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Abstract—A large number of vehicles routinely navigate
through city streets; with on-board sensors, they can be trans-
formed into a dynamic network that monitors the urban envi-
ronment comprehensively and efficiently. In this paper drive-by
approaches are discussed as a form of mobile sensing, which
offer a number of advantages over more traditional sensing
approaches. It is shown that the physical properties of the urban
environment that can be captured using drive-by sensing include
Ambient Fluid, Electromagnetic, Urban Envelope, Photonic, and
Acoustic properties, which comprise the FEELS classification. In
addition, the spatiotemporal variations of these phenomena are
discussed as well as their implications on discrete-time sampling.
The mobility patterns of sensor-hosting vehicles play a major
role in drive-by sensing. Vehicles with scheduled trajectories,
e.g., buses, and those with less predictable mobility patterns, e.g.,
taxis, are investigated for sensing efficacy in terms of spatial and
temporal coverage. City Scanner is a drive-by approach with a
modular sensing architecture, which enables cost-effective mass
data acquisition on a multitude of city features. The City Scanner
framework follows a centralized IoT regime to generate a near
real-time visualization of sensed data. The sensing platform was
mounted on top of garbage trucks and collected drive-by data
over eight months. Acquired data were streamed to the cloud
for processing and subsequent analyses. Based on a real-world
application, we discuss and show the potential of using drive-by
approaches to collect environmental data in urban areas using a
variety of non-dedicated land vehicles to optimize data collection
in terms of spatiotemporal coverage.

Index Terms—Environmental monitoring, Mobile sensing, Mo-
bility patterns, Road vehicles, Smart city, Spatiotemporal phe-
nomena, Urban areas, Wireless Sensor Networks.

I. INTRODUCTION

ITIES are data factories; enormous amounts of data are
generated from various sources, every day. Increasing
efforts to collect such data from the urban environment are
driven by promises of improved services or products for the
public, ranging from self-driving cars, to smart buildings,
and data-driven traffic lights. Collections of spatiotemporal
datasets of urban phenomena can thus empower advanced
analytics and technical solutions for local governments and
urban planners.
Recently, portable sensors, with high accuracy and embed-
ded communication technologies, have become available and
affordable. A number of studies have utilized vehicles to carry
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such sensors with the aim of capturing a specific feature of the
urban environment, e.g., air quality [3]], [20] or road conditions
[36]. One of the most commonly used terms in the vehicular-
based sensing paradigm is Vehicular Sensor Networks (VSNs),
in which vehicles have a certain role in a Wireless Sensor
Network (WSN). In this paper, we adopt the term drive-by
sensing to refer to urban sensing using road vehicles.

Drive-by sensing offers a number of advantages over more
traditional approaches, such as remote and stationary sens-
ing. Natural phenomena and physical properties are typically
continuous signals in both temporal and spatial dimensions.
To represent these signals as digital sensor data, each sensing
channel must capture sufficiently dense spatiotemporal data
for its application. Yet, in many environmental use-cases,
the collected data have been constrained in spatial and/or
temporal dimensions, which limits the information that can
be extracted. For instance, stationary air pollution sensors
measure the ambient pollutants in precise locations, but miss
potential differences in nearby streets and neighborhoods [34]].
On the other hand, satellite-based measurements can be used
to infer air quality levels over large swaths of land, but are
sampled infrequently. Moreover, robust mathematical models
are required to predict more detailed changes in surface
temperature over time [30]. These methods have however
been shown to be accurate for certain applications that do
not require a high temporal resolution, such as measuring
chlorophyll concentration in coastal zones [9].

This paper introduces City Scanner, a mobile sensing plat-
form for smart city services. Related works in drive-by sensing
are discussed in Section[[I] Subsequently, a general categoriza-
tion of spatiotemporal phenomena that can be captured in a
drive-by approach is introduced in Section In Section [[V]
the sampling characteristics of drive-by sensing methods are
discussed and compared with airborne and stationary sensing.
Since City Scanner is specifically created to be deployed on
a fleet of existing vehicles, the suitability of various vehicles
in terms of spatiotemporal coverage is addressed in Section
[Vl The ideology of the paradigm is furthermore elaborated
upon in Section As a proof of concept, City Scanner has
been deployed on municipal garbage trucks in Cambridge,
MA for eight months. The outcomes and implications of this
application are discussed in Section Finally, we conclude
our work in Section

II. RELATED WORKS

In the domain of VSNs, a number of studies have fo-
cussed on the network architecture and communication as-
pects, leading to many publications on vehicle interactions
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TABLE I

OVERVIEW OF DRIVE-BY SENSING STUDIES

Title Urban Phenomena Utilized Sensors (* is from smartphone) Type of Vehicle
CarTel [11]) Traffic congestion, WiFi access points, driv- | GPS, WiFi, OBD, camera Car
ing behavior
BikeNet [4]] Passing vehicles, cycling behavior, topogra- | GPS, 2-axis accelerometer, CO2 meter, reed Bike
phy, air quality, noise pollution, visual map | relay, camera®, microphone*
Nericell [24] Road quality, traffic conditions Accelerometer®, microphone*, GPS* Car
ParkNet [19] Parking statistics GPS, ultrasonic rangefinder Car
VOTERS [36] Road conditions GPS, camera, microphone, accelerometer, Van
mm-wave radar, GPR, tire pressure sensor
N.A. [14] Street lighting infrastructure GPS, light sensor, CCD Camera, odometer Van
interface, IMU, OBD
N.A. [29] Thermal signature GPS, long wave infrared radiometric cam- Van
eras, near-infrared camera, optical camera
N.A. [1] Air pollution GPS, NO, NO2, black carbon Google Street View vehicles

in terms of communication [33]]. The prohibitive costs and
privacy implications of real field experiments with hundreds
of instrumented vehicles envisioned in these scenarios, has
forced researchers and developers to fall back to simulations
[8]]. On the other hand, much less attention has been given to
research that has utilized a fleet of non-interconnected ground
vehicles as a resource for monitoring the environment, which
was previously referred to as drive-by sensing. An overview of
drive-by sensing studies, with their respective configurations
and sensing purposes is presented in Table [I|

A little over a decade ago, drive-by sensing emerged as a
new network paradigm for sensing urban environments [15].
One of the first works in this domain, [[11]], already envisioned
the paradigm would prosper in cases where the individual
sensors are costly or the number of required sensors is so large
that a stationary deployment is impractical. However, the need
for high computation power and high storage space used to
make potential costs for network deployment and maintenance
relatively high [22]. Early works had to do concessions, such
as prioritization and aggregation of measurements, due to
the fact that sensors produced more data than the system
could promptly deliver to the back-end [11]. The recent
availability of affordable and portable sensors and ubiquitous
smartphones with advancing sensing capabilities [28|] have
bolstered to this platform in terms of sensing opportunities,
communication possibilities, and cost-effectiveness. However,
in recent studies, the limit of GPS accuracy was sometimes
a problem. Employed solutions include utilizing additional
data (from e.g. IMU or on-board diagnostics - OBD) and
methods to cope with noise such as a Kalman filter (e.g. [[14]),
snapping data to a set of closest fixed locations (e.g. [1]]) or
utilizing environmental fingerprinting (e.g. [19]). A similarity
between the early and latest studies is the usage of a modular,
expansible sensing architecture.

Drive-by sensing configurations can be categorized as being
either multi- or single purpose. In a multi-purpose setting, the
sensor network is designed to simultaneously capture several
city features for multiple purposes; so far, three studies fall
under this classification [11]], [24] and [4ﬂ In the single

1Other studies, such as [2]] and [31]] do not fall under this category; although
a prototype was established, a deployment for urban data collection was not
presented.

purpose case, the focus is on a single urban phenomenon,
although multiple sensors may be utilized.

Drive-by sensing has been employed to measure city fea-
tures ranging from natural phenomena such as temperature,
humidity, and air quality, to those more closely related to
the urban environment, e.g., parking spot occupancy, street
light infrastructure, road conditions, traffic congestion, and
WiFi access points. However, the majority of efforts are
focused on quantifying air quality and road conditions in
urban environmentsﬂ The works on air quality often include
meteorological measurements, predominantly being temper-
ature and humidity, to correct the raw measurements for
the effect of environmental parameters using a calibration
mechanism (e.g. [13]], [21]]). Studies on road quality have
utilized IMUs in smartphones (e.g. [24]]), microphones (e.g.
[23]), or a combination of dedicated hardware (e.g. [36]).
The most prevalent application of vehicle-based sensing is
Google Street Vievﬂ but we can also find applications such
as assessing and optimizing a lightning infrastructure [[14f] and
mapping cyclist experiences [4]. Apart from new applications,
the value of this paradigm is underlined by multiple orders
of time reduction (e.g. [36]), cost reduction (e.g. [29]]), and
increase in spatial precision (e.g. [1]]) compared to traditional
methods for capturing urban phenomena.

Generally, drive-by sensing employs cars (e.g. [[11]]) or vans
(e.g. [16]); although other vehicles, such as bikes [4]], buses
[6], and taxi cabs [[10], [S], have been utilized. The majority of
drive-by sensing deployments used dedicated vehicles, which
were driven solely for data collection purposes. Some of these
packages can be set up on an existing fleet of vehicles, but the
suitability of each vehicle type is yet to be studied in detaiﬂ
Vehicle modifications are sometimes also required in drive-
by applications: a car window must be open in [14] and [19]
and a bike is almost completely covered with sensors in [4].
Such adjustments may restrict the scale of the deployment.
Some studies have utilized lab-grade sensors [1]], whereas
others employed cheaper sensors [[19] or smartphones [24].

2Table E] contains some advanced works, however different from related
works such as [35], [6], [S], and [24], they use more expensive sensors, and
more often use dedicated vehicles

3See |https://www.google.com/streetview/.

4 7)) studied different vehicles, although their focus is on a difference in
(e.g. IMU) signals per vehicle while crossing the same road.
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Furthermore, some vehicles have been employed to acquire
hundreds of hours of data (e.g. [[1]]), whereas others have just
been used to collect a small dataset of several hours of data
[24]. The majority of works also includes a visualization of
their data, although most lack to show a temporal dimension
to the user.

In the City Scanner project, a portable, self-contained
general-purpose sensing platform is deployed on top of exist-
ing garbage trucks, such that the hosting vehicle is practically
unaltered. The initial data from an 8-month deployment allows
a user to explore both the spatial and temporal dimensions of
the scheduled data collection.

III. SENSOR TYPES AND POTENTIAL APPLICATIONS

Today, with the rapid advances in sensor technology, there
is a handful of sensors that can be used to monitor and capture
various physical aspects of the external environment such as
light, temperature, humidity, magnetic fields, and sound. In
this context, we introduce FEELS as a general classification
for these urban properties to organize the vast amount of
opportunities that lie in drive-by sensing. Focusing on drive-
by sensing, an overview of typical sensor types and their
corresponding urban applications are provided per property

type in Table

A. Fluid (Ambient Fluid Properties)

The ambient fluid in both the air and water include par-
ticulates, chemical substances, and biological molecules. The
ambient air use cases are most relevant to City Scanner, as it
uses land vehicles, hence Table|ll|is limited to these use cases.
The most common application in this category is air quality
monitoring.

B. Electromagnetic Properties

Urban areas include an increasing number of electronic
devices which emit an agglomeration of radio waves and
electromagnetic fields in urban areas. These radio waves,
similar to visible light and infrared radiations, are part of the
electromagnetic spectrum and have wavelengths longer than
infrared light.

C. Envelope (Urban Envelope Properties)

This group of physical properties includes the built en-
vironment (e.g. buildings, street surfaces, the subsurface in-
frastructure), as well as the interactions between vehicle and
its surroundings (e.g. acceleration). Accelerometers, ultrasonic
sensors and LIDAR sensors are examples of sensors that can
capture parts of the urban envelope. Recently, these types of
sensors have been included in self-driving applications to pro-
vide the vehicles with comprehensive information about their
surroundings [[26]. As such, autonomous cars can interpret the
roads correctly as they drive.

D. Light (Photonic Properties)

Multi-spectral light sensors are used to capture the infrared
and the visible regions of the electromagnetic spectrum. In the
case of autonomous vehicles, multi-spectral imaging has appli-
cations in navigating through the built environment. Infrared
imaging has also been helpful for some use cases beyond
thermal efficiency, for instance, the detection of methane gas
leaks [25].

E. Sound (Acoustic Properties)

The acoustic properties of an urban environment are in-
fluenced by urban factors such as various noise sources and
acoustic propagation effects. Such factors can be used to
identify human activity patterns and the distribution of noise
pollution over time in various urban areas.

IV. DENSITY REQUIREMENTS OF SPATIOTEMPORAL
PHENOMENA

In the case of mobile sensing, the usefulness of the data
roughly depends on the number of captured data points in a
specific spatiotemporal area. However, the required number of
points varies according to the phenomenon under studyﬂ For
instance, we would need a high spatial density of data points
for capturing noise, whereas temperature in urban areas can be
captured with a lower spatial density. On the other hand, the
street surface quality is much less sensitive to time compared
to e.g. air pollution.

A. Methods of Sensing

Common sensing techniques do not cover urban areas
effectively in space and time. Generally, airborne sensing
covers large areas of target cities at sparse time intervals,
whereas stationary sensors have a high temporal coverage, but
capture signals at one point in space. Drive-by sensing can
overcome some of the limitations of stationary and remote
sensing approaches.

However, urban phenomena are not strictly bound to one
category. For instance, air pollution can be measured through
satellite images, drive-by sensing or stationary sensors. The
difference in such measurements is the spatiotemporal cov-
erage for the target area and given time window. Also, the
practical constraints of these approaches are not explicitly
defined. In the case of air quality, a larger fleet of satellites
or larger network of stationary sensors can be employed to
respectively acquire a higher temporal and spatial coverage,
but a drive-by approach may be more cost effective instead.
Though, the latter also faces constraints: it is limited in time
due to cost of deploying a large fleet of mobile sensors, and
in space as it is confined to a street network.

As an example consider the use cases of greenery or parking
spot identification. Greenery mapping can be achieved by
analysis of satellite images or with more novel approaches
that benefit from drive-by images [17]. Likewise, parking

5The application of the obtained data also plays a significant role that is
generalized here to common applications such as identifying air pollutant hot
spots, potholes and urban heat islands.
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TABLE I
OVERVIEW OF SENSORS AND APPLICATIONS FOR FEELS PROPERTIES
Type Sensor Potential Applications
Particulate matter o Monitoring the distribution of fine particulates (e.g. PM2.5, PM10)
Chemical pollutants: - T .
Monitoring the distribution of various pollutants
COg, NOy, SO, O3 y e P
- Methane sensor o Detecting methane leaks
g
=
= CeNSOrS . . .
9 Nano'sensors (no o Detecting explosive material
E commercial sensors yet) o Detecting chemical substances
<
Temperfnure, Humidity, e Monitoring urban heat island phenomena
Air pressure
Particle radiation o Monitoring the airborne particulate radioactivity
WiFi, Bluetooth o Crowd and station mapping by scanning WiFi and Bluetooth signals
2 GPS e Localization and annotating sensor data
go o Inferring mobility aspect of vehicles (e.g. mobility mode of people or traffic status)
<
g
g RFID scanner o Tracking and managing assets in urban areas (e.g. trees)
O . . s . . ..
) e Sensing of spatial information by implanted beacons (e.g. road conditions)
Isotropic sensors, e Monitoring the electromagnetic field level (e.g. for studying irradiation impacts on citizens)
Magnetometers
o Generating 3D model of cities
LiDAR, Ultrasonic e Monitoring the street surface quality
e Monitoring road-side parking spots
Q . . .
& e Monitoring the street surface quality
[ Wave Radar, Ground o Identifying the pavement material and quality
5 Penetrating Radar o Detecting black ice formation
g e Mapping the subsurface infrastructure (e.g. pipes, cables, tunnels)
=
o]
e Monitoring the street surface quality
Accelerometer, e Monitoring road traffic and identifying hazardous road segments
Gyroscope, Odometer e Monitoring driving behavior
o Monitoring bridge vibrations
e Real-time imaging of urban areas and creating panoramic views
Visual camera e Monitoring of crowd and vehicles for event management and security purposes
e Monitoring of traffic
g e Monitoring energy efficiency of built environment
) o Monitoring the anthropogenic heat pollution
é:cz e Detecting natural gas and CO2 emissions
Thermal camera o Monitoring crowd
e Monitoring infrastructure (e.g. powerlines, street surface)
o Detecting black ice formation
Photosensor e Monitoring street lightning infrastructure quality, blazing light and reflections
L;’ Audio sensor, o Monitoring noise and identifying activity patterns
2 Microphone e Mapping the soundscape of cities
Z e Monitoring the impact of noise controlling measures (e.g. noise-absorbtion walls)
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spots can be identified by a network of stationary parking
sensors or, more efficiently, via a drive-by approach [19].
Fig. |1] illustrates key coverage attributes of various sensing
approaches in terms of time-sensitivity and space-sensitivity
of target urban phenomena, as well as the cost barriers for
each category.

Airborne

Barrier of mobile sensors’ cost

Street network barrier

Space sensitivity
P pppp———

Stationary

e R = = =

v

Time sensitivity

Fig. 1. Illustration of spatial and temporal coverage of airborne sensing, drive-
by sensing, and stationary sensing; each technique has constraints in space
and time. Drive-by methods offer a midrange mixture, which is adequate for
observing multiple city features in a way that is not cost-effectively achievable
by the other means.

B. Sampling Resolution

There is a fundamental relationship between the vehicle
speed, sampling rate, and spatial resolution, which should be
considered for each channel in the design of an urban mobile
sensing platform. For simplicity, consider the scanning of a
one-dimensional segment of length, L, using one vehicle at
a constant speed, v, and temporal sampling rate, Fs. The
corresponding spatial resolution is Ar = 7 and defines the
tradeoff between data density and vehicle speed for a given
sensor sampling rate. Whereas a constant vehicle speed is
impractical in an urban setting, the sampling properties of
the sensing channels can be designed conservatively based on
maximum values. Finally, Nyquist-Shannon sampling theorem
applies simultaneously in time and space [12]]. The highest

temporal and spatial frequencies that may be reconstructed

are finyq = 3x7 and frnyq = zA;. respectively, where
At = 4.
s

V. MOBILITY PATTERNS OF HOSTING VEHICLES

Whereas the majority of drive-by solutions have used ded-
icated vehicles to gather data from the environment, the City
Scanner approach exhibits existing fleets of vehicles that cover
the urban areas in a regular basis. However, the route for data
collection is in this case defined by the hosting vehicles. For
this reason, it is important to understand that apart from the
sensing frequency, the spatiotemporal coverage of scheduled

and unscheduled urban vehicles play a major role in City
Scanner. These coverages are further discussed next.

A. Scheduled Vehicles

City-owned vehicles such as buses and trash trucks can be
used to carry sensors around the city. Although both vehicles
use predefined routes and schedules, their mobility patterns are
very different. Bus lines cover predefined routes, which consist
of a fixed number of street segments, many times per day;
whereas trash trucks cover a larger number of street segments
but operate for fewer hours (e.g. morning or night hours) per
day, and usually operate only a few days a week in each zone.
Fig. [2] illustrates the differences between coverage pattern of
bus lines and trash trucks.

Space ( street segments )

v

time

Fig. 2. Street segment coverage using mobile sensors on buses (yellow boxes)
versus trash trucks (orange boxes).

For instance, in Cambridge, MA, the trash trucks run
between 7:00 am to 2:00 pm and during this time, each truck
covers on average 133 out of 2615 street segments. The total
number of street segments that are covered by trash trucks is
1,739, which is around 67% of street segmentsﬂ On the other
hand, the longest bus line in Cambridge covers less than 1%
of street segments, but it covers those segments many times
per day. Fig. [3] depicts the bus lines in Cambridge and the
percentage of street segments covered by each linem as well
as their corresponding number of trips.

B. Unscheduled vehicles

Other kinds of urban vehicles, such as taxis, do not follow
predefined schedules. Although these vehicles exhibit some
spatial and temporal mobility patterns, their behavior is less
systematic compared to buses and trash trucks. Without further
knowledge, it can be assumed that these vehicles follow
stochastic mobility patterns. Therefore, the number of data

%Some areas of Cambridge are dedicated to university campuses and are
not covered by the municipal trash trucks

"Based on the open data feeds of Cambridge’s transportation authority, see
https://www.mbta.com/developers.
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points within a specific area (e.g. street segment) and a
time window, would also be stochastic. Fig. E] shows the
mobility patterns of such vehicles that provide a stochastic
spatiotemporal coverage for selected area and time window.
In this context, the spatiotemporal coverage is expressed as
the number of measurements inside the green box.
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Fig. 4. Example of random mobility patterns and their corresponding
spatiotemporal coverage of a selected area

To demonstrate the coverage of sensors deployed on vehi-
cles such as taxis, an open dataset of taxi trips from Manhattan,
in New York Cityﬁ was analyzed. In Manhattan, there are
around 7,500 street segments and the selected dataset (year
2011) contains around 140 million trips of more than 13,000
taxis. For this analysis, subsets with different sizes (5 to 100
taxis) were randomly selected. The number of daily visits of
street segments was calculated for each group. In addition, for
each sample size, the experiment was repeated five times for
verification.

Fig [5] depicts the results of this analysis and demonstrates
that by equipping only five taxis, around 30% of street seg-

8See http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.

ments in Manhattan will be visited at least once per day. With
30 taxis, the number of street segments covered at least once
a day increases to around 60%, and half of these segments
get more than four visits per day. It is interesting to note
that the longest bus line in Manhattan visits about 5% of all
street segments, although this configuration would result in
guaranteed measurements of the target street segments in both
the temporal and spatial domain.

VI. CITY SCANNER FRAMEWORK

City Scanner was introduced as a self-contained general-
purpose sensing platform that exhibits an existing fleet of
vehicles, without interfering with their operations. In this
section, we elaborate upon the framework that establishes
these features, which is displayed in Fig. [7}

City Scanner follows a centralized IoT regime to generate
a near real-time map of sensed data. The individual sensing
units are mounted on top of urban vehicles to record data and
stream it to the cloud for processing and analysis. The core
components of sensing units include power management, data
management, and cloud streaming components (see Fig. [6).
Since all components are encapsulated in the portable sensor
platform, no additional resources (such as power or an open
window) are required other than some surface area on the
bodyshell. Also, this configuration allows advanced features,
such as energy self-sufficiency, to be readily incorporated.
Apart from these core components, sensor nodes are designed
in a modular way so they can be added or removed to build
different sensing configurations. In the case of city-owned
vehicles, this solution thus gives cities (which own, manage or
regulate such fleets) the power to decide which and how many
sensors to deploy to acquire the data they need for specific
applications. These possibilities come at no other cost than the
hardware, while being less intrusive than any related work.

The quantity of sensors deployed in the platform is only
limited by practical constraints such as power consumption,
network reliability, and local processing capacity. The sensor
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Fig. 6. City Scanner sensing unit with FEELS sensor nodes

nodes and the core unit will be deployed on one hosting
vehicle and communicate via a short-range WiFi network
which is used to send the captured data to the core unit
for preliminary analysis and streaming to the cloud based on
the power restrictions and availability of the network. Since
the City Scanner platform uses standard Transmission Control
Protocol (TCP) for data transfer, the data is reliably transferred
from sensor nodes to the core component, as well as from the
core component to the cloud.

On the cloud, each type of sensor data will have a number
of corresponding services that can be used to design a data
processing pipeline. These services can range from simple
data storage, filtering, and visualization to more complicated
services such as data analytics and machine learning.

VII. TRASH TRUCK EXPERIMENTS

The first deployment of City Scanner was conducted in
cooperation with the Department of Public Works, City of
Cambridge, MA, United States. To this end, we have employed
a set of non-intrusive sensors including thermal cameras, WiFi
scanners, accelerometers, GPS, and air quality, temperature,
and humidity sensors. The sensors were deployed on trash
trucks (see Fig. [8) that cover the entire area of the city on a
weekly basis. Since the trash trucks are following predefined
routes, we have been able to scan the same area every week
and over time the captured data has generated a unique
signature for each street segment.

The captured data consists of over 1.6 million measurements
and could - if needed, in combination with other data sources -
be used for various purposes such as analyzing the thermal ef-
ficiency of building facades, detection of certain infrastructural
failures (e.g. the overheating of power lines), studying thermal
pollution/heat-island phenomena in urban areas, and studying
the impact of microclimate on pedestrian comfort. With the
results of the current 8-month deployment of City Scanner,
thermal abnormalities and air pollutant hot spots could be
identified utilizing known methods that were customized to
process drive-by data. In the following we discuss processing
methods that have been applied on the thermal image and air
quality data to enable such analyses and elaborate upon the
challenges faced in the trash truck deployment.
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Fig. 8. City Scanner deployment on trash trucks in the City of Cambridge, MA

A. Thermal Image Processing

The main goal of deploying thermal cameras in the City
Scanner project is to capture the variation in thermal flux of
the built environment. In the deployment, FLIR Lepton micro
thermal cameras were used to capture two thermal images
per second. The FLIR Lepton camera is an uncooled infrared
long-wave sensor; it can capture infrared radiation input in
its nominal response wavelength band (from 8 to 14 microns)
and outputs the raw thermal data. The raw data can then be
converted to thermal images by applying appropriate color
maps. The resolution of this thermal camera is 60x80 pixels
which is a rather low resolution compared to other thermal
cameras in the market. However, the resolution has been
enough to show the feasibility of creating a spatiotemporal

thermal map for the target built environment. The influence
of sensor resolution depends on the scale of the data analysis.
For instance, in case of thermal inspection of buildings, we
may use a high resolution thermal camera instead. In our
experiment, two thermal cameras were deployed per truck to
capture thermal images of both sides of streets. The captured
data were stored locally and uploaded daily to the cloud for
further processing.

Various well-known algorithms were used to process and
analyze the thermal images. Since trash trucks make multiple
stops to load the garbage, there is a significant number of
thermal images that are redundant. In order to eliminate these
frames, we use the well-known Mean Square Deviation (MSD)
algorithm to quantify the changes between every two suc-
cessive frames. Frames with an MSD smaller than a specific
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threshold are deleted.

Since the target of interest in this project is the built
environment, the frames that slip through the MSD frame-
discarding mechanism due to human movements in the target
scene should also be excluded. This is especially troublesome
in situations where the vehicle is not moving and we have
some human activities in the scene. To overcome this problem,
we apply the MSD algorithm to the upper one-third of thermal
images which is more persistent in urban areas and usually
does not include human movements.

Another part of the thermal data that needs to be excluded
is the open sky pixels. The sky pixels represent the average
temperature of water vapor between the ground and the upper
troposphere. The water vapor is warmed by absorbing part of
the infrared radiation emitted by the Earth. The sky tempera-
ture is generally lower than the cloud temperature, because the
water vapor in clouds absorb more infrared radiation. Since in
troposphere layer, the temperature is inversely proportional to
elevation, both sky and cloud temperatures are significantly
lower than the ground temperature [27]. As a result, we may
use this significant temperature difference to exclude the sky
areas. To do so, the pixels of thermal image, which represent
various temperatures in the target scene, are aggregated into
a histogram of thermal flux bins. If the captured target scene
includes some open sky areas, it has been empirically observed
that the corresponding histogram will include a significant
peak in the colder areas. Fig. 9] shows one such histogram
which is generated from raw thermal data. Since our camera
is non-radiometric, the thermal camera output is not the scene
temperature, rather it demonstrates the incident thermal flux
which is typically a value between 6000 to 9000 W/m?. The
peak on the left of the histogram corresponds to the sky area
and by removing the values around the peak, we can identify
and exclude the sky pixels.
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Fig. 9. Histogram of a thermal image containing the open sky area

Fig. [I0] shows a sample thermal image that contains open
sky areas (left) and the mask generated for this image based
on the proposed method (right).

For visualization purposes, thermal data pixels were
grouped into bins, which also facilitates comparisons over
time. For instance, the average of pixels in the colder part of
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Fig. 10. Example of the empirical masking technique to exclude sky pixels
(dimensions are pixels)

histogram (e.g. bins between 7600 to 7800 W/m? in Fig. or
the average of built environment part can be used to compared
the thermal images over time). Fig. [TT] shows the cloud of data
points that are collected over course of 8 months. Each point
demonstrates a single thermal images which is processed and
summarized based on the proposed approach. The thermal data
points form a thermal signature of target areas and one can
distinguish irregular measurements and look for the reason
behind these irregularities. An example of such irregularities
can be seen in Fig. [TT] where we have some higher temperature
values on a specific day that do not follow the normal thermal
pattern of the given area.
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Fig. 11. Snapshot of accumulated thermal data points over 8 months

B. Air Quality Processing

Optical Particle Counters (Alphasense OPC-N2) were de-
ployed to measure particulate matter. It did this by measuring
particle counts in 16 bins ranging from 0.38 micrometers to
17.5 micrometers. This is done by illuminating one particle
at a time with focused light from a laser, and measuring the
intensity of light scattered. The amount of scattering from a
particle is a function of the particle size which is calibrated
using monodisperse particulates [32]. The normalized particle
counts can be obtained by dividing the particulate counts by
flow rate and sampling time. Alphasense provides a partially
proprietary algorithm that makes assumptions about particle
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density, as well as the number of particles with diameters
smaller than 0.38 micrometers to measure PM1, PM2.5 and
PM10.

Note that a concern during this process is the fact that the
monitor may be recording emissions from the vehicle on which
it is deployed. These emissions could be different throughout
the deployment, and be the most significant contributor to the
noted pollution values. However, because the emissions from
the trash truck are particles of sizes around 100 nm [18],
and our OPC only records particles larger than 380 nm, we
believe that these emissions will not have a large impact on
our experiment.

Whereas there are mobile air quality monitoring projects
that use high quality air monitoring sensors on Google
Streetview cars [1]], this deployment operates at the other end
of the spectrum in terms of equipment and cost, by using low
cost air quality monitors on trash trucks. By repeating the
methodology that Apte et al, (2017) used, as well as using the
extra information of particle counts from the OPC-N2, we can
obtain a better understanding of the strengths and limitations of
using mobile low cost air quality monitoring. In the following,
the data analysis is detailed.

First, the road network of Cambridge will be divided into
30 meter segments (as in [1]]). Measured air quality values
collected over the entire duration of the monitoring will then
be snapped to the nearest road segment.

The air quality data was normalized with respect to the near-
est reference EPA air quality monitor in Boston. In particular,
the methodology described in [[1] was followed, in which each
air quality measurement was multiplied by the reference value
from the same hour, and subsequently divided by the daily
median.

The mean and median air quality for each road segment
over the duration of the monitoring experiment will then
be calculated. As in Apte et al., (2017), the technique of
bootstrapping will be used to gain an understanding of how
reliable the mean and median values are for each segment. In
this manner air quality across different road segments in the
city, can be compared.

In addition, the particle count information from the OPC
can be used to examine the variation of particle distribution
in different parts of the city of Cambridge. Typically, coarse
particles have mechanical sources, whereas finer particles are
produced due to chemical transformations in the atmosphere.
By understanding the variation in the particle size distribution
in different parts of the city, we will be able to better identify
possible sources.

Fig. depicts the particulate matter interface of City
Scanner visualization that allows users to browse the data
in both space and time dimensions. Initial results of the
previously described methodology have identified air pollutant
hot spots in the areas that contain orange and red data points

in Fig. [12]

C. Deployment Challenges

The main challenges encountered in the City Scanner exper-
iments can be summarized as data transfer, power consump-
tion, and sensing fidelity.

1) Data Transfer: Reliable channels to transfer data be-
tween the sensing node, the core component, and the cloud are
essential. However, this type of routing requires higher power
consumption, as a separate microcontroller is needed for each
sensor. In addition, automated cloud transmission protocols
can be interrupted in areas with inadequate cellular network
coverage. Potential workarounds include a hard storage device
or triggering batch data uploads based on certain conditions,
e.g., position or time. In our deployment, we have used open
WiFi hotspots to transfer data. This approach is cheaper and
more stable than the use of a cellular network, but does not
allow to transfer data in real-time.

2) Power Consumption: With modular sensing compo-
nents, the system configuration will vary significantly based
on the application; although, it is usually necessary to include
an on-board power source, e.g., a lithium-ion battery, which
will inevitably require servicing or replacement. In the initial
experiments, one full cycle of a 60 W-hr battery permitted
about 18 hours of data collection. In some cases, it may
be beneficial to reduce power consumption by programming
dynamic sensing properties, e.g., a reduced sampling rate when
the vehicle is idle or traveling below a certain speed.

3) Sensing Fidelity: A comprehensive understanding of the
context of the sensor measurements is key to properly inter-
preting the analytical results. The collected data are subject
to systemic and stochastic noise that is introduced by the
sensor, the vehicle system, or mobility patterns. For instance,
the vehicle suspension system influences the acceleration data.
Similarly, the instantaneous speed of the vehicle can impact
air quality readings. Given these complexities, it is instructive
to establish some validation procedures. Examples include,
comparing some measurements with those from reference sen-
sors, incorporating some stationary sensor data, or comparing
data trends with other databases, e.g., Google Street View. In
addition, it is possible mitigate the effects of sensor noise or
remove erroneous values using signal processing tools.

VIII. CONCLUSION

Drive-by sensing facilitates the collection of dense spa-
tiotemporal datasets of various phenomena in urban areas.
The value of this paradigm is highlighted by multiple orders
of time reduction, cost reduction, and increase in spatial
precision compared to traditional methods for capturing urban
phenomena. In this work, the urban phenomena that can
be captured using drive-by sensing were detailed and the
FEELS categorization was proposed to specify sensor types
and organize the vast amount of potential applications. We
have discussed the spatiotemporal limitations in remote and
stationary sensing. With drive-by sensing, the spatiotemporal
coverage is however reliant upon the mobility patterns of the
hosting vehicle, divided as scheduled and unscheduled vehi-
cles. The mobility patterns of several typical urban vehicles,
such as taxis, buses, and trash trucks, were analyzed to this
end. It was shown that in one day, one-third of the street
segments in Manhattan, NY can be covered by equipping as
few as five random taxis. On the other hand, garbage trucks
and buses provided more reliable coverage in specific areas.
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Fig. 12. Screenshot of the City Scanner application that allows users to explore the acquired data over space and time

Built upon advantages of related works in drive-by sensing,
we have introduced the City Scanner framework. Rather than
bringing dedicated vehicles to the road, we mounted sensors
on existing urban fleets that practically unaltered the hosting
vehicle. Since the City Scanner framework is self-contained,
and consists of portable sensing components, it is less in-
trusive than related works. When deployed on city-owned
vehicles, City Scanner gives municipal authorities the power
to determine which sensors to deploy, for specific spatial and
temporal coverages. Moreover, City Scanner is capable of
simultaneously capturing other environmental indicators, such
as thermal flux and air pollutants, which play a significant
role in smart city domain by empowering advanced analytics
solutions for decision makers and urban managers. These
possibilities come at no other cost than the hardware. With
the results of the current 8-month deployment of City Scanner,
thermal abnormalities and air pollutant hot spots could be iden-
tified utilizing known methods that were customized to process
drive-by data. However, as data accumulates (from multiple
vehicles and over a longer time-scale) urban phenomena can
be documented and understood with higher precision. We
therefore envision a paradigm of modular sensing components
and their corresponding cloud services for data visualization,
data integration and advanced data analytics that enable cities
to create elaborated applications for people in a cost-effective
manner.
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