
Programming Languages
Pragmatics
WHY STUDY PROGRAMMING LANGUAGES?

DR. ERIC CHOU IEE E SENIOR MEMBER

Help you choose a language
1. C vs. Modula-3 vs. C++ for systems programming

2. Python vs. Fortran vs. APL vs. Ada for numerical
computations

3. C/C++ vs. Ada vs. Modula-2 for embedded systems

4. Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

5. Java vs. C#(.Net) for networked PC programs

Modern Real-World Languages

Network (Web-server) Languages Mobile (App) Languages

Database Languages

Desktop (.exe) Languages

Number and Data Processing Languages

Hardware Description Languages Electronics Languages

Markup/Data Languages

Make it easier to learn new languages
Some languages are similar; easy to walk down family tree

concepts have even more similarity; if you think in terms of
iteration, recursion, abstraction (for example), you will find
it easier to assimilate the syntax and semantic details of a
new language than if you try to pick it up in a vacuum.

Think of an analogy to human languages: good grasp of
grammar makes it easier to pick up new languages (at least
Indo-European). East Asian Languages need to pick up Kanji
Characters (CJKV, Sino-Tibetan and Altaic Languages)

Help you make better use of whatever
language you use (I)
understand obscure features:
• In C, help you understand unions, arrays & pointers, separate

compilation, varargs, catch and throw

• In Common Lisp, help you understand first-class
functions/closures, streams, catch and throw, symbol internals

Help you make better use of whatever
language you use (II)
understand implementation costs: choose between
alternative ways of doing things, based on knowledge of
what will be done underneath:
• use simple arithmetic equal (use x*x instead of x**2)
• use C pointers or Pascal "with" statement to factor address

calculations
• avoid call by value with large data items in Pascal
• avoid the use of call by name in Algol 60
• choose between computation and table lookup (e.g. for cardinality

operator in C or C++)

Help you make better use of whatever
language you use (III)
figure out how to do things in languages that don't
support them explicitly:
• lack of suitable control structures in Fortran

• use comments and programmer discipline for control structures

• lack of recursion in Fortran, CSP, etc

•write a recursive algorithm then use mechanical recursion
elimination (even for things that aren't quite tail recursive)

Help you make better use of whatever
language you use (IV)
figure out how to do things in languages that don't
support them explicitly:
• lack of named constants and enumerations in Fortran

•use variables that are initialized once, then never changed

• lack of modules in C and Pascal use comments and
programmer discipline

• lack of iterators in just about everything fake them with
(member?) functions

Study of Programming Languages

•What is available?

•What is not available?

•What is good?

•What is bad?

•What is the use?

