HOW DO NEW FABRICATION AND MATERIAL TECHNOLOGIES AFFECT OUR DESIGN METHODOLOGIES?
In collaboration with faculty and students from the Digital Building Technologies Department at ETH Zurich, this workshop will be a hands-on investigation into the future of sustainable building technology. **We will be exploring a brand-new building material**, recently developed by the Complex Materials group of the ETH, an aerated foam made of a waste product that would otherwise end up in landfills.
Students will be assessing the properties of this new material and exploring its potential. We will be casting large-scale elements to assemble into a full-scale architectural space. Together with the DBT at the ETH, we will explore various experimental large-scale casting methodologies and geometric concepts in tiling.
With guidance from faculty in Zurich, 4 separate groups comprised of students from both ETH and GSAPP will explore fabrication of a large-scale element using one of the following experimental techniques:
FAST FORM/WORK

With guidance from faculty in Zurich, 4 separate groups comprised of students from both ETH and GSAPP will explore fabrication of a large-scale element using one of the following experimental techniques:

METHODS:

1) Direct deposition of foam via 3D printing robotic arm
2) CNC cut composite recyclable folded formwork
3) Large U.V. 3D printed rapid prototype negative/positive forms
4) Integrated 3D printed aerated structural skin
Lead Faculty

Nina Baier-Bischofberger

Their practice explores the complex intersection between fabrication and design methodologies, in the creation of built work.
Lead Faculty

Trevor Watson

Trevor founded PLAY TEST MAKE in 2007, an experimental research, design, and fabrication studio, now based in Stockholm, Sweden.

He developed and taught 'Transitional Geometries' at Columbia GSAPP from 2016-2018.
Partner Faculty

Prof. Benjamin Dillenburger, Digital Building Technologies (DBT)

+

Prof. André Studart, Complex Materials, ETH Zurich
APPLY & JOIN US!

Zürich, Switzerland
June 30 - July 20
2019