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INTRODUCTION

Mucosal integrity in the gastrointestinal (GI) tract is preserved due to an
equilibrium between exogenous and endogenous aggressive factors and
protective mechanisms operating within pre-epithelial, epithelial and post-
epithelial compartments. Since most aggressive factors operate within the
lumen of the gastrointestinal tract, pre-epithelial defence seems to be a
vanguard of mucosal protection and the target absorbing the major impetus
of aggressive factors. The mucus layer, because of its ability to maintain a
dynamic equilibrium between the rate of de novo synthesis and secretion,
and luminal degradation due to proteolytic cleavage, is considered as a core
component of pre-epithelial mucosal defence. Therefore, measurement of
mucus components within gastric juice may provide direct information
regarding the current status of the mucus layer, since it reflects the net results
of mucosal secretory potential and degradative potency of luminal aggressive
factors. Furthermore, the measurement of physical properties of the gastric
juice may provide valuable information regarding the integrity of the pre-
epithelial barrier.

BARRIER FUNCTION OF MUCUS

The GI tract mucosa is covered by an approximately 162 4+ 45 um thick
mucus layer! which provides a pH gradient that ensures the neutral pH at
the luminal domain of the surface epithelium. In addition, the mucus layer
remains a complete barrier for larger molecules such as pepsin, non-diffusible
through the mucin polymer, whereas it maintains a concentration gradient
for small molecules such as hydrogen ion and bicarbonate which diffuse at
various rates through its unstirred layer**. Although the generation of a
barrier for various chemical molecules seems to be a primary goal of the
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mucus layer, it may also absorb major physical forces generated during
grinding of food particles and subsequent aborad passage within the lumen.

It is generally believed that the mucus layer provides a unique biological
niche for colonization by Helicobacter pylori, one of the most enigmatic
microorganisms within the alimentary tract. H. pylori elaborates various
factors that give it an advantage over other potential competing microorgan-
isms and significantly benefit its own survival, multiplication and trans-
mission. This Chapter reviews protective aspects of some of the biochemical
and physical properties of the gastric mucus and the damaging potential of
various chemically active components elaborated by H. pylori with emphasis
on the interaction and impact of this organism on the function of the gastric
mucosal barrier. Such insight is essential to understanding the pathogenesis
of H. pylori-related gastroduodenal disease.

COMPOSITION AND PROTECTIVE QUALITY OF GASTRIC
MUCUS

Composition of mucus

Alimentary tract mucus is a viscoelastic gel that covers the epithelium and
is a complex mixture of mucus glycoprotein (mucin), non-mucin proteins,
lipids and electrolytes. It is synthesized and stored in the form of secretory
granules and subsequently secreted from the mucous cells stimulated by both
physical and chemical (secretagogues) factors**.

Mucus gel comprises inorganic and organic components. Inorganic com-
ponents, predominantly bicarbonate, are imbedded into an architectural
framework provided by the major organic constituent, mucus glycoprotein
polymer.

Since mucus gel covers the surface of the epithelium, its organic composition
is affected both by luminal and mucosal factors. Among luminal factors that
may influence its composition are components of salivary secretion, food
ingredients, and solubilized mucus components adsorbed secondarily to the
surface of the mucus gel. Components originating within the gastric mucosa
can be divided into the three broad categories* ™.

1. Secretory components: mucus glycoprotein (mucin), secretory IgA, IgM,
vitamin B,,-binding proteins, pepsinogens, pepsins and gastricsins.

2. Transudatory components.: serum albumin, serum glycoproteins, lipopro-
teins, serum IgG, IgM and IgA.

3. Exfoliatory components: plasma membrane glycoproteins, phospholipids,
glycosphingolipids, nucleic acids, integrins and ligands for integrins.

The approximate composition of the mucus gel, adhering to the plasma
membranes of the surface epithelium, is 70% proteins, 14% sugars and 16%
lipids®-6. Mucus glycoprotein, so-called mucin, is a major constituent and a
leading determinant of the chemical composition and physical properties of
mucus. This glycoprotein consists of 60—80% carbohydrates, 20-40% protein
and 0.3-0.4% covalently bound fatty acids®>*. Mucin exists as a polymer,
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with an approximate molecular weight of 2 x 105, formed of subunits
covalently bound to a linking protein. To its protein core rich in threonine,
serine, glycine, and proline are linked carbohydrate chains composed of
N-acetylglucosamine, N-acetylgalactosamine, galactose, fucose and sialic
(N-acetylneuraminic) acid**. Controversy exists regarding the spatial organ-
ization of mucus molecules. The ‘coiled thread’ model, ‘windmill’ organiz-
ation with ‘bottle brush’ shape of subunits rotated 120° along the linking
protein are the most widely accepted three-dimensional configurations® .
Only the last conformation, however, considers the modulatory role of lipids
in the maintenance of viscous and the permselective properties of mucus®.

Protective function of mucus

The polymeric structure of mucin and its highly hydrophilic and expanded
molecular configuration allow it to form a gel. This gel provides a viscoelastic,
spinnable, and permselective layer, crucial for protection against exogenous
or endogenous damaging luminal factors. In addition, mucus is the most
physiological lubricant. It also agglutinates and aggregates microorganisms,
binds bacterial toxins, and modifies the activity of pepsin®*7-°. Bicarbonate
secreted by glandular mucosa is trapped in the mucus gel architectural
network and helps the mucus layer maintain the pH gradient between the
acidic gastric luminal milieu and the neutral epithelial cell surface!®.
Although one cannot overestimate the role of bicarbonate in the mainten-
ance of the pH gradient within the mucus gel, mucin and non-mucin
components also participate in the retardation of hydrogen ion diffusion. As
we have demonstrated'! the retardative capacity of purified gastric mucin
was approximately 10-fold greater than control solutions. This ability of
gastric mucin has also been confirmed by Bhaskar et al'? using viscous
fingering methodology. A variety of factors, such as phospholipids, albumin,
IgA and prostaglandins further enhance the protective physical properties
(viscosity, retardation of hydrogen ion diffusion) of mucus'®*!5. These
data support an active role of organic mucus components, mainly mucus
glycoprotein, in the generation of a barrier to hydrogen ion diffusion. Both
the viscosity and permselectivity of gastric mucus and mucin can be
significantly compromised through interaction with damaging compounds
such as acetylsalicylic acid, lysophosphatidylcholine (lysolecithin) or pep-
sin' 117, Various anti-ulcer drugs improve the physico-chemical properties
of gastric mucus, therefore generating conditions favourable for the restoration
ad integrum of the surface epithelium damaged during ulcerogenesis!®2!,
The luminal surface of the mucus gel is subject to continuous erosive
activity from various agents and factors within the gastric luminal milieu.
Pepsin, especially within the range of acidic pH, is the leading mucus-
degrading factor. Since mucous cells actively secrete newly synthesized mucin
after restoration of their intracellular mucin stores, equilibrium is maintained
between the degradation and restoration of a mucus gel during physiological
conditions. This balance, however, changes dynamically with the pace of
continuously modifying stimuli and challengers and may reach a state of
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disequilibrium if aggressive forces overcome protective factors. One factor
known to affect the balance within the mucous barrier is H. pylori.

CLINICAL CONSEQUENCES OF H. PYLORI COLONIZATION

H. pylori, a spiral-shaped Gram-negative microorganism, 2.5-3.5 um long
and 0.5-1.0 um wide with unipolar flagella®*2’, is one of the most intriguing
microorganisms in the alimentary tract of humans. Its causative role in the
development of active inflammatory changes within the gastroduodenal
mucosa and association with duodenal (95%) and gastric (50-65%) ulcer
has been established?®3!. Relapse of ulcer disease is uncommon after
eradication of H. pylori**3* and it has been suggested that one should
attempt to eradicate the H. pylori in all patients with peptic ulcer disease.
Even in NSAID users with concomitant H. pylori infection, eradication may
prevent ulcer recurrence and complications®*3%.

Recent evidence suggests that prolonged colonization of the gastric mucosa
by this microorganism may also lead to chronic atrophic gastritis and
subsequently adenocarcinoma®~*%. Thus further research into the mechan-
ism of H. pylori-mediated mucosal damage is justified. It may be possible to
prevent the progress of gastritis by early eradication of the infection; however,
any potential effect on carcinogenesis will take years to evaluate.

INTERACTION BETWEEN MUCUS AND H. pylori
Mucus-related factors potentially affecting H. pylori

Mucus, covering the surface epithelium, due to its multiple components and
structural diversity may serve both as a repellent and attractant for various
exposed surface structures of H. pylori. Since exfoliated epithelial cells with
specific H. pylori receptors are continuously shed into the mucus layer, one
would expect that some receptor molecules would be exposed on the surface
of a mucus gel. Therefore, initial docking of H. pylori on the surface of the
mucus gel could potentially be mediated by gel-embedded membrane
fragments with intact receptor molecules for the organism. This initial stage
could allow H. pylori to contact and anchor within the mucus gel. The
difference in viscosity and permselectivity of gastric mucus and purified
mucus glycoprotein among individuals (unpublished data) could have a
potential impact on both an early stage of H. pylori colonization and its
survival during eradication regimens. In addition, chemical and physical
modification of the mucus layer could potentially enhance the pharmacologi-
cal effects of antimicrobial agents by allowing them to achieve a high
concentration within the pre-epithelial and epithelial compartments.
Increased concentrations of lysolecithin in patients with gastric ulcer exhibit
a close relationship with the rate of luminal release of glyceroglucolipid®?, a
molecule considered to be a receptor for H. pylori adhesion*. Such free
receptor molecules may bind to H. pylori adhesins and potentially prevent
an attachment of this microorganism to the surface epithelium. Interestingly,
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we also found that 4 weeks of therapy with ranitidine significantly enhanced
secretion of glyceroglucolipid in patients with peptic ulcer*!. Potential
inhibition of H. pylori attachment by ‘false receptors’ released into the mucus
gel could eliminate a direct impact on the metabolism and survival of the
surface epithelium. Such a phenomenon could potentially contribute to the
healing effects of this H, receptor antagonist in addition to inhibition of acid
and pepsin secretions. These issues, however, still require further investigation.

H. pylori-related factors potentially influencing mucus

H. pylori flourishes within a complex environment that is greatly influenced
by various components of ingested food, the mucosal barrier constituents
and factors elaborated by its own secretory potential. The organism’s high
metabolic activity and enormous mobility are presumably significant factors
facilitating colonization. These factors may aid H. pylori in its continuous
search for adhesion molecules. Short-range forces such as hydrogen bonding,
ionic and hydrophobic binding may permit the microorganism initially to
anchor within the mucus layer. Hydrophobic regions of H. pylori, recently
described by two independent groups using hydrophobic interaction chroma-
tography*?'43, may play an important role in such non-specific binding. Also
strongly hydrophilic H. pylori surface structures have been described by
salt aggregation testing, contact angle determination and adherence to
sulphonated polystyrene*3. Therefore, both hydrophilic and hydrophobic
H. pylori membrane structures may play some role in adhesion of the
microorganism to the mucus gel and in subsequent colonization of mucous
cell membranes. Furthermore, dynamic changes in both the mucus layer and
cell membrane milieu may favour hydrophilic or hydrophobic interaction at
various stages of colonization.

The potential role of hydrophobic or lipophilic domains in H. pylori
colonization has also been recently underscored by Goggin et al.***° who
demonstrated a decrease in hydrophobicity of the surface of the mucus layer
in patients with H. pylori. This impairment in mucosal hydrophobicity
normalized after eradication of the microorganism. Furthermore, we have
recently found that the gastric juice of patients with dyspepsia, who are
colonized with H. pylori, has a significantly higher ability to bind a
hydrophobic probe when compared to dyspepsia patients without H. pylori*®.
Although our method measuring hydrophobicity is based on recording
relative fluorescence generated by BIS-ANS bound to hydrophobic binding
sites and is different from the method utilized by Goggin, both publications
suggest excessive shedding of hydrophobic molecules from the mucus layer
into the gastric lumen. This may be due to the enzymatic cleavage of mucus
components by protease and phospholipase identified in some strains of H.
pylori*’-32. Therefore, perhaps H. pylori benefits from the presence of
hydrophobic molecules within the mucus gel during the primary phase of
colonization (docking in the mucus gel). However, mucus gel hydrophobic
structures may impair the ability of H. pylori to attain its ultimate goal of
colonization, an attachment to the cell surface receptor (secondary phase of
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Fig. 1 Mucin output in gastric juice of patients with and without H. pylori colonization

colonization). Although excessive luminal release of hydrophobic molecules
may benefit colonization, it would inevitably compromise the protective
quality of the mucus gel as a barrier to hydrogen ion diffusion.

A detrimental impact of H. pylori on the mucous barrier has also been
confirmed during our insight into the rate of secretion of mucin and protein
within gastric juice in patients colonized by this organism. H. pylori positive
individuals secreted an excessive amount of mucin (Fig. 1) and protein (Fig.
2) into the gastric juice especially after stimulation with pentagastrin. Such
a phenomenon may result both from excessive degradation of the mucus
components within the mucus gel and/or the augmented release of mucin
depot from mucous cells due to their increased turnover accompanying
inflammation. The former explanation is especially attractive, since we have
found that the total output of all the components contributing to the viscosity
of gastric juice in the same H. pylori colonized patients declined significantly
(Fig. 3). These data confirm our earlier findings that there are differences in
the viscosity of gastric mucus in patients with dyspepsia with and without
H. pylori colonization*®. Both groups of selected patients showed the same
proteolytic profile of the gastric juice. However, in patients colonized by H.
pylori the viscosity of mucus, isolated from the gastric juice, was significantly
lower when compared to H. pylori-negative patients. It seems, therefore,
that the gastric mucosal barrier in patients with H. pylori is physically
compromised by bacterially-related factors. The decrease in the viscosity of
gastric mucus may, at least partly, explain why gastroduodenal mucus gel
thickness in H. pylori-positive patients with dyspepsia was significantly
impaired as compared with H. pylori-negative dyspepsia patients. In those
with confirmed H. pylori infection the thickness of the mucus layer
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Fig. 3 Hourly output of gastric juice components contributing to its viscosity in patients with
and without H. pylori colonization

(mean + SD) was 0.093 + 0.033 mm in duodenal, 0.085 + 0.027 mm in antral,
and 0.105 4+ 0.033 mm in corpus mucosa. In those without concomitant H.
pylori colonization the thickness of the mucus gel was 0.162 + 0.045 mm;
0.175 + 0.067 mm; 0.161 + 0.064 mm in the duodenum, antrum and corpus
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respectively. These differences were statistically significant®>.

Finally, a link between excessive concentrations of lysolecithin in the
gastric juice and the presence of active phospholipase in patients colonized
by H. pylori has also been clearly demonstrated®*. We showed significantly
elevated levels of lysolecithin in patients with gastric ulcer in 1983, when the
H. pylori saga was still in its early stage of conception. The detrimental
impact of lysolecithin on the gastric mucosal barrier may, at least partly, be
related to its profound negative impact on viscosity and permeability to
hydrogen ion of gastric mucin and its susceptibility to proteolytic cleavage
by pepsin!”. The net result of these effects is to reduce the protective quality
of the mucus gel. How this relates to gastritis and peptic ulcer still remains
to be determined.

H. pylori appears to secrete glycosulphatase, which removes sulphate
(SO57) groups from the gastric mucus glycoprotein molecule. Sulphate
groups within mucin enhance its protective quality by inhibiting the proteo-
lytic activity of pepsin and interference with H. pylori binding to its epithelial
receptor>>:°6, Therefore, desulphation may further diminish the protective
quality of the mucus gel layer. Furthermore, H. pylori can elaborate
toxins®7>® and PAF-acether®® which may in turn impair the rate of
biosynthesis of mucus within mucous cells.

We have also demonstrated that ammonia, generated by H. pylori urease,
diminishes the viscosity of the human gastric mucin, purified through
equilibrium density-gradient centrifugation (Fig. 4). Ammonia significantly
affected the ability of gastric mucin to withstand the higher shear rates,
representing forces applied to the mucus layer in vivo during phase 111 of
migrating motor complexes. Ammonia ion concentration during these
measurements was maintained at levels comparable to the content of
ammonia within the gastric compartment in patients colonized by
H. pylori®®°2, Changes in gastric mucin viscosity due to ammonia may partly
explain its profound damaging effect on the gastric mucosa in an experi-
mental setting®®®* and offer insight to its pathogenetic effect on human
gastric mucosa.

Since patients colonized by H. pylori exhibit a significantly higher
proteolytic activity within gastric juice compared to healthy non-colonized
individuals, one might wonder how H. pylori copes with the enormous
destructive power of numerous gastric aspartic proteinase isozymes®>.
Furthermore, one should not underestimate the destructive potential of
pepsin, which, although it requires low pH for maximal activity, still remains
active when pH in H. pylori colonized areas drops below 4.0. Recently, we
have demonstrated that gastric juice, aspirated from patients with H. pylori,
inhibits proteolytic activity of pepsin in a dose-dependent fashion from 63%
to 92% (Fig. 5). Interestingly, H. pylori-related pepsin inhibition was absent
when H. pylori colonization was accompanied by severe atrophic changes
and subsequent achlorhydria. So on the one hand H. pylori secretes its own
protease, active at neutral pH, fully controlled by the microorganism and
presumably helping to maintain an optimal viscosity of the mucus gel. On
the other hand, in order to control a very strong endogenous proteinase
such as pepsin, H. pylori secretes a pepsin inhibitor. Secretion of a pepsin
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Fig. 4 Impact of ammonia on gastric mucin viscosity

inhibitor may protect H. pylori surface structures, presumably crucial for
adhesion to cellular receptors. We cannot exclude, however, that human
gastric mucosa could also potentially be the source of the pepsin inhibitor.
Further investigations into this new and interesting area with respect to ulcer
disease seem to be worthwhile.

H. pylori-induced quantitative and qualitative changes within the gastro-
duodenal mucus layer presumably provide optimal conditions for organisms
residing in the mucus gel some distance from the surface epithelium and for
those firmly attached to the mucosal cell membranes. We have recently
shown that H. pylori exhibits either predominantly diffuse or predominantly
focal type adherence to the surface of cultured human gastric epithelium
isolated from patients with non-ulcer dyspepsia®®. During physical contact
between H. pylori and the surface of mucous cells, mucin granules were
released and acted as a major repelling force on the surface of epithelium.
Some H. pylori became entrapped by mucin granules. Final adhesion of H.
pylori occurred only when cells were depleted of their mucin stores and
reduced in size by approximately 40-50%*%°¢. Coaggregation where many
H. pylori microorganisms bind to other H. pylori already attached to the
epithelial cell surface in a focal pattern of adhesion was also seen*®-°6,
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Fig. 5 Inhibitory effect of H. pylori (+) gastric juice on proteolytic activity of pepsin

Therefore, the mucus layer provides H. pylori with an ideal environment
from which it initiates the pathogenic sequelae leading from mild and
moderate inflammatory changes to severe gastritis accompanied by progress-
ive atrophic changes, and ultimately the potential for adenocarcinoma.

In general, there are two categories of H. pylori-related biologically active
factors in patients colonized by this microorganism (Fig. 6). One category
includes substances directly released by the organism such as protease,
glycosulphatase, phospholipase, urease, toxins and a possible pepsin inhibitor.
The second category includes factors indirectly generated by bacterial activity
such as ammonia (by urease) and lysolecithin (by phospholipase). Both
ammonia and phospholipase are extensively generated in vivo and have a
profound impact on the mucosal barrier. If the damaging potential of all
these H. pylori-elaborated factors overlap with the aggressive power of
luminal acid and pepsin, corrosion of the mucus gel resulting in a decline of
the mucus thickness (Fig. 7) would inevitably occur.

Considering all the available data we would like to present a scheme by
which H. pylori may mediate damage to the gastric mucosal barrier, especially
to the mucus layer (Fig. 8). There are two types of H. pylori-related epithelial
damage: (1) direct and (2) indirect. Both direct and indirect weakening of the
mucosal barrier may generate the optimal conditions required for H. pylori
colonization and replication. During direct contact between H. pylori and
the cell, membrane structures are exposed to extremely high concentrations
of potential cytotoxins, ammonia generated by H. pylori urease, proteases
and phospholipases inevitably leading to cell damage. Injury may cause a
total disruption of the mucosal barrier. This exaggerated damage may lead
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to bacterial elimination or force H. pylori to move to surrounding less
damaged areas to ensure its survival. Numerous H. pylori, however, reside
in the mucus gel freely spread throughout the entire mucus layer. Damaging
factors secreted by the organism into the surrounding milieu lead through
proteolysis, desulphation and lipolysis to degradation of the mucus glycoprot-
ein-lipid complex within the mucus gel resulting in a decrease of the mucus
gel thickness. Quantitative changes of the mucus gel layer are accompanied
by qualitative changes such as a decrease in viscosity, potentiation of
permeability to hydrogen ion and impairment in hydrophobicity. Both
quantitative and qualitative changes within the mucus gel would enhance
back-diffusion of hydrogen ions leading to dissipation of the pH gradient in |
the mucus layer exposing the surface epithelium to an excessive amount of

hydrogen ion. These effects in turn, may result in the metabolic impairment
of mucus secreting surface epithelium leading to a decline in mucin secretion
directly compromising the mucus layer thickness and facilitating any exposure
of the mucous cells (affected by a direct impact of all in situ elaborated
damaging factors by H. pylori) to luminal aggressive factors. Such a scenario
would inevitably lead to the development of inflammation and perhaps,
subsequently, ulcer.

FUTURE IMPLICATIONS

In summary: In patients with gastroduodenal colonization by H. pylori a
variety of abnormalities within the mucus layer can be demonstrated. These
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