

AS Chemistry (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 v0.5

Session

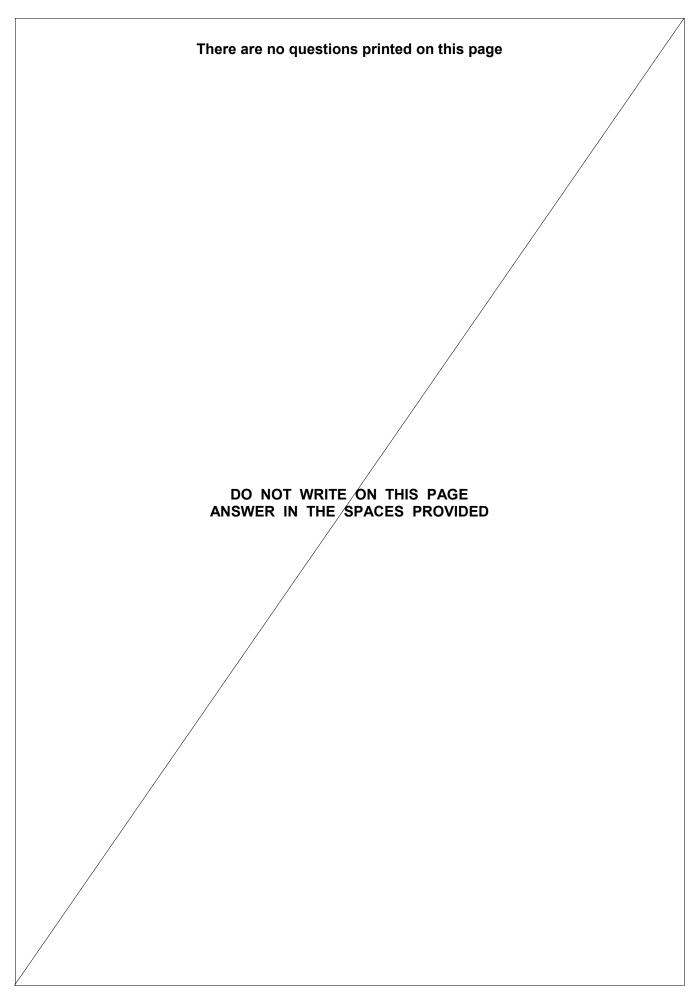
1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions


- Answer all questions.
- Show all your working.

Information

The maximum mark for this paper is 80.

Please write clearly, in block capit	tals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Barcode vo.5 **7404/1**

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds.
0 1 . 1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
0 1 . 2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
0 1 . 3	State the role of water in the reaction with calcium. [1 mark]
0 1 . 4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

		Table 1			
		Mass number of isotope	32	33	
		Relative abundance / %	91.0	1.8	
					[4 mark
0 2 . 2	Describe h	now ions are formed in a time o	Mass nu of flight (TC		eter. [2 mark

0 2 . 3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF mass spectrometer.
	[2 marks]
	Turn over for the next question
	Turn over for the next question

0 3 . 1		quation, including st dard enthalpy of for			eaction wi	th enthalpy change equal [1 mark]
0 3 . 2	Explain wh	ny CF₄ has a bond a	angle of 109	9.5°.		[2 marks]
0 3 . 3	Table 2 gi	ves some values of	standard e	enthalpies o	of formation	∩ (∆ _f H [⊖]).
		Substance	F ₂ (g)	CF ₄ (g)	HF(g)	
		Δ _f H ^Θ / kJ mol ⁻¹	0	-680	-269	
	Use this v	lpy change for the for $C_2H_6(g)+7F_2(g)$ alue and the standa enthalpy of formation	g)> 2 ard enthalpi	2CF ₄ (g) +	6HF(g)	ol ⁻¹ . ble 2 to calculate the [3 marks]

Standard enthalpy of formation of $C_2H_6(g) =$

kJ mol⁻¹

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in Table 3.

Table 3

Bond	C–H	C–F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4	Colourle												(ad	۱ (۲	ea	act	to	fc	orn	n a	n (ora	ng	je	so	lut	ioi	า ด	of 2	Z (a	(pk	
		X	((a	q)	+	2	/ (a	ıq)	, ;	=	<u> </u>	Z	(ac	1)		Δ	H:	= -	-20) k	Jı	no	l ⁻¹									
0 4 . 1	A stude 0.50 mc After 30 The am Deduce	ol of sec	Y(acon t of	aqj nds f Z) ai s, th (aq	nd ner q) a	sh re v at e	eq wa	ok as uili	th no ibr	e r fu iur	nix Irth n v	ktu ner wa	re. cl s (nar).2	ng 10 i	e i mo	n d ol.	col	ou	r.	o a	ı S	olu	ıtic	on	со	nt	air		g 2 marks	\$]
	Amou	nt c	of X	(a	q) =	=						_n	าဝไ				Α	mo	oui	nt (of	Y (a	aq)) =							m	ol
0 4 . 2	On the of i																			าดเ	unt	: of	Z	(ad	י (ג	cha	an	ge	ed		om the	s]

0 4 . 3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $ \mathbf{X}(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } \mathbf{Z}(aq) = 0.35 \text{ mol dm}^{-3}. $ For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6. $ Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	_. mol dm ⁻³
0 4 . 4	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y Z (aq) in Question 4.3 . Suggest how the colour of the mixture changed. Give a reason for your answ	
	· ·	[3 marks]
0 4 . 5	The student warmed the equilibrium mixture from Question 4.3 .	
	Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions
	react differently from chloride ions. [3 marks]
	Equation
	Explanation
	Explanation
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a
	procedure to prepare a pure sample of silver bromide from this mixture. Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate. [6 marks]
	[6 marks]

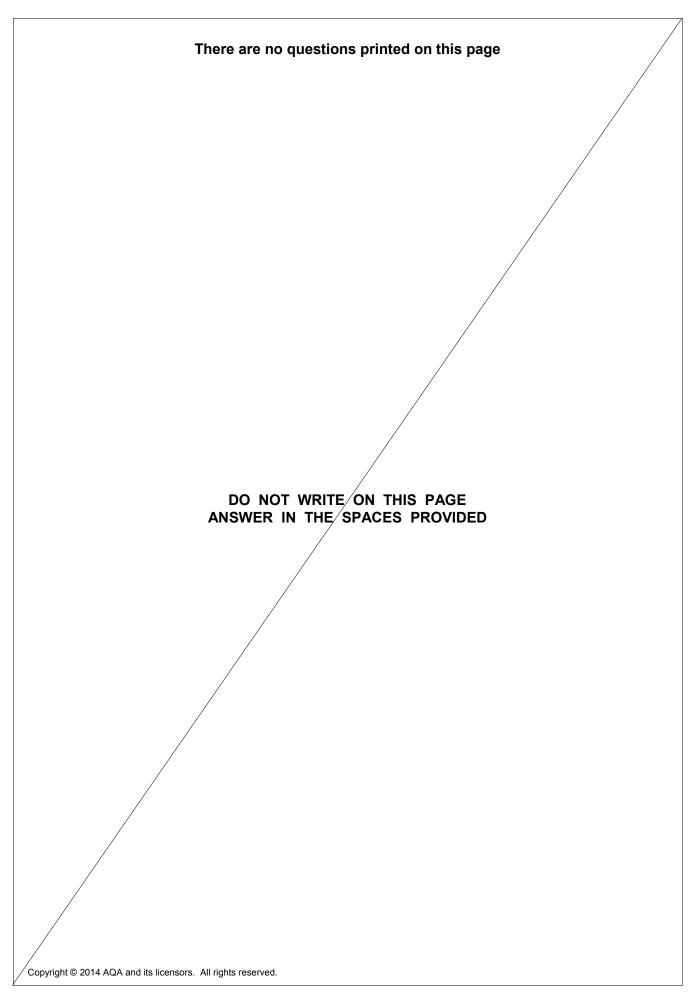
0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution. Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	Turn over for the next question

6	This question is about reactions of calcium compounds.
0 6 . 1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an experiment to calculate accurately the relative formula mass of the solid using this method. [8 marks]

0 6 . 2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.
	The percentage yield of calcium sulfate was 83.4%.
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 marks]
	Mass of calcium sulfate formed = g
	Turn over for the next question

7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the equation below.	
	$2Mg(NO3)2(s) \longrightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
0 7 . 1	A 3.74 \times 10 ⁻² g sample of Mg(NO ₃) ₂ was completely decomposed by heating.	
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [5 mark	(s]
	Total volume of gas =	cm
0 7 . 2		
	The mass of MgO obtained in this experiment is slightly less than that expected from the mass of $Mg(NO_3)_2$ used. Suggest one practical reason for this. [1 magnetic content or the mass of $Mg(NO_3)_2$ used.	
	the mass of Mg(NO ₃) ₂ used. Suggest one practical reason for this.	

				Section	on B			
			Answer	all questio	ns in this s	section.		
Only one	answer	per ques	tion is allowe	ed.				
For each	answer	complete	ely fill in the c	ircle along	side the a	ppropriate an	swer.	
CORRECT MI	ETHOD	WRC	ONG METHODS	♥ • €	\mathbf{z} \mathbf{A}			
If you war	nt to cha	ange your	answer you	must cros	s out your	original answ	ver as shown	. 🔀
If you wis as shown		ırn to an a	answer previ	ously cros	sed out, riı	ng the answe	r you now wi	sh to select
as snown	•							
8 0	Whic	h of thes	e atoms has	the larges	t atomic ra	ıdius?		[1 mark]
	Α	Ar	0					
	В	Cl						
	С	Mg						
	D	Na						
0 9	Whic	h of thes	e species is	the best re	ducing ag	ent?		[1 mark]
	Α	Cl_2						[
	В	Cl ⁻						
	С	I ₂						
	D	I ⁻						
	_	-						


Barcode Turn over ▶ Typesetter code

1 0		of these pieces of urement shown?	f apparatus has the lowest perce	entage uncertainty in the
				[1 mark]
	A	Volume of 25 cm with an uncertain	n^3 measured with a burette nty of ± 0.1 cm 3 .	
	В		n ³ measured with a measuring uncertainty of ±0.5 cm ³ .	0
	С	Mass of 0.150 g with an uncertain	measured with a balance nty of ±0.001 g.	0
	D		ange of 23.2 °C measured eter with an uncertainty of ±0.1 °C	C. O
1 1	acid.	The student is ask	th a 5.00 cm ³ sample of 1.00 × 1 sed to devise a method to prepar 5.00 × 10 ⁻⁴ mol dm ⁻³ by diluting t	e a hydrochloric acid solution
	Which	of these is the co	rrect volume of water that should	d be added? [1 mark]
	Α	45.0 cm ³	0	
	В	95.0 cm ³	0	
	С	100 cm ³	0	
	D	995 cm ³	0	
1 2	Which	of these species I	has a trigonal planar structure?	[1 mark]
	Α	PH ₃	0	
	В	BCl ₃	0	
	С	H_3O^+	0	
	D	CH ₃	0	

1 3		our understan e highest boil		
				[1 mark]
	A	HF		
	В	HCl		
	С	HBr		
	D	НІ		
1 4			is formed between N and B when a molecule of NH ₃ react	s with a
	molecu	ule of BF ₃ ?		[1 mark]
	A	Ionic.		
	В	Covalent.		
	С	Co-ordinate		
	D	Van der Wa		
	D	van der vva	idis	
1 5	Which	of these ator	ms has the highest electronegativity?	[1 mark]
	Α	Na		
	В	Mg		
	С	Cl		
	D	Ar		
1 6	Which		ms has the smallest number of neutrons?	[1 mark]
	Α	³ H		
	В	⁴ He	0	
	С	⁵He	0	
	D	⁴ Li	0	

1 7	Which	h of these subst	tances does not show hydrogen bonding?	[1 mark]
	Α	HF		
	В	NH ₃	0	
	С	CH₃COOH		
	D	CHF ₃		
1 8	What	is the formula c	of calcium nitrate(V)?	[1 mark]
	Α	CaNO ₃		
	В	Ca(NO ₃) ₂		
	С	Ca ₂ NO ₂		
	D	Ca(NO ₂) ₂		
1 9	Which	h of these eleme	ents has the highest second ionisation energy?	[1 mark]
	A	Na 🔘		
	В	Mg		
	С	Ne 🔾		
	D	Ar 🔾		

2 0	Which of the following shows chlorine in its correct oxidation states in the compounds shown?													
	OHOWH					[1	mark]							
		HCl	KClO₃	HClO										
	A	–1	+3	+1										
	В	+1	– 5	–1										
	С	– 1	+5	+1										
	D	+1	+5	-1										
2 1		substance is n oncentrated sulf	ot produced in a ruric acid?	edox reaction wh	nen solid soc									
	A	H ₂ S				ני	mark]							
	В	Н												
	С	SO ₂												
	D													
2 2	Which of the following contains the most chloride ions?													
	A 10 cm ³ of 3.30×10^{-2} mol dm ⁻³ aluminium chloride solution													
	В	20 cm 3 of 5.00 × 10 $^{-2}$ mol dm $^{-3}$ calcium chloride solution												
	С	30 cm 3 of 3.30 × 10 $^{-2}$ mol dm $^{-3}$ hydrochloric acid												
	D 40 cm ³ of 2.50×10^{-2} mol dm ⁻³ sodium chloride solution													
			END OF QU	JESTIONS			END OF QUESTIONS							

