Inductive Reasoning classwork

During our study of geometry, we will be using a system of logic to prove various mathematical concepts.

Conjecture and Inductive Reasoning

- What is a conjecture in your own words?
- Which statement applies to inductive reasoning? Circle one:
using many examples to draw a general conclusion
beginning with a general conclusion and making specific statements using it

Ex \#1: Eric was driving his friends to school when his car suddenly stopped two blocks away from school. Make a list of conjectures that Eric can make as to why his car stopped.

Ex \#2: The numbers represented below are called triangular numbers. Make a conjecture about the next triangular number.

Ex \#3: Make a conjecture about the next item in the sequence.
a) $20,16,11,5,-2,-10$
b) $2,4,12,48,240,1440$

Ex \#4: Given that points P, Q, R are collinear. Joel made a conjecture that Q is between P and R. Determine if the conjecture is true or false. If false, please explain why in simple terms.

Counterexample

In the previous example, you may have used a counterexample to make your case. What is a counterexample?

How many counterexamples do I need to establish, in order to prove a conjecture FALSE? \qquad

Ex \#5: Determine whether each conjecture is true or false. Give a counterexample for any false conjecture.
a) Given: $\angle 1$ and $\angle 2$ are supplementary angles.

Conjecture: $\angle 1$ and $\angle 2$ are both right angles.
b) Given: Points A, B, and C are collinear.

Conjecture: B is between A and C.
c) Given: n is negative number

Conjecture: n^{2} is a nonnegative number

Now let's review the concept of creating "if-then" statements. The fancy term for an "if-then" statement is called a conditional statement.

Conditional statement: any statement that can be written \qquad - \qquad form.

Example: "Buying this car gets you $\$ 1500$ cash back!"
Example: If you buy this car, then you get $\$ 1500$ cash back.
Symbols: $\quad p \rightarrow q$
Read: If p, then q. OR p implies q.
What does " p " stand for here? What does " q " stand for here?

Statement	If-Then Form
The sum of two odd numbers is even.	
Two angles that have the same measure are congruent.	
I carry an umbrella on rainy days.	

If-Then Statements are called conditional statements or "conditionals."

- Hypothesis - the portion of the statement following the word: \qquad
- Conclusion - the portion of the statement following the word: \qquad

Ex \#6: Identify the hypothesis and conclusion of each statement.
a) If points A, B, and C lie on line m, then they are collinear.

Hypothesis: \qquad
Conclusion: \qquad
b) The Tigers will play in the tournament if they win their next game.

Hypothesis: \qquad
Conclusion: \qquad
c) If $x-3=7$, then $x=10$.

Hypothesis: \qquad
Conclusion: \qquad

Ex \#7: Write each statement in if-then form.
a) A five-sided polygon is a pentagon.
b) Math teachers love to solve problems.

Ex \#8: Take the statement: "People who live in Florida live in the U.S."

a) Write the statement in if-then form. Identify " p " and " q " and write as a conditional statement, with the fancy \rightarrow symbol.
b) What is the inverse of this statement, in words, and in symbols? True or False?
c) What is the converse of this statement, in words, and in symbols? True or False?
d) What is the contrapositive of this statement, in words, and in symbols? True or False?
a) Come up with any statement of your choosing, that is already true. Feel free to be creative, personal, funny, anything!
b) Write the statement in if-then form. Identify " p " and " q " and write as a conditional statement, with the fancy \rightarrow symbol.
c) What is the inverse of this statement, in words, and in symbols? True or False?
d) What is the converse of this statement, in words, and in symbols? True or False?
e) What is the contrapositive of this statement, in words, and in symbols? True or False?

