Algebra 2 Final Exam Study Guide

Imaginary Numbers $\rightarrow i^{2}=-1, \quad i^{3}=-1, \quad i^{4}=i$
$01(5-2 i)(6+4 i)$
$02(3+3 i)(4+6 i)$
$04(2+i)(8-3 i)$
$30+20 i-12 i-8 i^{2}$
$30+8 i-8(-1)$
$30+8 i+8$
$38+8 i$
$03(2-4 i)(7-3 i)$
$05(3-2 i)(3+2 i)$

Vertex $\rightarrow \frac{-b}{2 a}=x$ then substitute x-valueinto the equation to get y. Answer $=(x, y)$
$062 x^{2}+8 x-20$
$074 x^{2}+24 x-1$
$0812 x^{2}+24 x-10$
$x=\frac{-b}{2 a}=\frac{-(8)}{2(2)}=\frac{-8}{4}=-2$
$y=2(-2)^{2}+8(-2)-20$
$=2(4)+8(-2)-20$
$=8+{ }^{-1} 16-20$
$=-28$

The vertex is located at $(-2,-28)$

Rational Roots $\rightarrow \frac{p}{q}$
09 The possible roots of
$104 x^{2}+24 x-1$
$115 x^{2}+24 x-3$
$2 x^{2}+8 x-20$
$P:-20 \rightarrow \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$
$Q: \quad 2 \rightarrow \pm 1, \pm 2$
$\frac{p}{q}: \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm \frac{5}{2}$

Solving Inequalities \rightarrow Solving using factoring，then draw the number line

$125 x^{2}+13 x \geq-6$ $5 x^{2}+13 x \geq-6$
$\frac{+6 \geq+6}{5 x^{2}+13 x+6 \geq 0}$
$\left(\overrightarrow{p a}^{1} x+10\right)^{2}(5 x+3) \geq 0$
$(x+2)(5 x+3) \geq 0$
いいいいいいいいい
$x+2=0 \rightarrow x=-2$
$5 x+3=0 \rightarrow x=\frac{-3}{5}$
いいいいいいいいい

$$
\begin{array}{llll}
-3 & -1 & 1 & 3
\end{array}
$$

Solution：$x \leq-2$ or $x \geq \frac{-3}{5}$

$13-3 x^{2}+2 x \geq-1$
（Be careful of the negative start）

Multiplying Rational Functions

$14 \frac{x^{2}-16}{4 x^{2}+40 x} \cdot \frac{x^{2}+12 x+20}{x^{2}+6 x+8}$
$15 \frac{x^{2}-25}{5 x^{3}+2-x^{2}} \cdot \frac{(x+8 x+16)}{x^{2}-9}$
＊Factor everything

$$
\begin{aligned}
x^{2}-16 & =(x-4)(x+4) & & \text { Difference of Squares } \\
4 x^{2}+40 x & =4 x(x+10) & & \mathrm{GCF} \\
x^{2}+12 x+20 & =(x+10)(x+2) & & \text { Diamond Method } \\
x^{2}+6 x+8 & =(x+4)(x+2) & & \text { Diamond Method }
\end{aligned}
$$

Simplifying

$16 \frac{9 x^{2} y}{4 x} \cdot \frac{16 x y}{18 y}$
$17 \frac{21 x^{2} y}{6 x} \cdot \frac{12 x y}{7 y}$
$18 \frac{9 x^{2} y}{25 x} \cdot \frac{5 x y}{3 y}$
$\frac{9 x x y}{4 x} \cdot \frac{16 x y}{81 y}$ Expand Everything
$\frac{9 x x y}{4 x} \cdot \frac{16 x y}{81 y}$
Cancel variables $\frac{9 x}{4} \cdot \frac{16 x y}{81}$ Clean-up answer
$\frac{9 x}{4} \cdot \frac{16 x y}{81^{-9}}$ Reduce numbers
$\frac{4 x^{2}}{9}$ Answer

Solving Rational Equations \rightarrow Factor, Restrict, Solve, Check Restrictions

19) $\frac{x-3}{x-1}=\frac{x-6}{x+2}$
$20 \frac{x-2}{x-4}=\frac{x-1}{x+3}$

$$
\begin{aligned}
& x \neq 1,-2 \quad \text { Restrictions } \\
& (x-3)(x+2)=(x-6)(x-1) \quad \text { Cross Multiply } \\
& x^{2}-x-6=x^{2}-7 x+6 \quad \text { Multiply } \\
& \Downarrow \\
& x^{2}-x-6=\chi^{2}-7 x+6 \quad \text { Same thing both sides }
\end{aligned}
$$

$$
\begin{aligned}
& -x-6=-7 x+6 \\
& \begin{array}{cc}
+6 \quad+6 & \text { (Add to both sides) } \\
\hline-x \quad=-7 x+12
\end{array} \\
& \begin{array}{c}
+7 x=+7 x \quad \text { (Add to both sides) } \\
6 x=12
\end{array} \\
& \frac{6 x}{6}=\frac{12}{6} \quad \text { (Divide by } 6 \text { both sides) } \\
& x=2
\end{aligned}
$$

Check the restrictions to make sure that the answer is okay. In this case, it works out so $x=2$.

Asymptotes

Horizontal: Look at top and bottom degrees
Vertical: Restrict the domain (only look at the bottom)
$21 \frac{x+2}{x(x+3)}$
$22 \frac{x^{2}+9}{x(x+2)}$
$24 \frac{1}{x^{2}-7 x-10}$

Horizontal:

The top has a degree of 1 .
The bottom has a degree of 2 .

This means the horizontal asymptote is the x-axis.

Vertical:

The bottom has x and $(x+3)$ in the bottom.
Each of those cannot equal zero
$23 \frac{4}{x^{2}-x-6}$
$25 \frac{(x+2)(x+3)}{(x+3)}$
so $x \neq 0$.
For the other one
$x+3 \neq 0 \Rightarrow x \neq-3$

Answer:

Since $x \neq 0$ and $x \neq-3$, this means there are vertical asymptotes at $x=0$ and $x=-3$

Sequences/Series \rightarrow Arithmetic, Geometric, Convergent, Divergent

26 Notes:

a_{n}	$=a_{1}+d(n-1)$		Arithmetic
a_{n}	$=a_{1}(r)^{n-1}$		Geometric
S_{n}	$=\frac{a_{n}(r)-a_{1}}{r-1}$		Geometric
S_{n}	$=\frac{\left(a_{1}+a_{n}\right) n}{2}$		Arithmetic
T	$=\frac{a_{1}}{1-r}$		Convergent

$a_{n}=a_{1}(r)^{n-1} \quad$ Geometric
$S_{n}=\frac{a_{n}(r)-a_{1}}{r-1} \quad$ Geometric
$S_{n}=\frac{\left(a_{1}+a_{n}\right) n}{2} \quad$ Arithmetic
$T=\frac{a_{1}}{1-r} \quad$ Convergent

27 Find the sum of the first 39
multiples of 3 .

28 Complete problems 22, 24, and 26 on the next page.
(21) Simplity the expression. $(6+5 i)(-2-2 i)$.
(22) Which is a divergent series?
(a) $\sum_{k=1}^{\infty} 3 n-4$
(b) $\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}$
(c) $2 \sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}$
(d) $\sum_{k=1}^{\infty}\left(\frac{5}{4}\right)^{k}$
(23) Graph $\&$ Identity true statements about

$$
\frac{5}{x^{2}-4 x+4}
$$

(a) Domain is TR except 5 .
(b) Range is IR except 0 and all negative values
(c) The function hat 1 vertical asymptote.
(d) $(0,0)$ is a point on the graph
(3) The graph exists on the first two quadrants
(6) The y-intercept is above the x-axis.
(14) Which of the following genes are convergent? $100,50,25, \ldots$
(b) $2,4,8, \ldots$
(c) $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$
(d) $2,2.5,3,3.5, \ldots$
(e) $\sum_{n=1}^{4}\left(\frac{1}{3}\right)^{n}$
(f) $\sum_{n=1}^{\infty} \frac{5}{7} n$
(25) Solve. $\frac{x-1}{x-3}=\frac{x-2}{x-4}$
(26) Use sigma notation to rewrite the finite scenes and the compute
$-2,-1,0,1,2,3,4$

$$
S_{7}=
$$

\qquad
(27) Multiply and (28) list restrictions

$$
\frac{5 x^{3} y}{4 x} \cdot \frac{28 x y}{10 y} \frac{3 x}{9 x^{2}+6 x+1}+\frac{4 x}{3 x+1}
$$

