Distance classwork

KEY

Ex #1: Use the number line to find each measure

a) KM

) JM *q*

c) KL <u>2</u>

d) JL 5

Notice how the space between the points is technically the difference between the numbers?

On a Coordinate Plane

- Method 1 Pythagorean Theorem
 - Graph points
 - $a^2 + b^2 = c^2$
- o Method 2 Distance formula $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

Ex #2: Use the Pythagorean Theorem to find the distance between each pair of points.

a) R(5, 1), S(-3, -3)

b) E(-4, 1), F(3, -1)

Ex #3: Use the Distance Formula to find the distance between each pair of points.

a)
$$D(-5, 6), E(8, -4)$$

$$d = ((X_1 - X_2)^2 + (y_1 - y_2)^2)$$

$$= \sqrt{(-5-8)^2 + (6-4)^2}$$

$$= \sqrt{(-6)^2 + (-6)^2}$$

$$= \sqrt{(-6)^2 + (-6)^2}$$

$$= \sqrt{36+36}$$

$$= \sqrt{36+36}$$

$$= \sqrt{36-2} = 6\sqrt{2}$$
c) $J(0, 0), K(6, 8)$

d) $K(6, 8), J(0, 0)$

$$d = \sqrt{(0-6)^2 + (0-8)^2}$$

$$= \sqrt{(6-0)^2 + (8-0)^2}$$

$$= \sqrt{36+64}$$

$$= \sqrt{36+64}$$

$$= \sqrt{36+64}$$

Did you notice that problems c) and d) were the same points in reverse? This means that the distance between J and K is the same as the distance between K and J.

In other words, it doesn't matter what point is used for x1 and y1. That's good news!

Also think about this: the formula squares the difference. Isn't it true that:

$$8 - 5 \neq 5 - 8$$
But

 $(8-5)^2 = (5-8)^2$ Yes, Squariq differences makes them the same-WOV