Points, Lines, and Planes classwork

Undefined Terms in Geometry:

- Point: A particular location. Points have no size.

$$
{ }^{\bullet} \mathrm{P}
$$

- A point is named by \qquad -.
- Line: Lines extend indefinitely and have neither thickness nor width.

- Please name the line above in three ways.

1) \qquad
2) \qquad
3) \qquad

- Collinear: points on the \qquad line
- Plane: A flat surface that extends indefinitely in all directions and having no thickness.

- Named in one of two ways.

1) \qquad
2) \qquad

- Coplanar : points on the \qquad

Ex \#1: Use the figure to name each of the following.

a) A line containing point A
b) A plane containing point C
c) A point collinear with points A and C.

Ex \#2: Name the geometric shape modeled by each object.
a) a 10×12 patio
b) a telephone wire
c) a star in the sky

Intersections of Lines and Planes:

The intersection of two geometric figures is the set of all points they have in common.

P represents the intersection of lines ℓ and m.

Line r represents the intersection of planes A and B.

Ex\#3: Draw a figure of a plane with one line on the plane and a second line intersecting both plane and the first line.

Ex \#4: Draw and label a figure for each relationship.
a) Lines $\overrightarrow{A B}$ and $\overrightarrow{C D}$ intersect at point P.
b) $\quad \overrightarrow{T U}$ lies in plane Q and contains point R.

Ex\#5: Draw a figure on the graph below.
a) $\quad \overrightarrow{Q R}$ on a coordinate plane contains $Q(-2,4)$ and $R(4,-4)$. Add point T so that T is collinear with these points.
b) Add any point S that is non-collinear with these points.

Ex\#6: Refer to the figure below to answer the following questions.

a) How many planes are pictured in the figure?
b) Name three colinear points.
c) \quad Name the intersection of plane HDG and plane X.
d) At what point does line LM and plane X intersect?
e) Where do lines JH and DG intersect?

