Shell Scripting Cheat Sheet

Syntax
Basic Structures

Compound Commands
Command Lists

Expressions
Loops
Builtins
Dummies
Declarative

Input

Output
Execution

Jobs/Processes
Conditionals And Loops
Script Arguments
Streams
File Descriptors
Redirection
Piping
Expansions
Common Combinations
Tests
Exit Codes
Testing The Exit Code
Patterns

Glob Syntax

Testing
Parameters

Special Parameters
Parameter Operations

Arrays
Creating Arrays

Using Arrays
Examples: Basic Structures
Compound Commands
Command Lists

Expressions
Loops

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Builtins
Dummies
Declarative

Input

Output
Execution

Syntax

e [word] [space] [word]
Spaces separate words. In bash, a word is a group of characters that
belongs together. Examples are command names and arguments to
commands. To put spaces inside an argument (or word), quote the
argument (see next point) with single or double quotes.

e [command] ; [command] [newline]
Semicolons and newlines separate synchronous commands from
each other. Use a semicolon or a new line to end a command and begin a
new one. The first command will be executed synchronously, which
means that Bash will wait for it to end before running the next command.

e [command] & [command]
A single ampersand terminates an asynchronous command. An
ampersand does the same thing as a semicolon or newline in that it
indicates the end of a command, but it causes Bash to execute the
command asynchronously. That means Bash will run it in the background
and run the next command immediately after, without waiting for the
former to end. Only the command before the & is executed
asynchronously and you must not put a ; after the &, the & replaces the ;.

e [command] | [command]
A vertical line or pipe-symbol connects the output of one command
to the input of the next. Any characters streamed by the first command
on stdout will be readable by the second command on stdin.

e [command] && [command]
An AND conditional causes the second command to be executed only if
the first command ends and exits successfully.

e [command] || [command]

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

An OR conditional causes the second command to be executed only if
the first command ends and exits with a failure exit code (any non-zero
exit code).

' [Single quoted string]'

Disables syntactical meaning of all characters inside the string.
Whenever you want literal strings in your code, it's good practice to wrap
them in single quotes so you don't run the risk of accidentally using a
character that also has a syntactical meaning to Bash.

" [Double quoted string] "

Disables syntactical meaning of all characters except expansions
inside the string. Use this form instead of single quotes if you need to
expand a parameter or command substitution into your string.
Remember: It's important to always wrap your expansions ("$var" or
"$(command)") in double quotes. This will, in turn, safely disable meaning
of syntactical characters that may occur inside the expanded result.

Basic Structures

Compound Commands

Compound commands are statements that can execute several commands but are
considered as a sort of command group by Bash.

Command Lists

e { [command list]; }

Execute the list of commands in the current shell as though they
were one command.

Command grouping on its own isn't very useful. However, it comes into
play wherever Bash syntax accepts only one command while you need to
execute multiple. For example, you may want to pass output of multiple
commands via a pipe to another command's input:

{cmd1; cmd2; } | cmd3

Or you may want to execute multiple commands after a || operator:

rm file || { echo "Removal failed, aborting."; exit 1; }

It is also used for function bodies. Technically, this can also be used for
loop bodies though this is undocumented, not portable and we normally
prefer do ...; done for this):

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

for digit in 1 9 7; { echo "$digit"; } # non-portable, undocumented,
unsupported
for digit in 1 9 7; do echo "$digit"; done # preferred
Note: You need a ; before the closing } (or it must be on a new line).

e ([command list])
Execute the list of commands in a subshell.
This is exactly the same thing as the command grouping above, only, the
commands are executed in a subshell. Any code that affects the
environment such as variable assignments, cd, export, etc. do not affect
the main script's environment but are scoped within the brackets.
Note: You do not need a ; before the closing).

Expressions

e (([arithmetic expression]))
Evaluates the given expression in an arithmetic context.
That means, strings are considered names of integer variables, all
operators are considered arithmetic operators (such as ++, ==, >, <=,
etc..) You should always use this for performing tests on numbers!

o $(([arithmetic expression]))
Expands the result of the given expression in an arithmetic context.
This syntax is similar to the previous, but expands into the result of the
expansion. We use it inside other commands when we want the result of
the arithmetic expression to become part of another command.

e [[[test expression]]
Evaluates the given expression as a test-compatible expression.
All test operators are supported but you can also perform Glob pattern
matching and several other more advanced tests. It is good to note that
word splitting willnot take place on unquoted parameter expansions here.
You should always use this for performing tests on strings and filenames!

Loops

e do [command list], done
This constitutes the actual loop that is used by the next few
commands.
The list of commands between the do and done are the commands that
will be executed in every iteration of the loop.

e for [name]in [words]
The next loop will iterate over each WORD after the in keyword.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

The loop's commands will be executed with the value of the variable
denoted by name set to the word.

e for (([arithmetic expression]; [arithmetic expression]; [arithmetic expression]))
The next loop will run as long as the second arithmetic expression
remains true.

The first arithmetic expression will be run before the loop starts. The third
arithmetic expression will be run after the last command in each iteration
has been executed.

e while [command list]

The next loop will be repeated for as long as the last command ran in
the command list exits successfully.

e until [command list]

The next loop will be repeated for as long as the last command ran in
the command list exits unsuccessfully ("fails").

e select [name] in [words]

The next loop will repeat forever, letting the user choose between the
given words.

The iteration commands are executed with the variable denoted by
name's value set to the word chosen by the user. Naturally, you can
use break to end this loop.

Builtins

Builtins are commands that perform a certain function that has been compiled into
Bash. Understandably, they are also the only types of commands (other than those
above) that can modify the Bash shell's environment.

Dummies

e true (or:): These commands do nothing at all.
They are NOPs that always return successfully.

e false: The same as above, except that the command always "fails".
It returns an exit code of 1 indicating failure.

Declarative

e alias: Sets up a Bash alias, or print the bash alias with the given name.
Aliases replace a word in the beginning of a command by something else.
They only work in interactive shells (not scripts).

e declare (or typeset): Assign a value to a variable.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Each argument is a new variable assignment. Each argument's part
before the equal sign is the name of the variable, and after comes the data
of the variable. Options to declare can be used to toggle special variable
flags (like read-only/export/integer/array).

e export: Export the given variable to the environment so that child processes

inherit it.

This is the same as declare -x. Remember that for the child process, the
variable is not the same as the one you exported. It just holds the same
data. Which means, you can't change the variable data and expect it to
change in the parent process, too.

e local: Declare a variable to have a scope limited to the current function.
As soon as the function exits, the variable disappears. Assigning to it in a
function also doesn't change a global variable with the same name, should
one exist. The same options as taken by declare can be passed to local.

e type: Show the type of the command name specified as argument.
The type can be either: alias, keyword, function, builtin, or file.

Input

e read: Read a line (unless the -d option is used to change the delimiter from
new line to something else) and put it in the variables denoted by the
arguments given to read.

If more than one variable name is given, split the line up using the
characters in IFS as delimiters. If less variable names are given than there
are split chunks in the line, the last variable gets all data left unsplit.

Output

e echo: Output each argument given to echo on one line, separated by a
single space.
The first arguments can be options that toggle special behaviour (like no
newline at end/evaluate escape sequences).
e printf: Use the first argument as a format specifier of how to output the
other arguments.
See help printf.
e pwd: Output the absolute pathname of the current working directory.
You can use the -P option to make pwd resolve any symlinks in the
pathname.

Execution

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

e cd: Changes the current directory to the given path.
If the path doesn't start with a slash, it is relative to the current directory.
e command: Run the first argument as a command.
This tells Bash to skip looking for an alias, function or keyword by that
name; and instead assume the command name is a builtin, or a program
in PATH.
e . orsource: Makes Bash read the filename given as first argument and
execute its contents in the current shell.
This is kind of like include in other languages. If more arguments are given
than just a filename to source, those arguments are set as the positional
parameters during the execution of the sourced code. If the filename to
source has no slash in it, PATH is searched for it.
e exec: Run the command given as first argument and replace the current
shell with it.
Other arguments are passed to the command as its arguments. If no
arguments are given to exec but you do specify Redirections on the exec
command, the redirections will be applied to the current shell.
e exit: End the execution of the current script.
If an argument is given, it is the exit status of the current script (an integer
between 0 and 255).
logout: End the execution of a login shell.
return: End the execution of the current function.
An exit status may be specified just like with the exit builtin.
e ulimit: Modify resource limitations of the current shell's process.
These limits are inherited by child processes.

Jobs/Processes

jobs: List the current shell's active jobs.
bg: Send the previous job (or job denoted by the given argument) to run in
the background.
The shell continues to run while the job is running. The shell's input is
handled by itself, not the job.
e fg: Send the previous job (or job denoted by the given argument) to run in
the foreground.
The shell waits for the job to end and the job can receive the input from
the shell.
e kill: Send a signal(3) to a process or job.
As argument, give the process ID of the process or the jobspec of the job
you want to send the signal to.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

e trap: Handle a signal(3) sent to the current shell.
The code that is in the first argument is executed whenever a signal is
received denoted by any of the other arguments to trap.

e suspend: Stops the execution of the current shell until it receives a

SIGCONT signal.

This is much like what happens when the shell receives a SIGSTOP
signal.

e wait: Stops the execution of the current shell until active jobs have finished.
In arguments, you can specify which jobs (by jobspec) or processes (by
PID) to wait for.

Conditionals And Loops

e break: Break out of the current loop.
When more than one loop is active, break out the last one declared. When
a number is given as argument to break, break out of number loops,
starting with the last one declared.
e continue: Skip the code that is left in the current loop and start a new iteration
of that loop.
Just like with break, a number may be given to skip out more loops.

Script Arguments

e set: The set command normally sets various Shell options, but can also set
Positional parameters.

Shell options are options that can be passed to the shell, such as bash -x
or bash -e. set toggles shell options like this: set -x, set +x, set -e, ...
Positional parameters are parameters that hold arguments that were
passed to the script or shell, such as bash myscript -foo /bar. set assigns
positional parameters like this: set -- -foo /bar.

e shift: Moves all positional parameters' values one parameter back.
This way, values that were in $1 are discarded, values from $2 go into $1,
values from $3 go into $2, and so on. You can specify an argument to shift
which is an integer that specifies how many times to repeat this shift.

e getopts: Puts an option specified in the arguments in a variable.
getopts Uses the first argument as a specification for which options to look
for in the arguments. It then takes the first option in the arguments that is
mentioned in this option specification (or next option, if getopts has been
ran before), and puts this option in the variable denoted by the name in

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

the second argument to getopts. This command is pretty much always
used in a loop:
while getopts abc opt

do
case $opt in
a) ...;;
D)) ool
C) ...;;
esac
done

This way all options in the arguments are parsed and when they are either
-a, -b or -c, the respective code in the case statement is executed.
Following short style is also valid for specifying multiple options in the
arguments that getopts parses: -ac.

Streams

Bash is an excellent tool for managing streams of data between processes. Thanks to
its excellent operators for connecting file descriptors, we take data from almost
anywhere and send it to almost anywhere. Understanding streams and how you
manipulate them in Bash is key to the vastness of Bash's power.

File Descriptors

A file descriptor is like a road between a file and a process. It's used by the process to
send data to the file or read data from the file. A process can have a great many file
descriptors, but by default, there are three that are used for standard tasks.

e 0: Standard Input
This is where processes normally read information from. Eg. the process
may ask you for your name, after you type it in, the information is read
over FD 0.

e 1: Standard Output
This is where processes normally write all their output to. Eg. the process
may explain what it's doing or output the result of an operation.

e 2: Standard Error
This is where processes normally write their error messages to. Eg. the
process may complain about invalid input or invalid arguments.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Redirection

e [command] > [file], [command] [n]> [file], [command] 2> [file]

File Redirection: The > operator redirects the command's Standard
Output (or FD n) to a given file.

This means all standard output generated by the command will be written
to the file.

You can optionally specify a number in front of the > operator. If not
specified, the number defaults to 1. The number indicates which file
descriptor of the process to redirect output from.

Note: The file will be truncated (emptied) before the command is started!

[command] >&[fd], [command] [fd]>&[fd], [command] 2>&1

Duplicating File Descriptors: The x>&y operator copies FD y's target
to FD x.

For the last example, FD 1 (the command's stdout)'s current target is
copied to FD 2 (the command's stderr).

As a result, when the command writes to its stderr, the bytes will end up in
the same place as they would have if they had been written to the
command's stdout.

[command] >> [file], [command] [n]>> [file]

File Redirection: The >> operator redirects the command's Standard
Output to a given file, appending to it.

This means all standard output generated by the command will be added
to the end of the file.

Note: The file is not truncated. Output is just added to the end of it.

[command] < [file], [command] [n]< [file]

File Redirection: The < operator redirects the given file to the
command's Standard Input.

You can optionally specify a number in front of the < operator. If not
specified, the number defaults to 0. The number indicates which file
descriptor of the process to redirect input into.

[command] &> [file]

File Redirection: The &> operator redirects the command's Standard
Output and Standard Error to a given file.

This means all standard output and errors generated by the command will
be written to the file.

[command] &>> [file] (Bash 4+)

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

File Redirection: The &>> operator redirects the command's
Standard Output and Standard Error to a given file, appending to it.
This means all standard output and errors generated by the command will
be added to the end of the file.

[command] <<< "[line of data]"

Here-String: Redirects the single string of data to the command's
Standard Input.

This is a good way to send a single line of text to a command's input. Note
that since the string is quoted, you can also put newlines in it safely, and
turn it into multiple lines of data.

[command] <<[WORD]
[lines of data]

[WORD]

Piping

Here-Document: Redirects the lines of data to the command's
Standard Input.

This is a good way of sending multiple lines of text to a command's input.
Note: The word after << must be exactly the same as the word after the
last line of data, and when you repeat that word after the last line of data,
it must be in the beginning of the line, and there must be nothing else on
that line.

Note: You can 'quote’ the word after the <<. If you do so, anything in the
lines of data that looks like expansions will not be expanded by bash.

e [command] | [othercommand]

Pipe: The | operator connects the first command's Standard Output
to the second command's Standard Input.

As a result, the second command will read its data from the first
command's output.

e [command] |& [othercommand] (Bash 4+)

Pipe: The |& operator connects the first command's Standard Output
and Standard Error to the second command's Standard Input.

As a result, the second command will read its data from the first
command's output and errors combined.

Expansions

e [command]"$([command list])", [command] " [command list] ™"

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Command Substitution: captures the output of a command and
expands it inline.
We only use command substitution inside other commands when we want
the output of one command to become part of another statement. An
ancient and ill-advised alternative syntax for command substitution is the
back-quote: ‘command’. This syntax has the same result, but it does not
nest well and it's too easily confused with quotes (back-quotes have
nothing to do with quoting!). Avoid this syntax and replace it with
$(command) when you find it.
It's like running the second command, taking its output, and pasting it in
the first command where you would put $(...).

e [command] <([command list])
Process substitution: The <(...) operator expands into a new file
created by bash that contains the other command's output.
The file provides whomever reads from it with the output from the second
command.
It's like redirecting the output of the second command to a file called foo,
and then running the first command and giving it foo as argument. Only, in
a single statement, and foo gets created and cleaned up automatically
afterwards.
NOTE: DO NOT CONFUSE THIS WITH FILE REDIRECTION. The < here
does not mean File Redirection. It is just a symbol that's part of the <(...)
operator! This operator does not do any redirection. It merely expands
into a path to a file.

e [command] >([command list])
Process substitution: The >(...) operator expands into a new file
created by bash that sends data you write to it to a second
command's Standard Input.
When the first command writes something to the file, that data is given to
the second command as input.
It's like redirecting a file called foo to the input of the second command,
and then running the first command, giving it foo as argument. Only, in a
single statement, and foo gets created and cleaned up automatically
afterwards

Common Combinations

e [command] < <([command list])

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

File Redirection and Process Substitution: The <(...) is replaced by a
file created by bash, and the < operator takes that new file and
redirects it to the command's Standard Input.

This is almost the same thing as piping the second command to the first
(secondcommand | firstcommand), but the first command is not
sub-shelled like it is in a pipe. It is mostly used when we need the first
command to modify the shell's environment (which is impossible if it is
subshelled). For example, reading into a variable: read var < <(grep foo
file). This wouldn't work: grep foo file | read var, because the var will be
assigned only in its tiny subshell, and will disappear as soon as the pipe is
done.

Note: Do not forget the whitespace between the < operator and the <(...)
operator. If you forget that space and turn it into <<(...), that will give
errors!

Note: This creates (and cleans up) a temporary implementation-specific
file (usually, a FIFO) that channels output from the second command to
the first.

e [command] <<< "$([command list])"

Tests

Here-String and Command Substitution: The $(...) is replaced by the
output of the second command, and the <<< operator sends that
string to the first command's Standard Input.

This is pretty much the same thing as the command above, with the small
side-effect that $() strips all trailing newlines from the output and <<< adds
one back to it.

Note: This first reads all output from the second command, storing it in
memory. When the second command is complete, the first is invoked with
the output. Depending on the amount of output, this can be more
memory-consuming.

Exit Codes

An Exit Code or Exit Status is an unsigned 8-bit integer returned by a command that
indicates how its execution went. It is agreed that an Exit Code of 0 indicates the
command was successful at what it was supposed to do. Any other Exit Code indicates
that something went wrong. Applications can choose for themselves what number

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

indicates what went wrong; so refer to the manual of the application to find out what the
application's Exit Code means.

Testing The Exit Code

e if [command list]; then [command list]; elif [command list]; then [command list];
else [command list]; fi

The if command tests whether the last command in the first
command list had an exit code of 0.
If so, it executes the command list that follows the then. If not, the next elif
is tried in the same manner. If no elifs are present, the command list
following else is executed, unless there is no else statement. To
summarize, if executes a list of *command™s. It tests the exit code. On
success, the then commands are executed. elif and else parts are
optional. The fi part ends the entire if block (don't forget it!).

e while [command list], and until [command list]
Execute the next iteration depending on the exit code of the last
command in the command list.
We've discussed these before, but it's worth repeating them in this
section, as they actually do the same thing as the if statement; except that
they execute a loop for as long as the tested exit code is respectively 0 or
non-0.

Patterns

Bash knows two types of patterns. Glob Patterns is the most important, most used and
best readable one. Later versions of Bash also support the "trendy" Regular
Expressions. However, it is ill-advised to use regular expressions in scripts unless you
have absolutely no other choice or the advantages of using them are far greater than
when using globs. Generally speaking, if you need a regular expression, you'll be using
awk(1), sed(1), or grep(1) instead of Bash.

Glob Syntax

e 7: A question mark matches any character.
That is one single character.

e *: A star matches any amount of any characters.
That is zero or more of whatever characters.

e [...]: This matches *one of* any of the characters inside the braces.
That is one character that is mentioned inside the braces.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

[abc]: Matches either a, b, or ¢ but not the string abc.
[a-c]: The dash tells Bash to use a range.
Matches any character between (inclusive) a and c. So this
is the same thing as the example just above.
m [la-c] or [*a-c]: The ! or A in the beginning tells Bash to invert
the match.
Matches any character that is *not* a, b or c. That means
any other letter, but *also* a number, a period, a comma, or
any other character you can think of.
m [[:digit:]]: The [:class:] syntax tells Bash to use a character
class.
Character classes are groups of characters that are
predefined and named for convenience. You can use the
following classes:
alnum, alpha, ascii, blank, cntrl, digit, graph, lower, print,
punct, space, upper, word, xdigit

Testing

e case [string] in [glob pattern]) [command list];; [glob pattern]) [command list];,
esac:
Using case is handy if you want to test a certain string that could
match either of several different glob patterns.
The command list that follows the *first* glob pattern that matched your
string will be executed. You can specify as many glob pattern and
command lists combos as you need.
o [[[string] = "[string[" 1], [[[string] = [glob pattern] 1], or [[[string] =~ [regular
expression]]
Test whether the left-hand STRING matches the right-hand STRING
(if quoted), GLOB (if unquoted and using =) or REGEX (if unquoted
and using =~).
[and test are commands you often see in sh scripts to perform these
tests. [[can do all these things (but better and safer) and it also provides
you with pattern matching.

Do NOT use [or test in bash code. Always use [[instead. It has many
benefits and no downsides.

Do NOT use [[for performing tests on commands or on numeric
operations. For the first, use if and for the second use (.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

[[can do a bunch of other tests, such as on files. See help test for all
the types of tests it can do for you.

e (([arithmetic expression])):
This keyword is specialized in performing numerical tests and
operations.

Parameters

Parameters are what Bash uses to store your script data in. There are Special
Parameters and Variables.

Any parameters you create will be variables, since special parameters are read-only
parameters managed by Bash. It is recommended you use lower-case names for your
own parameters so as not to confuse them with the all-uppercase variable names used
by Bash internal variables and environment variables. It is also recommended you use
clear and transparent names for your variables. Avoid x, i, t, tmp, foo, etc. Instead, use
the variable name to describe the kind of data the variable is supposed to hold.

It is also important that you understand the need for quoting. Generally speaking,
whenever you use a parameter, you should quote it: echo "The file is in: $filePath". If
you don't, bash will tear the contents of your parameter to bits, delete all the whitespace
from it, and feed the bits as arguments to the command. Yes, Bash mutilates your
parameter expansions by default - it's called Word Splitting - so use quotes to prevent
this.

The exception is keywords and assignment. After myvar= and inside [[, case, etc, you
don't need the quotes, but they won't do any harm either - so if you're unsure: quote!
Last but not least: Remember that parameters are the data structures of bash. They
hold your application data. They should NOT be used to hold your application logic. So
while many ill-written scripts out there may use things like GREP=/usr/bin/grep, or
command="mplayer -vo x11 -ao alsa', you should NOT do this. The main reason is
because you cannot possibly do it completely right and safe and readable/maintainable.
If you want to avoid retyping the same command multiple times, or make a single place
to manage the command's command line, use a function instead. Not parameters.

Special Parameters

e 1, 2, ... Positional Parameters are the arguments that were passed to your
script or your function.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

When your script is started with ./script foo bar, "$1" will become "foo" and
"$2" will become "bar". A script ran as ./script "foo bar" hubble will expand
"$1"as "foo bar" and "$2" as "hubble".
*: When expanded, it equals the single string that concatenates all
positional parameters using the first character of IFS to separate them (- by
default, that's a space).
In short, "$*" is the same as "$1x$2x$3x$4x..." where x is the first
character of IFS.
With a default IFS, that will become a simple "$1 $2 $3 $4 ...".
@: This will expand into multiple arguments: Each positional parameter
that is set will be expanded as a single argument.
So basically, "$@" is the same as "$1" "$2" "$3" ..., all quoted separately.
NOTE: You should always use "$@" before "$*", because "$@"
preserves the fact that each argument is its separate entity. With
"$*", you lose this datal!"$*" is really only useful if you want to
separate your arguments by something that's not a space; for
instance, a comma:(IFS=,; echo "You ran the script with the
arguments: $*") -- output all your arguments, separating them by
commas.
#: This parameter expands into a number that represents how many
positional parameters are set.
A script executed with 5 arguments, will have "$#" expand to 5. This is
mostly only useful to test whether any arguments were set:if (! $#)); then
echo "No arguments were passed." >&2; exit 1; fi
?: Expands into the exit code of the previously completed foreground
command.
We use $? mostly if we want to use the exit code of a command in
multiple places; or to test it against many possible values in a case
statement.
-: The dash parameter expands into the option flags that are currently set
on the Bash process.
See set for an explanation of what option flags are, which exist, and what
they mean.
$: The dollar parameter expands into the Process ID of the Bash process.
Handy mostly for creating a PID file for your bash process (echo "$$" >
Ivar/run/foo.pid); so you can easily terminate it from another bash process,
for example.
I: Expands into the Process ID of the most recently backgrounded
command.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Use this for managing backgrounded commands from your Bash script:
foo ./bar & pid=$!; sleep 10; kill "$pid"; wait "$pid"
e : Expanding the underscore argument gives you the last argument of the
last command you executed.
This one's used mostly in interactive shells to shorten typing a little: mkdir
-p /foo/bar && mv myfile "$_".

Parameter Operations

e "$var", "${var}"
Expand the value contained within the parameter var. The parameter
expansion syntax is replaced by the contents of the variable.

e "${var:-Default Expanded Value}"
Expand the value contained within the parameter var or the string
Default Expanded Value if var is empty. Use this to expand a default
value in case the value of the parameter is empty (unset or contains no
characters).

e "${var:=Default Expanded And Assigned Value}"
Expand the value contained within the parameter var but first assign
Default Expanded And Assigned Value to the parameter if it is empty.
This syntax is often used with the colon command (:): :
"${name:=$USERY}", but a regular assignment with the above will do as
well: name="${name:-SUSER}".

e "${var:?Error Message If Unset}", "${name:?Error: name is required.}"
Expand the value contained within the parameter name or show an
error message if it's empty. The script (or function, if in an interactive
shell) is aborted.

e ${name:+Replacement Value}, ${name:+--name "$name"}
Expand the given string if the parameter name is not empty. This
expansion is used mainly for expanding the parameter along with some
context. The example expands two arguments: notice how, unlike all
other examples, the main expansion is unquoted, allowing word splitting of
the inside string. Remember to quote the parameter in the inside string,
though!

o "${line:5}", "${line:5:10}", "${line:offset:length}"
Expand a substring of the value contained within the parameter line.
The substring begins at character number 5 (or the number contained
within parameter offset, in the second example) and has a length of 10

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

characters (or the number contained within parameter length). The offset
is 0-based. If the length is omitted, the substring reaches til the end of the
parameter's value.

"${@:5}", "${@:2:4}", "${array:start:count}"
Expand elements from an array starting from a start index and
expanding all or a given count of elements. All elements are expanded
as separate arguments because of the quotes. If you use @ as the
parameter name, the elements are taken from positional parameters (the
arguments to your script - the second example becomes: "$2" "$3" "$4"
"$5").

"${Ivar}"
Expand the value of the parameter named by the value of the
parameter var. This is bad practice! This expansion makes your code
highly non-transparent and unpredictable in the future. You probably want
an associative array instead.

"${#var}", "${#myarray[@]}"
Expand into the length of the value of the parameter var. The second
example expands into the number of elements contained in the array
named myarray.

"${var#A Prefix}", "${PWD#*/}", "${PWD##*/}"
Expand the value contained within the parameter var after removing
the string A Prefix from the beginning of it. If the value doesn't have
the given prefix, it is expanded as is. The prefix can also be a glob pattern,
in which case the string that matches the pattern is removed from the
front. You can double the # mark to make the pattern match greedy.

"${var%A Suffix}", "${PWD%/*}", "${PWD%%/*}"
Expand the value contained within the parameter var after removing
the string A Suffix from the end of it. Works just like the prefix trimming
operation, only takes away from the end.

"${var/pattern/replacement}", "${HOME/$SUSER/bob}", "${PATH//:/ }"
Expand the value contained within the parameter var after replacing
the given pattern with the given replacement string. The pattern is a
glob used to search for the string to replace within var's value. The first
match is replaced with the replacement string. You can double the first / to
replace all matches: The third example replaces all colons in PATH's
value by spaces.

"${var*}", "${var*}", "${var**[ac]}"
Expand the value contained within the parameter var after
upper-casing all characters matching the pattern. The pattern must be

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

match a single character and the pattern ? (any character) is used if it is
omitted. The first example upper-cases the first character from var's value,
the second upper-cases all characters. The third upper-cases all
characters that are either a or c.

e "§{var}", "${var,}", "${var, [AC]}"
Expand the value contained within the parameter var after
lower-casing all characters matching the pattern. Works just like the
upper-casing operation, only lower cases matching characters.

Arrays

Arrays are variables that contain multiple strings. Whenever you need to store multiple
items in a variable, use an array and NOT a string variable. Arrays allow you to keep
the elements nicely separated and allow you to cleanly expand the elements into
separate arguments. This is impossible to do if you mash your items together in a
string!

Creating Arrays

e myarray=(foo bar quux)
Create an array myarray that contains three elements. Arrays are
created using the x=(y) syntax and array elements are separated from
each other by whitespace.

e myarray=("foo bar" quux)
Create an array myarray that contains two elements. To put elements
in an array that contain white space, wrap quotes around them to indicate
to bash that the quoted text belongs together in a single array element.

o myfiles=(*.txt)
Create an array myfiles that contains all the filenames of the files in
the current directory that end with .txt. We can use any type of
expansion inside the array assignment syntax. The example use
pathname expansion to replace a glob pattern by all the filenames it
matches. Once replaced, array assignment happens like in the first two
examples.

o myfiles+=(*.html)
Add all HTML files from the current directory to the myfiles array. The
x+=(y) syntax can be used the same way as the normal array assignment
syntax, but append elements to the end of the array.

e names[5]="Big John", names[n + 1]="Long John"

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Assign a string to a specific index in the array. Using this syntax, you
explicitly tell Bash at what index in your array you want to store the string
value. The index is actually interpreted as an arithmetic expression, so
you can easily do math there.

e read -ra myarray
Chop a line into fields and store the fields in an array myarray. The
read commands reads a line from stdin and uses each character in the
IFS variable as a delimiter to split that line into fields.

e |FS=, read -ra names <<< "John,Lucas,Smith,Yolanda"
Chop a line into fields using , as the delimiter and store the fields in
the array named names. We use the <<< syntax to feed a string to the
read command's stdin. IFS is set to , for the duration of the read
command, causing it to split the input line into fields separated by a
comma. Each field is stored as an element in the names array.

e IFS=%$"n'read -d " -ra lines
Read all lines from stdin into elements of the array named lines. We
use read's -d " switch to tell it not to stop reading after the first line,
causing it to read in all of stdin. We then set IFS to a newline character,
causing read to chop the input up into fields whenever a new line begins.

e files=(); while IFS=read -d " -r file; do files+=("$file"); done < <(find . -name "*.txt'

-print0)

Safely read all TXT files contained recursively in the current directory
into the array named files.
We begin by creating an empty array named files. We then start a while
loop which runs a read statement to read in a filename from stdin, and
then appends that filename (contained in the variable file) to the files
array. For the read statement we set IFS to empty, avoiding read's
behavior of trimming leading whitespace from the input and we set-d " to
tell read to continue reading until it sees a NUL byte (flenames CAN span
multiple lines, so we don't want read to stop reading the filename after one
line!). For the input, we attach the find command to while's stdin. The find
command uses -print0 to output its filenames by separating them with
NUL bytes (see the -d " on read). NOTE: This is the only truly safe way of
building an array of filenames from a command's output! You must delimit
your filenames with NUL bytes, because it is the only byte that can't
actually appear inside a filename! NEVER use Is to enumerate filenames!
First try using the glob examples above, they are just as safe (no need to
parse an external command), much simpler and faster.

e declare -A homedirs=(["Peter"]=~pete ["Johan"]=~jo ["Robert"]=~rob)

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Create an associative array, mapping names to user home
directories. Unlike normal arrays, associative arrays indices are strings
(just like the values). Note: you must use declare -A when creating an
associative array to indicate to bash that this array's indices are strings
and not integers.

e homedirs["John"]=~john
Add an element to an associative array, keyed at "John", mapped to
john's home directory.

Using Arrays

e echo "${names[5]}", echo "${names[n + 1]}"
Expand a single element from an array, referenced by its index. This
syntax allows you to retrieve an element's value given the index of the
element. The index is actually interpreted as an arithmetic expression, so
you can easily do math there.

e echo "${names[@]}"
Expand each array element as a separate argument. This is the
preferred way of expanding arrays. Each element in the array is expanded
as if passed as a new argument, properly quoted.

e cp "${myfiles[@]}" /destinationdir/
Copy all files referenced by the filenames within the myfiles array
into /destinationdir/. Expanding an array happens using the syntax
"${array[@]}". It effectively replaces that expansion syntax by a list of all
the elements contained within the array, properly quoted as separate
arguments.

e rm "/${myfiles[@]}"
Remove all files referenced by the filenames within the myfiles array.
It's generally a bad idea to attach strings to an array expansion syntax.
What happens is: the string is only prefixed to the first element expanded
from the array (or suffixed to the last if you attached the string to the end
of the array expansion syntax). If myfiles contained the elements -foo.txt
and bar-.html, this command would expand into: rm "./-foo.txt" "bar-.html".
Notice only the first element is prefixed with ./. In this particular instance,
this is handy because rm fails if the first flename begins with a dash. Now
it begins with a dot.

e (IFS=,; echo "${names[*]}")
Expand the array names into a single string containing all elements
in the array, merging them by separating them with a comma (,). The
"${array[*]}"syntax is only very rarely useful. Generally, when you see it in

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

scripts, it is a bug. The one use it has is to merge all elements of an array
into a single string for displaying to the user. Notice we surrounded the
statement with (brackets), causing a subshell: This will scope the IFS
assignment, resetting it after the subshell ends.

for file in "${myfiles[@]}"; do read -p "Delete $file? " && [[SREPLY =y]] && rm

"$file"; done
Iterate over all elements of the myfiles array after expanding them
into the for statement. Then, for each file, ask the user whether he wants
to delete it.

for index in "${!myfiles[@]}"; do echo "File number $index is ${myfiles[index]}";

done
Iterate over all keys of the myfiles array after expanding them into
the for statement. The syntax "${!array[@]}" (notice the !) gets expanded
into a list of array keys, not values. Keys of normal arrays are numbers
starting at 0. The syntax for getting to a particular element within an array
is "${array[index]}", where index is the key of the element you want to get
at.

names=(John Pete Robert); echo "${names[@]/#/Long }"
Perform a parameter expansion operation on every element of the
names array. When adding a parameter expansion operation to an array
expansion, the operation is applied to every single array element as it is
expanded.

names=(John Pete Robert); echo "${names[@]:start:length}"; echo

"${names[@]:1:2}"
Expand length array elements, starting at index start. Similar to the
simple "${names[@]}" but expands a sub-section of the array. If length is
omitted, the rest of the array elements are expanded.

printf '%s\n' "${names[@]}"
Output each array element on a new line. This printf statement is a very
handy technique for outputting array elements in a common way (in this
case, appending a newline to each). The format string given to printf is
applied to each element (unless multiple %s's appear in it, of course).

for name in "${!homedirs[@]}"; do echo "$name lives in ${homedirs[$name]}";

done
Iterate over all keys of the homedirs array after expanding them into
the for statement. The syntax for getting to the keys of associative arrays
is the same as that for normal arrays. Instead of numbers beginning at O,
we now get the keys for which we mapped our associative array's values.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

We can later use these keys to look up values within the array, just like
normal arrays.

e printf '%s\n' "${#names[@]}"
Output the number of elements in the array. In this printf statement, the
expansion expands to only one argument, regardless of the amount of
elements in the array. The expanded argument is a number that indicates
the amount of elements in the names array.

Examples: Basic Structures

Compound Commands

Command Lists

e [[$111]| { echo "You need to specify an argument!" >&2; exit 1; }
We use a command group here because the || operator takes just
one command.
We want both the echo and exit commands to run if $1 is empty.

e (IFS=',"; echo "The array contains these elements: ${array[*]}")
We use parenthesis to trigger a subshell here.
When we set the IFS variable, it will only change in the subshell and not in
our main script. That avoids us having to reset it to it's default after the
expansion in the echo statement (which otherwise we would have to do in
order to avoid unexpected behaviour later on).

e (cd"$1" && tar -cvjpf archive.tbz2 .)
Here we use the subshell to temporarily change the current directory
to what's in $1.
After the tar operation (when the subshell ends), we're back to where we
were before the cd command because the current directory of the main
script never changed.

Expressions

e ((completion = current * 100 / total))
Note that arithmetic context follows completely different parsing
rules than normal bash statements.

e [[$foo = /*]] && echo "foo contains an absolute pathname."
We can use the [[command to perform all tests that test(1) can do.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

But as shown in the example it can do far more than test(1); such as glob
pattern matching, regular expression matching, test grouping, etc.

Loops

e for file in *.mp3; do openssl md5 "$file"; done > mysongs.md5
For loops iterate over all arguments after the in keyword.
One by one, each argument is put in the variable name file and the loop's
body is executed.

DO NOT PASS A COMMAND'S OUTPUT TO for BLINDLY!
for will iterate over the WORDS in the command's output; which is
almost NEVER what you really want!

e for file; do cp "$file" /backup/; done
This concise version of the for loop iterates the positional
parameters.
It's basically the equivalent of for file in "$@".

e for ((i=0;i<50;i++)); do printf "%02d," "$i"; done
Generates a comma-separated list of numbers zero-padded to two
digits.
(The last character will be a comma, yes, if you really want to get rid of it;
you can - but it defeats the simplicity of this example)

e while read _ line; do echo "$line"; done < file
This while loop continues so long as the read command is
successful.
(Meaning, so long as lines can be read from the file). The example
basically just throws out the first column of data from a file and prints the
rest.

e until myserver; do echo "My Server crashed with exit code: $?; restarting it in 2

seconds .."; sleep 2; done

This loop restarts myserver each time it exits with a non-successful
exit code.
It assumes that when myserver exits with a non-successful exit code; it
crashed and needs to restart; and if it exist with a successful exit code;
you ordered it to shut down and it needn't be restarted.

e select fruit in Apple Pear Grape Banana Strawberry; do ((credit -= 2, health += 5

)); echo "You purchased some $fruit. Enjoy!"; done

A simple program which converts credits into health.
Amazing.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Builtins

Dummies

e while true; do ssh jim@linuxserver.example.com; done
Reconnect on failure.

Declarative

e alias I='ls -al'
Make an alias called | which is replaced by Is -al.
Handy for quickly viewing a directory's detailed contents.

e declare -i myNumber=5
Declare an integer called myNumber initialized to the value 5.

e export AUTOSSH _PORT=0
Export a variable on the bash process environment called
AUTOSSH_PORT which will be inherited by any process this bash
process invokes.

e foo() { local bar=fooBar; echo "Inside foo(), bar is $bar"; }; echo "Setting bar to

'normalBar"; bar=normalBar; foo; echo "Outside foo(), bar is $bar"

An exercise in variable scopes.

o if I type -P ssh >/dev/null; then echo "Please install OpenSSH." >&2; exit 1; fi
Check to see if ssh is available.
Suggest the user install OpenSSH if it is not, and exit.

Input

e read firstName lastName phoneNumber address
Read data from a single line with four fields into the four named
variables.

Output

e echo "l really don't like $nick. He can be such a prick."
Output a simple string on standard output.

e printf "l really don't like %s. He can be such a prick." "$nick"
Same thing using printf instead of echo, nicely separating the text
from the data.

Execution
e cd ~jim

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Change the current directory to jim's home directory.
cd() { command cd "$@" && echo "$PWD"; }
Inside the function, execute the builtin cd command, not the function
(which would cause infinite recursion) and if it succeeds, echo out
the new current working directory.
source bashlib; source ./.foorc
Run all the bash code in a file called bashlib which exists somewhere
in PATH; then do the same for the file .foorc in the current directory.
exec 2>/var/log/foo.log
Send all output to standard error from now on to a log file.
echo "Fatal error occurred! Terminating!"; exit 1
Show an error message and exit the script.

LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

