Biologically Inspired Design for Industry: An Evolving Practice

Marsha Forthofer, Kimberly-Clark Corporation

Dr. Michael Helms, Georgia Institute of Technology

Image source: Stu Porter

Introductions

Marsha Forthofer

- Senior Scientist Materials at Kimberly-Clark Corporation (K-C)
- B.S. in Chemical Engineering
- M.S. in Biomimicry
- Certified Biomimicry Professional from Biomimicry 3.8

Dr. Michael Helms

- Research Scientist, Georgia Institute of Technology (GT)
- Ph.D. in Cognitive Science
- Founder, PatternFox Consulting

Biologically Inspired Design (aka Biomimicry, Biomimetics, Bionics, etc.): the <u>understanding</u> and <u>applying</u> of *deep design principles found in biology.*

I believe the primary goal of biologically inspired design is to:

- 1. Generate more sustainable designs, or
- 2. Increase radical design innovation, or
- 3. Change the relationship between humans and nature, or
- 4. Generate interest and investment for biological research

K-C is leading the world in "Essentials for a Better Life"

Formed in 1872

- 43,000 employees worldwide
- **\$18.6** Billion in Net Sales in 2015
- **#1 or #2 share position** in 80 countries

Nearly **one-quarter** of the world's population use our products daily

K-C learns from nature to develop new material innovations

The mission of K-C's Nature-inspired Materials

platform is to develop new materials to enable K-C

business plans and sustainability goals by discovering

and translating nature's strategies.

Source: Shutterstock

5

We explored a "single-solution" approach

Known System

Source: Ben Goodwyn

Relevant Problem:

Moving liquid unidirectionally

We explored a "problem-based" inspirational approach

Relevant Systems

Sources: Shutterstock⁷

From our work, we identified key challenges and interests

- Key challenge: How do we translate a set of partially understood biological solutions to a product prototype?
- Other interests:
 - Gain exposure to other BID-related tools
 - Improve facilitation of the BID process
 - Understand key biological mechanisms
- We engaged with Georgia Tech's Center for Biologically Inspired Design in 2014 to address the key challenge and other interests.

Center for Biologically Inspired Design At Georgia Institute of Technology

Dr. Jeannette Yen Prof. Biology **Director CBID**

Undergrad Focal www.cbid.gatech.edu Education Research **Promoting BID Practice**

Georgialnstitute of Technology^{*} Georgia Innovation and Tech Design Collaborative Georgia Manufacturing Tech Institute Georgia Institute for Materials **Tech** 🛛 Renewable Georgia Bioproducts lec stitute

The biologically inspired design process

- 1. By Grkauls Own work, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=5864706</u>
- 2. By Bob Embleton, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=13554601
- 3. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=637797

Four key processes:

- 1. Define the problem
- 2. Search for biological solutions
- 3. Evaluate the match
- 4. Transfer principles to design

CBID and Kimberly-Clark engage on design project

<u>Retention and Distribution Project:</u> Kimberly-Clark Corporation desires to increase fluid distribution and retention in diapers and adult incontinence products. The functions of distribution and retention involve competing forces (capillary forces and permeability).

<u>Humidity Management Project:</u> Kimberly-Clark Corporation desires to *use specific material features to* reduce humidity at the skin-product interface layer to increase comfort and reduce irritation/rash.

Functional decomposition & 4-box problem specification

organization)

Fiber resiliency to maintain void volume

Resource efficient, lightweight materials

Low cost materials < \$xx/per

Lavered manufacturing

٠

٠

Operational Environment Functions • ~xx insults per use Absorb urine Each insult xx-yy mL/s up to xx mL Absorb surge Insult duration ~xx sec (+/- vy sec) • Absorb urine (over time/multiple insults) ~ xx minutes between insults Distribute (free and loosely held) urine to retention • Urine points ٠ ~xx% Water Retain (tightly held/locked-up) urine ~xx% urea. Maintain void volume under pressure ~xx% chloride, sodium, Dispose of urine Prevent leakage/seal potassium Some differences between Maintain freedom of movement adults/infants Maintain comfort pH xx – yy (avg. ~zz) Maintain discretion (adults) In use warm (~xx °F) Minimize bulge During transportation (xx°C – xx°C) Minimize overall profile Prevent/reduce odor Varying body positions, shapes, sizes, & movements • Varying applied pressures Protect skin from urine (prevent exposure) Prevent urine from (prolonged) skin contact **Specifications/Materials Performance Criteria** Wearable undergarment Leak proof (xx%) over multiple (xx+) insults • Child & Adult sizes (up to xx cm vertical Absorb surge within ~xx seconds distance) >xx ml/cm²s Comfortable against skin xx-yy Darcy Compliant materials Absorb & retain multiple insults (xx+) Non-toxic/non-allergenic xx mL/cm³ ٠ Polymer/textile based • SAM xx g/g; fluff xx g/g Specialized surface modifications SAM/fluff xx-yy Darcy ٠ Specialized hierarchical structures (fiber

- Retain over pressures [xx-vy kPa]
- Vertical distribution: distance xx-yy cm
- Vertical distribution: pressure xx-yy kPa
- Surface wetness measures [challenging]
- Aesthetically pleasing/attractive

Problem Definition

Key Benefit:

Re-representing the design problem to facilitate search and evaluation specifically for biologically inspired design.

Key Insight:

Functional decomposition provides a visual representation of the problem space. It allows us to identify explicit trade offs, and focus exploration.

Systematic search guided by functional decomposition

14

Systematic search results in patterns of key principles

Relative Humidity (Aeration)	Organism	Principles
	Organism 1	Temp. Gradient, LP
	Organism 2	Temp. Gradient, LP
Temperature Gradient (Temp Gradient)	Organism 3	Temp. Gradient, LP
remperature Gradient (remp. Gradient)	Organism 4	Temp. Gradient, LP
	Organism 5	LP, Disc1
Laplaco Proceuro (LD)	Organism 6	PVP, Disc1
Laplace Flessule (LF)	Organism 7	LP
	Organism 8	Aeration, Temp. Gradient
Dertial Vanar Dressure (DVD)	Organism 9	LP, PVP
Partial vapor Pressure (PVP)	Organism 10	LP, PVP, Reaction
	Organism 11	LP, PVP
	Organism 12	LP, PVP
Biological Discovery 1(Disc1)	Organism 13	LP, PVP
	Organism 14	LP/Disc2
	Organism 15	LP/Disc2
Biological Discovery 2(Disc2)		

Search results and key levers for Humidity Management 15

Search

Key Benefit:

Systematic search results in an exhaustive exploration of the problem domain, resulting in deep and broad problem insight.

Key Insight

Understanding what you find in search requires integrating other disciplines into the work – its not just about the biologists perspective. You need to apply scientific rigor to understand the biology deeply.

We systematize and quantify evaluation using 4-box criteria

εmax

	Total					
Organism	Score	Func.	Env.	Mat.	Size	Perf.
Organism 1	16	2	2	2	5	5
Organism 2	12	2	2	2	4	4
Organism 3	14	2	3	2	4	3
Organism 4	15	2	3	2	4	4
Organism 5	14	1	2	4	5	2
Organism 6	8	1	3		2	2
Organism 7	14	1	3	5	3	2
Organism 8	17	4	2	3	5	3
Organism 9	14	3	3		5	3
Organism 10	14 Fu	inctio	ns			
Organism 11	16.	Absorb	urine			
Organism 12	17	•	Absorb	surge		
Organism 13	17	•	Absorb	urine (o	vertime	/multip
	 Distribute (free and loosely held) urine to retent points 					

- Retain (tightly held/locked-up) urine
 - Maintain void volume under pressure
- Dispose of urine

Evaluation Matrix and Quantitative analysis for Retention and Distribution

Quantification and Evaluation

<u>**Key Benefit</u>**: A quantified set of design principles considered systematically in the design context.</u>

Key Insight

The matrix provides a systematic way to analyze analogies. Instead of "this looks interesting," it provides a framework for decision making.

We develop recommendations for transfer based on the "biological readiness level" (BRL).

Research call for proposal (CFP)

CFP Components	
Background	Problem definition
	Biology background
Research	Understanding structure and mechanism
	Computational and theoretical modeling of phenomena
	Small scale manufacturing techniques
	Bench testing against predicted results

<u>Key Benefit</u>: Provides a current assessment and path forward.

Key Insight

The CFP crystalizes your understanding of the key biological principles & provides a translation of the output of the BID process into a format that others can use.

Kimberly-Clark Current Results

- Most mature BID project is moving into year 5, and has achieved some internal momentum.
- Currently funding two new lines of research with academic partner institutions as a result of this work.
 - Targeted/prototype research
- Investigating means of "seed funding" for a third line of research.
 - Basic/biological research

The Evolution of Industry Application

- 1. Improving processes
- 2. Shifting challenge point
- 3. Evolving culture

Thank you.

Marsha Forthofer

Kimberly-Clark Corporation (marsha.r.forthofer@kcc.com)

Dr. Michael Helms

Georgia Institute of Technology PatternFox Consulting (mhelms3@gatech.edu)

Kimberly-Clark

Key Skills

Problem Definition	Search & Indexing	Evaluation	Transfer
Problem specification	Biology knowledge and experience	State-of-the-art manufacturing knowledge	Pattern identification
Problem decomposition	Engineering-to-biology translation	Deep science - physics, chemistry, etc.	Biological research techniques and capabilities
Problem abstraction	Biological literature review	Conceptual design	Theoretical and computational modeling
Technical engineering & manufacturing knowledge	Biological science, physics, chemistry, etc.	Quantitative analysis	Prototyping
Customer & market knowledge	Relationship/network management	Dealing with ambiguity	Research for design
	Flexibility		Research management

Operational Environment

Functions

- ~xx insults per use
 - Each insult xx-yy mL/s up to xx mL
 - Insult duration ~xx sec (+/- yy sec)
 - ~ xx minutes between insults
 - Urine
 - ~xx% Water
 - ~xx% urea,
 - ~xx% chloride, sodium, potassium
 - Some differences between adults/infants
 - pH xx yy (avg. ~zz)
- In use warm (~xx °F)
- During transportation (xx°C xx°C)
- Varying body positions, shapes, sizes, & movements
 - Varying applied pressures

- Absorb urine
 - Absorb surge
 - Absorb urine (over time/multiple insults)
- Distribute (free and loosely held) urine to retention points
- Retain (tightly held/locked-up) urine
 - Maintain void volume under pressure
- Dispose of urine
- Prevent leakage/seal
- Maintain freedom of movement
- Maintain comfort
- Maintain discretion (adults)
 - Minimize bulge
 - Minimize overall profile
 - Prevent/reduce odor
- Protect skin from urine (prevent exposure)
- Prevent urine from (prolonged) skin contact

Specifications/Materials

Performance Criteria

- Wearable undergarment
 - Child & Adult sizes (up to xx cm vertical distance)
- Comfortable against skin
- Compliant materials
- Non-toxic/non-allergenic
- Polymer/textile based
- Specialized surface modifications
- Specialized hierarchical structures (fiber organization)
- Fiber resiliency to maintain void volume
- Resource efficient, lightweight materials
- Low cost materials < \$xx/per
- Layered manufacturing
- Disposable materials

- Leak proof (xx%) over multiple (xx+) insults
- Absorb surge within ~xx seconds
 - >xx ml/cm²s
 - xx-yy Darcy
- Absorb & retain multiple insults (xx+)
 - xx mL/cm³
 - SAM xx g/g; fluff xx g/g
 - SAM/fluff xx-yy Darcy
- Retain over pressures [xx-yy kPa]
- Vertical distribution: distance xx-yy cm
- Vertical distribution: pressure xx-yy kPa
- Surface wetness measures [challenging]
- Aesthetically pleasing/attractive

We evaluate system match to problem specification

4-Box Criterion	Very High (5)	Very Low (1)
Function	Matches one or more core functions, and one or more sub- functions (deep tree)	Does not match functions
Environment	Exactly matches more than one key condition, and closely matches multiple others	Does not match any key conditions
Specification: Materials	Material/system can be manufactured now, cheaply	Materials cannot be manufactured with existing methods
Specification: Size	Physical size is same order of magnitude	Physical size is two or more orders of magnitude difference or effect will not transfer at scale
Performance: Scale	Performance is better than or at same scale for key function	Performance two or more OOM greater or cannot possibly improve current performance

Management Expectations, BID materials design project

Team composition

- 1. Product designers & engineers
- 2. Biologists
- 3. Research scientists
- 4. Strong networking & communication skills

Timelines

- 1. 3-6 months for described process
- 2. 2-6 years of research, depending on bullseye

Investment cost

- 1. Described process: \$25k-\$200k
- 2. Academic research partnerships (post-doc): \$150-\$250k/year
- 3. Total development cost through prototype: \$350k \$2M

This will vary by research domain and BRL.