
Part 1
Foundations of object

orientation

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 1

1

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 2

This chapter is the start of our journey into the world of object-oriented programming.
Here we introduce the most important concepts you will learn about: objects and classes.
By the end of the chapter you should have an understanding of what objects and classes
are, what they are used for, and how to interact with them. This chapter forms the basis of
all other explorations in the book.

Objects and classes

If you write a computer program in an object-oriented language, you are creating, in your
computer, a model of some part of the world. The parts that the model is built up from are
the objects that appear in the problem domain. These objects must be represented in the
computer model being created.

Objects may be categorized, and a class describes – in an abstract way – all objects of a
particular kind.

We can make these abstract notions clearer by looking at an example. Assume you want to
model a traffic simulation. One kind of entity you then have to deal with is cars. What is a
car in our context: is it a class or an object? A few questions may help us to make a decision.

What color is a car? How fast can it go? Where is it right now?

You will notice that we cannot answer these questions until we talk about one specific car.
The reason is that the word ‘car’ in this context refers to the class car – we are talking about
cars in general, not about one particular car.

If I say, ‘My old car that is parked at home in my garage,’ we can answer the questions
above. That car is red, it doesn’t go very fast, and it is in my garage. Now I am talking about
an object – about one particular example of a car.

We usually refer to a particular object as an instance. We shall use the term ‘instance’ quite
regularly from now on. Instance is roughly synonymous with object – we refer to objects

CHAPTER

Objects and classes1

Main concepts discussed in this chapter:

� objects � methods

� classes � parameters

1.1

Concept:

Java objects

model objects from

a problem domain.

Concept:

Objects are created

from classes. The

class describes the

kind of object; the

objects represent

individual

instantiations of the

class.

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 3

as instances when we want to emphasize that they are of a particular class (such as, ‘this
object is an instance of class car’).

Before we continue this rather theoretical discussion, let us look at an example.

Creating objects

Start BlueJ and open the example named shapes.1 You should see a window similar to that
shown in Figure 1.1.

In this window, a diagram should become visible. Every one of the colored rectangles
in the diagram represents a class in our project. In this project we have classes named
Circle, Square, Triangle, and Canvas.

Right-click on the Circle class and choose

new Circle()

from the popup menu. The system asks you for a ‘name of the instance’ – click Ok, the
default name supplied is good enough for now. You will see a red rectangle towards the
bottom of the screen labeled ‘circle1’ (Figure 1.2).

You have just created your first object! ‘Circle,’ the rectangular icon in Figure 1.1, repre-
sents the class Circle; circle1 is an object created from this class. The area at the bot-
tom of the screen where the object is shown is called the object bench.

4 Chapter 1 � Objects and classes

1.2

1 We regularly expect you to undertake some activities and exercises while reading this book. At this
point we assume that you already know how to start BlueJ and open the example projects. If not,
read Appendix A first.

Figure 1.1

The shapes project

in BlueJ

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 4

Calling methods

Right-click on one of the circle objects (not the class!) and you will see a popup menu with
several operations. Choose makeVisible from the menu – this will draw a representation
of this circle in a separate window (Figure 1.3).

You will notice several other operations in the circle’s menu. Try invoking moveRight and
moveDown a few times to move the circle closer to the center of the screen. You may also
like to try makeInvisible and makeVisible to hide and show the circle.

1.3 Calling methods 5

Figure 1.2

An object on the

object bench

Convention We start names of classes with capital letters (such as Circle) and

names of objects with lowercase letters (such as circle1). This helps to distinguish

what we are talking about.

Exercise 1.1 Create another circle. Then create a square.

1.3

Figure 1.3

A drawing of a circle

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 5

The entries in the circle’s menu represent operations that you can use to manipulate the
circle. These are called methods in Java. Using common terminology, we say that these
methods are called or invoked. We shall use this proper terminology from now on. We
might ask you to ‘invoke the moveRight method of circle1.’

Parameters

Now invoke the moveHorizontal method. You will see a dialog appear that prompts
you for some input (Figure 1.4). Type in 50 and click Ok. You will see the circle move 50
pixels to the right.2

The moveHorizontal method that was just called is written in such a way that it requires
some more information to execute. In this case, the information required is the distance –
how far the circle should be moved. Thus the moveHorizontal method is more flexible
than the moveRight or moveLeft methods. The latter always move the circle a fixed
distance, whereas moveHorizontal lets you specify how far you want to move the circle.

The additional values that some methods require are called parameters. A method
indicates what kinds of parameters it requires. When calling, for example, the
moveHorizontal method as shown in Figure 1.4, the dialog displays the line

void moveHorizontal(int distance)

6 Chapter 1 � Objects and classes

Exercise 1.2 What happens if you call moveDown twice? Or three times? What

happens if you call makeInvisible twice?

1.4

Concept:

Methods can have

parameters to

provide additional

information for a

task.

2 A pixel is a single dot on your screen. Your whole screen is made up of a grid of single pixels.

Concept:

We can

communicate with

objects by invoking

methods on them.

Objects usually do

something if we

invoke a method.

Figure 1.4

A method call dialog

Exercise 1.3 Try invoking the moveVertical, slowMoveVertical, and

changeSize methods before you read on. Find out how you can use moveHori-

zontal to move the circle 70 pixels to the left.

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 6

near the top. This is called the signature of the method. The signature provides some infor-
mation about the method in question. The part between the parentheses (int distance)
is the information about the required parameter. For each parameter, it defines a type and
a name. The signature above states that the method requires one parameter of type int
named distance. The name gives a hint about the meaning of the data expected.

Data types

A type specifies what kind of data can be passed to a parameter. The type int signifies
whole numbers (also called ‘integer’ numbers, hence the abbreviation ‘int’).

In the example above, the signature of the moveHorizontal method states that, before
the method can execute, we need to supply a whole number specifying the distance to
move. The data entry field shown in Figure 1.4 then lets you enter that number.

In the examples so far, the only data type we have seen has been int. The parameters of the
move methods and the changeSize method are all of that type.

Closer inspection of the object’s popup menu shows that the method entries in the menu
include the parameter types. If a method has no parameter, the method name is followed
by an empty set of parentheses. If it has a parameter, the type of that parameter is dis-
played. In the list of methods for a circle you will see one method with a different par-
ameter type: the changeColor method has a parameter of type String.

The String type indicates that a section of text (for example a word or a sentence) is
expected. Strings are always enclosed within double quotes. For example, to enter the word
red as a string, type

"red"

The method call dialog also includes a section of text called a comment above the method
signature. Comments are included to provide information to the (human) reader and are
described in Chapter 2. The comment of the changeColor method describes what color
names the system knows about.

1.5 Data types 7

Concept:

The header of a

method is called its

signature. It

provides information

needed to invoke

that method.

Concept:

Parameters have

types. The type

defines what kinds

of values a

parameter can take.

1.5

Exercise 1.4 Invoke the changeColor method on one of your circle objects and

enter the String “red”. This should change the color of the circle. Try other colors.

Exercise 1.5 This is a very simple example, and not many colors are supported.

See what happens when you specify a color that is not known.

Exercise 1.6 Invoke the changeColor method, and write the color into the par-

ameter field without the quotes. What happens?

Pitfall A common error for beginners is to forget the double quotes when typing in a

data value of type String. If you type green instead of “green” you will get an error

message saying something like ‘Error: cannot resolve symbol.’

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 7

Java supports several other data types including, for example, decimal numbers and char-
acters. We shall not discuss all of them right now, but rather come back to this issue later.
If you want to find out about them now, look at Appendix B.

Multiple instances

Once you have a class, you can create as many objects (or instances) of that class as you
like. From the class Circle, you can create many circles. From Square, you can create
many squares.

Every one of those objects has its own position, color, and size. You change an attribute of
an object (such as its size) by calling a method on that object. This will affect this partic-
ular object, but not others.

You may also notice an additional detail about parameters. Have a look at the changeSize
method of the triangle. Its signature is

void changeSize(int newHeight, int newWidth)

Here is an example of a method with more than one parameter. This method has two, and a
comma separates them in the signature. Methods can, in fact, have any number of parameters.

State

The set of values of all attributes defining an object (such as x-position, y-position, color,
diameter, and visibility status for a circle) is also referred to as the object’s state. This is
another example of common terminology that we shall use from now on.

In BlueJ, the state of an object can be inspected by selecting the Inspect function from the
object’s popup menu. When an object is inspected, a window similar to that shown in
Figure 1.5 is displayed. This window is called the object inspector.

8 Chapter 1 � Objects and classes

Exercise 1.7 Create several circle objects on the object bench. You can do so by

selecting new Circle() from the popup menu of the Circle class. Make them visi-

ble, then move them around on the screen using the ‘move’ methods. Make one big

and yellow, make another one small and green. Try the other shapes too: create a few

triangles and squares. Change their positions, sizes, and colors.

1.6

1.7

Concept:

Multiple instances.

Many similar

objects can be

created from a

single class.

Exercise 1.8 Make sure you have several objects on the object bench and then

inspect each of them in turn. Try changing the state of an object (for example by call-

ing the moveLeft method) while the object inspector is open. You should see the

values in the object inspector change.

Concept:

Objects have

state. The state is

represented by

storing values in

fields.

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 8

Some methods, when called, change the state of an object. For example, moveLeft
changes the xPosition attribute. Java refers to these object attributes as fields.

What is in an object?

On inspecting different objects you will notice that objects of the same class all have the
same fields. That is, the number, type, and names of the fields are the same, while the actu-
al value of a particular field in each object may be different. In contrast, objects of a dif-
ferent class may have different fields. A circle, for example, has a field ‘diameter,’ while a
triangle has fields for ‘width’ and ‘height.’

The reason is that the number, types, and names of fields are defined in a class, not in an
object. So the class Circle defines that each circle object will have five fields, named
diameter, xPosition, yPosition, color, and isVisible. It also defines the types
for these fields. That is, it specifies that the first three are of type int, while the color is
of type String and the isVisible flag is of type boolean. (Boolean is a type that can
represent two values: true and false. We shall discuss it in more detail later.)

When an object of class Circle is created, the object will automatically have these fields.
The values of these fields are stored in the object. That ensures that each circle has a color,
for instance, and each can have a different color (Figure 1.6).

The story is similar for methods. Methods are defined in the class of the object. As a result,
all objects of a given class have the same methods. However, the methods are invoked on
objects. This makes it clear which object to change when, for example, a moveRight
method is invoked.

1.8 What is in an object? 9

Figure 1.5

An object inspection

dialog

1.8

Exercise 1.9 Use the shapes from the shapes project to create an image of a

house and a sun, similar to that shown in Figure 1.7. While you are doing this, write

down what you have to do to achieve this. Could it be done in different ways?

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 9

Object interaction

For the next section we shall work with a different example project. Close the shapes proj-
ect if you still have it open, and open the project called picture.

Four of the classes in the project are identical to the classes in the shapes project. But we
now have an additional class: Picture. This class is programmed to do exactly what we
have done by hand in Exercise 1.9.

In reality, if we want a sequence of tasks done in Java, we would not normally do it by hand
as in Exercise 1.9. Instead, we create a class that does it for us. This is the Picture class.

The Picture class is written so that, when you create an instance, that instance creates two
square objects (one for the wall, one for the window), a triangle and a circle, moves them
around, and changes their color and size, until it looks like the picture we see in Figure 1.7.

10 Chapter 1 � Objects and classes

boolean isVisible

String color

int yPosition

int xPosition

int diameter

Circle

isVisible

color

yPosition

xPosition

diameter

circle 1: Circle

isVisible

color

yPosition

xPosition

diameter

circle 2: Circle

true

“blue”

30

80

50

true

“red”

75

230

30

is instance of...is instance of...

Figure 1.6

A class and its

objects with fields

and values

1.9

Exercise 1.10 Open the picture project. Create an instance of class Picture and

invoke its draw method. Also, try out the setBlackAndWhite and setColor methods.

Exercise 1.11 How do you think the Picture class draws the picture?

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 10

The important point here is: objects can create other objects and they can call each other’s
methods. In a normal Java program you may well have hundreds or thousands of objects.
The user of a program just starts the program (which typically creates a first object), and
all other objects are created – directly or indirectly – by that object.

The big question now is: How do we write the class for such an object?

Source code
Each class has some source code associated with it. The source code is text that defines
the details of the class. In BlueJ, the source code of a class can be viewed by selecting the
Open Editor function from the class’s popup menu, or by double-clicking the class icon.

The source code is text written in the Java programming language. It defines what fields
and methods a class has, and precisely what happens when a method is invoked. In the
next chapter we shall discuss exactly what the source code of a class contains and how it
is structured.

A large part of learning the art of programming is learning how to write these class
definitions. To do this, we shall learn to use the Java language (although there are many
other programming languages that could be used to write code).

When you make a change to the source code and close the editor,3 the icon for that class
appears striped in the diagram. The stripes indicate that the source has been changed. The

1.10 Source code 11

Figure 1.7

An image created

from a set of shape

objects

1.10

Concept:

Method-calling.

Objects can

communicate by

calling each

other’s methods.

Concept:

The source code

of a class

determines the

structure and the

behavior (the fields

and methods) of

each of the

objects in that

class.

Exercise 1.12 Look at the popup menu of class Picture again. You will see an

option labeled Open Editor. Select it. This will open a text editor displaying the source

code of the class.

3 In BlueJ, there is no need to save the text in the editor explicitly before closing. If you close the
editor, the source code will automatically be saved.

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 11

class now needs to be compiled by clicking the Compile button. (You may like to read the
‘About compilation’ note for more information about what is happening when you com-
pile a class.) Once a class has been compiled, objects can be created again and you can try
out your change.

12 Chapter 1 � Objects and classes

Exercise 1.13 In the source code of class Picture, find the part that actually

draws the picture. Change it so that the sun will be blue rather than yellow.

Exercise 1.14 Add a second sun to the picture. To do this, pay attention to the field

definitions close to the top of the class. You will find this code:

private Square wall;

private Square window;

private Triangle roof;

private Circle sun;

You need to add a line here for the second sun. For example:

private Circle sun2;

Then write the appropriate code for creating the second sun.

Exercise 1.15 Challenge exercise (This means that this exercise might not be

solved quickly. We do not expect everyone to be able to solve this at the moment. If

you do – great. If you don’t, then don’t worry. Things will become clearer as you read

on. Come back to this exercise later.) Add a sunset to the single-sun version of

Picture. That is: make the sun go down slowly. Remember: The circle has a method

slowMoveVertical that you can use to do this.

Exercise 1.16 Challenge exercise If you added your sunset to the end of the

draw method (so that the sun goes down automatically when the picture is drawn),

change this now. We now want the sunset in a separate method, so that we can call

draw and see the picture with the sun up, and then call sunset (a separate method!)

to make the sun go down.

About compilation

When people write computer programs, they typically use a ‘higher level’ programming

language, such as Java. A problem with that is that a computer cannot execute Java

source code directly. Java was designed to be reasonably easy to read for humans, not

for computers. Computers, internally, work with a binary representation of a machine

code, which looks quite different from Java. The problem for us is: it looks so complex that

we do not want to write it directly. We prefer to write Java. What can we do about this?

The solution is a program called the compiler. The compiler translates the Java code

into machine code. We can write Java, run the compiler – which generates the machine

code – and the computer can then read the machine code. As a result, every time we

change the source code we must first run the compiler before we can use the class

again to create an object. Otherwise the machine code version that the computer needs

does not exist.

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 12

Another example

In this chapter, we have already discussed a large number of new concepts. To help in
understanding these concepts, we shall now revisit them in a different context. For this, we
use a different example. Close the picture project if you still have it open, and open the lab-
classes project.

This project is a simplified part of a student database designed to keep track of students in
laboratory classes and to print class lists.

Return values

As before, you can create multiple objects. And again, as before, the objects have methods
that you can call from their popup menu.

When calling the getName method of the Student class, we notice something new: meth-
ods may return a result value. In fact, the signature of each method tells us whether or not
it returns a result, and what the type of the result is. The signature of getName (as shown
in the object’s popup menu) is defined as

String getName()

The word String before the method name specifies the return type. In this case it states that
calling this method will return a result of type String. The signature of changeName states:

void changeName(String replacementName)

The word void indicates that this method does not return any result.

Methods with return values enable us to get information from an object via a method call.
This means that we can use methods either to change an object’s state or to find out about
its state.

Objects as parameters

1.13 Objects as parameters 13

1.11

Exercise 1.17 Create an object of class Student. You will notice that this time you

are prompted not only for a name of the instance, but also for some other parameters.

Fill them in before clicking Ok. (Remember that parameters of type String must be

written in double quotes.)

1.12

Exercise 1.18 Create some student objects. Call the getName method on each

object. Explain what is happening.

Concept:

Results. Methods

may return

information about

an object via a

return value.

Exercise 1.19 Create an object of class LabClass. As the signature indicates,

you need to specify the maximum number of students in that class (an integer).

1.13

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 13

14 Chapter 1 � Objects and classes

Exercise 1.20 Call the numberOfStudents method of that class. What does it do?

Exercise 1.21 Look at the signature of the enrollStudent method. You will notice

that the type of the expected parameter is Student. Make sure you have two or three

students and a LabClass object on the object bench, then call the enrollStudent

method of the LabClass object. With the input cursor in the dialog entry field, click

on one of the student objects – this enters the name of the student object into the par-

ameter field of the enrollStudentmethod (Figure 1.8). Click Ok, and you have added

the student to the LabClass. Add one or more other students as well.

Exercise 1.22 Call the printList method of the LabClass object. You will see a

list of all the students in that class printed to the BlueJ terminal window (Figure 1.9).

Figure 1.8

Adding a student to

a LabClass

Figure 1.9

Output of the

LabClass class

listing

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 14

As the exercises show, objects can be passed as parameters to methods of other objects. In
the case where a method expects an object as a parameter, the expected object’s class name
is specified as the parameter type in the method signature.

Explore this project a bit more. Try to identify the concepts discussed in the shapes exam-
ple in this context.

Summary

In this chapter we have explored the basics of classes and objects. We have discussed the fact
that objects are specified by classes. Classes represent the general concept of a thing, while
objects represent concrete instances of a class. We can have many objects of any class.

Objects have methods that we use to communicate with them. We can use a method to
make a change to the object or to get information from the object. Methods can have
parameters, and parameters have types. Methods have return types, which specify what
type of data they return. If the return type is void, they do not return anything.

Objects store data in fields (which also have types). All the data values of an object togeth-
er are referred to as the object’s state.

Objects are created from class definitions that have been written in a particular program-
ming language. Much of programming in Java is about learning to write class definitions.
A large Java program will have many classes, each with many methods that call each other
in many different ways.

To learn to develop Java programs, we need to learn how to write class definitions, includ-
ing fields and methods, and how to put these classes together well. The rest of this book
deals with these issues.

Terms introduced in this chapter

object, class, instance, method, signature, parameter, type, state, source

code, return value, compiler

1.14 Summary 15

Exercise 1.23 Create three students with the following details:

Snow White, student ID: 100234, credits: 24

Lisa Simpson, student ID: 122044, credits: 56

Charlie Brown, student ID: 12003P, credits: 6

Then enter all three into a lab and print a list to the screen.

Exercise 1.24 Use the inspector on a LabClass object to discover what fields it has.

Exercise 1.25 Set the instructor, room, and time for a lab, and print the list to the

terminal window to check that these new details appear.

1.14

 OFWJ_C01.QXD 2/3/06 2:14 pm Page 15

16 Chapter 1 � Objects and classes

Concept summary

� object Java objects model objects from a problem domain.

� class Objects are created from classes. The class describes the kind of object; the

objects represent individual instantiations of the class.

� method We can communicate with objects by invoking methods on them. Objects

usually do something if we invoke a method.

� parameter Methods can have parameters to provide additional information for a task.

� signature The header of a method is called its signature. It provides information needed

to invoke that method.

� type Parameters have types. The type defines what kinds of values a parameter can take.

� multiple instances Many similar objects can be created from a single class.

� state Objects have state. The state is represented by storing values in fields.

� method-calling Objects can communicate by calling each other’s methods.

� source code The source code of a class determines the structure and the behavior (the

fields and methods) of each of the objects in that class.

� result Methods may return information about an object via a return value.

Exercise 1.26 In this chapter we have mentioned the data types int and String.

Java has more predefined data types. Find out what they are and what they are used

for. To do this, you can check Appendix B, or look it up in another Java book or in an

online Java language manual. One such manual is at

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/

datatypes.html

Exercise 1.27 What are the types of the following values?

0

"hello"

101

–1

true

"33"

3.1415

Exercise 1.28 What would you have to do to add a new field, for example one

called name, to a circle object?

Exercise 1.29 Write the signature for a method named send that has one parameter

of type String, and does not return a value.

Exercise 1.30 Write the signature for a method named average that has two

parameters, both of type int, and returns an int value.

Exercise 1.31 Look at the book you are reading right now. Is it an object or a class?

If it is a class, name some objects. If it is an object, name its class.

Exercise 1.32 Can an object have several different classes? Discuss.

 OFWJ_C01.QXD 2/3/06 2:15 pm Page 16

