
Java Programming AP Edition
U2C5 Loops

FINAL WORDS I (BREAK LEVELS AND OTHER TOPICS ABOUT LOOPS)

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

(1) Break Levels (TestBreak.java)
for iteration/loop/method/program

pass: // Java does not have pass statement;
{ /* put nothing here */
}

continue: // break from an iteration
for (i=1; i<10; i++) {

if (i==3) continue;
System.out.print(i);

} /* 1, 2, 4, 5, 6, 7, 8, 9 will be printed */

(1) Break Levels
for iteration/loop/method/program

break: // breaking from a loop
for (i=1; i<10; i++) { /* 1, 2 will be printed */

if (i==3) break;
System.out.print(i);

}
return: // breaking from a method

void f() {/* nothing done in this function */
return;
System.out.print(“Here !”);

}
continue, break, return are keywords in Java. exit is
a method in System package. Java has no pass.

exit: // breaking from a program.
System.exit(0); /* program terminated */

(2) Minimizing Numerical Errors
(TestSum.java)
Numeric errors involving floating-point numbers are
inevitable. This section discusses how to minimize such
errors through an example.

Here is an example that sums a series that starts with 0.01
and ends with 1.0. The numbers in the series will increment
by 0.01, as follows: 0.01 + 0.02 + 0.03 + … + 0.99 + 1.0

0.01 + 0.02 + 0.03 + … + 0.99 + 1.0 (better)

1.0 + 0.99 + … + 0.03 + 0.02 + 0.01 (worse)

(2) Minimizing Numerical Errors
for-loop with double

double sum;

for (double x = 0.01f ; x != 1.0; x += 0.01f) {
sum += x;

}

System.out.println(“Sum: ”, x);

(2) Minimizing Numerical Errors
for-loop with double

double sum; // x <= 1.0 won’t work

for (double x = 0.01f ; x < 1.005; x += 0.01f) {
sum += x;

}
// increment by 0.01f, it won’t accumulate
// more than 0.005 for 100 additions of 0.01f

System.out.println(“Sum: ”, x);

(2) Minimizing Numerical Errors
for-loop with double
double sum;

for (int i=1 ; i <=100; i++) { // use integer-indexed loop
sum += 0.01f * i;

}

System.out.println(“Sum: ”, x);

(3) Sentinel-Controlled loop
Controlling a Loop with a Sentinel Value (SentinelValue.java)

Another common techniques for controlling a loop is to
designate a special value when reading and processing a set
of values.

This special input value, known as a sentinel value, signifies
the end of the input. A loop that uses a sentinel value to
control its execution is called a sentinel-controlled loop.

// I personally prefer a controlling flag instead of sentinel
value.

(4) Input and Output Redirection
In windows system or Unix system, you may redirect your
input stream from console to file or from file to
console/printer. In window system, console is short for
con, while printer is short for prn.

You can store the data separated by whitespaces in a text
file, say input.txt, and run the program using the following
command (on windows command line):

java SentinelValue < input.txt

(4) Input and Output Redirection
This command is called input redirection. The program
takes the input from the file input.txt rather than having the
user type the data from the keyboard at run-time. Suppose
that the contents of the file are

2 3 4 5 6 7 8 9 12 23 32

23 45 67 89 92 12 34 35 3 1 2 4 0

The program should get sum to be 518.

(4) Input and Output Redirection
Similarly, there is output redirection, which sends the
output to a file rather than displaying it on the console. The
command for output redirection is:

java ClassName > output.txt

Input and Output redirection can be used in the same
command. For example, the following command gets input
from input.txt and sends output to output.txt.

java SentinelValue < input.txt > output.txt

