
Java Programming AP Edition
U3C8 N-D Arrays and ArrayLists

ARRAYLIST

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Why ArrayList?
Memory allocation. Programming convenience.

Arrays have the disadvantage that, once they have been created,
their lengths can never be changed. We are often faced with
situations, however, where the natural thing to do is to delete or
insert array elements. One way to achieve this is to create a new
array into which we then copy all the elements we want to keep
together with any additional elements we want to insert.

Therefore, we need a different data structure that can behave like
array but allows us to grow or shrink the “array” without copying all
the elements. For this need, ArrayList serves this purpose very well.

Why ArrayList?
To overcome this difficulty, the Java language provides a class

called ArrayList. An instance of ArrayList can be used to store data
just like a regular Java array. Individual elements of arrays
and ArrayList objects are accessed in similar ways, using an index.
Unlike arrays, however, an ArrayList object allows us to change its
length by deleting elements or inserting elements (at any point, not
just at the end).

Declaration of ArrayList
ArrayList like a train. The datatype it carrys is like the cargo.

In declaring a variable of type ArrayList we use a statement like this:
ArrayList<String> aList;

The word between the angle brackets, <…>, indicates the data type of the
elements that the ArrayList will store. In this case, aList is declared to be
an ArrayList each of whose elements will be a String.
The following statement creates an ArrayList of Strings and then assigns it
to aList:

aList = new ArrayList<String>();
We can also declare and assign to the variable in a single statement:

ArrayList<String> aList = new ArrayList<String>();

The ArrayList Class
You can create an array to store objects. But the array’s size is fixed once the array is created.
Java provides the ArrayList class that can be used to store an unlimited number of objects.

Generic Data Type <E>
Can be String, Integer, Double, … (but not primitive data types)

If E is the name of a data type, the ArrayList<E> class is

an example of a so-called generic class with type
parameter whatever the replacement for E is. (Before we
replace E by the name of an actual data type, it is called

a formal type parameter.) It is also possible to declare an
ArrayList without using a type parameter. Such a usage
treats ArrayList as a so-called raw class. Raw ArrayLists

require careful handling. However, they are not included in
the AP subset and we have very little to do with them in
this course.

NO ArrayList<int>
Generics in Java is not applicable to primitive types as in int. You
should use the wrapper types as in Integer:

int a = 3;

ArrayList<Integer> aList = new ArrayList<lnteger>();

// ArrayList<Integer>(); is a constructor call like

// Scanner(System.in);

aList.add(a); // put data of int type here is OK, because of auto-
boxing

Differences and Similarities between
Arrays and ArrayList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

