Programming Languages
Pragmatics

WHY STUDY PROGRAMMING LANGUAGES?
DR. ERIC CHOU IEEE SENIOR MEMBER

20 Learning Channel

Help you choose a language

1. Cvs. Modula-3 vs. C++ for systems programming

2. Python vs. Fortran vs. APL vs. Ada for numerical
computations

3. C/C++ vs. Ada vs. Modula-2 for embedded systems

4. Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

5. Java vs. C#(.Net) for networked PC programs

20 Learning Channel

Modern Real-World Languages
J§ JAvASCRIPT / o @re G OBJECTIVE-C

e > /77
O @~ @ G~ B

e ﬁ @ r @ /SYSTEM @HSPICE‘@

20 Learning Channel

Make it easier to learn new languages

concepts have even more similarity; if you think in terms of
iteration, recursion, abstraction (for example), you will find
it easier to assimilate the syntax and semantic details of a
new language than if you try to pick it up in a vacuum.

Think of an analogy to human languages: good grasp of
grammar makes it easier to pick up new languages (at least
Indo-European). East Asian Languages need to pick up Kaniji
Characters (CJKV, Sino-Tibetan and Altaic Languages)

20 Learning Channel

Help you make better use of whatever
anguage you use

s*understand obscure features:

* In C, help you understand unions, arrays & pointers, separate
compilation, varargs, catch and throw

* |In Common Lisp, help you understand first-class
functions/closures, streams, catch and throw, symbol internals

20 Learning Channel

Help you make better use of whatever
anguage you use

“*understand implementation costs: choose between
alternative ways of doing things, based on knowledge of
what will be done underneath:

 use simple arithmetic equal (use x*x instead of x**2)

e use C pointers or Pascal "with" statement to factor address
calculations

* avoid call by value with large data items in Pascal
* avoid the use of call by name in Algol 60

* choose between computation and table lookup (e.g. for cardinality
operator in C or C++)

20 Learning Channel

Help you make better use of whatever
anguage you use

s*figure out how to do things in languages that don't
support them explicitly:
* lack of suitable control structures in Fortran
* use comments and programmer discipline for control structures
* lack of recursion in Fortran, CSP, etc

* write a recursive algorithm then use mechanical recursion
elimination (even for things that aren't quite tail recursive)

20 Learning Channel

Help you make better use of whatever
anguage you use

s*figure out how to do things in languages that don't
support them explicitly:

e lack of named constants and enumerations in Fortran
e use variables that are initialized once, then never changed

e lack of modules in C and Pascal use comments and
orogrammer discipline

*|lack of iterators in just about everything fake them with
(member?) functions

20 Learning Channel

Study of Programming Languages
*What is available?

*What is not available?

*What is good?

*What is bad?

*What is the use?

20 Learning Channel

