Distance classwork

Ex \#1: Use the number line to find each measure

a) KM
b) $\quad \mathrm{JM}$
c) KL
d) $\quad \mathrm{JL}$

Notice how the space between the points is technically the difference between the numbers?

On a Coordinate Plane

- Method 1 - Pythagorean Theorem
- Graph points
- $a^{2}+b^{2}=c^{2}$
- Method 2 - Distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Ex \#2: Use the Pythagorean Theorem to find the distance between each pair of points.
a) $\quad R(5,1), S(-3,-3)$
b) $\quad E(-4,1), F(3,-1)$

Ex \#3: Use the Distance Formula to find the distance between each pair of points.
a) $\quad D(-5,6), E(8,-4)$
b) $\quad G(2,0), H(8,6)$
c) $\quad J(0,0), K(6,8)$
d) $\quad K(6,8), J(0,0)$

Did you notice that problems c) and d) were the same points in reverse? This means that the distance between J and K is the same as the distance between K and J .

In other words, it doesn't matter what point is used for x 1 and y 1 . That's good news! Also think about this: the formula squares the difference. Isn't it true that:

$$
\begin{gathered}
8-5 \neq 5-8 \\
\text { But } \\
(8-5)^{2}=(5-8)^{2}
\end{gathered}
$$

