## 1.4: Solving Absolute Value Equations

The absolute value of a number is its distance from zero on a number line. Since distance is always non-negative, absolute values are always non-negative.

Symbol: $\quad|x|$
Another way of understanding it is that the absolute value bars are like a "positivity machine." Any number that enters the positivity machine will come out positive. Zero will come out as zero.

Ex \#1: Please evaluate the following if $x=-2$.
a. $|4 x+3|-3 \frac{1}{2}$
b. $-2|3-x|+8$

Solving Absolute Value Equations - "BIFURCATE" - meaning, dividing into two branches

$$
|x-5|=3
$$


(then solve both branches)
Ex \#2: Please solve each equation. Then graph your solution(s) on a number line.
a) $\quad|x+3|=6$
b) $\quad|x-7|=4$


## No solution?

We know that an absolute value is always equal to a positive number.
Thus, whenever an absolute value equation equals a negative number, there is no solution.
Here are some examples of an equation having "no solution" for the variable, 'a'.
$|a|=-8$
(there is no number that a can be that would make the equation true)

$$
\begin{aligned}
-2|3 a|=8 & \text { (divide both sides by }-2, \text { to } \\
& \text { see that abs. value }=\text { neg.) }
\end{aligned}
$$

Ex \#3: Extraneous Solutions - When an absolute value expression is set equal to an expression containing a variable, extraneous solutions may be encountered.
(Hint: first combine like terms. Then isolate the absolute value. Then bifurcate, and solve each.)

$$
2|x+1|-x=3 x-4
$$

