

1.4.14 Write a program that takes an integer N from the command line and cre-
ates an N-by-N boolean array a[][] such that a[i][j] is true if i and j are rela-
tively prime (have no common factors), and false otherwise. Use your solution to
EXERCISE 1.4.6 to print the array. Hint: Use sieving.

1.4.15 Write a program that computes the product of two square matrices of
boolean values, using the or operation instead of + and the and operation instead
of *.

1.4.16 Modify the spreadsheet code fragment in the text to compute a weighted
average of the rows, where the weights of each test score are in a one-dimensional
array weights[]. For example, to assign the last of the three tests in our example to
be twice the weight of the others, you would use

double[] weights = { .25, .25, .50 };

Note that the weights should sum to 1.

1.4.17 Write a code fragment to multiply two rectangular matrices that are not
necessarily square. Note: For the dot product to be well-defined, the number of col-
umns in the first matrix must be equal to the number of rows in the second matrix.
Print an error message if the dimensions do not satisfy this condition.

1.4.18 Modify SelfAvoidingWalk (PROGRAM 1.4.4) to calculate and print the av-
erage length of the paths as well as the dead-end probability. Keep separate the
average lengths of escape paths and dead-end paths.

1.4.19 Modify SelfAvoidingWalk to calculate and print the average area of the
smallest axis-oriented rectangle that encloses the path. Keep separate statistics for
escape paths and dead-end paths.

!"#$%&'(')!"*+,,,::5 ./01/23,,,0425,67

116 Elements of Programming

Creative Exercises

1.4.20 Dice simulation. The following code computes the exact probability distri-
bution for the sum of two dice:

double[] dist = new double[13];
for (int i = 1; i <= 6; i++)
 for (int j = 1; j <= 6; j++)
 dist[i+j] += 1.0;

for (int k = 1; k <= 12; k++)
 dist[k] /= 36.0;

The value dist[k] is the probability that the dice sum to k. Run experiments to
validate this calculation simulating N dice throws, keeping track of the frequencies
of occurrence of each value when you compute the sum of two random integers
between 1 and 6. How large does N have to be before your empirical results match
the exact results to three decimal places?

1.4.21 Longest plateau. Given an array of integers, find the length and location of
the longest contiguous sequence of equal values where the values of the elements
just before and just after this sequence are smaller.

1.4.22 Empirical shuffle check. Run computational experiments to check that our
shuffling code works as advertised. Write a program ShuffleTest that takes com-
mand-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row
i gives the number of times i wound up in position j for all j. All entries in the
array should be close to N/M.

1.4.23 Bad shuffling. Suppose that you choose a random integer between 0 and
N-1 in our shuffling code instead of one between i and N-1. Show that the resulting
order is not equally likely to be one of the N! possibilities. Run the test of the previ-
ous exercise for this version.

1.4.24 Music shuffling. You set your music player to shuffle mode. It plays each of
the N songs before repeating any. Write a program to estimate the likelihood that
you will not hear any sequential pair of songs (that is, song 3 does not follow song
2, song 10 does not follow song 9, and so on).

!"#$%&'(')!"*+,,,::8 ./01/23,,,0425,67

1171.4 Arrays

1.4.24 Minima in permutations. Write a program that takes an integer N from
the command line, generates a random permutation, prints the permutation, and
prints the number of left-to-right minima in the permutation (the number of times
an element is the smallest seen so far). Then write a program that takes integers M
and N from the command line, generates M random permutations of size N, and
prints the average number of left-to-right minima in the permutations generated.
Extra credit : Formulate a hypothesis about the number of left-to-right minima in
a permutation of size N, as a function of N.

1.4.25 Inverse permutation. Write a program that reads in a permutation of the
integers 0 to N-1 from N command-line arguments and prints the inverse permu-
tation. (If the permutation is in an array a[], its inverse is the array b[] such that
a[b[i]] = b[a[i]] = i.) Be sure to check that the input is a valid permutation.

1.4.26 Hadamard matrix. The N-by-N Hadamard matrix H(N) is a boolean ma-
trix with the remarkable property that any two rows differ in exactly N/2 entries.
(This property makes it useful for designing error-correcting codes.) H(1) is a
1-by-1 matrix with the single entry true, and for N>1, H(2N) is obtained by align-
ing four copies of H(N) in a large square, and then inverting all of the entries in the
lower right N-by-N copy, as shown in the following examples (with T representing
true and F representing false, as usual).

H(1) H(2) H(4)
T T T T T T T

T F T F T F

T T F F

T F F T

Write a program that takes one command-line argument N and prints H(N). As-
sume that N is a power of 2.

1.4.27 Rumors. Alice is throwing a party with N other guests, including Bob. Bob
starts a rumor about Alice by telling it to one of the other guests. A person hearing
this rumor for the first time will immediately tell it to one other guest, chosen at
random from all the people at the party except Alice and the person from whom

!"#$%&'(')!"*+,,,::1 ./01/23,,,0425,67

118 Elements of Programming

they heard it. If a person (including Bob) hears the rumor for a second time, he or
she will not propagate it further. Write a program to estimate the probability that
everyone at the party (except Alice) will hear the rumor before it stops propagating.
Also calculate an estimate of the expected number of people to hear the rumor.

1.4.28 Find a duplicate. Given an array of N elements with each element between
1 and N, write an algorithm to determine whether there are any duplicates. You do
not need to preserve the contents of the given array, but do not use an extra array.

1.4.29 Counting primes. Compare PrimeSieve with the method that we used to
demonstrate the break statement, at the end of SECTION 1.3. This is a classic example
of a time-space tradeoff: PrimeSieve is fast, but requires a boolean array of size
N; the other approach uses only two integer variables, but is substantially slower.
Estimate the magnitude of this difference by finding the value of N for which this
second approach can complete the computation in about the same time as java
PrimeSeive 1000000.

1.4.30 Minesweeper. Write a program that takes 3 command-line arguments M,
N, and p and produces an M-by-N boolean array where each entry is occupied with
probability p. In the minesweeper game, occupied cells represent bombs and empty
cells represent safe cells. Print out the array using an asterisk for bombs and a period
for safe cells. Then, replace each safe square with the number of neighboring bombs
(above, below, left, right, or diagonal) and print out the solution.

* * . . . * * 1 0 0
. 3 3 2 0 0
. * . . . 1 * 1 0 0

Try to write your code so that you have as few special cases as possible to deal with,
by using an (M"2)-by-(N"2) boolean array.

1.4.31 Self-avoiding walk length. Suppose that there is no limit on the size of the
grid. Run experiments to estimate the average walk length.

1.4.32 Three-dimensional self-avoiding walks. Run experiments to verify that the
dead-end probability is 0 for a three-dimensional self-avoiding walk and to com-
pute the average walk length for various values of N.

!"#$%&'(')!"*+,,,::9 ./01/23,,,0425,67

1191.4 Arrays

1.4.33 Random walkers. Suppose that N random walkers, starting in the center
of an N-by-N grid, move one step at a time, choosing to go left, right, up, or down
with equal probability at each step. Write a program to help formulate and test a
hypothesis about the number of steps taken before all cells are touched.

1.4.34 Bridge hands. In the game of bridge, four players are dealt hands of 13
cards each. An important statistic is the distribution of the number of cards in each
suit in a hand. Which is the most likely, 5-3-3-2, 4-4-3-2, or 4-3-3-3?

1.4.35 Birthday problem. Suppose that people enter an empty room until a pair
of people share a birthday. On average, how many people will have to enter before
there is a match? Run experiments to estimate the value of this quantity. Assume
birthdays to be uniform random integers between 0 and 364.

1.4.36 Coupon collector. Run experiments to validate the classical mathematical
result that the expected number of coupons needed to collect N values is about
NHN. For example, if you are observing the cards carefully at the blackjack table
(and the dealer has enough decks randomly shuffled together), you will wait until
about 235 cards are dealt, on average, before seeing every card value.

1.4.37 Binomial coefficients. Write a program that builds and prints a two-dimen-
sional ragged array a such that a[N][k] contains the probability that you get exactly
k heads when you toss a coin N times. Take a command-line argument to specify the
maximum value of N. These numbers are known as the binomial distribution: if you
multiply each entry in row i by 2 N, you get the binomial coefficients (the coefficients
of x k in (x+1)N) arranged in Pascal’s triangle. To compute them, start with a[N][0]
= 0 for all N and a[1][1] = 1, then compute values in successive rows, left to right,
with a[N][k] = (a[N-1][k] + a[N-1][k-1])/2.

Pascal’s triangle binomial distribution
1 1

1 1 1/2 1/2

1 2 1 1/4 1/2 1/4

1 3 3 1 1/8 3/8 3/8 1/8

1 4 6 4 1 1/16 1/4 3/8 1/4 1/16

!"#$%&'(')!"*+,,,::3 ./01/23,,,0425,67

