Distance classwork

Ex #1: Use the number line to find each measure

a) KM

b) JM

c) KL

d) JL

Notice how the space between the points is technically the difference between the numbers?

On a Coordinate Plane

- o Method 1 Pythagorean Theorem
 - Graph points
 - $a^2 + b^2 = c^2$
- O Method 2 Distance formula $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

Ex #2: Use the Pythagorean Theorem to find the distance between each pair of points.

a)
$$R(5, 1), S(-3, -3)$$

Ex #3: Use the Distance Formula to find the distance between each pair of points.

a) D (-5, 6), E (8, -4)

b) G (2, 0), H (8, 6)

c) J(0, 0), K(6, 8)

d) K(6, 8), J(0, 0)

Did you notice that problems c) and d) were the same points in reverse? This means that the distance between J and K is the same as the distance between K and J.

In other words, it doesn't matter what point is used for x1 and y1. That's good news!

Also think about this: the formula *squares* the difference. Isn't it true that:

$$8 - 5 \neq 5 - 8$$

But

$$(8-5)^2 = (5-8)^2$$