
 

Page 1 of 4

 

 

 

 

Tokens, OAuth2 and JWT 

 

 

 

 

 



 

Page 2 of 4

00:01: Welcome to the third module of course 6, "Tokens, OAuth2, and JWT." This module is all 

about tokens, and more specifically, it's about JSON Web Tokens. First, we're going to do a quick 

pass over the history of different token implementations. We're then going to have a quick look at 

the high level structure of a token and basically work on understanding what a token is, why we 

need a token, and how it actually makes things better. And finally, we're going to settle on JSON 

Web Tokens. And we're going to first see why that is actually better than the old token 

implementations. And then, we're going to work on actually setting that up with in Spring Security 

OAuth. Let's now start talking about tokens and let's have a quick look at the history of the tokens 

as it applies to various security mechanisms. And we will start with SAML out of the WS Star space. 

This was very, very heavily XML based, its cryptographic options were off the chart so it had a lot 

of signing and encryption options available. But it also needed a pretty advanced XML stack, and 

that's of course something that not every device is going to have. 

01:11: So basically, as we started to go more into the mobile space, that XML stack simply did not 

exist on mobile. And so, as a direct consequence of all of that complexity, there was a joint 

venture between Microsoft, Google, and Yahoo, and the simple web token standard was created. 

Now, it turns out that this standard is actually a little bit too simple so they've had not enough 

cryptographic options that is, for example, just an option for symmetric signing and so, there's no 

asymmetric signing in this case. And so, it was just too simple and too restrictive. So the next step 

was the creation of the JSON Web Token Standard. And this new standard basically combines 

what was good from both of those previous approaches so it has a lot more cryptographic options 

but it also is a lot simpler than SAML. And more importantly, it doesn't rely on XML. So, of course, 

using JSON is much more widely supported and so JWT definitely hits a sweet spot. And it has seen 

a quick and very, very impressive adoption. 

02:12: So let's have a quick look at how the token actually looks like. A very simple high level look 

at the token structure is it has three sections, and those sections are separated by a dot. So you 

have a header section, you have the payload section, and then you have the signature. And we're 

going to have a look at all of those sections. First the header section, we have here a quick 

example of how that will look like in practice. We have the metadata here and we have some 

information here about the algorithms that we used. And so, this will be Base64 encoded and this 

will represent the first out of the three parts of the token structure. Next, we have the payload. 

And the payload basically represents the claims that this token puts forward so we have two types 

of claims. We have reserved claims, and we have application specific claims. So beyond the 

reserved claims like issuer or expiration or audience or things like that, we also have the ability to 

provide our own application specific claims, and that is of course well supported by the standard, 

and it also really pays off when we marry JWT with OAuth because we will make use of some of 

those custom claims. 

03:26: And finally, we have the token signature. The signature is of course the part that guarantees 

the integrity of the Token and essentially guarantees that the token has not been tampered with. 

And the signature in this case will contain the header information, the payload information, both 

of which are encrypted with a secret. So in a nutshell, this is basically how the JWT Token is 

structured. Now that we have an initial understanding of how JWT works, let's look at the 

implementation and let's actually start moving the authorization server to being capable of issuing 

JWT Tokens. 



 

Page 3 of 4

04:02: So the first thing we're going to switch is the token store and we're going to use the JWT 

specific style of token store here. And once we implement that, we will see what the next step is 

because we'll see that the JWT store actually requires something else. So we can see here that the 

JWT Token Store actually requires a token converter. So this is a converter that basically decodes 

and encodes the JWT Token into OAuth information, so basically bridges the gap between JWT as 

a token, having all of this information encoded inside the token, and what OAuth actually requires. 

So let's define that Bean. Let's define this converter which, by the way, doubles as an enhancer, as 

you can see here, so let's define that. 

[pause] 

05:06: Okay, so we defined the AccessTokenConverter and we used that converter to define our 

new JWT Token store. Also a quick side note here is that we're using symmetrical cryptography, 

we're using the signing key to sign our tokens. And when we're going to reach the resource server 

configuration, which is next, we're going to see how we actually need to define the exact same 

JWT AccessTokenConverter. And more importantly, we'll need to use the exact same signin key, 

of course, in order for the resource server to be able to consume and to check the tokens that the 

authorization server will issue. So this is really an important point to understand here. Now, in this 

particular project, we're not really going to have to do a lot because the authorization server and 

the resource server are actually living in the same Spring context and so we are sharing this Bean. 

However if the authorization server would be a different project, and that is a common way to set 

it up, then we would have had to define this JWT AccessTokenConverter exactly the same both in 

the authorization server, as well as in the resource server. 

06:16: So definitely an important thing to understand, first why we would need to do that, and 

second why we're not gonna really do that here and again this is just because we are sharing this 

Bean. And of course this is a very hardcoded implementation. A good step here would really be to 

pull the signin key into a property. So let's do that quickly. 

[pause] 

06:48: Okay, so we are injecting the signin key, via the value annotation. And we are providing 

this default value, but if we ever want to configure this externally now we can. The final 

configuration of the authorization server is going to be down here. So we are basically going into 

the end points configuration here, and we are just pointing this to the same token converter that 

we used before. And that really about wraps us up for the authorization server configuration. The 

next step is going to be the resource server. 

07:22: Here is our resource server configuration, but this part is going to be really really quick and 

the reason for that is that we really don't have to do anything here. Because we are using a simple 

project, and so the resource server and the authorization server are essentially living within the 

same Spring context, and within the same project, we don't really need to define anything new 

here. As I was just saying the only thing that we would have had to define if these two were 

separate, would have been the converter. But since that Bean will apply here as well we don't 

really need to do that, and the resource server will be perfectly fine understanding JWT Tokens 

signed by the authorization server. 



 

Page 4 of 4

08:02: So let's now actually start everything and let's run the test. And as you can see everything 

passes and we are all good. The switch to JWT as our token format is fully complete. One final 

thing that I want to go over just to show the exact format of the JWT Token here, is we will hit the 

endpoint of the authorization server, and will get an access token back with JWT running now. So 

let's see how that actually looks. 

08:36: Okay, so we can now see the exact format of the JWT Token we see the header section 

here, we then see the payload section up until here and then we see the signature. So everything 

looks good, we are fully transitioned to using JWT Tokens, tests are passing and we are able to 

generate a token by hitting the API. 

09:00: Okay, so what are the takeaways of this module? Well, first we now have some context 

around different token based security solutions. We had a look at a few of them and we started to 

understand how the token is structured, and how it's protected. And of course finally we settled 

on JWT as our token solution and we set that up with Spring Security OAuth, we discussed the two 

solutions to sign the token and we saw how it actually works in practice. 

09:27: Okay, hope you're excited, see you in the next one. 


